
U.S^ DEPARTMENT OF COMMERCE SIL

NationaLInstituta .oL Standards^ ancLTechnology_

NISTIR 89-4053

National
Computer
Systems

Laboratory

Architecturally-Focused
Benchmarks with a
Communication Example

G.E. Lyon
R.D. Snelick

U. S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

National Computer Systems Laboratory

Advanced Systems Division

Gaithersburg, MD 20899

©
COMPUTER MEASUREMENT

RESEARCH FACILITY

FOR HIGH PERFORMANCE
PARALLEL COMPUTATION

wiarcn

Partially sponsored by the

Defense Advanced Research Projects Agency.

ARCHITECTURALLY-FOCUSED BENCHMARKS
WITH A COMMUNICATION EXAMPLE

G.E, Lyon and R.D. Snelick

Advanced Systems Division

National Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

Partially sponsored by the

Defense Advanced Research Projects Agency

1400 WUson Boulevard

Arlington, Virginia 22209.

U.S. Department of Commerce, Robert A. Mosbacher, Secretary

Ernest Ambler, Acting Under Secretary for Technology

National Institute of Standards and Technology

Raymond G. Kammer, Acting Director

March 1989

TABLE OF CONTENTS

Page

1. Introduction 2

2. Architecturally-Focused Performance Evaluation 2

2.0.1 Assumptions on Comparability 2

2.1 Architecture and Benchmark Evaluations 3

2.1.1 Modes and Operations 3

2.1.2 Multimodal Competition 4

2.1.3 Comparing Vector Machines 5

2.1.4 Application Space Parameterized 5

2.1.5 Optimistic Estimations 6

2.2 Application 6

2.3 CUT: Capacity-and-Use Tree 7

2.3.1 Other Architectures, Other CUTs 9

2.3.2 One Simplification 9

2.3.3 Use of the Table 10

2.3.4 Refining a CUT Component 10

2.4 Architectural Focus Overall 11

2.4.1 Summary and Problems 11

3. Speedup and Scaleup in Parallel Processing 12

3.1 Secondary Use of Definitions 12

4. A Test Set 13

4.1 High Interdependencies: A Ring Model 14

4.2 Low Dependencies: Random Communication Model 15

4.3 Local Dependencies: A Mesh Model 15

4.3.1 Synchronized versus Chaotic Approach 16

4.3.2 Mapping a Mesh onto a Hypercube Topology 16

4.4 Benchmark Synchronization Mechanisms 17

4.4.1 Synchronization via Shared Variables 17

-iii-

4.4.2

Synchronization via Message Passing 18

5. Results 18

5.1 Sample Results from Ring 19

5.1.1 Hypercube Scaleup 19

5.1.2 Polling and Shared Memory Machines 19

5.1.3 Hardware Measurements of Unix’s Select Statement 20

5.1.4 Locked vs. Dynamically Assigned Processes 20

5.1.5 Conclusions for Ring and Polling 21

5.2 Sample Results from Random Communication Model 21

5.2.1 Hypercube 21

5.2.2 Shared Memory 21

5.2.3 Conclusions for Random Communication Model 22

5.3 Mesh Results on Hypercube 22

5.3.1 Short vs. Long Messages 22

5.3.2 Synchronous vs. Asynchronous 23

5.3.3 Mapping Strategies 23

5.3.4 Conclusions for Mesh 23

5.4 Summary of Test Results 23

5.4.1 Acknowledgments 24

6. References 24

-iv-

ARCHITECTURALLY-FOCUSED BENCHMARKS
WITH A COMMUNICATION EXAMPLE

G.E. Lyon and R.D. Snelick

The discussion first sketches a framework of modalities for an architecturally-focused

performance evaluation. The result is a hybrid of benchmarking and modeling: Elements

of capacity-and-use trees, CUTs, are explored as a simplified notation. There follows a

description of the structure and preliminary results from a practical benchmark set for

process communication.

Argument is given that performance within a class of architecture is often dominated

by unavoidable competitions within distinct machine modalities, such as scalar-vector. A k-

alternative, forced choice defines a dimension of comparison equally well in SIMD or MIMD
architectures. Performance estimators are interpolations between values from basis

benchmarks for modes; ideally in the two-alternative forced choice only two benchmark

measurements are needed. Refinements in basis benchmarks support CUT-based estimates

of performance.

The example set of communication benchmarks shows how refinements can clarify

knowledge of a machine. The refining expands details for a given mode. Ring, mesh, and

random connection benchmarks demonstrate diagnostic details on a particular mode

(process communication) on a machine. The results sample both shared-memory and

message-passing, and cover architecture influence, synchronization mechanisms, message,

computational and synchronization granularities, and mappings of logical to physical

structures. Emphasis is upon capturing important characteristics and capabilities of a

machine’s communication subsystem.

Key words: architecture; benchmarks; measurements; metrics; models; performance;

synthetics.

The identification of commercial products in the text is for clarification of specific concepts. In no case does such identification im

ply recommendation or endorsement by NIST, nor does it imply the product is necessarily the best for the purpose. Partially spon

sored by the Defense Advanced Research Projects Agency, 1400 Wilson Boulevard, Arlington, Virginia 22209.

- 1 -

1. Introduction

This report serves two related purposes. One is to examine some foundations of benchmarking. The

other is to demonstrate practical results. Although discussion begins with the idea of architecturally-

focused machine evaluation, this is not to say that performance evaluations set against applications are not

important. They are. Such has been argued earlier [LY087, LY088] and is reflected in the set of com-

munication benchmarks described in the latter half of the text. Nonetheless, an economy in machine-

based evaluation makes it attractive. Particular emphasis is given to competing programming modes, e.g.,

scalar versus vector, and to a coding-theoretic notation of this information called a capacity-and-use tree,

or CUT. The CUT explicitly displays hardware and application assumptions via benchmark results, which

decorate its branches and leaves.

A second brief topic covers a distinction between parallel speedup and the related term scaleup. It

appears that scaleup practices may be prevalent in some fields [GUS88], although the term speedup is un-

fortunately applied somewhat indiscriminately. Scaleup is easier to achieve, provided it can be done.

The third section, half the report, provides experimental results from a communication benchmark set

developed within our parallel processing project at NIST. Preliminary results cover a ring, mesh, and ran-

dom organization on both shared-memory and loosely coupled systems. Focus is upon process-level tran-

sactions. This section illustrates using benchmark refinements within a given mode to discover strengths

and weaknesses.

2. Architecturally-Focused Performance Evaluation

Computers are notoriously elusive to characterize. For performance, characterizations are usually

tom between two camps of thought. The first provides a large battery of comprehensive tests that reflects

the application world [VAN88]. Unfortunately, these tests may themselves be hard to characterize, and

the ensemble expensive to administer: applications are exceedingly diverse. A second view, taken here,

tries to focus only upon the barest architectural features. The hope is that this economy, although

providing rougher measurements, will provide a broader, more accessible summary of salient facts. While

it is generally agreed that the first approach, with its knowledge of applications, is the fullest

characterization [POT87], there are often good reasons why an architecturally-focused approach is better

suited. A large number of machine choices may need preliminary winnowing. Or the application

community may be poorly defined, as with machines whose export a government wants to control. In

export, only the machine architecture and operating system are definitely known [BAI88].

2,0.1 Assumptions on Comparability. The nature of the restricted software viewpoint should be

explained. While an architectural focus might seem to preclude applications, there are necessary

exceptions. Operations are defined logically at the language level, as in FORTRAN, Pascal, or Ada®.

However, this is not to say that textual reoccurrences of language expressions are invariably computed the

same way on a machine. Indeed, a principal tenet is that such is often not the case.

-2 -

Any machines to be compared run essentially the same logical instructions, even though respective

machine codes are distinct. It is assumed that algorithmic changes are not needed because machines in a

class are adequately comparable. This assumption is used later to simplify a hybrid model into a simple,

tabular format.

2.1 Architecture and Benchmark Evaluations

Ideally, one would Idee to simplify specifications and to provide major performance characteristics of

a machine. The point is related to performance modeling, and entails many of the same hazards. For

example, it is important that emphasized features dominate performance. General questions on a

machine’s fundamental balance and capabilities include:

* size of memories

* processor bandwidths

* i/o capabilities

* memory-to-processor bandwidths

* processor-to-processor communication

* memory move-around (memory-to-memory bandwidth)

Hillis claims, with good justification, that such coarse characteristics must be in reasonable balance and

accord to warrant serious attention [HIL85]. As an example, a machine with a 2 MIP (million-

instruction/sec) processor should not have but a 4 kilobyte memory-such a memory would be too small to

complement capabilities of the processor. The above list is a good minimal tally, a place to start.

The focus is upon benchmarks. This is in contrast to any attempt at modeling via simulation or

analysis. The very fine-detaded complexities of modem machines can render modeling an ambitious

undertaking. Something simpler is desired. Determining important machine aspects for benchmarking

may be a straightforward interpretation from the architecture, but this is not guaranteed. Even the above

list can be interpreted as more of a general functional requirement of applications than an imperative of

what a machine must have. Machines hold surprises in capabilities established not through obvious

architectural features, but through synergistic strengths and weaknesses of component groups acting

against demands. These strengths and weaknesses exert a "hidden topology" of performance that must be

discovered. One pivotal "topology" element is the mode of operations. The essentials of this emphasis

were described by G. Amdahl [AMD67] and recast by Ware [WAR72]. However, operation modes are

merely a departure point. Focus is at a logical, rather than machine level.

2.1.1 Modes and Operations. Operations can be classified as reduced or multimodal. An operation’s

designation depends upon architecture and implementation. For this reason, special benchmarking

attention must be given to catch modal details:

Reduced operations. The term reduced denotes an operation that behaves more or less the

same under a variety of processor- and system-state circumstances. Operations are single-

-3 -

mode. On older machines, operations were often quite predictable. Formulae were even

provided by manufacturers to calculate the clock cycles for each instruction. In the

terminology, these operations were reduced, or primitive.

Multimodal operations. The modem machine may have a complex behavior in terms of

timings for a single logical operation. Examples include: mapping by compilers to scalar or

vector instructions; non-linear operation speeds that hinge upon the size of instruction context

(instruction cache); memory-fetch anisotropy generated by incongruities between virtual

memory and actual physical allocation.

2.1.2 Multimodal Competition. Operation modes compete against each other during program execution.

Competing alternatives do not provide the same rate of computation, but each mode is useful enough that

it cannot be ignored. For example, scalar operations have rapid starts. All vector supercomputers have

operating systems, and these operating systems run in scalar mode. Ten to fifteen percent of a machine’s

instruction dispatches support operating system services. Beyond scalar instructions of the operating

system, many practical application codes of strategic interest need scalar support. These codes include

Monte Carlo photon transport, tri-diagonal elimination, table lookups and interpolations for equation of

state; this group may vectorize not at all. Particle-in-cell and banded linear equations may vectorize for

only about half the executed operations. So scalar capabilities are important, even if they are slower for

linear equation systems, which vectorize well. The early Star-100 vector machine was soon replaced by

the 203/205 series. The Star had good vector processing but inadequate scalar capabilities; the 203 had

improved scalar speeds [HOC84].

A major difficulty with multimodal operations is that they can appear ad hoc, varying from

implementation to implementation (even without architectural changes). Caches, compiler quality,

memory types, and other low-level details have effects. To handle the variability that complex enhancers

of performance introduce, one often tries to sample likely parameters of a language-level operation to

establish a range of performance. This is discussed shortly as a refinement of the context of some basis

measurements. Furthermore, the definition of multimodal operation is not meant to be strict in its wording.

As case in point, the competitors of (i) unit vector stride, versus, (ii) some random fetching combined with

GATHER/SCATTER, do fall into the multimodal category. From an operator viewpoint, it is whether to

use GATHER/SCATTER, but stride actually determines the choice. Stride is the independent variable.

A modality must form a k-alternative, forced choice of modes. It is on the basis of the forced choice

(no multiple selections) that a clear-cut dimension of performance variation emerges. Furthermore, on

some architectures, one modality conflict dominates all others. This is certainly true for scientific

computations on machines with scalar and vector capabilities.

Example 1: A dominant competition. A classical competition occurs on machines that perform either

scalar or vector computations. Answers are the same done either way, but since vector processing rates

(examples in [DON88]) are four to twenty-five times higher, the vector mode is naturally preferred.

Although naive users of vector machines may evaluate their machine solely on peak vector performance,

such is a very incomplete perspective. As just argued, scalar modes do persist. Programs are mixes of

vector and scalar, the balance depending upon application algorithms. To account for this, it is very

common [WAR72, BUC84] to (i) estimate scalar and vector rates s, v via benchmark measurements, and

(ii) derive a composite performance estimator p^ ^
from

Mp^ Jfx) = oJs + (l-a)/v, where a="scalar" fraction

-4 -

The interpolation rule that (a) exemplifies is often referred to as Amdahl’s law. Additional terms can

be added on the right-hand s^i’Je for further competitors. The only restriction is that right-hand numerators

must sum to unity. Parameter values s, v are regarded as "basis" capabilities of pure scalar and vector

modes.

2.1.3 Comparing Vector Machines. A little algebra shows that the pair (^.v) and p ^(a) define a well-

behaved expression of performance. A new vector machine m can be compared’ consistently, with

another, m. Since the comparisons are essentially the same for s or v, argument is given only in terms of

varying s. If both s’ < s and v’ < v, then p^, , is everywhere for a less than or equal to
^
of the original

machine. Similarly, if / > 5 and v’ < v, llien the performance of the newer machine rhust for some a
exceed that of the first. In short, a machine is faster for some value of a if and only if at least one of its

two processing rates {s’ or v’) is higher.

2.1.4 Application Space Parameterized. An estimator such as
p^

^(a) serves a second important purpose

beyond comparisons. It characterizes performance without having to qualify the results by specific

applications or algorithms. Because there are but two competing modes, the single parameter a
compactly summarizes the combinatoric explosion of variety seen among all application codes relative to

the two basis benchmarks. (For convenience, only two-way competitions are mentioned.)

The approach assumes characteristics at the (logical) operation level; one counts operations of

interest in their various competitive modes within the benchmark codes. This can be tedious, but it must

be done carefully. A central problem with interpolation between competing factors is that actual basis

measurements s* and v* are unlikely both to characterize a pure mode (v=v* AND s=s*), for reasons of

coding limitation. Of course, this very problem is why one mode cannot eliminate another. Consequently,

some residual influence of the other mode will often remain. Thus the determination of (for example) s

and V is unlikely to yield the parameters without some simple algebra. Measurement v* may in fact be for

97% vector and 3% scalar, v must be derived. A pure scalar measurement is easier to obtain directly.

There will be two measurements and two mix ratios; s and v are fully determined.

Success of the technique depends upon generalities that the basis benchmarks may or may not

successfully incorporate. Each of them has implicit assumptions; some benchmarks will have ruinous

restrictions. If constraints are too great, performance measurements will not have wide enough

applicability for a general estimate of machine capabilities. Yet, whenever machines can be usefully

compared via their respective scalar-vector mixes (or other modes), an enormous, clarifying simplification

has been achieved.

But what happens if the mix ratios are not so easily determined? Take as an example the ratio of

cache-hits, which is not readily accessible at the programming level nor comparable across machines.

Comparing two different machines may require a knowledge of two distinct cache-hit values, one chosen

(indep)endent variable) and the other estimated. Furthermore, caching benchmarks cl and c2 may give a

"high caching" and a "lower caching" measurement, but the exact separation between their two points of

measurement is unknown. Keeping a programming frame of reference allows one to use an interpolation

rule via Amdahl, although accuracy is now rather questionable. Of course, the more separation between

measurement points, the better. However, ascertaining clearly that cl and c2 are well separated seems to

require hardware measurement [CAR88].

-5 -

2.1,5 Optimistic Estimations. Amdahl’s law is optimistic. That is, it assumes a perfect, loss-less mixing

of modes. This may not be true because of context switchings, message latencies, vector startups, and

other practical details. The importance of this is a function of what error can be tolerated, and at what

benchmarking cost The proposed approach is to avoid higher cost through "basis" benchmarks and

interpolation.

Example 2: Communication versus memory. Some machines have a communication-memory competition

very analogous to the scalar-vector tradeoff. A parallel processor will have a choice of (i) using its own
memory, or (ii) getting a result from neighbor(s), so that lip = ^Imsg ¥ (l-P)/mem, P="message"

fraction. This tradeoff is especially pronounced in array pro?e^^arsti^D88, REE88] and in other private-

memory architectures, such as hypercubes. Messages from neighboring processors may logically work the

same [LAU78] as private memory references, but messages are several decimal magnitudes slower. A
programmer keeps interprocessor communications to a minimum, but parallel computation forces some

node-to-node exchange.

The selection between messages or memory relates to (i) costs (that a programmer would like to

know) for logically equivalent constructs, and (ii) the latitude that node memory size and algorithm

provide [KUN85], One might argue that system architecture should show such a distinction, but in fact the

architecture per se does not determine the importance. After all, message-passing is "transparent", that is,

by-value and very much like private memory references. It is the large distortion in performance (rather

than logical function) that makes distinctions worthwhile.

2.2 Application

Scalar/vector and message/memory are not the only tradeoff pairs. Unfortunately, even the same

hardware instruction may be played off against itself, depending upon use. Lubeck [LUB88] remarks that,

"..Amdahl’s Law applies to high and low scalar performance just as it does to vector/scalar integration."

Modem RISC (Reduced Instruction Set Computers) are especially sensitive to the relative sizes of

benchmark and application kernels that they execute. These architectures require a particularly watchful

evaluation. There are several questions pivotal to the identification of modes within a modality.

1. Among the operation functionalities of a system, which are interchangeable in some respect? A
knowledge of the system may be needed beyond hardware capabilities. Parametric variations

of some important operation during benchmarking may reveal multiple modes. A related

question asks whether the variation is important for purposes of the evaluation. Perhaps

maximum-performance settings of parameters are adequate. (This is tme of export

evaluation.)

2. Which possibilities of substitution are admitted by algorithms? It does little good to compare

tradeoff that have no utility. Observe that this second problem was already resolved for

vectorizability, since examples are known which admit various values of a. Nonetheless, it is

of no use to find sterile tradeoffs that are never made. To this limited extent, algorithms and

the applications world do again intrude.

-6 -

3. A modality’s alternatives (modes) must present distinctions in performance. Otherwise there is no

point in studying them. The scalar performance mentioned by Lubeck is one example of

distinctions that are somewhat subtle. Another is virtual memory, which can be quite

sensitive to reference schemes, e.g. by-row or by-column for matrices.

The following table summarizes some common binary competitions, the first three of which may occur on

the same machine.

Competitive

Modes

Architectural

Focus

Appx. Hardware

Differences

Improvement

w/ Prudent Use

1 scalar vs. vector peak vector is Monte Carlo—none

vector machines 4x to 25xfaster lin. alg.—near peak [DON88]

random GATHER memory-to- unit-stride is 3x to 7x

2 or SCATTER vs. memory 2Jxfaster estimated

unit-stride vector operations (at least) [88NIST]. [LUB88]

by-row vs. virt. memory page faults columns—30% fasterfor

3 by-column subsystem, slower by l(f; linear eq. solver

FORTRAN scalar operations source: row refs. wIFORTRAN [MOL72]

4 messages vs. loosely- memory refs—5Ox array processor wimesh:

memory refs. coupled nodes to lO^xfaster 1Oxfaster [RED88]

Four Modalities and Performance Effects

2.3 CUT: Capacity-and-Use Tree

Numerous suggestions have been made on using competing modes to estimate performance [WAR72,
BUC84, LUB88]. While the usual presentation of the idea is often bimodal (just shown), trimoduli ties

-

-using parallel, vector, and serial benchmarks—have been sketched [BUC84]. These first-order methods

can be refined through multi-level selections. For example, rather than just a single level vector, scalar or

parallel choice, let the scalar selection have a further refinement of, say, by-row or by column (as in the

previous table). Although formulae are easily derived for such cascaded selections, it is more insightful to

borrow a notation from coding theory. A (doubly) weighted tree—denoted a capacity-and-use tree,

Cf/T—serves two purposes. It visually displays all crucial assumptions in compact, quickly surveyed

format, and it supports performance estimates, which are computed off its leaf values of benchmark results.

The estimators being considered are not highly accurate methods, but rather, improvements over otherwise

scattered tables and misleading single figures. An example will be given. (See Figure 1.)

-7 -

The maximum capacity of any CUT arc is assumed to be unity or less. Capacity along any fanout arc

is relative to the capacity of the origination node, which is taken as unity. Each stage can only diminish

capacity, never improve it; the CUT must be constructed to be consistent on this.

Although the CUT is a code-tree-like structure, it is used for its own purposes. The placement of

modalities, such as vector-scalar, is more a function of which factors are to be examined with parameter

variations, how much dominance the modality exerts, and any dependencies. In the example, the vector-

scalar modality is the root fan-out because it truly dominates everything. To begin the tree with another

factor would mean that numerous duplicate vector-scalar fan-outs would have to be introduced into the

tree. Indeed the secondary fan-outs are each dependent modes, but this will not alway be true. Some
modalities will be independent of each other. However, a node in the tree can be constructed to express

conditional circumstances. In this manner, certain important compound events such as, e.g., "vector

preceded by scalar," can be represented. A CUT advantage is that such detail only appears as necessary to

render an accurate model.

Assume from the preceding table a hypothetical vector, memory-to-memory System XXX with

benchmarks such that:

1. scalar to vector rates (peak) of 0.1 to 1

2. scalar frequency of operations, 0.3

3. scalar by-row rate of 0.7 that of by-column, 1

4. by-row or by-column frequencies of 0.5 of scalar

5. GATHER-SCATTER vector rate of 0.3 that of unit-stride, 1

6. unit-stride or SCATTER-GATHER mode equally frequent at 0.5 (of vector).

XXX at its CUT root (Figure 1) has a peak efficiency of 1. Capacity admittances on arcs show fractions of

efficiency preserved on the arcs. The frequency weights express average utilizations.

Applying Amdahl’s law to leaves of the CUT (the frequencies sum to one) yields a true efficiency of

0.194 relative to the application. Each leaf of the CUT has a fraction-of-code weight and a rate associated

with it; dividing the code fraction by the rate gives a contributed time. The sum of these times, inverted,

yields a coefficient of efficiency, C^^^, that is relative to the root (peak) rate of unity. See Figure 1 for the

example C^^ of 0.194, as indicated in the drawing. This performance corresponds with everyday

experience, which seldom approaches anywhere near peak vector performance. Admittedly, the model

ignores startup delays and other real-life elements, although corrections can added, either in tree arcs, or in

the estimator that takes leaf values as arguments. But as a "back-of-envelope" calculation, the approach is

not completely unrealistic, since variances in everyday benchmarking can be high. It is not uncommon to

have a 30 to 40 percent spread from uncontrolled variables. Consequently, it is difficult to become too

concerned about minor uncertainties in the CUT model. Furthermore, the CUT declares explicitly all

assumptions in the estimate. This encourages economy and candor in comparisons. Incidentally, there is

no reason for the tree to be balanced in depth, although the example is. What does matter is that the

frequency weights on leaves sum to unity.

As a practical issue, a very complex CUT is probably not done in the spirit of the method, which is

meant to be coarse, quick and explicit. Also, as CUT arborescences multiply, the demand upon

application specification grows. Each fan-out in the tree needs more application information for one more

set of weights. A happy medium will arrive fairly quickly, as gains of accuracy from the model diminish

and demands for application parameters rise. An interesting study by Wang et.al. statistically

demonstrates that among the 24 LFK (Livermore loops) benchmarks, there are but two to five predictive

-8 -

dimensions: A few scores should characterize a machine [WAN88].

2.3.1 Other Architectures, Other CUTs. In addition to the three modalities used in Figure 1, the earlier

table of modalities has a fourth, which contrasts processor-to-processor messages against intra-processor

memory references. Because these modes are so disparate in speeds, they can serve as the first

differentiation in a CUT for an array processor. Communication may proceed up to three decimal orders

of magnitude faster direct to memory. The observed effect can often be a factor of ten in program

execution [RED88].

2.3.2 One Simplification. There is a compression of the CUT graph that some circumstances encourage:

The whole graph is reduced to a table of equal-gain performance increments. The following must hold for

the method to work:

1. The architectural layout is fixed, i.e. the underlying tree remains the same.

2. The application is also fixed, so that that frequency weights on the tree cannot change (these

characterize fully any application).

3. Computational capacities (admittances) can be changed within limits. This amounts to varying

the implementation via faster components, better subunits, or less expensive pieces. The limit

on improvements is that a mode cannot "amplify" capacity, i.e. exceed an admittance of 1.

For comparison, choose a base version of the architecture XXX. Its times are computed from the leaf

entries; they are then adjusted so that the computed coefficient is 1. Simply multiply each contributed time

by the actual efficiency coefficient. From leaves in Figure 1,

"t(A)" =(.15/.07)*0.194 = 0.415

"t(B)" =(.15/.1)*0.194 = 0.291

"t(C)" =(.35/0.3)*0.194 = 0.227

"t(D)" =(.35/l)*0.194 = 0.068

These "normalized times" are working values for computing a simplified scheme. In the following

example, the "times" have been multiplied by one hundred and rounded or truncated, with the

understanding that the sum divides into a hundred, rather than unity. Integer values (41, 29, 23, 7) are

convenient to work with.

Because factors B and D are at their best performance, only A and C are examined further. If

degraded performance were of interest for B and D, they too would be in the final table. Note from Figure

1 that the best (minimal) time A can have is 29, the same as B. Factor C similarly can improve until it

equals D at 7. (Assume that the CUT is built with factors of interest as leaves.) Both A and C can be as

slow as one might imagine, although Figure 2 restricts its descriptions of these worst performance cases to

practical ranges.

-9 -

Factors

A B C D

Base Time 41 29 23 7

(Normalized)

Minimal Time 29 29 7 7

Possible

System XXX: Allowed Normalized Times

Since A can improve by -(41-29)= -12= -(3*4) "time units", and C by -(23-7)= -16= -(4*4) units, table

entries can be implicitly in steps of 4. That is, "normalized time" = (A+B)*4+100, where A=-3, -2, -1...

and C=-4, -3, ... Circumstances will dictate the exact linear reformulations appropriate to other CUTs.

2J.3 Use of the Table. The expression in Figure 2 provides an index of computation speed for a new

machine variant relative to the base implementation of the understood, fixed architecture XXX running the

chosen application. This simplification is especially useful whenever an application is prominent,

preferably dominant, in an environment. Good money estimates for subcomponent substitutions further

improve the method’s utility. Here is an example. Suppose there is a machine like XXX, but with a huge

amount of real memory (A=-3). Unfortunately, its loader produces clustered references (C=-t-2). The

performance of this "XXX?" machine relative to XXX and the application is 100/[(-3-i-2)*4-i-100]= 1.04,

which hardly seems to justify its added memory cost. A improved loader would probably make it a more

competitive product.

The tableaux work not only for digital computer modeling, but serve equally well for other

engineering practice, such as simplified aerodynamic drag coefficient estimation [WHI69].

2.3.4 Refining a CUT Component. In many cases the chosen dimensions of an architecture admit

numerous parameterizations. A gross comparison, such that of s against v, may simply use peak

benchmark performances to establish each mode’s fundamental rate. Nonetheless, it can be revealing to

perform a parameter variation within a mode while other factors are constant. A typical example of this is

the test VECOPS from Los Alamos National Laboratory [BUC84, Table I ff]. VECOPS performs a variety

of binary and triadic vector operations while varying vector length considerably, from 10 to 10000 words.

Vector performance may vary by one and a half decimal orders of magnitude over the domain.

Programmers know that good performance on shorter vectors renders a machine more flexible in running

various algorithms. Each significant vector length can be an arc label in a part of a CUT representing

vector capabilities.

Communication and memory are also open to refinements in their characterization [GRU86, LY088,

RED88]. The test set in the latter half of this text addresses communication; it has uncovered special

details that might otherwise cause difficulty in program performance. The set seeks weaknesses in

common application layouts (as opposed to predicting exact performances). It is preventive and

diagnostic in nature. VECOPS can be viewed in a similar light. Both warn programmers of which length

vectors or messages perform unsatisfactorily.

- 10-

2.4 Architectural Focus Overall

There are several recommendations for architecture-focused estimation, in order of increasing

difficulty:

1. Establish values for the six general capacities sketched by Hillis [HIL85].

2. Identify logical (virtual, language level) operations of interest. Note that this step, although

innocuous, is not entirely independent of applications. For instance, including Boolean

operations sanctions some classes of application, and excluding floating point certainly

precludes others.

3. Extract the competitive modes of the operations in 2, leaving the categories in reduced state

(single mode of execution with predictable time, given operands). Finding some modes is

much eased if compilation can be performed with user-controlled degrees of optimization

(including none). This promotes parametric benchmark scans that might otherwise be

difficult

4. Sketch a CUT model in outline.

5. Run basis benchmarks and characterize modalities.

6. Generate optimistic estimators via benchmark results and Amdahl’s law. These estimators set an

upper bound on the performance envelope, since they assume a loss-less mixing of the

competitors.

7. Refine basis measurements of dominant modalities to emphasize significant variations. This

provides an idea of how restricted the views of performance are.

8. Complete the CUT model. If appropriate, simplify the model to tabular form.

The role of applications is much diminished in this architecturally-focused approach, but it is not

absent, certainly not in the CUT. The same is true of benchmarks used in the process. Besides

representing an implementation parameter (capacity), each basis benchmark implicitly qualifies overall

performance estimates from the way the benchmark is written. The degree of restriction depends upon the

style, focus and need within the estimation task. The qualifying reflects implicit or deliberate influence

from the applications domain. Fortunately, the comparisons have only to deal with a few application

extracts.

2.4.1 Summary and Problems. CUTs provide a resilient framework that displays elements of computer

performance estimations. Principal CUT strengths are explicitness and malleability. Each part of the

formulation has a significance that can be interpreted and, within limits, manipulated. The tree structure of

the CUT reflects important system architecture. Frequency weights f- serve to define application classes,

and capacity weights c- describe a system’s implementation. All these details are explicit and subject to

comparison and change. Variations on the frequency weights generalize what is found in the literature on

benchmarking interpolation [BUC84]. Changes in capacity admittances provide interesting views of

implementation gains (Figure 2). It appears that the most difficult of the contrasts will be with

architecture- -this involves transforming one tree into another, or in some other way establishing CUT
comparabilities. While a CUT model reduces comparisons to graph-equivalence questions, this in no way
alleviates difficulties of the task. A second open question is the actual constructing of a CUT. Automatic

rules of construction would shed further light on the evaluation of systems.

- 11 -

3. Speedup and Scaleup in Parallel Processing

Benchmarks eventually have to be interpreted. It is important in parallel processing that

unambiguous terminologies be used, as in [GOT84], to keep interpretations meaningful. The term speedup

seems intuitive and well established in multiprocessor computing [88SIA]. In essence, a problem’s

original execution time is divided by its new time on a more powerful configuration. It is hard to quarrel

with this simple formulation; use of the term is widespread. However, there is a shift in terminology that

is occurring regarding speedup versus another parallel processing technique that will be designated

scaleup. For example, the recent claimants of the Bell Speedup Award [88SIA] actually espouse what is

here defined as scaleup [GUS88].

Let where 0 < < 1 be some suitable coefiBcient of effectiveness that, for problem size n and

processors p, expresses the OTiciency relative to a user’s need. A typical formulation for is overall

program speedup divided by the number of processors, p. This formulation expresses the i&overy of

hardware investment. The major interest is that N varies with two parameters. Parameters n and p can

vary either together or separately. The following limits serve to emphasize the definitional points (in the

extreme):

Loadup limit (N
^

Loadup depicts a fixed-capacity machine that must run ever-larger variants of the

same problem. A suitable problem decomposition, one where computation eventually dominates

communication, will give an excellent indication. The idea of loadup limit is of less immediate interest,

and is included mostly for completeness.

Speedup limit (N Speedup is the common, conventional term for parallel processing improvement.

The problem sxzSn is fixed and the number of processors is allowed to grow.

Scaleup limit (N
^

Scaleup, which is actually linear scaleup when n/p=k, is often what many

users want without clearl^ stating such [GUS88]. Both problem and machine grow proportionally. A
typical example is when current versions of some mesh-connected problem run well enough, but solutions

for larger problems are desired. A larger machine is purchased to perform this new assignment in the same

time as previously.

3.1 Secondary Use of Definitions

Exaggerations via speedup and scaleup limits may widen intuitive perspectives. This is demonstrated

on two advanced architecture designs. Dataflow in many aspects addresses speedup, and massive

parallelism, scaleup. The correspondence is also reflected in everyday experience with less venturesome

parallel processors.

N. Wirth has proposed a epigrammatic description of programs that can be paraphrased as:

serial program —> control-graph + data-objects

This widely accepted formulation can be transformed using the concepts of speedup or scaleup. Take, for

- 12 -

instance, a dataflow machine:

(i) dataflow program -> speedup{decompose(co/jfrc>/-grap/2)

+ value-dependenciesCdara-oi'yccr^)

}

Similarly for massively parallel machines and scaleup:

(ii) massively-parallel program —

>

scaleup{add_obj_bitscans(coAitro/-grap/i)

+ \i\iA%h(,data-objects)}

Formulation (i) asserts that dataflow divides a program into ever-finer computations. There is certainly a

ring of truth in this, since a principal emphasis is to provide many threads of computation to offeet sundry

latencies of scale. Because resources are constantly increasing, computational granularity must shrink.

Even with the mildest overheads, the fine grain can lead to trouble, e.g., low-level bottlenecks may be

rather widespread. Eventually, the reduction of granularity causes single operations to be scheduled-the

mechanics of doing this well can be expensive for general purpose machines. Eventually some minor

overhead becomes major, grain being sufficiently reduced. Data-flow token matching is one example

which has recently seen very interesting proposals [IRA88].

Scaleup admits replication of detail with little loss of overall effort. One way to interpret the

massively-parallel paradigm is to imagine a new bit-level dimension along what were formerly program

atomic elements (e.g., long floating point becomes a vector of 64 bits.). Scaleup then admits broadcasting

of bit-iterations to processors which compute along the new bit dimension. However, lockstep processors

are not the only architectures for which scaleup appears promising. One following example, the ring with

chordal shortcuts, scales up perfectly on a coarse grained hypercube with MIMD organization. What does

not work for this particular hypercube is speedup. Message-passing latencies (overheads) are simply too

great.

4. A Test Set

An earlier study to which this work is sequel stressed embedding performance benchmarks into

comprehensive frameworks that set their context of use and validity of interpretation [LY088]. The

example chosen in [LY088] is that of process communication, which is absolutely necessary for parallel

processing (at the process level). The examples that follow extend the beginnings seen earlier, following

the framework that was proposed. That framework has two dimensions. One delineates communication

dependencies in a somewhat rough-hewn manner as processes that can be scheduled (i) nearly

independently, as in radiation transport, (ii) locally-dependently, a la fluids, and (iii) globally

interdependent, like molecular dynamics problems. A second dimension measures degrees of absttaction

away from the physical hardware itself; hardware, instruction level, processes, algorithms and

applications. As indicated, processes have been selected for study. Processes are a common level of

parallel computation for contemporary MIMD machines.

- 13 -

The immediate role of the communication benchmark set is to inform a programmer trying to use a

new machine. As will be seen, the benchmark programs cause some machines to display unexpected

behavior; it is better that a programmer know about this prior to designing his algorithms for a project,

rather than learning from trial and error.

The set provides several sets of parameters that can be explored in the spirit of mode refinements

mentioned earlier. Some of these, such as polling frequency, can be quite sensitive on certain operating

systems. Again, the programmer should know this. Other parameters, such as message length, can cause

certain fixed-frame length systems to crash if messages are too short and too frequent.

Numerous versions of the programs exist to accommodate distinct architectures. In one test, the ring

structure, the degree of global dependency can be relaxed; this has been useful in investigating the scaleup

capabilities of hypercube systems.

4.1 High Interdependencies: A Ring Model

One can define a logical (but hardly unique) communications structure at the process mechanism

level. The role of each logical structure is to provide an abstract model of communication divorced from

fine details of (i) the original problem, or (ii) algorithmic and coding features not related to process

communication. (Communication denotes both synchronization and data transmission.) Certainly there

may be numerous acceptable models for a given application. However, to study process communications,

specific examples must be chosen and tested; a ring structure has been selected to exemplify global

process dependencies. It is implemented with parameter variations as follows:

A. Synchronization (busy-wait; polling; interrupts)

B. Mode of transmission (by-value; by-reference)

C. Message length (short to long)

Further variation is necessary within gross parameter selections. For example, polling introduces the

notion offrequency which must be explored. Computation per datum should be adjustable as a parameter.

In addition, a variance about this computation can be set by another parameter.

The synthetic ring benchmark for global dependencies works as follows: Each of n logical nodes

will originate x messages, and additionally, process all other messages passing by. The number x of

messages and their length y are parameters. Each message travels around the ring while being "processed"

synthetically by each node. As a message returns to its origination node, it is removed from the ring traffic.

A new message is sent unless all x have been sent. When all nodes have sent and received all of their

messages, the ring of processes is dissolved and the results are reported. Communication is asynchronous,

with message traffic regulated by a simple form of flow control. This keeps slower nodes from being

overrun with messages. Such control is essential on systems that cannot control buffer overflows.

Messages are acknowledged on a one-to-one basis. Thus, at most, a process (node) will have one waiting

message.

- 14 -

A variant of the ring with chordal bypasses has been used to investigate scaleup on MIMD message

passing system, e.g., hypercubes. The chords allow a message to pass through k nodes then return to its

origin, rather than having to complete a whole circuit. Thus a node directly influences only k nodes

(although ^ is a parameter). There are overlapping spheres-of-influence, a refinement of completely global

interactions. Results will show that the modified ring scales up excellenUy.

4.2 Low Dependencies: Random Communication Model

Another synthetic benchmark for process communication depicts computational objects (nodes) that

can be scheduled nearly independently. This circumstance might be radiation transport, or within a

computer system, storage scavenging on linked lists. It represents the other end of the interdependency

spectrum from the ring. The algorithm implements a pool of n logical nodes (processes), from each of

which random messages are initiated, dispatched, received and processed. The communication patterns

for this algorithm are depicted in Figure 3a. Each node in the graph has «-l (or n if local communication

is set) edges, each of equal weight in the logical structure.

The benchmark consists of two principal sections, a manager (or host) node and a logical collection

of worker nodes. Nodes process some workload and randomly distribute other chunks of their workload to

other nodes. Each node is initialized with an equal amount of data, hence the workload is initially

balanced.

A node begins and continues processing its data until it is notified within its workset (via a special

value) to pass some of it on or until it finishes that set of data. When it must yield part of its present

workset, it randomly chooses (based upon data values) a destination node and determines how much to

dispatch. Whenever the node completes its assigned data, it checks its message queue for more work. If

there is a pending message the node records the work completed and services the next message. Otherwise

the node reports to the manager. An idle node awaits messages. When the manager has recognized that

the entire workload has been processed, results are recorded and the pool of nodes is dissolved.

As earlier described with the ring benchmark, this algorithm on shared memory machines allows for

various synchronization methods; they again are busy-waiting, polling and interrupts. The protocols used

on message passing systems are the send/no-wait and the blocking-receive routines. In addition,

computation granularity per datum is adjustable, as is the frequency of message originations (work

dispatching).

4.3 Local Dependencies: A Mesh Model

A middle ground in the interdependency spectrum has models in which the next state is a function of

a small number of neighboring processes. The model chosen to represent this has a two-dimensional mesh

structure with nearest neighbor communication dependencies (Figure 3b). A description of the algorithm

follows.

- 15 -

An N by M mesh with toroidal (wrap-around) connections is created with N*M logical nodes. Each

node in the mesh communicates with four nearest neighbors. A mesh point n[/\/]’s nearest neighbors in a

N by M mesh are defined as n[i,(j+l) mod M], n[i,{(j-l)+M) mod M], n[(t-t-l) mod Nj] and n[((M) -i- N)

mod NJ], The toroid eliminates any scaling effects of boundaries.

The program iterates state-by-state, and each state has two distinct phases, communication and

computational. The communication phase does information exchanges and node synchronization. The

computation phase defines the amount of computation performed by each node (process) between

synchronizations; the granularity of this phase is an important factor in design and software costs.

Generally, coarse grain synchronization is desired, but often is difficult to implement. It may not be

available in some applications. The mesh program stops after performing a given number of state

iterations.

Communication places a global constraint on the overall computations. A node (process) needs

values obtained from the previous states of its nearest neighbors to continue; this fact prevents it from

outdistancing its neighbors. However, the cohesiveness of the process states is different for various

programming approaches; these deviations will be described shortly. Since processes are periodically

required to wait for other processes, the mesh benchmark can be classified as an iterative synchronous

algorithm.

Parameters for the mesh include message length and computation granularity per datum. On shared

memory machines three types of synchronization methods are available; busy-waiting, polling and

interrupts. The notions of synchronous versus asynchronous (or chaotic) algorithms must be distinguished

from synchronous and asynchronous communication; hereafter the terms will refer to communication

(unbuffered=synchronous, buffered=asynchronous). Another issue is that of mapping the mesh onto the

hypercube topology while avoiding arc dilations.

4.3.1 Synchronized versus Chaotic Approach. An iterative algorithm’s interaction points can often be

implemented as either synchronized or chaotic on message-based systems. The synchronous approach on

message passing multiprocessors ensures that processes are all proceeding on nearly the same round (time

step) at any given point. This is implemented by sending acknowledgement messages after the receipt of a

data message. A process can not begin the next communication phase until it confirms that its neighbors

received its previous message. Since the time taken by a stage of a process is a random variable, the

synchronized approach has the drawback that some processes may be blocked at a given time;

performance of the algorithm is degraded. Synchronization overhead, seen in acknowledgment messages,

is another encumbrance of this approach.

One way to reduce these bottlenecks relies upon a less-structured computation. One process may
start the next state before others have finished. The cost of such a scheme is often an increase in the

complexity of the synchronization structure. This in turn produces higher implementation costs and

memory requirements. In the chaotic algorithm, processes continue to execute as long as some new

information is available. Since it is possible in such a scheme for one neighboring node to issue two data

messages before another neighboring node issues its first to a given node, a monitoring system has to be

developed to ensure a consistent sequencing of events.

4.3.2 Mapping a Mesh onto a Hypercube Topology. The nearest neighbor mesh has a well-defined

structure with a North-Soulh-East-West pattern of communication. Mapping the mesh structure perfectly

onto the hypercube may result in substantial saving in communication time. As explained by Saad and

Schultz [SAA88] (for a similar structure), an excellent example is that of mesh geometries that arise from

the discretization of elliptic partial differential equations in one, two, or three dimensions. Most iterative

- 16 -

methods for solving elliptic PDE’s require only local communication, i.e., communication between mesh

points that are neighbors. If the mesh is perfectly mapped into the cube, then only local communication

links will be required between nodes of the hypercube. This produces important savings. This economy,

however, is a function of communication capabilities and program function. Its effects may be dominant

or insignificant. The synthetic mesh benchmark tests for this.

Two approaches for mapping are distinguished, direct and non-direct. The number of physical links

that a logical path has to traverse defines the dilation of that logical path [NI87]. In direct mapping, each

logical path incurs one dilation; this is optimal when achievable. However, a direct mapping can be

difficult to establish; for some problem topologies it is NP-complete. In the non-direct method, processes

are mapped onto the hypercube in the most convenient way (usually reflecting the logical structure of the

algorithm), ignorant of the underlying architecture. This, however, leads to greater average path dilation,

which increases the number of logical paths that traverse a particular physical link, referred to as the

sharing of that link [N187]. Path dilation and link sharing directly reflect communication delay. Direct

mapping minimizes these components, whereas the non-direct approach does not. An experiment

comparing direct mapping and non-direct mapping is investigated for one particular hypercube. Results

appear later. (See the "Summary of Test Results" table, near the end.)

The direct mapping used here implements an extension of a scheme developed by Saad and

Schultz [SAA88]. The mesh model demands wrap-around communication paths for two-dimensional grids

for even-valued N and M, each greater than or equal to four. Note that these requirements constitute a

hypercube of dimension ceiling(log2[N]) + ceiling(log2[M]).

4.4 Benchmark Synchronization Mechanisms

The notions of synchronization and communication are difficult to separate because communication

primitives can be used to implement synchronization protocols, and vice versa. In general, communication

refers to exchange of data between different processes. Synchronization is a special form of

communication, in which the data are control information [DUB88].

4.4.1 Synchronization via Shared Variables. Two types of synchronization are commonly employed

with shared variables. These are mutual exclusion and condition synchronization. Mutual exclusion

ensures exclusive execution of critical sections via control of process scheduling. Condition

synchronization occurs within a set of cooperating processes when a shared data object is in a state that is

inappropriate for executing a given operation. Any process that attempts such an operation should be

delayed until the state of the data object changes to the desired value as a result of other processes being

executed [HWA84]. The strategies (i.e., synchronization methods) used for this delay period on shared

memory machines are busy-waiting, polling, and interrupts.

Busy-waiting is a form of synchronization which uses processor cycles to test a variable until a

desired value occurs. This is implemented using a loop structure (e.g., wh[le(condition = false);), which

spins in a tight loop until the proper condition arises. Polling is similar to busy-waiting in that a process

has a loop checking condition; however, when it does a check and the condition is not the desired value,

the process sleeps a fixed interval before checking again. This is implemented using the Unix select

- 17 -

statement (e.g., wh']l&{condition = false) sc\ecl{time_interval);). Polling has the advantage of not wasting

the processor during the specified sleep interval. A disadvantage arises when the desired value is set

during process sleep. Therefore, the specified time interval is integral to a polling implementation.

Interrupts are implemented with the Unix signals capabilities. With this method, a process sleeps until it

receives a signal (interrupt) to awaken. As with polling, interrupts require the services of the operating

system. Busy-waiting does not

4.4.2 Synchronization via Message Passing. On loosely coupled systems process interaction is

accomplished through message passing. Communication is achieved through message passing since a

process receiving a message is receiving data from another process. Message passing is also a form of

synchronization, since a message can be received only after it has been sent [QUI87]. The protocols used

by the communication algorithms are the send/no-wait and blocking-receive routines. The send/no-wait

(i.e., non-blocking) statement never delays the further execution of the invoking process; messages are

buffered. The blocking-receive will suspend execution of a process until a message is read. For these

algorithms this mechanism does not hinder execution, since no useful tasks can be performed during this

phase.

5. Results

This section relates experiences and results for the communication benchmark set The examples

illustrate typical uses, but are not comprehensive. The results illustrate vast performance differentials

obtainable with various (1) architectures, (2) synchronization mechanisms, (3) message and computation

granularities, (4) synchronization granularities, (6) mappings to physical structure, and others. This

underscores the importance of establishing the characteristics and capabilities of a machine’s

communication subsystem.

Experiments cover both message passing and shared memory multiprocessors. The message-based

machine is a five dimensional Intel hypercube. The tightly-coupled systems include a twenty processor

Encore Multimax® and six, sixteen, and twenty-four processor Sequent Balances®, plus an Alliant FX/4

used by colleagues at the University of Oklahoma [LAK87, LAK88].

In the following examples the notion of computational granularity must be distinguished. In the ring

and mesh models grain size refers to the amount of computation performed between communication

interactions, which are known. In the random model it determines the computation performed for each

data item a node encounters; this is because communication is triggered at random points in the data

stream. The compute/communication balance is stochastic; consequendy, grain is best defined on a per-

datum basis. Therefore, the meaning of the terms fine and coarse grain are algorithmically dependent

notions, with the random model somewhat different for convenience.

- 18 -

5.1 Sample Results from Ring

An earlier report [LY088] gave a first view of the benchmarks via experiences with the ring

benchmark alone. A number of graphs in the earlier work show variations for changes in synchronization

methods, by-reference or by-value process communication, and scaling. Results for polling were

especially unpredictable on several systems, and for this reason, have been more thoroughly explored,

below.

5.1.1 Hypercube Scaleup. The effects of scaling, and especially scaleup as defined earlier, were pursued

with a ring modified with chordal bypasses. This ring was placed on hypercubes of growing sizes as the

ring grew at the same rate. Since the chords provide localities of computation that are independent of

overall ring size, the chordal-ring program runs essentially at the same time-to-completion independent of

the ring size. This is true, naturally, because as the ring is made larger, the number of processors grows

proportionally. While quite distinct from speedup, scaleup is apparently [GUS88] rather common in

engineering and scientific computation. Figure 4 depicts a typical ring scaleup experiment. Clearly, for

suitable problems, the hypercube scales very well. There is one caveat, however. A real problem may

have convergence conditions which propagate slowly from neighborhood to neighborhood, thus delaying

program termination. The chordal ring model does not duplicate such conditions.

5.1.2 Polling and Shared Memory Machines. Numerous experiments were conducted studying the

effects of different polling levels on selected shared memory machines. Performance levels vary

significandy from one architecture to another as well as within the confinements of an architecture. Figure

5 illustrates this point: Here time-to-complete is plotted against polling frequency in milliseconds for

various ring sizes.

When the ring size is significantly larger then the number of processors (such as a 30 node ring on a

six processor Balance 8000, Figure 5a), performance levels vary considerably. The polling frequency

produces expected results when the ring size equals the number of processors (e.g., a 6 node ring on a six

processor Balance 8000, Figure 5b). Note for this example and others, parameters were adjusted to obtain

comparable timings. The fluctuations become apparent for an 8 node ring (Figure 5c) for this particular

shared memory machine. Similar observations are obtained on a twenty-four processor Balance 21000 for

a ring of size 30 (Figure 5d). Abrupt transitions are still evident in 5d, but not to the same degree as

experienced on the smaller machine (5a). The 5d ratio between processes and processors is much smaller.

On a twenty processor Multimax with a ring size of 30, no observable fluctuations are apparent. However

they were apparent on a ten processor Encore Multimax in a study performed by Lakshmivarahan and

others using the same code [LAK87]. For a ring size of 10 there were no significant fluctuations, a slight

deviation as the ring grew to 20, and prominent variance for 30 nodes. A later study on an Alliant FX/4

revealed a similar phenomenon [LAK88].

The pattern of fluctuations differs among the various architectures; however, there is an inherent

trend over the same architecture and across the test programs, at least for one shared memory machine.

Consider the results obtained on the Sequent machines for both the ring and random communication

algorithms. For random communication, transitions (on the Balance 8000) were most evident at polling

frequency intervals of 19 ms to 20 ms, 29 ms to 30 ms and every 10 ms step tested thereafter. This pattern

is duplicated for the ring (30 nodes). In addition, the pattern remains when both programs are ported to a

larger system of the same type. It is apparent on these shared memory machines that process/processor

mismatch amplifies performance differences that result from choices of polling frequency. The cause of

this anomaly seems to originate in the scheduling algorithm for these systems; when the number of

processes for a problem exceeds processors, scheduling is erratic.

- 19 -

5.U Hardware Measurements of Unix’s Select Statement. As shown in Figure 5, polling offers a wide

range in performance levels with little change in polling frequency. Polling as stated earlier is

implemented via the Unix select system call. This next experiment focuses on services times recorded for

this statement in conjunction with a typical benchmark run. Service times are captured with the use of our

NIST measurement system, which obtains low level measurements with timestamp perturbations of only

3-5 microseconds [CAR88]. The following experiments were performed on a six processor Sequent

Balance 8000.

In normal operadng mode, the average service time for the select statement follows that of the system

clock tick (10 milliseconds). As shown in Figure 6b, service times for a small ring follow this expected

path and as a result performance levels are predictable (Figure 6a); execution time increases with polling

frequency steps. For this problem it is easy to identify an optimal polling frequency. Small polling

intervals work best. However with the 30 node ring (Figure 7), polling service times vary significantly, as

do performance levels. This is especially true for the interval of 19 ms to 20 ms, where service times

dropped moderately, triggering a drop in execution time. This forementioned pattern is not evident in

subsequent polling frequencies, where execution time fluctuations do occur. In this implementation,

polling service times are much greater than the requested poll, especially in the interval up to 19 ms. In

some cases it is over twice as much as recorded for the smaller ring. For example, (Figure 7b) when a poll

of 10 ms is requested the actual average poll received is 23 ms. After the readjustment at 20 ms, service

times are only slightly higher than the requested poll. In contrast to the smaller ring, completion time for

the larger ring decreases with higher polling frequencies.

From the previous observations it can be concluded that for this shared memory machine, time-to-

complete is a function of service times for the select statement in polling implementations. Irregular

service time deviation is only noticeable when the model contains a process/processor mismatch. As

stated earlier the cause may be linked to a feature in the process scheduling algorithm. Figures 6 and 7

show typical extremes moving from one process per processor (Figure 6) to many (Figure 7). Intermediate

ratios show intermediate distortion. The absolute size of the ring is an additional influence; larger rings

highlight any scheduling delays.

5.1.4 Locked vs. Dynamically Assigned Processes. In an environment such as Sequent Dynix, a process

runs without interruption on a processor until it blocks, terminates or is preempted by another process with

greater or equal priority [SEQ87]. In the ring with 30 nodes, processes are often pre-empted and

rescheduled on other processors. From experience, this seems to affect the polling implementation

adversely, which consequently reduces performance. The next experiment aims at reducing pre-empted

processes, thus alleviating any erratic scheduling. In this experiment, sets of unrelated processes in the

ring are bound to specific processors (via the tmp_affinity system call). A bound process runs on no other

processor. For a ring size of 30, five processors are assigned six nodes each, leaving one processor free to

do other system chores. As shown in figure 7a, this implementation exhibits increased performance and

predictability. Some cases run over five times as fast for exactly the same program code and parameter set

(cf. Figure 7a). Another point of interest is the increase in polling service times (Figure 8b). Services

times range from 103 ms to 130 ms, much greater than recorded for unbound processes. In addition, there

is a very high variance in service times. However, in this controlled environment, service times and their

variance have little appreciable effect on execution times, contrary to earlier discussed implementations.

-20 -

5.1.5 Conclusions for Ring and Polling. It is clear from the previous observations that a programmer

must be aware of subtle characteristics in system software, especially scheduling and processor

assignment. Seemingly small polling parameter variation yields profoundly different performance levels.

It seems that variance in results as a function of polling frequency is inherent in shared memory

architectures. This variance is amplified as a process/processor mismatch grows. Yet for one particular

system, a significant increase in polled performance is achieved by binding processes to processors; locked

processes do much better than dynamically assigned processes.

5.2 Sample Results from Random Communication Model

5.2.1 Hypercube. On a hypercube where each node has a dedicated processor, linear speedup is only

obtainable for the random model when communication between nodes is non-existent. The initial load is

perfectly balanced and remains undisturbed. As expected, adding any degree of communication (defined

here as data transmission) and thereby altering the data allotment (load balance) degrades performance.

This degradation can be substantial, as illustrated in Figure 9. Speedup is almost halved at a very low

communication frequency, at about .01% of items causing messages. In this case, data is shifted away

from some processors onto others. Because of infrequent communication, the model never regains

suitable load balance. Hence, some processors starve while others are burdened with heavy workloads.

Execution time is established by the slowest of the nodes. Performance improves as the communication

rate increases up to two percent. This can be attributed to better load balancing, a benefit that dominates

any penalty from increased communication traffic.

As communication becomes too intense (3.5% for this data) the system fails, as indicated at several

points in the graph. This failure is primarily caused by the system imposed limit of message buffers,

coupled with the communication structure of the algorithm. In this model, the send/no-wait primitive is

used for communication. This allows the sending processes to get arbitrarily far ahead of a receiving

process. This leads to nodes accumulating messages at a rate well beyond the capacity to process them.

Whenever new messages exceed a node’s buffer capacity, they are (unfortunately) lost. Deadlock results.

It appears impractical to program against this, indicating that related- -communication intense--

applications may be difficult to support.

5.2.2 Shared Memory. On tighdy coupled multiprocessors, messages are buffered in a large shared

memory; they are not vulnerable to buffer depletion as on the hypercube. As the frequency of messages

increases, communication cost should come to dominate and performance to decline. However this is not

always reached. When computational granularity is coarse, additional communication does not dominate

and performance remains relatively constant (Figure 10; for coarse grain(CG)).

Experiments were conducted for the various synchronization mechanisms for both fine and coarse

grain data sets (since polling results follow that of busy-waiting, they are only shown when they differ

significantly). These tests are performed on a sixteen processor Sequent Balance 21000. Node collections

of 12 and 24 are chosen to represent a system both without contention (12<16) and with (24>16).

-21 -

When few computations are performed for each data item, communication overwhelms the memory
network; performance is disastrous, especially for interrupts (Figure 10; fine grain(FG)). For very low

communication frequency, interrupts perform quite well, but as the frequency increases performance

rapidly deteriorates. As expected in the model with 12 nodes (no processor contention), busy-waiting is

best.

As mentioned, the performance difference for coarse grain problems is minimal over the spectrum of

communication frequencies. However, as with hypercube performance, infrequent communication often

leads to load imbalance that degrades performance. The best of shared memory performance arises from a

moderate communication frequency. Interrupts outperform busy-waiting for coarse grain data sets in a

system with processor contention. This is contrary to other implementations in this example. Interrupts

free a processor when no useful work can be performed, whereas busy-wait consumes a whole timeslice.

Furthermore, in this domain of infrequent communication, efficient use of the system is not compromised

by communication overhead. A coarse computation grain masks system overhead. As a result, the 24

node model outperforms the 12 node model. As a last observation, 50-millisecond polling for this data

yields maximum processor utilization and best overall performance.

5.2.3 Conclusions for Random Communication Model. On the hypercube, poor performance is

exhibited for very low communication frequencies; this can be attributed to unbalanced workloads.

Because of the limited buffer space, communication intense applications of this sort may be difficult to

support on such systems. On shared memory machines, the cost of communication for fine grain data sets

is increasingly expensive for random communication. Conversely, data balancing is the dominant factor

in coarse grain problems; moderate communication frequencies are required to obtain this balance.

5.3 Mesh Results on Hypercube

5.3.1 Short vs. Long Messages. This hypercube experiment explores effects of different message lengths,

the number of time-step iterations, and strategies for synchronization and mapping. The amount of

information passing through the communication subsystem is a constant. This constant is formulated by

the product of message length and iterations; thus shorter messages require more synchronization stages.

The lengths of the messages range from short (256 bytes) to the system’s limit (16K bytes). The results

shown in Figure 11 are for a 4 x 4 mesh.

It is clear that longer messages work better over the spectrum of implementations. In addition,

performance levels deviate little for message lengths of IK bytes and longer. However performance

beneath this IK byte threshold drops off significantly. This is most evident for the synchronous non-direct

mapped version, whose execution time almost doubles for the interval of IK bytes down to 256 bytes.

This performance degradation can be attributed to the system sending information along its

communication network in full-length packets of IK bytes. Messages less than IK bytes still ride in

packets of IK bytes. Given this, it is naturally better to send fewer but longer messages. However, this

may not be practical or even be possible for an application. Therefore, it is important to reduce the

frequency of communication in problems requiring short messages.

-22 -

5.3.2

Synchronous vs. Asynchronous. Frequent short messages stress the communication capabilities of

an architecture, as demonstrated in Figure 11. In this domain, the chaotic calculation easily outperforms

synchronous versions. In this example the chaotic approach runs approximately 22% faster than its

counterpart. In this test the computational grain is uniform for each process at each stage. However, when

the computation per stage is a random variable, the performance gap is narrowed. The asynchronous

version runs only about 11% faster (not shown in graph). For an implementation with very fine grain

synchronization and message length, performance differences of over 50% are observed.

For long messages, chaotic and synchronous performances are similar; times are within one percent

or less. Longer messages effectively elongate the period between synchronizations, thus reducing the

significance of process-blocking in the synchronous versions. Hence, performances are comparable.

5.3.3 Mapping Strategies. As expected, for the spectrum of message lengths tested, direct mapping is

more effective than non-direct (average dilation in this example is 1.5, see Figure 11) for this particular

architecture. For medium to long messages, various mapping strategies have little effect; the performance

difference is only about three percent. This is due in part to the longer computational phase between

synchronizations, which reduces the percentage of time spent communicating. The performance difference

for short messages is slightly higher, approximately eight percent. On this system, mapping a program’s

communication structure to optimal communication links on the architecture yields only modest gains, and

in many cases may easily be ignored.

One major vendor has introduced message routing via hardware communication circuits, thus

reducing message transmission time substantially. With uniform latency and bandwidth throughout the

system, the underlying topology becomes transparent, thus supporting a wider range of applications and

easing the task of programming. But performance will always differ for various architectures and

algorithms. The programmer must carefully examine his own requirements for a particular problem on a

given machine.

5.3.4 Conclusions for Mesh. Long messages work best over a broad scope of applications. However long

messages may be difficult or impossible to realize. Thus, performance for short messages is important.

The asynchronous approach for short messages can run up to 50% faster than synchronous algorithms.

However, when the workload for each process at a stage is not uniform, this performance gap is halved.

Only modest gains are achieved by mapping the communication structure to the underlying topology.

5.4 Summary of Test Results

The table below is a amalgam of results previously discussed. It highlights potential problem areas,

as well as good architectural features for programming. Note that the results represent a sample of tests

available from the communication benchmark set, and are not comprehensive.

-23 -

Summary of Test Results

Model Coupling Remarks

Ring

Shared

Memory

-variable results from polling frequencies is inherent?

-scheduling erratic when #(processes) > #(processors)

-locked processes superior to those dynamically assigned

Hypercube

-scales up well if each logical node has physical node

-logical structure amplifies any random variances

Mesh

Shared

Memory
*results not available

at this time

Hypercube

-long messages work best over a broad scope of applications

-the asynchronous approach for interaction points is especially efficient

for short messages

-perfectly mapping communications to underlying topology may
yield but modest gains

Random

Shared

Memory
-communication for fine grain problems is increasingly expensive

-load balancing is main issue for coarse grain problems

Hypercube

-poor performance exhibited at very low communication frequencies;

attributed to unbalanced workloads

-communication-intense applications can be difficult to support

5.4.1 Acknowledgments. Vivian Lawrence read an earlier version of the text and suggested numerous

details for improvement. Carl Smith reviewed a separate note, part of which became the CUT graph

section. Argonne National Laboratory, Argonne, 111., and the Supercomputing Research Center, Lanham,

Md., kindly provided systems for measurements.

6. References

[87SEQ] Guide to Parallel Programming. Sequent Computer Systems, Inc., Beaverton, Oregon 1987.

[88NIST] Private conversations with D. Bailey and J. Gary. The range combines two informal estimates,

one of 3x and the other a range of 3.5x to 6x. These numbers should not be taken too seriously,

but burdening by SCATTER-GATHER practices certainly should. On the other hand, with sparse

matrices, it is better to have SCATTER-GATHER than not. See the paper by van Waveren

[VAN87].

[88S1A] Gordon Bell Awards for Parallel Speed-up. SIAM Activity Group on Supercomputing Newsletter

(First Quarter, 1988), 1-2.

[AMD67] Amdahl, G.M. Validity of the single processor approach to achieving large scale computing

capabilities. Proc., AFIPS Spring Joint Computer Conference 1967, Atlantic City, N.J., April,

1967,483-485.

[BAI88] Bailey, D., Brooks, E., Dongarra, J., Hayes, A., Heath, M. and Lyon, G. Benchmarks to supplant

export "FPDR" calculations. NBSIR 88-3795, June 1988, 20pp.

[BUC84] Bucher, I.Y. The computational speed of supercomputers. Report LA-UR-84-740, Los Alamos

National Laboratory, Los Alamos, New Mexico, 1984, 15pp.

[CAR88] Carpenter, R.J. Performance measurement insU'umentation for multiprocessor computers,

(appears in) High Performance Computer Systems, E. Gelcnbc (ed.), Elsevier Science

Publishers B.V., 1988,81-92.

-24 -

[DON88] Dongarra, JJ. Performance of various computers using standard linear equations software in a

FORTRAN environment. Technical Memorandum (issued periodically), Mathematics and

Computer Science Division, Argonne National Laboratory, Argonne, 111. 20pp.

[DUB88] Dubois, M., Scheurich, C., and Briggs, F. Synchronization, coherence, and event ordering in

multiprocessors. IEEE Trans. Computers, (Feb. 1988), 9-21.

[GOT84] Gottlieb, A. and Kruskal, C.P. Complexity results for permuting data and other computations on

parallel processors. Jour. ACM ii, 2(April, 1984), 193-209.

[GRU86] Grunwald, D.C. and Reed, D.A. Benchmarking hypercube hardware and software. Report No.

UIUODCS-R-86-1303 (Nov. 1986), Dept, of Computer Science, Univ. of 111., 17pp.

[GUS88] Gustafson, J.L. Reevaluating Amdahl’s law. Comm. ACM 31, 5(May, 1988), 532-533.

[HIL85] Hillis, D. Unpublished remarks on architectural similarity. 12th Annual Int. Symp. on Computer

Architecture, Boston, June, 1985.

[HOC84] Hockney, R.W. and Jesshope, C.R. Parallel ComputerSo Adam Hilger Ltd., Bristol, 1984

edition.

[HWA84] Hwang, K. and Briggs, F. Computer Architecture and Parallel Processing. New YorkJMY,

McGraw Hill,Inc., 1984.

[IRA88] Irani, K.B., and Luc, K.-Q. Elimination of bottlenecks in dynamic dataflow processors. Proc.,

Supercomputing ’88, Kissimmee, FL., November, 1988.

[KUN85] Kung, H.T. Memory requirements for balanced computer architectures. Journal of Complexity

1, 1(1985).

[LAK87] Lakshmivarahan, S. et al. An experimental study in process communication, the ring benchmark

on Multimax - part 1. University of Oklahoma, Norman, Oklahoma. November 1987.

[LAK88] Lakshmivarahan, S. et al. An experimental study in process communication, the ring benchmark

on Alhant FX/4 - part 2. University of Oklahoma, Norman, Oklahoma. January 1988.

[LAU78] Lauer, H. and Needham, R.M. On the duality of operating systems structures. Proc., Second

International Symposium on Operating Systems Structures, INRIA (Oct. 1978), (reprinted in

Operating Systems Review 13, 2 April 1979, 3-19).

[LUB88] Lubeck, O.M. Supercomputer performance: the theory, practice, and results, (appears in)

Advances in Computers, Volume 27, M.C. Yovits (ed.). Academic Press, Inc, Boston, 1988,

309-362.

[LY087] Lyon, G.E. On parallel processing benchmarks. NBSIR 87-3580, June, 1987, 35pp.

[LY088] Lyon, G.E. Design factors for parallel processing benchmarks, (to appear in) Jour, of

Theoretical Computer Science, (April, 1989).

[LY088a] Lyon, G.E. Constructing capacity-and-use trees. Parallel Processing Group, NIST, Note, Nov.,

1988.

[MOL72] Moler, C. Matrix computations with FORTRAN and paging. Comm. ACM 15, 4(April, 1972),

268-270.

[N187] Ni, L., King, C. and Phillip, P. Parallel algorithm design considerations for hypercube

multiprocessors. Proc. 1987 Int. Conf. on Parallel Processing, August, 1987, 717-720.

[POT87] Potier, D. Analysis of determinant factors for the performance of vector machines, (appears in)

Supercomputing, A. Lichnewsky and C. Saquez (eds.), Elsevier Science Publishers B.V. (North-

Holland), 1987, 221-236.

[QUI87] Quinn, M.J. Designing Efficient Algorithms for Parallel Computers. New York, N.Y.,

McGraw-Hill,Inc., 1987.

[RED88] Reddaway, S.F. Achieving high performance applications on the DAP. Proc., CONPAR 88,

Stream ’A' (Brit. Comp. Soc., 1988), 233-241.

[REE88] Reeves, A.P. and Gutierrez, M. On measuring the performance of a massively parallel processor.

Proc., Int. Conf. on Parallel Processing, Aug. 1988, 261-270.

[SAA88] Saad, Y. and Schultz, M. Topological properties of hypercubes. IEEE Trans. Computers, (July,

1988), 867-872.

[WAN88] Wang, J.C., Gary, J.M., and Iyer, H.K. On the analysis of computer performance data. Draft

-25 -

paper, NIST, Dec. 1988, 33pp.

[\VAR72] Ware, W.H. The ultimate computer. IEEE Spectrum, (March, 1972),84-91.

[WHI69] White, R.G.S. Rating scale estimates automobile drag coefficient. SAE Journal 77, 6(June,

1969), 52-53.

[VAN87] van Waveren, G.M. Application of sparse vector techniques on a molecular dynamics program,

(appears in) Algorithms and Applications on Vector and Parallel Computers, H.J.J. te Riele,

Th.J. Dekker and H.A. van der Vorst (eds.), Elsevier Science Publishers B.V. (North-Holland),

1987,405-428.

[VAN88] van der Steen, A.J. Proposals for standard benchmark programs for supercomputers. Proc.,

CONPAR 88, Stream ’C (Brit. Comp. Soc., 1988), 58-66.

-26 -

o o Q- —
£® ® 3 O)
'.y Q. ^ s
® n5^ 3 •= ~
2 S’ c ^
O

, ,
.p .,Z o Q. O

® •-

> ®
CT

Q̂.
-J- Q.

cr
^

LLI *oX C
K ®
<

w X

li- ®
o .2

O if)

E j2
®
E o)

® o
OJ o
3 ^
X +

®

E'i’

Figure

1.

CUT

Diagram

for

Figure

2.

Incremental

Performance

Changes

Flypothetical

System

XXX

for

Hypothetical

System

XXX,

Factors

A

and

C

RANDOM COMMUNICATION MODEL

Figure 3a. Communication Patterns, Five Nodes

MESH MODEL

NODE 12 NODE 13 NODE 14 NODE 15

NODE 0 NODE 1 NODE 2 NODE 3

NODEO

NODE 4

NODES

NODE 12

Figure 3b. Communication Patterns, 4x4 Mesh

Figure

4.

Scaleup:

Ring-Pipeline

With

and

Without

Local

Neighborhoods

Time-to-Complete

(s)

Time-to-Complete

(s)

Polling Frequency (ms)

(a) 30 node ring on six processor

Balance 8000.

Polling Frequency (ms)

(b) 6 node ring on six processor

Balance 8000.

Polling Frequency (ms) Polling Frequency (ms)

(c) 8 node ring on six processor (d) 30 node ring on twenty-four

Balance 8000. processor Balance 21000

Figure 5. Ring antj Polling: Time-to-Complete

versus Polling Frequency

Figure 6. 6-Node Ring on Six Processor Sequent Balance 8000

fit

Figure 7. 30-Node Ring on Six Processor Sequent Balance 8000

(/>

Figure 8. 30-Node Ring (Bound Processes) on
Six Processor Sequent Balance 8000

Time-to-Complete

(s)

Figure 9. Speedup for Random Communication with Various

Communication Frequencies (Hypercube)

Figure 10. Time, Frequencies and Synchronization

Strategies (16 Processor, Shared Memory)

180

IP

r \ I

o
(O

o o
CsJ

o
o

CD
ID“ CN

o
00

(s) 0;0|dujoo-oi-0 UJ!i

Message

Length

(Bytes)

Figure

11.

Time

versus

Message

Length,

4x4

Mesh

with

Various

Synchronization

and

Mapping

Strategies

(Hypercube)

NBS-1 14A (REV. 2-gC)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA

1. PUBLICATION OR
REPORT NO.

2. Performing Organ. Report No. 3. Publication Date

SHEET (See instructions) NISTIR 89-4053 MARCH 1989

4. TITLE AND SUBTITLE

Architecturally-Focused Benchmarks with a Communication Example

5. AUTHOR(S)

G. E. Lyon and R. D. Snelick
6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions) 7 . Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

8 . Type of Report & Period Covered

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

10.

SUPPLEMENTARY NOTES

I

'

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. abstract (A 2Q0-word or less factual summary of most significant information. If document Includes a significant
bi bl iography or literature survey, mention it here)

The discussion first sketches a framework of modalities for an architecturally-
focused performance evaluation. The result is a hybrid of benchmarking and modeling:
Elements of capacity-and-use trees, CUTs, are explored as a simplified notation.
There follows a description of the structure and preliminary results from a practical
benchmark set for process communication.

Argument is given that performance within a class of architecture is often
dominated by unavoidable competitions within distinct machine modalities, such as
scalar-vector. A k-alternative , forced choice defines a dimension of comparison
equally well in SI- or MIMD architectures. Performance estimators are interpolations
between values from basis benchmarks for modes; ideally in the two-alternative forced
choice only two benchmark measurements are needed. Refinements in basis benchmarks
support CUT-based estimates of performance.

The example set of communication benchmarks shows how refinements can clarify
knowledge of a machine. The refining expands details for a given mode. Ring, mesh,
and random connection benchmarks demonstrate diagnostic details on a particular mode
(process communication) on a machine. The results sample both shared-memory and
message-passing, and cover architecture influence, synchronization mechanisms,
message, computational and synchronization granularities, and mappings of logical to
physical structures. Emphasis is upon capturing important characteristics and
Capabilitia-S of a marhl np * S rnTTinnim' on

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

architecture; benchmarks; measurements; metrics; models; performance; synthetics

13. availability 14. NO. OF
PRINTED PAGES

:x] Unl united

For Official Distribution. Do Not Release to NTIS

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

38

15. Price

Z Order From National Technical Information Service (NTIS), Springfield, VA. 22161
$12.95

USCOMM-DC 6043-P80

