
NISTIR 89-4055

MODELING
DYNAMIC
SURFACES
WITH OCTREES

Don Libes

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

Center for Manufacturing Engineering

Factory Automation Systems Division

Gaithersbuig, MD 20899

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Acting Director

NBT

NISTIR 89-4055^

MODELING
DYNAMIC
SURFACES
WITH OCTREES

Don Libes

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

Electrical Engineering

Semiconductor Eiectronics Division

Gaithersburg, MD 20899

July 1989

Issued September 1989

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Acting Director

Modeling Dynamic Surfaces with Octrees

Don Libes

Integrated Systems Group

National Institute of Standards and Technology

Gaithersburg, MD 20899

ABSTRACT

Past uses of octrees have been for representation of static objects. We
discuss extensions necessary to model dynamic surfaces. One particularly im-

portant aspect of this is the ability to represent expanding surfaces that grow

to be arbitrarily large. Our enhanced octree does exactly this, and models con-

traction as well.

The ability to represent dynamic surfaces allows us to apply octrees to

new problems which could not previously have been modeled with static

octrees. One such problem is the Entropy of Random Surfaces. Using dynam-

ic octrees, we produced a simulation of self-avoiding random surfaces using

Monte Carlo techniques.

Keywords: 3D modeling, Random Surface Theory, octrees, data structures.

Introduction

The octree is a data structure for storing information about static 3D surfaces. This

paper presents enhancements which allow octrees to be used with dynamic surfaces. The

ability to represent dynamic surfaces allows octrees to be applied to new problems which

could not previously have been modeled with static octrees. For example, an autonomous

robot could explore and model an arbitrarily large universe with these techniques.

The first section of this paper is a brief overview of octrees, and may be skipped by

readers familiar with the theory. The second section motivates our enhancements by dis-

cussing the typical uses and limitations of octrees. The third and fourth section discuss our

enhancements in detail. The fifth section describes how the implementation differs from a

typical octree system. The sixth section presents our first application using the enhanced

octree. Squeamish physicists may wish to read this section first as an incentive.

Contribution of the National Institute

of Standards and Technoiogy.

Not subject to copyright.

NISTIR 89-4055
July 18, 1989

- 2 -

1. Octrees - Brief Description and Background

Octrees are a data structure for storing information about a 3D space. While capable

of storing arbitrary information, octrees are commonly used for representing volumes or sur-

faces. Octrees have particular advantages over other representations when the volumes

contained are highly connected or blobby. This will be discussed further in the next section.

Octrees also have disadvantages in certain types of modeling, A complete discussion of the

advantages and disadvantages of octrees and run/space-time analyses are discussed by

[Meagher]. [Samet] provides a comprehensive study of octrees and related representations.

Briefly, the octree data structure is a tree composed of octants, each of which defines

a cubical volume. Part of each octant’s data structure denotes whether the space in the cube

is empty, full or neither (i.e., partially full). Octants that are partially full have eight child

octants (hence the prefix "oct"). The eight child octants together exactly fill the space mod-

eled by their parent (see figure 1).

Like its parent, each child octant may be empty, full or decomposed into another eight

octants. This process is recursively continued until all partially full octants are described in

terms of empty or full octants, or a desired degree of resolution is reached.

Figure 1: Prototype Octant

This hierarchical representation of a volume is thus described as an octree. In octree

jargon, voxel (for "volume element") refers to an octant of the smallest resolution, while an

octant is any size. It is important to realize that an octant requires the same amount of com-

puter memory no matter what physical size it is representing. Thus, large objects can be

modeled in the same memory space as small objects.

Contribution of the National Institute

of Standards and Technology.

Not subject to copyright.

- 3 -

An example of a four voxel object is shown in figure 2.

Figure 2: Object of four voxels represented by an octree.

The basic octree is often supplemented with extra information to represent the sur-

face. For example, typical implementations use six bits in each octant to flag whether any of

the octant’s six faces is on the surface of the volume. More face information (such as color)

requires a set of up to six indices or pointers to an auxiliary face structure.

2. Typical uses and limitations

Octrees are excellent at modeling 3D spaces which contain blobs or volumes that are

highly connected. For example, a human figure is highly connected. The surface area has a

low fractal dimension and the space around the human is uninteresting. An octree can cap-

ture the essence of the shape without expending any storage modeling the empty space sur-

rounding it or the full space within.

One example of where this is useful is in collision detection, such as might be used

when computing robot paths. When planning a path, the robot is only interested in surfaces

that it has to avoid, not what is inside or outside the surface. Octrees allow economic stor-

age and efficient probing of the surface to whatever level of resolution is required.

Each of these applications uses octrees as a static model. In particular, the model is

derived from another representation such as a camera image or a CSG model. Each of these

is static. For example, when the object being modeled changes, the old octree is discarded, a

new camera image is taken, and from it, a new octree is generated.

The differences in our use (described in §6) all stem from the requirement to model

dynamic surfaces. With minor work, octrees lend themselves to being a dynamic model. The

result is that the octree is not derived from a real object or prior model. Rather, the octree is

the only instance of the object being studied.

The reason for this is that the object being modeled does not physically exist, nor is it

represented by any other model. However, it can be described. Each step of our simulation

operates on a description and produces a new description. By describing it as an octree, we
took the logical step and made the simulation operate directly on the octree description itself.

Contribution of the National Institute

of Standards and Technology.

Not subject to copyright.

r

- 4 -

One potential problem with the simulation is that surfaces can grow to be arbitrarily

large. Unlike octrees that are generated from a static representation, there is no way of

knowing the largest bounding box at the start. The ordinary octree implementation begins

with a single octant that represents the total working volume. The octant is divided as

objects of importance are discovered in the workspace. This is carried out recursively down
to whatever resolution is demanded.

Unfortunately, this scheme does not allow for modeling of objects that grow, or

objects that appear outside the original working volume. In fact, both of these examples

arise frequently. The first appears in our own application, which is described later in the

paper. A second example is illustrated by a mobile robot exploring a world, without a priori

bounds. This raises the first difference in our octree implementation - modeling objects

which grow arbitrarily large.

3. Octree Expansion and Contraction

A solution to objects which appear outside the root octant is to enlarge the root oc-

tant so that it encompasses the new data. To remain compatible with the octree implementa-

tion, a new root octant is created representing a volume eight times larger than the old root

octant. The old root octant becomes a child of the new root. A second child is used to store

the new data. The remaining six children are marked empty. If the new object still falls out-

side of the octant described by the new root, this process is repeated. When the new root is

large enough, a second child is selected to store the new object which fell outside of the old

root octant.

Each expansion of the octree causes it to model a space eight times as large as

before at the cost of an additional octant. The new object is modeled using the same amount

of space it would have taken, had it been modeled statically.

An inverse operation shrinks the working volume of the octree to an eighth. This

occurs when the object being modeled fits entirely within one child of the root. Then, the old

root is discarded and the remaining root child of interest becomes the new root. This opera-

tion is repeated until the root has at least two non-empty children.

It should be apparent that expansion or shrinkage of the octree in the manner

described results in a new octree. This is important, as the fact that it is an octree means it

can be manipulated as before. In particular, leaf nodes can be split to get better resolution

(as in a typical octree) or joined, and the root octant can be grown or shrunk.

4. Surface Expansion and Contraction

The second difference in our implementation is caused by changes to the surface of

the object being represented. In our application, changes were heavily localized. Simplisti-

cally, one can imagine a voxel along the surface being either added or deleted. Thus, we
needed to maintain the octree data structure in the face of such changes.

Contribution of the National Institute

of Standards and Technology.

Not subject to copyright.

- 5 -

Maintenance of the octree volume and surface differs depending upon whether the vol-

ume is expanding (by creating a voxel) or shrinking (by deleting a voxel).

Voxel Create

The first step is to create the voxel itself. If the voxel is located outside the root

octant, the root is expanded as described above. Then the tree is traversed to find the loca-

tion of the voxel, splitting the octant as required, as is normally done when growing an octree.

Each voxel on the object surface describes the existence and orientation of its faces.

This is done by manipulating a set of six pointers to face objects. Neighboring voxels "give

up" their exposed faces. For example, a voxel above the new voxel (being created) gives up

its bottom face since it will be covered by the new voxel. This operation can be carried out

for each face of the new voxel, however "face passing" (passing the face object pointer

around the voxel) allows some improvement in speed. For example, rather than releasing

the bottom face of the top voxel, the program first checks if there is a voxel below the new

voxel. If there is none, the new voxel may "adopt" the bottom-pointing face. Even if there is

a voxel in that position, the new voxel may adopt a face in other positions with slightly high-

er cost in updating the structure.

Once a neighboring voxel has given up its exposed face, it then checks to see whether

it is still part of the surface (i.e., if any other faces are exposed). If no part of the voxel is on

the surface, the parent checks if this was the last child on the surface. If so, the parent dis-

cards all the children. This process recurses to the root of the tree.

Voxel Delete

The first step is to create new faces for the neighbors where they border the old voxel

(being deleted). For example, if a voxel exists above the old voxel it acquires a bottom face.

Optimizations, similar to that during voxel creation, take place during this process.

Before a neighboring voxel can receive a face, it may have to be fully instantiated.

That is, voxels that do not border the surface are not necessarily stored explicitly. In particu-

lar, a voxel that is one of eight others that share the same parent will be implicitly stored

simply by marking the parent as full. All voxels on the surface must be stored explicitly in

memory. Creation of these surface voxels proceeds in the same way as with any octree.

The last step is to delete the old voxel itself. Finally, the parent checks if this was its

last child. If so, the parent itself is released, and this process recurses to the root of the

tree. Another pass is made back down, or until an octant with more than one child is encoun-

tered. Each single-child octant is discarded, causing shrinkage of the octree.

In our simulation, surface change was highly localized. Some researchers have stud-

ied how to modify octrees for global changes. In particular, [Hong] describes an algorithm

which performs an arbitrary translation and rotation, producing a new octree representing the

result of applying the transformation to the entire octree.

Contribution of the National Institute

of Standards and Technology.

Not subject to copyright.

- 6 -

5. Implementation

Our octree implementation is not unlike a typical octree system. For the sake of this

discussion, we mention that it is written in 1200 source lines of the C language. Since the

program runs on different machines with different data sizes, it is impossible to give a simple

answer to the question of how much space an octant takes. (Nonetheless, a more compre-

hensive description of the program and its performance in actual simulations is described in

great detail by [Libes].) Functionally, all an octant contains are pointers to children. For

simplicity in coding, we have augmented that with a parent pointer, a single coordinate that

anchors one comer of the octant in space, and a count of the number of children in the current

octant.

Implementations commonly improve efficiency by having each octant contain a six bit

field describing which faces exist. Our problem required the ability to choose a random face

on the surface. To perform this, we stored face information in a separate array (which we
could randomly choose from) and added (a pointer to) up to six face pointers to an octant.

(Hence, the need for the "face passing" mentioned in §4.)

To support the features we mentioned earlier, very few changes to the octree data

structures are required. Indeed, the only one is that the root octant and its size must be vari-

able, while normally it can be considered constant.

The remaining changes are in the algorithms. For concreteness, we refer to a routine

called oct_find which takes an xyz location and returns the smallest enclosing octant.

oct_find’s basic operation is to start at the root of the octree and decide which of eight child

octants contains the coordinate. This is carried out recursively, until a leaf octant is encoun-

tered.

oct_find actually chooses one of the eight octants by dividing each dimension in half.

For example, if the current octant was centered at 2 on the x-axis, we would narrow the

choice of eight octants to four, by comparing the given x with 2. Comparing against the other

two dimensions would enable the selection of a single child. An additional check in each

dimension was added to determine if the value was outside the current octant. If so, we
would continue searching in the parent of the current octant. If the parent was the root, we
would expand the tree (as described earlier) and continue the search at the new root.

While one might expect that it was sufficient to check for exceeding bounds only at

the root, checking at every level allowed us to start searches anywhere in the octree struc-

ture. This was essential to the second feature of our implementation.

Localized changes could be made to random parts of the surface of the octree with

minimal effort. A surface octant was selected for modification - for example, deletion. It was

then deleted as discussed earlier. One important step is that when a voxel is deleted, it

causes faces to appear on neighboring voxels. Thus it was necessary to find the six neigh-

bors of a voxel. oct_find would find these six neighbors using the same algorithm as before,

but searches were started from the deleted voxel’s parent rather than the root. Since half of

Contribution of the National Institute

of Standards and Technology.

Not subject to copyright.

- 7 -

the neighbors share the same parent, these neighbors were found in one step. The remaining

neighbors were found in 0(n) time, where n is the depth of the octree, at worst.

All of these elaborations on the typical octree model take place with minimal over-

head. In particular, expansion and contraction of the root octant occur so infrequently as to

I be negligible. For example, a surface that grows from a single voxel to a long string of 2^

I

voxels will only cause octree expansion to occur sixty times. Managing the faces and neigh-

boring octants upon voxel creation/deletion require 0(n) time where n is the depth of the oc-

1

tree. These run-time characteristics provided us with a very fast simulation.

j

6. Extensions for RS/MC

Octrees lend themselves well to studying Random Surfaces (RS) on the lattice. The

structure studied by this problem is a surface with a genus of two (topologically equivalent to

a sphere), embedded in the lattice. This means that the surface is composed of faces that

are each one unit square. Physicists call such faces plaquettes. The vertices of a plaquette

lay on integral lattice points and are always perpendicular to an axis. Thus, a plaquette is

exactly the face of a unit-sized octant. This allowed a convenient bound of one, as the mini-

mal octant size, thereby avoiding any floating-point computations during octree maintenance.

It was, therefore, always possible to generate an exact model using octrees with little

effort. This stands in contrast to more typical octree modeling (such as in a CAD system),

which virtually never models the surface of interest exactly. We expect to apply octrees to

an entire class of related physics problems with similar degrees of success.

Our experiments used the Monte Carlo (MC) technique of randomly choosing a point

on the surface either to grow or shrink the surface. In order to perform a "random choice", an

array was maintained, each member of which pointed to a face on the surface. This auxiliary

data structure combined with the octree, was all that was needed to simulate RS/MC.

One Monte Carlo step of the simulation can now be described as follows.

1) Randomly choose a place to grow/delete a voxel on the surface.

2) Retrieve neighbors of the new (for create) or old (for delete) voxel.

3) Verify legality of the operation according to various topological and physical mles.

4) Perform the operation on the new or old voxel.

5) Fix up any neighbors affected.

' Each of these can be intuited from other parts of the paper except for step 3. This

step consists of rules defining the essence of the object being simulated. For example, two

;
of the mles are as follows:

i) Operations resulting in sharing only one edge by any two voxels are illegal.

I Contribution of the National institute

of Standards and Technology.

Not subject to copyright.

- 8 -

Deleting this voxel

leaves two voxels

connected by a single

edge.

Figure 3; Dlegal deletion of old voxel. Restricted by rule i.

This restriction is enforced by examining the twelve sets of adjacent neighbors. For

example, if the east and south neighbors do not exist, the east-south neighbor is retrieved

from the octree. If it exists, the operation is rejected, otherwise the operation is accepted.

ii) Operations resulting in a hole in the solid are rejected.

This restriction is enforced by examining the six neighbors in several ways. For

example, if we are creating a voxel, but only its top and bottom neighbor exists (see figure

4), the operation is rejected because it would create a hole in the volume.

7
^/ 7
/ 7

// 7
/

This new voxel

creates a hole

in the object.

Figure 4: Illegal creation of new voxel. Restricted by rule ii.

Notice that (i) and (ii) can be implemented by boolean operations. The implementa-

tion rejects operations as soon as possible, so no logically unnecessary checks are made.

The cost of both (i) and (ii) is 0(1).

More detail on these rules is given in [Libes]. Figure 5 is a surface generated by mn-
ning the simulation for 500,000 Monte Carlo steps. The surface size was 3474.

Contribution of the National Institute

of Standards and Technology.

Not subject to copyright.

- 9 -

Figure 5: After 500,000 Monte Carlo steps, surface size is 3474 (and still growing).

Prior implementations of RS/MC [Sterling] [Glaus] used a fixed-size array of memo-
ry in one-to-one correspondence, with the lattice being modeled. This technique was fast,

but drastically limited the size of the simulation that could be performed. By moving to an

octree-based representation, the space required was changed from O(n^) to O(ISl) where n

was the size of one dimension of the bounding box and ISl was the number of faces of the sur-

face. The run-time changed from 0(1) per step to 0(log n). This was a very favorable trade-

off simply because n^ grew so much faster than ISl. This is discussed further in [Libes].

7. Conclusion

We have suggested a new technique for adapting octrees to modeling dynamic sur-

faces. In particular, octrees can be extended to model arbitrarily large and growing surfaces,

which do not have a priori bounds. The salient feature of octrees of 0(log n) performance in

time and O(ISI) performance in space, is retained by this enhanced octree.

We expect that this enhancement to octrees will allow them to model objects that

they formerly could not, such as autonomous robots exploring unknown worlds. We have

also shown the applicability of this data structure to the study of objects embedded in the lat-

tice, for which octrees provide an exact model.

^

Contribution of the National Institute

i of Standards and Technology.

ll Not subject to copyright.

L

- 10 -

8. Credits

This work was partially supported by funding from the Scientific Computing Division

of the Department of Energy.

9. References

Glaus, U., "Monte Carlo Study of Self-Avoiding Surfaces", Dept, of Physics, Clarkson Uni-

versity, Potsdam, NY 13676.

Hong, Tsai-Hong, and Shneier, Michael O., "Rotation and Translation of Objects Represent-

ed by Octrees", Proceedings of the IEEE International Conference on Robotics and

Automation, Raleigh, NC, March 31-April 3, 1987.

Libes, Don, and Sullivan, Francis, "Modeling Self-Avoiding Random Surfaces with Octrees",

To appear.

Meagher, Donald, "Octree Generation, Analysis and Manipulation", IPL-TR-027, Image

Processing Laboratory, Rensselaer Polytechnic Institute, Troy, New York, April 1982.

Samet, Hanan, "The Quadtree and Related Hierarchical Data Structures", ACM Computing

Surveys 16, 2(June 1984), 187-260.

Sterling, T., and Greensite, J., "Entropy of Self-Avoiding Surfaces on the Lattice", Physics

Letters, Volume 121B, Numbers, 10 February 1983.

Contribution of the National Institute

of Standards and Technology.

Not subject to copyright.

niST-1 14A U.S. DEPARTMENT OF COMMERCE
(REV. 3-89) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER

NISTIR 89-4055
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE

SEPTEMBER 1989
4. TITLE AND SUBTITLE

Modeling Dynamic Surfaces with Octrees

s! AUTHOR(S)
~

^

Don Libes
6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MO 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

10.

SUPPLEMENTARY NOTES

DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF-1 85, FIPS SOFTWARE SUMMARY, IS ATTACHED.

11.

ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBLIOGRAPHY Or”UTERATURE SURVEY, MENTION IT HERE.)

Past uses of octrees have been for representation of static objects. We
discuss the extensions necessary to model dynamic surfaces. One particularly
important aspect of this is the ability to represent expanding surfaces that
grow to be arbitrarily large. Our enhanced octree does exactly this, and mod-
els contraction as well.
The ability to represent dynamic surfaces allows us to apply octrees to
new problems which could not previously have been modeled with static
octrees. One such problem is the "Entropy of Random Surfaces". Using dynam-
ic octrees, we produced a simulation of self-avoiding random surfaces
using Monte Carlo techniques.

12.

KEYWORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

3D modeling, Random Surface Theory, octrees, data structures

13.

AVAILABIUTY

UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

X

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

14. NUMBER OF PRINTED PAGES

13

15. PRICE

$9.95

ELECTRONIC FORM

