NISTIR 89-4058

Standard Aggregate Materials for Alkali-Silica Reaction Studies

L. Struble and M. Brockman

U.S. DEPARTMENT OF COMMERCE National Institute of Standards and Technology (Formerly National Bureau of Standards) Center for Building Technology Gaithersburg, MD 20899

May 1989

NISTIR 89-4058

Standard Aggregate Materials for Alkali-Silica Reaction Studies

L. Struble and M. Brockman

U.S. DEPARTMENT OF COMMERCE National Institute of Standards and Technology (Formerly National Bureau of Standards) Center for Building Technology Gaithersburg, MD 20899

National Bureau of Standards became the National Institute of Standards and Technology on August 23, 1988, when the Omnibus Trade and Competitiveness Act was signed. NIST retains all NBS functions. Its new programs will encourage improved use of technology by U.S. industry.

U.S. DEPARTMENT OF COMMERCE Robert Mosbacher, Secretary NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Raymond G. Kammer, Acting Director

ABSTRACT

Preliminary studies have been carried out to identify candidate materials for use as a standard reactive aggregate in alkali-silica investigations. The materials studied included several commercial glasses, an opal, a guartzite, a rhyolite and a calcined flint. Candidate materials were tested according to for their expansion in mortars prepared using either a highalkali or a low-alkali cement, a nonreactive limestone sand, and some proportion of reactive material. Tests were carried out according to ASTM C 441-81, Standard Test Method for Effectiveness of Mineral Admixtures in Preventing Excessive Expansion of Concrete Due to the Alkali-Aggregate Reaction, and ASTM C 227-87, Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method). The proportion of limestone replaced by each reactive material was varied so as to bracket the pessimum proportion (i.e., the proportion of reactive material producing the highest level of expansion). Mortar-bar expansion levels were measured throughout reaction periods of approximately 6 months to 1 year. Expansion results are presented and discussed. With high-alkali cement, the calcined flint produced moderate expansion levels and a rapid early rate of expansion, and with low-alkali cement it produced very little expansion. With high-alkali cement, the Vycor, fused quartz, and fused silica, produced high expansion levels and a rapid early rate of expansion, but with low-alkali cement they produced moderate expansion. Based on these studies, the Vycor, fused quartz, fused silica, and calcined flint appear suitable as standard reactive materials; the calcined flint appears especially promising.

Table of Contents

		<u>Page</u>
ABS	IRACT	iii
1.	INTRODUCTION	1
2.	STANDARD REACTIVE MATERIALS	2
3.	EXPERIMENTAL PROCEDURE	6
	<pre>3.1 Materials 3.2 Mortar Bar Expansion Tests</pre>	6 9
4.	RESULTS	12
5.	DISCUSSION	27
6.	ADDITIONAL STUDIED	28
7.	CONCLUSIONS	28
8.	ACKNOWLEDGMENTS	29

List of Tables

<u>Page</u>

Table 1.Cement alkali levels7Table 2.Aggregate grading10Table 3.Expansion results11

P	a	q	e

Figure 1.	Schematic representation of pessimum pro- portion (Figure 6.8 of Mindess and Young [27])	3
Figure 2.	Mortar-bar expansion using Pyrex glass and high-alkali cement, with various proportions of glass replacing limestone	13
Figure 3.	Mortar-bar expansion using porous silica glass and high-alkali cement, with various proportions of glass replacing limestone	14
Figure 4.	Mortar-bar expansion using Vycor glass and high- alkali cement, with various proportions of glass replacing limestone	15
Figure 5.	Mortar-bar expansion using fused quartz glass and high-alkali cement, with various proportions of glass replacing limestone	16
Figure 6.	Mortar-bar expansion using fused silica glass and high-alkali cement, with various proportions of glass replacing limestone	17
Figure 7.	Mortar-bar expansion using calcined flint and high-alkali cement, with various proportions of flint replacing limestone	18
Figure 8.	Mortar-bar expansion using Beltane opal and high-alkali cement, with various proportions of opal replacing limestone	19
Figure 9.	Mortar-bar expansion using novaculite (orthoquartzite) and high-alkali cement, with various proportions of quartzite replacing limestone	20
Figure 10.	Mortar-bar expansion using rhyolite and high-alkali cement, with various proportions of rhyolite replacing limestone	21

Page

Figure	11.	Mortar-bar expansion using Pyrex glass and high- or low-alkali cement (limestone plus 50 percent glass)	22
Figure	12.	Mortar-bar expansion using Vycor glass and high- or low-alkali cement (100 percent glass)	23
Figure	13.	Mortar-bar expansion using fused quartz glass and high- or low-alkali cement (limestone plus 50 percent glass)	24
Figure	14.	Mortar-bar expansion using fused silic glass and high- or low-alkali cement (limestone plus 50 percent glass)	25
Figure	15.	Mortar-bar expansion using calcined flint and high- or low-alkali cement (limestone plus 20 percent flint)	26

1. INTRODUCTION

Preventing deterioration of concrete due to chemical reactions between cement and aggregate is a major concern in the production of durable concrete. The principal chemical reaction is the alkali-silica reaction (ASR), which occurs between sodium and potassium, typically derived from the cement, and certain types of siliceous components in the aggregate. The reaction may cause expansion and cracking, and sometimes causes deterioration of the concrete.

Struble [1] recently reviewed the mechanisms of alkalisilica reaction. These mechanisms are understood only in a general sense, and many details of the reaction are still under investigation. Based on an earlier review by Diamond [2,3], the general aspects of the reaction mechanism were summarized as follows:

1. The reaction does not directly involve alkali, but occurs between silica in the aggregate and hydroxyl ions in the pore solution. The concentration of hydroxyl ions is controlled predominantly by the concentration of alkali (sodium and potassium) ions, generally derived from the cement.

2. The product of the reaction is a gel, an amorphous semisolid or solid material consisting principally of silica, alkali, calcium, and water.

3. The gel may imbibe water and swell, producing expansion and possibly cracking of the mortar or concrete.

A key aspect of the alkali-silica reaction concerns the proportions of alkali and reactive silica in the concrete or mortar. Considerable experience has shown that damage due to alkali-silica reaction does not occur when alkali contents are low. If the cement alkali contents are low, the concentration of hydroxyl ion in the pore solutions are correspondingly low, and the extent of reaction between hydroxyl ion and silica is low. This is the basis for the alkali specification limit of 0.60 percent¹, an optional chemical requirement in ASTM C 150, Standard Specification for Portland Cement. This alkali limit may be invoked to prevent deleterious expansion due to alkalisilica reaction.

The proportion of reactive silica in a mortar or concrete also affects the level of expansion. There is typically a maximum in expansion at some intermediate proportion of reactive

¹Expressed as percent of equivalent sodium oxide (Na₂O).

silica, the so-called pessimum proportion. This well-known effect is shown schematically in Fig. 1.

Introducing a substantial proportion of a pozzolanic material, such as fly ash or silica fume, may prevent expansion due to alkali-silica reaction. As described by Diamond [4], these materials appear to prevent expansion by reacting more rapidly than the deleterious aggregate with the alkali solution and producing reaction products that do not themselves swell. To decide whether a specific pozzolanic material prevents expansion, the material may be tested according to ASTM C 441, Standard Test Method for Effectiveness of Mineral Admixtures in Preventing Excessive Expansion of Concrete Due to the Alkali-Aggregate Reaction.

To evaluate the effect on expansion of a specific cement or combination of cement and mineral admixture, it is often necessary to measure expansion due to ASR using a standard reactive aggregate. A common standard material is Pyrex glass², utilized in ASTM C 441. However, doubts have been raised concerning the future availability of Pyrex glass for this purpose', and the performance of the Pyrex glass as a standard reactive material has not always been satisfactory, as discussed For these reasons, studies were carried out at the later. National Institute of Standards and Technology⁴ (NIST) to identify candidate materials to replace Pyrex glass in ASTM C 441 and to serve as a standard reactive aggregate in investigations of alkali-silica reaction. Results of these studies and recommendations for additional tests are presented in this report.

2. STANDARD REACTIVE MATERIALS

To serve as a standard reactive aggregate in tests such as ASTM C 441, certain criteria should be met. The material should

'Formerly the National Bureau of Standards.

²Certain trade names and company products are identified to specify adequately the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products are necessarily the best available for the purpose.

³In 1984 it appeared that Pyrex would not be available in the form of lump cullet as specified in ASTM C 441. Subsequently, however, the ASTM Subcommittee C09.02.02 was advised that the Pyrex would be available in this form.

Figure 1. Schematic representation of pessimum proportion (Figure 6.8 of Mindess and Young [27]).

produce a high level of expansion in mortar bars, at least approximately 0.1 percent expansion when used with a cement containing approximately 1.0 percent total alkalies as equivalent sodium oxide (Na_2O) . It should produce this expansion rapidly (i.e., within 14 days at 37.8°C) to allow accelerated testing. If the expansion shows a pessimum relationship to the proportion of aggregate that is reactive, the peak in expansion must be reasonably broad (here termed a flat pessimum) so that expansion results are not sensitive to small changes in the ratio of alkali to reactive aggregate. Expansion must be reduced considerably when measured using low-alkali cement and pozzolanic materials, so that the objectives of ASTM C 441 are met. Finally, the material must be homogeneous within each batch and uniform from batch-to-batch to assure reproducible expansion data.

Pyrex glass has been used as a standard reactive material in measuring expansion due to ASR since 1947. It was specified as a reactive material for mortar-bar expansion tests in the Bureau of Reclamation Specification No. 1904 in 1947 covering the performance of calcined reactive siliceous material for the Davis Dam. Stanton in 1950 [5] discussed the use of Pyrex glass sand and presented expansion results at 70°F and at 100°F at ages up to 1 year for mortars containing cement and cement plus pozzolanic material. The first publication of ASTM C 441, which utilizes Pyrex glass as the standard reactive material, was in 1959.

Notwithstanding its long history, Pyrex is not satisfactory as a standard reactive material in ASR studies. Stark [6] reported that two samples of Pyrex glass produced variable flow levels in an osmotic cell, which measures extent of deleterious reaction, and variable mortar bar expansion results. Barneyback [7] noted that Pyrex may produce variable expansion levels. Thus there have been cases where the expansion produced by Pyrex is not reproducible. The sodium content of Pyrex, approximately 4 percent Na₂O [8], probably also makes it unsuitable as a standard reactive material. In a recent study of ASR mechanisms, Struble [1] concluded that expansion appears to be a function of the extent of dissolution of aggregate in the cement pore solution, which depends on solution alkalinity, and is further influenced by the proportions of alkalies in solution, affecting composition and swelling behavior of the reaction product. Based on this understanding, one would expect considerable differences in expansion behavior between a material releasing appreciable alkali as it dissolves, such as the Pyrex glass, and a material releasing little or no alkali, such as most naturally occurring reactive aggregates. Figg [9] similarly concluded that Pyrex is not appropriate because it will provide additional alkali as it dissolves. He reported that glasses containing alkali and silica in appropriate proportions can produce expansion even with lowalkali cements.

The expansion behavior of Pyrex has been shown to differ in a number of ways from the behavior of naturally occurring Brandt [10] noted that the behavior of Pyrex is aggregates. different from the behavior of other reactive aggregates in that the glass is much more rapidly reactive, which means its expansion occurs before all the so-called active alkalies had been released from cement. Nixon and Gaze [11] reported that expansion produced by Beltane opal shows the typical pessimum relationship with the proportion of reactive material, whereas with Pyrex there was no pessimum, but rather a progressive increase in expansion as more Pyrex was used. In subsequent studies, the same authors [12] discussed differences in behavior between Pyrex and opal with respect to the reduction in expansion in mortars containing fly ash. With Pyrex, this reduction in expansion correlated with pozzolanic activity of fly ash, and the alkali content of ash had only a secondary effect. With opal, on the other hand, the alkali content of the fly ash had a substantial influence on reduction in expansion.

A few other materials have been used as standard reactive materials in ASR studies. One is Beltane opal, proposed by Diamond and Barneyback in 1976 [13]. It is a hydrothermally altered rhyolite collected by Barneyback from an abandoned openpit mine in California [7]. However, Figg [9] noted that neither Pyrex nor Beltane opal model behavior of real, reactive aggregates in concrete. In particular, Beltane opal shows a particularly sharp pessimum relationship; i.e., high levels of expansion occur only over a very narrow range of opal content. For example, in one case the pessimum proportion found in our previous studies was approximately 2 percent of the total aggregate, and expansion was reduced to roughly 25 percent of its maximum value when the proportion of opal was decreased to 1 percent or increased to 4 percent [1,14].

Fused silica has also been proposed as a standard reactive material by both Figg [9] and Swamy and Al-Asali [15]. The latter reported that fine (50 percent passing 0.6 mm sieve) fused silica produced the most expansion when present at approximately 15 percent of the total aggregate.

More recently, calcined flint was proposed as a standard reactive aggregate by Lumley and Kollek [16]. They reported that the material is approximately 96 percent cristobalite, that its pessimum level is roughly 10 percent of the total aggregate, and its expansion level and rate are suitable for a standard reactive aggregate.

3. EXPERIMENTAL PROCEDURE

3.1 <u>Materials</u>

Two Type I cements, high- and low-alkali⁵, were utilized for these studies. The high-alkali cement is Portland Cement Sample No. 72 from the Proficiency Sample Program of the Cement and Concrete Reference Laboratory at NIST. The low-alkali cement was obtained from the manufacturer, and was used in a previous study⁶. Alkali levels are listed in Table 1.

A number of reactive materials were studied, both manufactured glasses and naturally occurring materials. Each was used in combination with limestone for mortar-bar expansion tests. The proportion of limestone replaced by each reactive material was varied so as to determine at least approximately the pessimum level of each reactive material.

The limestone⁷ was used in previous ASR studies [1,14]. As discussed [1], the limestone was selected from a quarry with no known history of alkali reaction. It was thought to contain only low levels of dolomite, which is important because high levels of dolomite and clay phases may indicate susceptibility to alkalicarbonate reaction. Subsequent analyses showed that some samples did contain appreciable dolomite, and possible effects of the dolomite are discussed later in this report.

Pyrex glass⁸ was obtained as a lump cullet⁹. Pyrex is a sodium borosilicate glass, and typically contains 81.0 percent SiO_2 , 13 percent B_2O_3 , 4 percent Na_2O_3 , and 2 percent Al_2O_3 [8].

Porous silica glass¹⁰ was obtained in the form of rods, and is not available as a cullet. It is an intermediate material in

⁵The designations Type I and high-alkali cement are described in ASTM C 150.

⁶This cement was designated as Cement G by Struble [1].

⁷Obtained from Martin Marietta Aggregates Company, Pinesburg, MD.

⁸No. 7740, obtained from Corning Glass Works, Corning, NY.

⁹Lump cullet is a term that is applied to waste glass from the manufacturing process, either to the residual melt left during a batch process or to broken pieces of finished glass, typically rods and tubes, that are added to the melt.

¹⁰No. 7930, obtained from Corning Glas Works, Corning, NY.

	Table 1. Cement	alkali levels
Cement	Na ₂ O (% by mass)	K ₂ O (% by mass)
High-alkali [*]	0.28	1.02
Low-alkali ^b	0.20	0.31

^aReported by CCRL [26]. ^bReported by Struble [1]. the manufacture of Vycor glass, which begins with removal of the non-silica constituents of a borosilicate glass by a chemical leaching process, producing the porous silica glass. Porous silica glass is expected to have a relatively high solubility rate due to its high specific surface area (approximately 150 m^2/g) and small (approximately 5.0 nm) pore diameter [17]. The Vycor glass¹¹ was obtained as broken tubing with a typical wall thickness of 1 mm, and is not available as lump cullet. Both glasses contain approximately 96 percent SiO₂, and the remaining 4 percent is largely B₂O₃ [18].

The fused quartz¹² glass was also in the form of broken tubing. This glass is produced by melting material from a highpurity quartz deposit [19].

The fused silica¹³ was obtained as industrial-grade glass, though it is also available as cullet. The fused silica is a high-purity, high-quality optical glass, produced by flame hydrolysis of SiCl₄ [20].

The calcined flint¹⁴ was obtained as particles 1 mm to 2 mm in size. It is made by acid-washing a commercial flint, then firing it at 1375° C for 6 hours [16].

The Beltane opal¹⁵ was used in other studies in our laboratory [1,14]. Gutteridge and Hobbs [21] reported that the reactive components of Beltane opal are an amorphous, opaline constituent and α -cristobalite.

The novaculite¹⁶ was also used in other studies in our laboratory [1,14]. It is a fine-grained orthoquartzite, composed largely of SiO_2 . This material produced only slight expansion

¹¹No. 7913, obtained from Corning Glass Works, Corning, NY.

¹²Obtained from General Electric, Quartz Department, Cleveland, OH.

¹³Obtained from Corning Glass Works, Corning, NY.

¹⁴Obtained from Blue Circle Industries PLC, Technical Services Division, Greenhithe, UK.

¹⁵Obtained from Professor S. Diamond, Purdue University, W. Lafayette, IN.

¹⁶Obtained from Ward's Natural Science Establishment Inc., Rochester, NY. when tested at room temperature, and was included in the present studies in case it produced more substantial expansion at 37.8°C.

The rhyolite¹⁷ sand had been used as a reactive material in another laboratory [22]. The sand is crushed rhyolite from a quarry in Arizona and is used in light-weight concrete and masonry [23].

3.2 Mortar Bar Expansion Tests

The aggregate materials were crushed as necessary, sieved, and reconstituted to obtain the grading specified in ASTM C 441 (Table 2). In mixes containing reactive material, limestone was replaced by the desired proportion (by mass) of the reactive constituent. Except for the calcined flint (which had too fine a particle size distribution), the reactive material replaced limestone in each size fraction; for the calcined flint, no replacement could be made in the two coarser fractions, so a correspondingly larger amount of its coarsest fraction (1.18 mm to 0.60 mm) was used.

In general, the mortar bars were prepared according to ASTM C 441 and ASTM C 227-87, Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method). The following amounts were used for each batch: 300 g cement, 675 g sand, and 145.5 mL water, for a water-to-cement ratio (w/c) of 0.485. (These amounts are slightly lower than the amounts specified in ASTM C 441, but the ratio of sand-to-cement is the same.) A constant water content was used in the present study, whereas a variable water content is specified in ASTM C 441 to produce flow within a specified range.

The mortars prepared for these studies are described in Table 3. The proportions of reactive aggregate and non-reactive limestone were varied to extend above and below the pessimum proportion for each reactive material. One batch of each mortar was prepared to provide two specimens of each mixture.

Bars were removed from the mold after 24 hours, then stored throughout the test period in containers and racks described in C 227. The sealed container allows vertical storage of the bars in a moist environment. As specified in ASTM C 227 and C 441, bars were stored at 37.8°C throughout the expansion test. Length changes were measured periodically at room temperature using a length comparator.

¹⁷Obtained from Johnson-Stewart-Johnson Mining Co., Mesa, AZ.

Table 2. Aggregate grading*

	Sieve Size	2	Amount
	Passing	Retained on	(% by mass)
No.	4 (4.75 mm)	No. 8 (2.36 mm)	10
No.	8 (2.36 mm)	No. 16 (1.18 mm)	25
No.	16 (1.18 mm)	No. 30 (0.60 mm)	25
No.	30 (0.60 mm)	No. 50 (0.30 mm)	25
No.	50 (0.30 mm)	No. 100 (0.15 mm)	15

*According to ASTM C441, Table 1.

ID	Reactive Material of ag (% b	Proportion gregate y mass)	Cement*	Final Expansion (% by length)
22	none	0	н	0.04
A2-2	none	0	н	0.04
R1	Durey	50	н Н	0.00
DI DI	Puroy	50	T.	0.40
22 22	Pyroy	80	ц	0.02
A.J	PUTOY	100	H	0.40
R5	porous silica	200	H	0.08
ະວ ະວ	porous silica	10	11 11	0.03
רב דו	porous silica ^b	100	11 U	0.01
E7	Vycor	10	LI LI	0.14
r J Fa	Vycor	50	п ч	0.30
F4 F6	VyCOI	75	u II	0.08
r0 177	Vycor-2°	100	n u	0.75
F /	VyCOI-2 VyCor-2°	100	л т	0.33
r 🤉	fuced guarts	100	ч	0.52
	fused quartz	50	п	0.85
ц. т 1	fused quartz	100	ц ц	0.31
х. ПТ	fused silica	50	11 U	0.55
K2 K3	fused silica	50	T.	0.07
к. У 1	fused silica	100	ц Ц	0.27
ME	algingd flint	100	n u	0.81
MO	calcined flint	10	л т	0.14
MA	calcined flint	10	ц	0.01
M14 M1	calcined flint	15	T	0.23
MC	calcined flint	20	ц	0.01
MO	calcined flint	20	п	0.27
M7	calcined flint	20	ц ц	0.01
MO	calcined flint	50	n u	0.32
F10		50	п ч	0.25
D2 1	opal	1	п	0.09
DI El	opal	2	n u	0.28
ET 5	opal	4	п	0.24
	opar	0	п	0.20
GI	novaculite	10	п	0.03
62	novacuiite	20	п u	0.03
G3 C2	novaculite	50	n	0.00
C3 22	rnyoiite	10	H TT	0.00
D2 C2	rnyolite	00	H	0.03
U2	rnyolite	100	н	0.02

^aCements designated as H, high-alkali, or L, low-alkali. ^bExtra water (150 ml) was added to this mortar during mixing. ^cSecond batch of glass.

4. RESULTS

Expansion curves for mortars using the high-alkali cement are shown in Figs. 2 through 10. Expansion generally began immediately and increased most rapidly during the initial period. After a few weeks, the length gradually leveled off. The expansion levels at 2 months were usually as high or nearly as high as the final level (~6 months to 2 years). The only material that was moderately slow to reach its final expansion was the porous silica glass (Fig. 3).

The final expansion levels (Table 3) with high-alkali cement vary considerably for the various reactive materials studied. The naturally occurring materials (novaculite and rhyolite) produced low expansion, generally less than 0.05 percent. Calcined flint, Beltane opal and the porous silica glass produced moderate expansion levels, 0.10 percent to 0.30 percent. The other commercial glasses (Vycor, fused quartz, and fused silica) produced high expansion levels, nearly 1.0 percent, greater than the approximately 0.7 percent expansion produced by Pyrex.

Although these studies did not include enough replacement levels to determine precisely the pessimum proportion for each material, the results provide an indication of the pessimum All the manufactured glasses appear to have a high level. pessimum proportion, in the range 50 percent to 100 percent, and a flat pessimum, such that appreciable variation in proportion of reactive material (e.g., 10 percent) caused little variation in This pattern was followed by Pyrex (Fig. 2), porous expansion. silica (Fig. 3), and Vycor (Fig. 4), and probably by fused quartz (Fig. 5) and fused silica (Fig. 6); the latter two were tested only at 50 and 100 percent but appear similar. Beltane opal (Fig. 8), on the other hand, shows a very low pessimum at approximately 2 percent, as was reported previously [1,14]. The Beltane opal also shows an extremely sharp pessimum relationship, such that even small variations in the proportion of reactive material (e.g., 4 percent) causes much variation in expansion. The calcined flint (Fig. 7) shows an intermediate pessimum level, approximately 30 percent and a flat pessimum. Expansion levels for the novaculite and rhyolite were very low, less than the limestone, thus probably not due to alkali-silica reaction and not showing a pessimum effect.

There was considerable difference among the reactive materials in the degree to which expansion was reduced using a low-alkali cement (Figs. 11-15). With Pyrex (Fig. 11), the expansion level using the low-alkali cement was only 4 percent of the level using the high-alkali cement. With Vycor, fused quartz, and fused silica (Figs. 12-14), the effect was not so great; the expansion levels using the low-alkali cement were approximately 30 percent to 40 percent of the expansion levels using the high-alkali cement. The behavior with calcined flint

Figure 2. Mortar-bar expansion using Pyrex glass and high-alkali cement, with various proportions of glass replacing limestone.

Figure 3. Mortar-bar expansion using porous silica glass and high-alkali cement, with various proportions of glass replacing limestone.

Figure 4. Mortar-bar expansion using Vycor glass and high-alkali cement, with various proportions of glass replacing limestone.

Figure 5. Mortar-bar expansion using fused quartz glass and highalkali cement, with various proportions of glass replacing limestone.

Figure 6. Mortar-bar expansion using fused silica glass and highalkali cement, with various proportions of glass replacing limestone.

Figure 7. Mortar-bar expansion using calcined flint and highalkali cement, with various proportions of flint replacing limestone.

Figure 8. Mortar-bar expansion using Beltane opal and high-alkali cement, with various proportions of opal replacing limestone.

Figure 9. Mortar-bar expansion using novaculite (orthoquartzite) and high-alkali cement, with various proportions of quartzite replacing limestone.

Figure 10. Mortar-bar expansion using rhyolite and high-alkali cement, with various proportions of rhyolite replacing limestone.

Figure 11. Mortar-bar expansion using Pyrex glass and high- or low-alkali cement (limestone plus 50 percent glass).

Figure 12. Mortar-bar expansion using Vycor glass and high- or low-alkali cement (100 percent glass).

Figure 13. Mortar-bar expansion using fused quartz glass and high- or low-alkali cement (limestone plus 50 percent glass).

Figure 14. Mortar-bar expansion using fused silica glass and high- or low-alkali cement (limestone plus 50 percent glass).

Figure 15. Mortar-bar expansion using calcined flint and highor low-alkali cement (limestone plus 20 percent flint).

(Fig. 15) was similar to Pyrex; the expansion level using the low-alkali cement was extremely low relative to the level using the high-alkali cement.

5. DISCUSSION

As discussed previously, it was found after some experiments had been carried out that one batch of limestone contained appreciable dolomite. Regardless of which limestone was used, mortars containing 100 percent limestone showed very little expansion. Sample A2 (Table 3) used limestone containing dolomite; its final expansion level was 0.04 percent. Sample A3-2 (Table 3) used a later batch of limestone containing no dolomite; its final expansion level was 0.00 percent. The latter level is significant, but still quite low. Therefore, it is assumed that the dolomite did not affect the expansion results to any great extent. The plots of expansion data for each aggregate (Figs. 2-10) utilized whichever of the two batches was used to prepare the mortars containing reactive material.

In assessing the suitability of each candidate reactive material, we consider the expansion level and rate, the sensitivity of expansion to proportion of aggregate, the extent to which expansion is reduced using a low-alkali cement, and the expected reproducibility. As discussed earlier, Pyrex is not a good candidate for two principal reasons, its lack of reproducibility and its high sodium content. Five materials produced a high final expansion level and a high initial expansion rate of expansion: Vycor, fused quartz, fused silica, opal, and calcined flint. Of these, the opal is rejected as a candidate because its pessimum proportion is so low and sharp. Α sharp pessimum is undesirable because the material would have to be tested at many replacement levels to define fully the relationship between expansion and proportion of reactive material for a specific cement.

The remaining candidate standard reactive materials varied somewhat in the extent to which their expansion was influenced by the alkali content of the cement. As is desirable for a standard reactive material, Pyrex produced high expansion with high-alkali cement and very low expansion with low-alkali cement. This was not the expected behavior. Following the reasoning of Figg [9], we expected that the sodium ions provided by Pyrex would make it relatively insensitive to the alkali level in the cement. The calcined flint also produced very low expansion with low-alkali cement. On the other hand, the other three commercial glasses, Vycor, fused quartz, and fused silica, produced intermediate expansion with low-alkali cement. Thus, these three commercial glasses appear somewhat less suitable than Pyrex and calcined flint as standard reactive materials.

Although we have not assessed the batch-to-batch reproducibility of the candidate materials, certain production parameters are expected to affect reproducibility. For example, Pyrex lump cullet is sometimes annealed and sometimes quenched with water [24], either of which may affect reactivity. Such variability in processing may be responsible for the poor batchto-batch reproducibility discussed earlier. A lump cullet, with variable thermal history, is therefore not a good choice for a standard reactive aggregate. Vycor cannot be tempered [25], fused quartz is not annealed during its manufacture [19], and fused silica is likewise not annealed [20]. Therefore these three materials are expected to have better batch-to-batch reproducibility. A second batch of Vycor was included in this study, however, and produced somewhat different expansion levels than the first batch. Finally, though calcined flint is derived from a naturally occurring material, and the homogeneity of a naturally occurring material is difficult to assure, the processing involved in the manufacture of calcined flint is expected to remove constituents that would otherwise cause heterogeneity.

6. ADDITIONAL STUDIES

Before a material can be proposed as a standard, the following additional studies are recommended. Mortars need to be tested using high- and low-alkali cement and fly ash. The pessimum proportion should be determined for each cement to assure that reductions in expansion with low-alkali cement or fly ash are not indirect effects of changes due to pessimum proportion. Several batches of each material should be tested to determine the long-term (batch-to-batch) reproducibility. Finally, consideration must be given to the long-term availability, to possible availability in the size grading specified in ASTM C441, and to the cost.

7. CONCLUSIONS

Because of its reported poor reproducibility and its sodium content, Pyrex glass, which is used in ASTM C 441, is not satisfactory as a standard reactive material in alkali-silica investigations. Preliminary studies have been carried out to identify materials to use in place of Pyrex. Results of mortarbar expansion tests were as follows. With high-alkali cement, calcined flint produced moderate expansion levels and a rapid early rate of expansion, and with low-alkali cement it produced very little expansion. With high-alkali cement, Vycor, fused quartz, and fused silica produced high expansion levels and a rapid early rate of expansion, but with low-alkali cement they produced moderate expansion. Based on these results, it is concluded that calcined flint, Vycor, fused quartz, and fused silica have good potential, and that calcined flint offers the best potential as a standard reactive material in alkali-silica reaction investigations. Additional investigations are needed to assess reproducibility and to demonstrate that expansion is reduced by using low-alkali cements or cement plus mineral admixture.

8. ACKNOWLEDGEMENTS

The authors are grateful to the several companies that provided information concerning production processes and materials for this study. The research was supported by the Center for Building Technology and the AASHTO Materials Reference Latoratory Program at NIST.

9. REFERENCES

- L. Struble, The influence of cement pore solution on alkalisilica reaction. PhD thesis, Purdue University. NBSIR 87-3632, 265 pages. Washington: National Bureau of Standards (US) (1987).
- S. Diamond, A review of alkali-silica reaction and expansion mechanisms 1. Alkalies in cements and in concrete pore solutions. Cement and Concrete Research, <u>5</u>(4), 329-346 (1975).
- S. Diamond, A review of alkali-silica reaction and expansion mechanisms 2. Reactive aggregates. Cement and Concrete Research, <u>6(4)</u>, 549-560 (1976).
- S. Diamond, Chemical Reactions other than Carbonate Reactions. <u>In</u>: Significance of Tests and Properties of Concrete and Concrete-Making Materials, ASTM STP 169B, Chapter 40, pp. 708-721. Philadelphia: ASTM (1978).
- 5. T.E. Stanton, Studies of use of pozzolans for counteracting excessive concrete expansion resulting from reaction between aggregates and the alkalies in cement. <u>In</u>: Symposium on Use of Pozzolanic Materials in Mortars and Concretes, STP 99, pp. 178-201. Philadelphia: ASTM (1950).
- D. Stark, Osmotic cell test to identify potential for alkali-aggregate reactivity. <u>In</u>: Alkalis in Concrete, edited by G.M. Idorn and S. Rostam, Proceedings of the Sixth International Conference, held at the Technical University of Denmark, June 22-25, 1983, pp. 351-357. Copenhagen: Danish Concrete Association (1983).

- R.S. Barneyback, Jr., Alkali-silica reaction in portland cement concrete. PhD thesis, Purdue University, 352 pages (1983).
- 8. Personal communication from Mr. A. Flood, Corning Glass Works, Corning NY, to Leslie Struble, National Bureau of Standards, Gaithersburg MD, April 9, 1984.
- 9. J.W. Figg, Reaction between cement and artificial glass in concrete. <u>In</u>: Proceedings of the Fifth International Conference on Alkali-Aggregate Reaction in Concrete, edited by R.E. Oberholster, paper S252/7, pages 1-18. Pretoria: National Building Research Institute of the Council for Scientific and Industrial Research (1981).
- 10. M.P. Brandt, discussion to paper S252/10. <u>In</u>: Alkali-Aggregate Reaction, edited by R.E. Oberholster, Proceedings of the Fifth International Conference on Alkali-Aggregate Reaction in Concrete, p. 7. Pretoria: National Building Research Institute of the Council for Scientific and Industrial Research (1981).
- 11. P.J. Nixon and M.E. Gaze, The use of flyash and granulated blastfurnace slag to reduce expansion due to alkaliaggregate reaction. <u>In</u>: Alkali-Aggregate Reaction, edited by R.E. Oberholster, Proceedings of the Fifth International Conference on Alkali-Aggregate Reaction in Concrete, paper S252/32, pages 1-10. Pretoria: National Building Research Institute of the Council for Scientific and Industrial Research (1981).
- 12. P.J. Nixon and M.E. Gaze, The effectiveness of flyashes and granulated blastfurnace slags in preventing AAR. <u>In</u>: Alkalis in Concrete, edited by G.M. Idorn and S. Rostam, Proceedings of the Sixth International Conference, held at the Technical University of Denmark, June 22-25, 1983, pp. 61-68. Copenhagen: Danish Concrete Association (1983).
- 13. S. Diamond and R.S. Barneyback, Jr., "Standard" alkali-reactive silica available. Cement and Concrete Research, <u>6</u>(5), 726 (1976).
- 14. L. Struble and S. Diamond, Influence of cement alkali distribution on expansion due to alkali-silica reaction. <u>In</u>: Alkalies in Concrete, edited by V.H. Dodson, STP 930, pp. 31-45. Philadelphia: ASTM (1986).
- 15. R.N. Swamy and M.M. Al-Asali, Influence of alkali-silica reaction on the engineering properties of concrete. <u>In</u>: Alkalies in Concrete, edited by V.H. Dodson, STP 930, pp. 69-86. Philadelphia: ASTM (1986).

- 16. Lumley, J.S., and Kollek, J.J. 1987. Cristobalite as a reference reactive aggregate. Report No. PTN 87/82, Blue Circle Industries PLC, Technical Services Division, Greenhithe UK.
- 17. Personal communication from Mr. Paul Dohn, Corning Glass Works, Corning NY, to Leslie Struble, National Bureau of Standards, Gaithersburg MD, April 2, 1985.
- Personal communication from Mr. A. Flood, Corning Glass Works, Corning NY, to Leslie Struble, National Bureau of Standards, Gaithersburg MD, June 29, 1984.
- Personal communication from Mr. Vern Gogunke, General Electric Company, Cleveland OH, to Leslie Struble, National Bureau of Standards, April 10, 1985.
- 20. Personal communication from Mr. Herb Miska, Corning Glass Works, Corning NY, to Leslie Struble, National Bureau of Standards, Gaithersburg MD, April 4, 1985.
- 21. Gutteridge, W.A., and Hobbs, D.W. 1980. Some chemical and physical properties of Beltane opal rock and its gelatinous alkali silica reaction product. Cement and Concrete Research, <u>10</u>(2), 183-193.
- 22. Personal communication from Mr. Fred Kinney, Master Builders, Cleveland OH, to Leslie Struble, National Bureau of Standards, June 22, 1984.
- 23. Personal communication from Mr. D.W. Tobey, Johnson-Stewart-Johnson Mining Company, Mesa AZ, to Leslie Struble, National Bureau of Standards, July 5, 1984.
- 24. Personal communication from Mr. T. Elmer, Corning Glass Works, Corning NY, to Leslie Struble, National Bureau of Standards, June 29, 1984.
- Personal communication from Mr. Dan Lapp, Corning Glass Works, Corning NY, to Leslie Struble, National Bureau of Standards, Gaithersburg MD, February 12, 1986.
- 26. Cement and Concrete Reference Laboratory, Reference Sample Program, Final Report, April 13, 1984.
- 27. S. Mindess and J.F. Young, <u>Concrete</u>. 671 pages. Englewood Cliffs: Prentice-Hall, Inc. (1981).

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET (See instructions)	1. PUBLICATION OR	2 Bastaming Organ Basashi	
BIBLIOGRAPHIC DATA SHEET (See instructions)	I REPORT NO	2. Performing Organ. Report No.	3. Publication Date
SHEET (See instructions)	NISTIR 89-4058		NAY 1080
A TITLE AND CHOTIEL C	NISTIN 03-4000		MAI 1989
. IITLE AND SUBTILE			
STANDARD	AGGREGATE MATERIALS	FOR ALKALI-SILICA REACTI	ON STUDIES
5. AUTHOR(S)			
Leslie	Struble and M. Brock	man	
PERFORMING ORGANIZ	ATION (If joint or other than N	BS, see instructions)	7. Contract/Grant No.
NATIONAL BUREAU C	OF STANDARDS		
U.S. DEPARTMENT OF	COMMERCE	1	. Type of Report & Period Covered
GAITHERSBURG, MD	20899		
SPONSORING ORGANIZA	TION NAME AND COMPLETE	ADDRESS (Street City State 7/P)	
. SPONSORING ORGANIZA			
. SUPPLEMENTARY NOT	ES		· · ·
Document describes	a computer program; SH-185, H	IPS Software Summary, is attached.	
Liblinger Liblinger	or less factual summary of mos	st significant information. If notume	entincipaes a significant
reliminary studies	have been carried ou	lt to identify candidate i	a materials studied
standard reactive a	ggregate in aikali-si	and a quartaite a rhy	alite and a calcined
TO INGAG SAVATAL CO	mmercial vlasses, all		
Cheradea Severar co.	aborials yors tostad	according to for their e	vpansion in mortars
flint. Candidate m	aterials were tested	according to for their es	xpansion in mortars nreactive limestone sand
flint. Candidate morepared using eith	aterials were tested er a high-alkali or a	according to for their example a low-alkali cement, a nor Tests were carried ou	xpansion in mortars nreactive limestone sand, t according to ASTM C 441
flint. Candidate morepared using either and some proportion	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene	according to for their end low-alkali cement, a nor Tests were carried ou loss of Mineral Admixtures	xpansion in mortars nreactive limestone sand, t according to ASTM C 441 in Preventing Excessive
flint. Candidate m prepared using eith and some proportion 31, Standard Test M	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene	according to for their es low-alkali cement, a not . Tests were carried ou ess of Mineral Admixtures	xpansion in mortars nreactive limestone sand t according to ASTM C 442 in Preventing Excessive ASTM C 227-87. Standard
flint. Candidate m prepared using eith and some proportion 31, Standard Test M Expansion of Concre	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv	according to for their es a low-alkali cement, a not Tests were carried ou ess of Mineral Admixtures Aggregate Reaction, and a vity of Cement-Aggregate	xpansion in mortars nreactive limestone sand t according to ASTM C 44 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar
flint. Candidate m prepared using either and some proportion 31, Standard Test M Expansion of Concre Test Method for Pot	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re	according to for their end low-alkali cement, a non- . Tests were carried ou ess of Mineral Admixtures Aggregate Reaction, and wity of Cement-Aggregate eplaced by each reactive	xpansion in mortars nreactive limestone sand t according to ASTM C 442 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so as
flint. Candidate m prepared using eith and some proportion 81, Standard Test M Expansion of Concre Test Method for Pot 4ethod). The propo	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re imum proportion (i.e.	according to for their end low-alkali cement, a non- transformer carried ou ess of Mineral Admixtures Aggregate Reaction, and wity of Cement-Aggregate eplaced by each reactive to the proportion of reac	xpansion in mortars nreactive limestone sand, t according to ASTM C 441 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so as tive material producing
flint. Candidate m prepared using eith and some proportion 31, Standard Test M Expansion of Concre Test Method for Pot Method). The propo to bracket the pess the highest level o	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re imum proportion (i.e. f expansion). Mortar	according to for their es a low-alkali cement, a not . Tests were carried ou ess of Mineral Admixtures Aggregate Reaction, and wity of Cement-Aggregate eplaced by each reactive , the proportion of reac c-bar expansion levels we	xpansion in mortars nreactive limestone sand t according to ASTM C 441 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so as tive material producing re measured throughout
flint. Candidate m prepared using eith and some proportion 81, Standard Test M Expansion of Concre Test Method for Pot Method). The propo to bracket the pess the highest level o reaction periods of	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re imum proportion (i.e. f expansion). Mortar approximately 6 mont	according to for their es a low-alkali cement, a non- . Tests were carried ou ess of Mineral Admixtures Aggregate Reaction, and wity of Cement-Aggregate eplaced by each reactive , the proportion of reac tobar expansion levels we ths to 1 year. Expansion	xpansion in mortars nreactive limestone sand t according to ASTM C 442 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so as tive material producing re measured throughout results are presented as
flint. Candidate m prepared using eith and some proportion B1, Standard Test M Expansion of Concre Test Method for Pot Method). The propo to bracket the pess the highest level o reaction periods of discussed. With hi	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re imum proportion (i.e. f expansion). Mortar approximately 6 mont gh-alkali cement, the	according to for their exactoring to for their exactoring to for their exactor. Tests were carried outers of Mineral Admixtures Aggregate Reaction, and with of Cement-Aggregate to the proportion of reactive to the proportion of reactive to the proportion of the to the proportion of the to the tot the tot to the tot tot the tot tot the tot tot tot tot tot tot tot tot tot to	xpansion in mortars nreactive limestone sand t according to ASTM C 442 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so as tive material producing re measured throughout results are presented an moderate expansion level
flint. Candidate m prepared using eith and some proportion 31, Standard Test M Expansion of Concre Test Method for Pot Method). The propo to bracket the pess the highest level o reaction periods of discussed. With hi and a rapid early r	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re imum proportion (i.e. f expansion). Mortar approximately 6 mont gh-alkali cement, the ate of expansion, and	according to for their exactoring to for their exactoring to for their exactor. Tests were carried outers of Mineral Admixtures Aggregate Reaction, and with of Cement-Aggregate explaced by each reactive for the proportion of reactors of the proportion of reactors of the proportion of the calcined flint produced is with low-alkali cement	xpansion in mortars nreactive limestone sand t according to ASTM C 44 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so a tive material producing re measured throughout results are presented a moderate expansion leve it produced very little
flint. Candidate m prepared using eith and some proportion 81, Standard Test M Expansion of Concre Test Method for Pot Method). The propo to bracket the pess the highest level o reaction periods of discussed. With hi and a rapid early r expansion. With hi	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re imum proportion (i.e. f expansion). Mortar approximately 6 mont gh-alkali cement, the ate of expansion, and gh-alkali cement, the	according to for their ex- according to for their ex- low-alkali cement, a nor- . Tests were carried ou ess of Mineral Admixtures Aggregate Reaction, and wity of Cement-Aggregate eplaced by each reactive to the proportion of reac to a expansion levels we that to 1 year. Expansion e calcined flint produced with low-alkali cement e Vycor, fused quartz, an	xpansion in mortars nreactive limestone sand t according to ASTM C 442 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so as tive material producing re measured throughout results are presented as moderate expansion level it produced very little d fused silica, produced
flint. Candidate m prepared using eith and some proportion 81, Standard Test M Expansion of Concre Test Method for Pot Method). The propo to bracket the pess the highest level o reaction periods of discussed. With hi and a rapid early r expansion. With hi	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re imum proportion (i.e. f expansion). Mortar approximately 6 mont gh-alkali cement, the ate of expansion, and gh-alkali cement, the ls and a rapid early	according to for their ex- according to for their ex- a low-alkali cement, a nor- Tests were carried ou ess of Mineral Admixtures Aggregate Reaction, and vity of Cement-Aggregate eplaced by each reactive , the proportion of reac c-bar expansion levels we that to 1 year. Expansion e calcined flint produced i with low-alkali cement e Vycor, fused quartz, an rate of expansion, but we that a studies the Vycor	xpansion in mortars nreactive limestone sand t according to ASTM C 442 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so as tive material producing re measured throughout results are presented as moderate expansion leve it produced very little d fused silica, produced ith low-alkali cement the fused guartz, fused
flint. Candidate m prepared using eith and some proportion B1, Standard Test M Expansion of Concre Test Method for Pot Method). The propo to bracket the pess the highest level o reaction periods of discussed. With hi and a rapid early r expansion. With hi high expansion leve produced moderate e	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re imum proportion (i.e. f expansion). Mortar approximately 6 mont gh-alkali cement, the ate of expansion, and gh-alkali cement, the ls and a rapid early expansion. Based on t	according to for their es a low-alkali cement, a nor . Tests were carried ou ess of Mineral Admixtures Aggregate Reaction, and vity of Cement-Aggregate eplaced by each reactive the proportion of reac c-bar expansion levels we the to 1 year. Expansion e calcined flint produced d with low-alkali cement e Vycor, fused quartz, an rate of expansion, but we these studies, the Vycor, ole as standard reactive	xpansion in mortars nreactive limestone sand, t according to ASTM C 441 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so as tive material producing re measured throughout results are presented an moderate expansion level it produced very little d fused silica, produced ith low-alkali cement the fused quartz, fused materials: the calcined
flint. Candidate morepared using either and some proportion and some proportion and some proportion and some proportion and a repide the pess the highest level of reaction periods of discussed. With hi and a rapid early r expansion. With hi high expansion leve produced moderate e silica, and calcine flint appears espec	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re imum proportion (i.e. f expansion). Mortar approximately 6 mont gh-alkali cement, the ate of expansion, and gh-alkali cement, the ls and a rapid early expansion. Based on t d flint appear suitab	according to for their exactor a low-alkali cement, a nor the second second second second a second second second second a low-alkali cement, a nor the second second second second a second se	xpansion in mortars nreactive limestone sand, t according to ASTM C 441 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so as tive material producing re measured throughout results are presented an moderate expansion level it produced very little d fused silica, produced ith low-alkali cement the fused quartz, fused materials; the calcined
flint. Candidate m prepared using eith and some proportion 81, Standard Test M Expansion of Concre Test Method for Pot Method). The propo to bracket the pess the highest level o reaction periods of discussed. With hi and a rapid early r expansion. With hi high expansion leve produced moderate e silica, and calcine flint appears espec	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re imum proportion (i.e. f expansion). Mortar approximately 6 mont gh-alkali cement, the ate of expansion, and gh-alkali cement, the ls and a rapid early expansion. Based on t d flint appear suitab	according to for their ex- according to for their ex- a low-alkali cement, a nor- Tests were carried ou ess of Mineral Admixtures Aggregate Reaction, and vity of Cement-Aggregate eplaced by each reactive , the proportion of reac t-bar expansion levels we that to 1 year. Expansion e calcined flint produced i with low-alkali cement e Vycor, fused quartz, an rate of expansion, but we these studies, the Vycor, ole as standard reactive	xpansion in mortars nreactive limestone sand, t according to ASTM C 441 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so as tive material producing re measured throughout results are presented an moderate expansion level it produced very little d fused silica, produced ith low-alkali cement the fused quartz, fused materials; the calcined
flint. Candidate m prepared using eith and some proportion B1, Standard Test M Expansion of Concre Test Method for Pot Method). The propo to bracket the pess the highest level o reaction periods of discussed. With hi and a rapid early r expansion. With hi high expansion leve produced moderate e silica, and calcine flint appears espec 2. KEY WORDS (Six to twelf	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re imum proportion (i.e. f expansion). Mortar approximately 6 mont gh-alkali cement, the ate of expansion, and gh-alkali cement, the ls and a rapid early expansion. Based on t ially promising.	according to for their exactoring to for their exactoring to for their exactoring to for their exactor. Tests were carried outers of Mineral Admixtures Aggregate Reaction, and Avity of Cement-Aggregate explaced by each reactive for the proportion of reactors. The proportion of reactors are expansion levels we then to 1 year. Expansion exactined flint produced d with low-alkali cement evycor, fused quartz, and rate of expansion, but we these studies, the Vycor, ole as standard reactive for the proper names; and see the flint produced a standard reactive for the proper names; and see the flint produced for the proper names; and see the flint produced for the proper names; and see the flint produced for the proper names; and see the flint produced for the proper names; and see the flint produced for the proper names; and see the flint produced for the proper names; and see the flint produced for the proper names; and see the flint produced for the proper names; and see the flint produced for the proper names; and see the proper names; and see the produced for the proper names; and see the proper names are proper names; and see the proper names are proper names; and see the proper names are proper names; and see the proper names; and see the proper names are proper names; and see the proper names; and see the proper names; and see the proper nam	xpansion in mortars nreactive limestone sand, t according to ASTM C 441 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so as tive material producing re measured throughout results are presented an moderate expansion level it produced very little d fused silica, produced ith low-alkali cement the fused quartz, fused materials; the calcined
flint. Candidate m prepared using eith and some proportion 81, Standard Test M Expansion of Concre Test Method for Pot Method). The propo to bracket the pess the highest level o reaction periods of discussed. With hi and a rapid early r expansion. With hi high expansion leve produced moderate e silica, and calcine flint appears espec 2. KEY WORDS (Six to twelf aggregate; alkali-	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re imum proportion (i.e. f expansion). Mortar approximately 6 mont gh-alkali cement, the ate of expansion, and gh-alkali cement, the ls and a rapid early expansion. Based on t ed flint appear suitab ially promising.	according to for their exactoring to for their exactoring to for their exactoring to for their exactor. Tests were carried outers of Mineral Admixtures Aggregate Reaction, and wity of Cement-Aggregate explaced by each reactive for the proportion of reactors. The proportion of reactors are expansion levels we that to 1 year. Expansion exactined flint produced with low-alkali cement evycor, fused quartz, and rate of expansion, but we these studies, the Vycor, ole as standard reactive for the proper names; and sectioned flint; cement; con	xpansion in mortars nreactive limestone sand, t according to ASTM C 441 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so as tive material producing re measured throughout results are presented an moderate expansion level it produced very little d fused silica, produced ith low-alkali cement the fused quartz, fused materials; the calcined
flint. Candidate morepared using either and some proportion and some proportion and some proportion and some proportion and a for Pot dethod). The propo- to bracket the pess the highest level of the highest level of discussed. With hi and a rapid early r expansion. With hi high expansion leve produced moderate e- silica, and calcine flint appears espec 2. KEY WORDS (Six to twelf aggregate; alkali- fused quartz; fuse	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re imum proportion (i.e. f expansion). Mortar approximately 6 mont gh-alkali cement, the ate of expansion, and gh-alkali cement, the ls and a rapid early expansion. Based on t ed flint appear suitab cially promising. ve entries; alphabetical order; -silica reaction; cal ed silica; mortar-bar	according to for their es according to for their es a low-alkali cement, a non- . Tests were carried ou ess of Mineral Admixtures Aggregate Reaction, and vity of Cement-Aggregate eplaced by each reactive to the proportion of reac to bar expansion levels we that to 1 year. Expansion e calcined flint produced i with low-alkali cement e Vycor, fused quartz, an rate of expansion, but we these studies, the Vycor, ole as standard reactive capitalize only proper names; and se cined flint; cement; con e expansion; Pyrex; stand	xpansion in mortars nreactive limestone sand, t according to ASTM C 441 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so as tive material producing re measured throughout results are presented an moderate expansion level it produced very little d fused silica, produced ith low-alkali cement the fused quartz, fused materials; the calcined
Elint. Candidate morepared using either and some proportion and some proportion and some proportion and some proportion and a same for Pot dethod). The propo- to bracket the pess the highest level of the highest level o	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re imum proportion (i.e. f expansion). Mortar approximately 6 mont gh-alkali cement, the ate of expansion, and gh-alkali cement, the stand a rapid early expansion. Based on t ially promising. ve entries; alphabetical order; -silica reaction; cal	according to for their es according to for their es a low-alkali cement, a non . Tests were carried ou ess of Mineral Admixtures Aggregate Reaction, and vity of Cement-Aggregate eplaced by each reactive to the proportion of reac c-bar expansion levels we that to 1 year. Expansion e calcined flint produced d with low-alkali cement e Vycor, fused quartz, an rate of expansion, but we these studies, the Vycor, ole as standard reactive capitalize only proper names; and se clined flint; cement; con e expansion; Pyrex; stand	xpansion in mortars nreactive limestone sand t according to ASTM C 441 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so as tive material producing re measured throughout results are presented an moderate expansion level it produced very little d fused silica, produced ith low-alkali cement the fused quartz, fused materials; the calcined exparate key words by semicolons) are reactive 14. NO. OF
Elint. Candidate morepared using either and some proportion 31, Standard Test M Expansion of Concre Test Method for Pot Method). The propo to bracket the pess the highest level of the highest level	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re imum proportion (i.e. f expansion). Mortar approximately 6 mont gh-alkali cement, the ate of expansion, and gh-alkali cement, the stand a rapid early expansion. Based on t ially promising. ve entries; alphabetical order; -silica reaction; cal ed silica; mortar-bar	according to for their exaccording to for their exaccording to for their exactor a low-alkali cement, a not. Tests were carried our ess of Mineral Admixtures Aggregate Reaction, and wity of Cement-Aggregate explaced by each reactive and the proportion of reactors are expansion levels we that to 1 year. Expansion exactined flint produced with low-alkali cement evycor, fused quartz, and rate of expansion, but we these studies, the Vycor, ole as standard reactive capitalize only proper names; and sectioned flint; cement; control expansion; Pyrex; stand	xpansion in mortars nreactive limestone sand, t according to ASTM C 441 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so as tive material producing re measured throughout results are presented an moderate expansion level it produced very little d fused silica, produced ith low-alkali cement the fused quartz, fused materials; the calcined eparate key words by semicolons) are te expansion; ard reactive 14. NO. OF PRINTED PAGES
Lint. Candidate morepared using either and some proportion and some proportion and some proportion and some proportion and a some proportion the highest level of the highest lev	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re imum proportion (i.e. f expansion). Mortar approximately 6 mont gh-alkali cement, the ate of expansion, and gh-alkali cement, the sand a rapid early expansion. Based on t id flint appear suitab sially promising. ve entries; alphabetical order; -silica reaction; cal ed silica; mortar-bar	according to for their exaccording to for their exaccording to for their exaccording to for their exactor. Tests were carried outers of Mineral Admixtures Aggregate Reaction, and wity of Cement-Aggregate explaced by each reactive for the proportion of reactors. The proportion of reactors are expansion levels we that to 1 year. Expansion exactine flint produced with low-alkali cement evycor, fused quartz, and rate of expansion, but we these studies, the Vycor, ole as standard reactive capitalize only proper names; and sectioned flint; cement; control expansion; Pyrex; stand	xpansion in mortars nreactive limestone sand t according to ASTM C 442 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so as tive material producing re measured throughout results are presented an moderate expansion level it produced very little d fused silica, produced ith low-alkali cement the fused quartz, fused materials; the calcined Exparate key words by semicolons) ard reactive 14. NO. OF PRINTED PAGES 38
Lint. Candidate morepared using either and some proportion and some proportion and some proportion and some proportion and a some proportion discussed. With propo- to bracket the pess the highest level of the highest le	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re imum proportion (i.e. f expansion). Mortar approximately 6 mont gh-alkali cement, the ate of expansion, and gh-alkali cement, the ls and a rapid early expansion. Based on t ed flint appear suitab cially promising. ve entries; alphabetical order; -silica reaction; cal ed silica; mortar-bar	according to for their expansion of the second seco	xpansion in mortars nreactive limestone sand, t according to ASTM C 441 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so as tive material producing re measured throughout results are presented an moderate expansion level it produced very little d fused silica, produced ith low-alkali cement the fused quartz, fused materials; the calcined Exparate key words by semicolons) acrete; expansion; ard reactive 14. NO. OF PRINTED PAGES 38
flint. Candidate m prepared using eith and some proportion 81, Standard Test M Expansion of Concre Iest Method for Pot Method). The propo to bracket the pess the highest level o reaction periods of discussed. With hi and a rapid early r expansion. With hi high expansion leve produced moderate e silica, and calcine flint appears espec 2. KEY WORDS (Six to twelf aggregate; alkali- fused quartz; fuse aggregate: Vycor 3. AVAILABILITY X Unlimited For Official Distribut Order From Superinte 20402.	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re imum proportion (i.e. f expansion). Mortar approximately 6 mont gh-alkali cement, the ate of expansion, and gh-alkali cement, the ls and a rapid early expansion. Based on t ially promising. ve entries; alphabetical order; -silica reaction; cal ed silica; mortar-bar	according to for their es according to for their es a low-alkali cement, a non . Tests were carried ou ess of Mineral Admixtures Aggregate Reaction, and vity of Cement-Aggregate eplaced by each reactives , the proportion of reac c-bar expansion levels we that to 1 year. Expansion e calcined flint produced d with low-alkali cement e Vycor, fused quartz, an rate of expansion, but we these studies, the Vycor, ole as standard reactive capitalize only proper names; and se clined flint; cement; con e expansion; Pyrex; stand	Diffe and a calcined xpansion in mortars nreactive limestone sand, t according to ASTM C 441 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so as tive material producing re measured throughout results are presented ar moderate expansion level it produced very little d fused silica, produced ith low-alkali cement the fused quartz, fused materials; the calcined exparate key words by semicolons) crete; expansion; ard reactive 14. NO. OF PRINTED PAGES 38 DC
flint. Candidate maprepared using either and some proportion 81, Standard Test M Expansion of Concre Iest Method for Pot Method). The propo to bracket the pess the highest level o reaction periods of discussed. With hi and a rapid early r expansion. With hi high expansion leve produced moderate e silica, and calcine flint appears espec 2. KEY WORDS (Six to twelf aggregate; alkali- fused quartz; fuse appression: Superinte 20402. Corder From Superinte 20402.	aterials were tested er a high-alkali or a of reactive material ethod for Effectivene te Due to the Alkali- ential Alkali Reactiv rtion of limestone re imum proportion (i.e. f expansion). Mortar approximately 6 mont gh-alkali cement, the ate of expansion, and gh-alkali cement, the stand a rapid early expansion. Based on t ially promising. ve entries; alphabetical order; -silica reaction; cal ed silica; mortar-bar	according to for their exaccording to for their exaccording to for their exaccording to for their exactor a low-alkali cement, a not. Tests were carried ouress of Mineral Admixtures. Aggregate Reaction, and wity of Cement-Aggregate explaced by each reactive for the proportion of reactors, the proportion of reactors, the proportion of reactors expansion levels we that to 1 year. Expansion exactined flint produced with low-alkali cement evycor, fused quartz, an rate of expansion, but we these studies, the Vycor, ole as standard reactive capitalize only proper names; and sectioned flint; cement; contractive expansion; Pyrex; stand expansion; Pyrex; stand exact the transmitted VA 22161	Difte and a calcined xpansion in mortars nreactive limestone sand, t according to ASTM C 441 in Preventing Excessive ASTM C 227-87, Standard Combinations (Mortar-Bar material was varied so as tive material producing re measured throughout results are presented ar moderate expansion level it produced very little d fused silica, produced ith low-alkali cement the fused quartz, fused materials; the calcined Exparate key words by semicolons) crete; expansion; ard reactive DC 15. Price fig. 05

· ·

.