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ABSTRACT

The efficient scheduling of resources in a flexible manufacturing
system (FMS) has a direct impact on a company's goal of increased
profits. Many techniques, including mathematical programming,
expert systems, and discrete event simulation have been used to
solve these scheduling problems. However, they have all been
ineffective in dealing with the unexpected delays that occur on
the shop floor. This paper deals with a new approach to address
production scheduling problems in an FMS - real-time, concurrent
simulations. These simulations can be initialized to the current
system state and run any time a new schedule is needed.

Keywords: automated manufacturing, optimization, production
scheduling, real-time control, simulation, statistics
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1. INTRODUCTION

Flexible Manufacturing Systems (FMS) have been installed in
numerous factories around the world. Production scheduling is the
function responsible for assigning FMS resources to various
manufacturing tasks. Efficient use of these resources is critical
to a company's goal of increased profits. In fact, poor scheduling
decisions tend to reduce profits because they increase idle time
on machines, cause bottlenecks on the shop floor, and push
customer orders past their due date.

Mathematical programming approaches to solving the scheduling
problem have received considerable attention in the literature.
Graves [GRA81] and Raman [RAM85] have provided excellent surveys
on these techniques. However, these techniques tend to have
prohibitive computational requirements and restrictive
assumptions. Another major drawback to these approaches is that
they typically do not include material handling constraints.
Discrete event simulation, expert systems, and other heuristics
[MIL86, NOR86, JAC86] are other methods used to generate
schedules. While simulation and expert systems packages allow the
manufacturing system to be modelled to any level of detail, they
still have unacceptable computational requirements. In addition,
all of these methods generate feasible solutions with no measure
of optimality. These undesirable properties tend to limit the
applicability of all these approaches in a real FMS environment.

There are two other major drawbacks to all of the
aforementioned approaches. First, they are all run "off-line",
usually once or twice a day. Consequently, they are not able to
respond quickly to unexpected events in the FMS. These events are
usually handled on an ad hoc basis by the FMS supervisor with
little understanding of the impact of his decisions on the overall
schedule. Second, they do not take advantage of the vast amount
of "real-time" shop floor data provided by FMS computer systems.

Davis and Jones [DAV88] have proposed an algorithm for real-
time production scheduling (see Figure 1) . The algorithm first
selects R candidate scheduling alternatives and L performance
indices to be used in evaluating those alternatives. Both
selections based on actual shop floor data and are subject to
continuous modification as the system evolves over time. On-line,
concurrent, Monte Carlo simulations are run, in real-time, to
evaluate the performance of these rules. This type of simulation
analysis introduces four problems which typically are not
addressed in the simulation literature.

First, these simulations forecast the future response of the
system from an known initial state S, which is changing over time.
The state Sj^- represents the actual "state" of the manufacturing
system at the time trial k of the simulation analysis is
initialized. This means that different simulations
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FIG. 1 SCHEMATIC FOR REAL-TIME PRODUCTION SCHEDULER

may have distinct initial conditions (see Figure 2) . Section 2

defines what is meant by "state of the system" and addresses some
of the problems that arise from initiating simulations in this
manner

.

-'-s k.2
”

Known system resopnse

Forecasted system response

FIG 2. CHANGING THE INITIAL STATE

Second, an output data structure must be defined which can
support the performance calculations necessary to choose the best
scheduling rule. In addition, this structure must be updated
easily to incorporate shop floor events as they happen in real-
time. These issues are discussed in Section 3.

The third problem arises in the calculation of statistics
associated with a given performance criteria under a selected
scheduling rule. These calculations are complicated because 1)

each simulation trial is initialized to a possibly different
state, and 2) previous outputs may have changed to reflect events
that happened on the shop floor. Section 4 will explore these
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issues in detail.

The fourth problem area involves the consideration of
multiple stochastic performance criteria to carry out a compromise
analysis to determine the "best" rule. Section 5 addresses issues
associated with that analysis.

2. INPUT DATA FOR THE SIMULATIONS

The input data for each simulation consists of two things:
the current "state" of the system and process plans (see Figure
3) . That state contains up-to-date information about all in-
process jobs, processes, and the active schedule. Process plans
contain all of the routing and timing data needed to create or
update that schedule.

FIG 3. INPUT DATA FOR SIMULATIONS

2 . 1 Jobs

We assume that jobs JOBj (j=l,...,J) are active, with
specified due dates Dj, and that JOBj requires the fabrication of
a single preplanned product type cj) (m=l,...M). We also define
#(JOBj) to be the number of" copies of^)^^ needed to fill the order.
We can restrict #(JOBj) to be less than or equal to the maximum
number of product type that can be carried in a single trip by
the material transport system. If more than one delivery is
needed, we simply create additional jobs. This, seemingly
artificial, restriction is useful in scheduling the movement of
material around the shop floor. These movements are typically
ignored in most formulations of the production scheduling problem
[GRA81, RAM85] . We note further that it is easy to obtain
information about the original customer order from our definition
of JOB.

The state information for each job includes job ID, current
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location (buffer, transporter, or process) , due date, expected
completion time, shop floor release time, current active routing,
and expected/actual start and finish time at each process in that
routing

.

2.2 Processes

We assume that the FMS contains N distinct processes denoted
by (n=l,...,N). These processes can be one of three types. A
type 1 process can perform operations that physically alter the
state of a job such as machining or deburring. A type 2 process
can perform operations that ascertain the true attributes of a job
such as inspection or non-destructive performance testing.
Finally, a type 3 process can perform operations that change the
physical location of a job such as conveyors, robots, or automated
guided vehicles.

The state of type 1 and type 2 processes will contain the
following information for each JOBj at process Pj^: job number for
JOBj, product number for JOBj, batch size #(JOBj), the planned
delivery time , the planned start time (E jpj) , the planned
completion time (Ljj-^) , and the planned pickup time . We note
that for type 3 processes, transporters, these variables, with
slightly different interpretations, are still valid. However, we
also need information about each transporter, location and path.
The topology of the transportation network has direct impact on
the complexity of location and path. In small, simple networks
the last node visited may suffice for location, and a list of
nodes for path. In more complicated systems, the network may have
to be partitioned into sectors each having a distinct ID. These
sectors can then be used to determine both location and path.

2.3 Current Schedule

The production scheduler determines the values for the
variables Ejj-,, Ljj-j, E^j^, and These quantities are chosen to
optimize some multi-criteria, utility function subject to several
types of constraints: due dates, precedence relations, capacity,
resource availability, and material handling. The optimization
criteria could include minimizing tardiness, maximizing production
throughout, or maximizing process utilization.

The resulting schedule contains timing data on all jobs and
processes on the shop floor for some period T into the future.
(Typically, T is one day or one shift.) For each process, that
data includes the expected start and finish time for each job to
be executed during T. For each job, that data includes the
sequence of processes to be visited, and the start and finish
times at that process. GANTT charts [BAK74] are the conventional
method for representing all this data in one diagram.

5



2.4 Process Plans

Several pieces of information are required to schedule a
NEW_JOB to be schedule. The JOB_ID j and due date Dj are provided
by the production planner. All other information is provided by
the process planner in a routing. A routing is either a
completely-ordered or partially ordered listing of the processes
needed to produce, transport, and inspect this NEW_JOB and the
expected time spent at each process. If we allow only one,
completely-ordered, M step routing then a simple ordered list of
processes and durations is sufficient. If we allow the routing to
be a partially-ordered list of M activities, then we must include
the precedence relations among processes. This can be visualized
using the concept of a PERT [BAK74] diagram. If we allow the
scheduler to consider more than one routing for each NEW_JOB, then
the preceding definitions are inadequate. One representation for
such a generalized routing uses an AND/OR graph [DAV89] which is
an extension of the PERT graph.

2.5 Remarks

We have described the inputs to the concurrent, real-time
simulations. It is imperative that robust and efficient data
structures be found to store and update these inputs as needed.
We note three things. First, substantial testing will be required
to determine the robustness and efficiency of candidate structures
both in the laboratory and in the real-world. Second, shop floor
data must be converted to the candidate structures before they can
be used to initialize the simulations. Third, commercial
simulation packages cannot easily be initialized to be
predetermined state defined by an arbitrary collection of data
structures

.

3. SIMULATION OUTPUT DATA

The output from each simulation trial can be limited to vj^^

{ (Ejj-,, E^j^, Ljj-j, } . We can use the following matrix notation
V=[vjj-j] to visualize the output from one trial run, for one
potential scheduling rule, for J JOBs.

v =

_Vji ... VjM_

We note that whenever a routing requires a JOBj to visit a given
process Pj-j more than once, multiple entries for the corresponding
Vjj^ may exist.

Distinct values for the elements of this data structure will
be derived on each simulation trial for a given rule. These
values allow one to determine the times when a given JOB is
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predicted to arrive at, be processed, and depart from each
process. We can also determine all required information about the
buffers and material transporters. Since this data is derived
from detailed simulations of the manufacturing system, we . can be
sure that 1) no jobs are assigned to "down" processes, and 2) a
feasible material handling strategy exists for effecting the
predicted events.

Several performance criteria can be defined using the output
matrix V from a given simulation trial of a proposed scheduling
rule. These criteria typically fall into three classes. First,
we can fixed a point in time and estimate the probability that a

given event has occurred. For example, if we desire to compute
the probability that a given JOBj will be completed by time t^,
then the state of the system at ti must be analyzed (see Figure
4) . In the second case, we may desire to develop an empirical
distribution for the time at which a given event occurs. For
example, one might desire to evaluate the expected tardiness of a
given JOBj which requires the distribution of completion time for
JOBj. Here the state of system at the completion time for JOBj on
the simulation trial k, tj^, would be recorded as illustrated in
Figure 4 .

-

Known system rcsopnse

Forecasted system response

FIG. 4 PERFORMANCE MEIASURES AND SIMULATION OUTPUT

Finally, the performance index might be defined upon the
entire projected trajectory beyond tQ. For example one might
desire to investigate the project utilization of a given process.
We give several examples:

Job Tardiness = max
^

0, max [ L’j^
] J

= D*
( 1 )

Average Tardiness =

i=i
( 2 )

Process Utilization =^ j::

r
( 3 )
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where the summation is over all JOBs that have process Pj-^

active routing and T is the length of the simulation run
given trial

in their
on a

Job Flow Time = max - min = FTj (4)

n n

T-' (L’ - E' ) I

Job Productivity = ^
n=l J

We note that these functions are valid regardless the initial
state of a particular trial. The collection of performance
measures from these trials provides the samples used in the
statistical analysis discussed in the following section.

4. STATISTICAL ANALYSIS OF SIMULATION OUTPUT

We now discuss issues surrounding the estimation of
statistics for all L performance measures f^(V^) for each
scheduling rule r = 1,...,R from the output from each simulation
trial V^.

4.1 Traditional Approach

When all K simulation trials are
same initial state, schedule the same
amount of simulated time, we proceed
output v|^ from trial k to get one est
measure fl (vl^) for each fixed schedul
tables from the K runs V^,...,V^ we
sample estimates f^ (V^) , . . . ,

f i (V^)

.

cumulative density function for the p
#{fl{*)<zl} by the number of observat

independent, start at the
J JOBS, and run for the same

as follows. First, we use the
imate for each performance
ing rule r. Using the output
can get a collection of
We then get an empirical
rob {

f
1 (•

)
£z 1

}

by dividing
ions .

Pr[ fAVf) £ 2 ] = F,'(z)
, 6 )

From this density function we compute estimates for the true means
and variances:

fr = mean or Ex[ ] ( 7 )

2
""2

Cj = Sample Variance or Ex[ (f^ - £j) ] ( 8

)

These statistics provide a summary for the performance of a given
rule with respect to a single objective function.



Since all simulations schedule the same J JOBs on the same N
processes over the same time horizon, we can use the terminating
simulation approach described in [LAW82] to generate (100 - ai)%
confidence intervals for the mean of each of the L objectives.
Then, as also shown in [LAW82], the probability that these L
intervals simultaneously contains their respective means is > l-o
where a is given by

a-ta
1 = 1

We note two things. First, this calculation does allow
performance measures to be correlated. Second, the magnitude ofa]^

can be chosen to reflect the relative importance of performance
measure 1.

4.2 Issues in Real-time Simulations

The preceding statistical analysis ignores the fact that the
systems continues to evolve during the actual scheduling analysis.
We now discuss several issues which arise because of this
phenomenon and their potential impact the preceding statistical
analysis

.

4.2.1 Updating Output Tables. The validity of an output table
from a given simulation trial is limited by two facts. First,
since each trial simulates a finite period of time, its life
cannot extend beyond the time associated with last temporal event
contained in the table. Second, the state of the system will
change during the scheduling analysis. That is, as the system
evolves, the output table for a completed trial may contain
predictions for which have actual measurements are available.
This was illustrated in Figure 2, where the trajectory initialized
from S)^, (the initial state for trial k) does not pass through
S)^+]_ (the initial state for trial k+1).

One might conclude that the forecasted trajectory is no
longer useful. However, the trajectory does contain considerable
forecasted information which is both valid and valuable to the
scheduling analysis. Furthermore, if one discarded a simulation
trial as soon as this happened, it would be very difficult to
generate a sufficient number of trials for the meaningful
computation of statistics and confidence intervals.

An alternative approach would be to update the simulation
trial as the state of the system changes. In Figure 5, the
evolution of a single simulated trial is depicted. Here "state"
changes are recorded at intervals of length and the simulation
output table is updated to pass the simulated trajectory through
the measured state. The updating procedure must preserve the
sampled duration of future processing tasks while ensuring
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precedence relationships and material handling constraints are
satisfied. This, of course, may not always be possible. As soon
as is updated, all performance measures must also be updated.
As noted above, the calculation of these performance is not
impacted by these changes. But the statistic estimates and
confidence interval calculations are.

4.2.2 Initializing Simulations. Let A represent the average
time to compute a given simulation trial's output table V^.
Figure 6 Represents a more realistic depiction of the proposed
real-time simulation environment. Here simulation trial k is
initialized to the state S)^ and the simulation trajectory for
trial k is generated. During this simulation time A, the system
evolves to state S)^+i. Ideally trial k+1 should be initialized
from

T
Prediction cnor

• • • • >
t l+A t+2A t+3A

FIG. 5 UPDATING OUTPUT TRAJECTORIES
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[- A -|- A+ A-1

FIG. 6 SYSTEM EVOLUTION AT A INTERVALS

If we ignore this and use S)^ to initialize all simulation trials,
as shown in Figure 1 , then we may deliberately introduce an error
into the analysis. That error arises because, as discussed above,
the probability that the simulated system response will pass
through the known state may be zerx). On the other hand, if
we use S]^+i, each simulation trial will start from a different
initial state. The impact of this decision is discussed below.

Known system resopnse

Forecasted system response

FIG. 7 ALL TRIALS INITIALIZED TO Sk

4.2.3 Calculating Statistics. State changes fall into three
classes: number of jobs, number of processes, status of scheduled
events. Whenever a state change is detected during a simulation
analysis, two things happen. We must try to update output tables
from completed trials and we must initiate the next trial at a

different state than the current one. This can impact the
statistical computations in two ways.

First, the calculation of means and variances for individual
performance measures may be biased. The amount of bias depends on
the type of change, the action taken, and the performance measure
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itself. Some changes, such as a new job to be scheduled or a
process breakdown, will terminate the current analysis and cause a

new one to be initiated. Others will require table updates and
the recalculation of individual performance measures. To
illustrate these points, consider (separately) the impact of a
finished JOB and a delayed event during trial K. In the first
case, output tables for trials 1,...,K will contain data about
this JOB. However, output tables for the remaining trials in the
analysis will not. We can easily remove all of the data related
to that JOB from the first K output tables. The impact of this is
most obvious on those performance measures that are directly
related to the number of jobs in the system such as average
tardiness. Instead of the first K computations being based on J
jobs, and the remainder on J-1 jobs, all will be based on the same
J-1 jobs, thereby removing this bias. The impact of this data
removal on the statistical properties of performance measures not
directly related to the number of jobs, such as process
utilization, is minimal.

The difficulty involved in eliminating the bias introduced
whenever a scheduled event will be delayed depends on the
"severity" of the delay. Severity is measured in terms of its
impact on the current schedule and completed trials 1,...,K. A
delays which results 1) in any new material movements (a new tool
delivery) or 2) from a process breakdown will automatically force
a termination of the current analysis and a new schedule to be
generated. Any delay which makes it impossible to update the
output tables for trails 1,...,K, forces them to be discarded, and
the analysis to be initiated again. This means that the delay
invalidated so many of the events in the tables that it was
necessary to run all of the simulations over again. All other
delays require all performance measures to be recomputed, but they
introduce little bias into the statistical calculations.

The second, and more significant, problem involves the
calculation and accuracy of the individual confidence intervals.
At this point in time, there are four major unresolved issues.
The first involves the "type" of simulation analysis being
performed. Since each trial is started from a different state,
the simulations are not "terminating" according to [LAW82].
Moreover, since they also do not run long enough for the system to
reach statistical equilibrium. Hence, they are also not "steady
state" simulations. The second issue involves the selection of a
stopping rule for each trial. If we simulate out to the end of
the current day, then each trial will have a variable length.
This introduces a bias into the calculation of all "time-weighted
statistics". This can be removed by running each trial T
simulated time units into the future. However, the impact of
doing this on the statistical properties of other performance
measures in not known.

The third issue arises from the fact that all of the
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statistical samples from a given trial are computed from the same
output tables. This introduces the very likely possibility that
there will be correlation (both positive and negative) among the
performance measures. While we can arrange for independence
between trial outputs by careful selection of random number
streams, we cannot remove this type of correlation. The fourth
issue concerns the accuracy of any confidence intervals computed
in this way. The accuracy depends on the underlying distributions
of the various performance measures. If measure 1 has a highly
skewed or non-normal distribution, then the actual coverage may be
significantly less then (100 -a)%. For those measures which are
expressed as averages, such tardiness or process utilization, this
should not be a problem. Measure such as makespan miay require
additional analysis before accurate confidence intervals can be
derived.

At this point in time, there are no theoretical results which
account for all of these issues.

4.3 Remarks

Although many of the above issues merit considerable further
research, their criticality is directly related to the time
required to perform table updates and complete the scheduling
analysis. If that time is long, relative to frequency of events
which cause changes in the initial state, then updating output
trials and generating statistics to account for different initial
conditions in the simulations are major concerns. As that time
decreases, the probability that such events will occur is
significantly reduced. We hope to achieve such a reduction by
networking a collection of computer workstations and running
simulation trials in parallel.

5. CHOOSING THE BEST SCHEDULING RULE

Whenever there is only one performance objective f, we can
determine the best scheduling rule using one of two methods. If
R=2, we can construct a "paired t-confidence interval" [LAW82] for
the difference between the means EX(f 2 )

- EX(f 2 ) . This approach
does not require independence across trials. In fact, a positive
correlation can be beneficial, since it reduces the variance which
reduces the size of the confidence interval. If R>2, we can use
the "best of R systems" approach described in [LAW82] . This
method does not use confidence intervals but does require
independence across trials. The scheduler specifies two numbers:
a probability P*, and an "indifference amount" d* . The method
selects a rule r* such that 1) the probability that r* is the
"best" rule is > P*, and 2) the performance of r* differs from the
performance of the "best" rule by no more than d*

.

For arbitrary R and L, the selection of the best rule is less
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straightforward. The work done by [ZEL74] suggest that following
approach. We first use the mean values defined in (7) to define
the nondominated set of scheduling rules, denoted by R* . R* will
be defined such that rtR* if for every r't R there exists an 1C
[ 1 , . . . , L] such that

f 1 > f 1

That is, scheduling rule r is contained in the nondominated set R*
if and only if it maximizes one of the L considered objectives in
the mean sense. In actuality we have defined the Nadir set or the
set of scheduling rules which contain the maximal mean values for
the considered performance indices. Since it is unlikely that a
single rule will simultaneously optimize all objectives, we define
an "interval of compromise" for each objective 1,

[m^, M^] where

ml = min {mi} = max (Mi)
r.R* r«R*

where m^ is the smallest and is the largest of all the samples,
f^, from the simulation trials. That is ml is the minimum value
assumed by each performance measure and m 1 is the maximum value.
We can also define r^ and r^ to be those rules corresponding to
the values ml and m 1 respectively.

This information provides the basis for choosing the "best"
compromise rule, but methods for actually selecting that rule have
not been developed for stochastic systems [DES86, FIS78, WHI79]

.

The current research in this area attempts to define a finite set
of states that the decision-making environment can assume and then
estimate the probability that each state will occur. This
approach is similar to the definition of "state" used in the
classic decision theoretic analysis [LAP81]. For a simulated
system, however, there is a continuum of states that can be
assumed by the system, and this set of states is obviously
conditioned by the initial state employed in the simulation.
Therefore, direct application of existing methodologies will be
extremely difficult.

6. SUMMARY

We have discussed data requirements and statistical analysis
techniques for using real-time, concurrent simulation as a tool
for production scheduling. Our future work falls into several
areas. First, we are developing real-time simulations for a small
manufacturing system. Second, we are attempting to determine the
frequency at which the simulation analysis should be performed.
Should the analysis be run continuously, or should they be
triggered by events? If the latter is the case, what events
should be considered? Given the frequency of analysis, the next
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concern is the development of an interface to the data generated
in advanced real-time simulation environments.

A third research concern is the development of simulation
techniques that will support contingency analysis of rare events.
That is, how does one compare expected performance against a
potential rare event? This leads to the fundamental issue of how
one performs comprise analysis among considered performance
indices across a collection of potential scheduling rules.

In conclusion, it is becoming apparent that although the
computational capacities are emerging to implement real-time
simulation, several theoretical and practical concerns remain.
The authors believe that these concerns will evolve into major
research efforts within the near future.
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