
NiSTIR 89-4042

Internal Structure of the
Guide to Available

Mathematical Software

Ronald F. Boisvert

Sally E. Howe
Jeanne L Springmann

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

(Formerly National Bureau of Standards)

Center for Computing and Applied Mathematics

Gaithersburg, MD 20899

March 1989

\

'.•I

: {

-A

''i

}

NISTIR 89-4042

Internal Structure of the

Guide to Available

Mathematical Software

Ronald F. Boisvert

Sally E. Howe
Jeanne L Springmann

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

(Formerly National Bureau of Standards)

Center for Computing and Applied Mathematics

Gaithersburg, MD 20899

March 1989

National Bureau of Standards became the

National Institute of Standards and Technology

on August 23, 1988, when the Omnibus Trade and

Competitiveness Act was signed. NIST retains

ail NBS functions. Its new programs will encourage

improved use of technology by U.S. industry.

U.S= DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

Ernest Ambler, Acting Under Secretary

for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Acting Director

• ; : '.svlj

. ,
^ V..#

' ^ I
:
i‘'.Vv/' .1 '., v-,! '/

;v^4
1; ‘ If

••'
i-

‘

‘'

.

•
':. ,

',1?' ' j!rV’^ ;

f".
'

5'

.' :, -(ivv ,"J^: .

\s‘

Abstract
The purpose of the NIST Guide to Available Mathematical Software (GAMS)

project is to provide convenient documentation tools for users and maintainers of

scientific computer software. The main components of this effort are a detailed tree-

structured, problem-oriented classification scheme for mathematical and statistical

software, a printed catalog based upon this classification scheme which integrates

information about all available software, an on-line interactive version of this cat-

alog, and a relational database containing all information upon which the on-line

and off-line catalogs rely, along with associated maintenance programs. This report

presents a detailed specification of the internal structure of the GAMS database and

the programs used to manipulate it. This information is useful to those who wish to

implement the GAMS systems on their own computer systems.

Disclaimer

Certain commercial products are identified in this report in order to adequately

document the existing GAMS system. Such identification does not imply recommen-

dation or endorsement by the National Institute of Standards and Technology, nor

does it imply that the products identified are necessarily the best available for the

purpose.

Acknowledgements
The GAMS project team at NIST is currently comprised of Ron Boisvert, Elsie

Clark, Sally Howe, David Kahaner, and Jeanne Springmann. We are indebted to may
others who have provided advice and help with programming and data collection over

the years.

IV

Contents

1 Introduction 1

2 The GAMS Database 3

2.1 The AP Relation 4

2.2 The APX Relation 6

2.3 The APHIST Relation 8

2.4 The SUBLIB Relation 9

2.5 The SUBLIBX Relation 9

2.6 The MODULE Relation 10

2.7 The MODULEX Relation 12

2.8 The COMPUTER Relation 13

2.9 The MOD\N Relation 14

2.10 The MOD\T Relation 15

2.11 Database Implementation 15

3 GAMS Programs and Procedures 19

3.1 The GAMS Interactive Consultant 19

3.2 GAMS Maintenance Procedures 21

3.2.1 Fixing Errors in the Data 21

3.2.2 Adding and Deleting Packages and Modules . 22

3.2.3 Changing the Classification Scheme 22

3.2.4 Reclassifying Modules 23

3.3 GAMS Maintenance Programs 23

3.3.1 MODIFY 23

3.3.2 UPDATE 25

3.3.3 REVISETREE 26

3.3.4 RECLASSIFY 27

3.4 Portability of the GAMS System 28

3.4.1 Cyber NOS Systems 29

3.4.2 Cyber NOS/VE Systems 30

3.4.3 Sperry EXEC Systems 31

3.4.4 Vax VMS Systems 31

V

3.5 GAMS Implementation Under Vax VMS 31

3.5.1 Directory GAMS 31

3.5.2 Subdirectory [GAMS. PROG] 32

3.5.3 Subdirectory [GAMS. LIB] 33

3.5.4 Subdirectory [GAMS. PROG] 33

3.6 Programs Under Development 34

3.7 MODIFY Input Data Format 35

3.8 UPDATE Input Data Format 37

4 Format of Unloaded GAMS Database 41

4.1 The Unloaded GAMS Database 41

4.2 Sample Unloaded Database File 44

References 49

VI

List of Tables

1.1 Packages Represented in the GAMS Database 2

3.1 Files Required by GAMSIC 20

3.2 Files Required by MODIFY 25

3.3 Files Required by UPDATE 26

3.4 Files Required by REVISETREE 27

3.5 Files Required by RECLASSIFY 28

3.6 Machine-Dependent Variables in GAMS Programs . 30

3.7 Files in Directory [GAMS] 32

vii

f

Chapter 1

Introduction

The Guide to Available Mathematical Software (gaMS) project seeks to provide con-

venient documentation tools for users and maintainers of scientific software at NIST.

The main components of this effort are a detailed tree-structured, problem-oriented

classification scheme for mathematical and statistical software, a printed catalog based

upon this classification scheme which integrates information about all available soft-

ware [2], an on-line interactive version of this catalog, and a relational database

containing all information upon which the on-line and off-line catalogs rely, along

with associated maintenance programs. An overview of the project is given in [1].

The purpose of this report is to describe in some detail the implementation of the

GAMS database and the computer programs associated with it.

In the GAMS project, software is organized into collections called application pack-

ages^ which we will often simply refer to as packages. A package may be either a

collection of subprograms, a collection of programs, or a collection of commands from

an interactive system. About 30 packages are currently represented in our database.

Some packages may be partitioned into smaller collections called subhbraries. Each

sublibrary has the organizational structure of a package. The smallest user-callable

unit within a package is called a module. Thus, a module may be either a subprogram,

a program, or a command in an interactive system. Some of the software packages

described in the current GAMS database are listed in Table 1.1. More than 4800

individual software modules are currently represented.

The organization of software into packages, sublibraries, and modules is primarily

of interest to software maintainers. Software users need to know which modules can be

used to solve specific problems. Thus, GAMS also provides an organization of software

by functionality. The basis of this organization is a tree-structured, problem-oriented

classification scheme for mathematical and statistical software [1].

To implement the database we use the RIM database management system [5,6].

RIM is a Fortran-based system which is available on a number of computing systems

including Cyber NOS and Vax VMS. It includes an SQL-like interactive query system

and a Fortran interface. The GAMS programs gain access to the database through the

1

Table 1.1: Packages Represented in the GAMS Database

BMDP
Collected Algorithms of the ACM
DATAPLOT
ELLPACK
IMSL Library

MAGEV Library

MATLAB
MINITAB
NAG Library

NIST Core Math Library (CMLIB)

PORT Library

ROSEPAK
Standards Time Series and Regression Package (STARPAC)

Fortran-callable subprograms of the RIM applications program interface.

In the first part of this report we present a detailed description of the format of

the GAMS database. In the second part we describe various programs and procedures

which have been built to manipulate this database. Finally, in the third part we

describe the format in which the GAMS data is transported to non-RIM sites.

2

Chapter 2

The GAMS Database

The GAMS data are represented using the relational model [3]. In a relational model

the data are represented in terms of a collection of tables called relations. The columns

of the tables are called attributes. Each row represents a logical record of data.

There are ten relations in the GAMS database:

1. AP
Contains machine-independent data describing application packages.

2. APX
Contains data describing each (package,computer) pair.

3. APHIST
Provides historical data on each (package,computer,version) triple.

4. SUBLIB
Contains machine-independent data describing sublibraries.

5. SUBLIB

X

Contains data describing each (sublibrary,computer) pair.

6. MODULE
Contains machine-independent data describing individual modules.

7. MODULEX
Contains data describing each (module,computer) pair.

8. COMPUTER
Contains data describing the computers on which the software is located.

9. MOD\N
Contains the GAMS classification scheme.

3

10. MOD\T
Contains pointers which determine the tree structure of the GAMS classification

scheme, and pointers that specify the modules classified at each node.

To represent an application package in GAMS one adds one row to the AP relation

to describe the package. In addition, one row is added to the MODULE relation for

each module in the package. Finally, if the package is partitioned into sublibraries,

one row is added to the SUBLIB relation for each of the package’s sublibraries.

The data in the AP, MODULE, and SUBLIB relations are independent of any par-

ticular computer. However, we wish to also represent data describing particular tm-

plementations of each package on one or many computer systems. It is for this reason

that the relations APX, MODULEX, and SUBLIBX are introduced. For each row in AP
there may be many rows in the APX relation, each corresponding to the implemen-

tation of a version of the package on a particular computer system. For each row in

APX there is a set of rows in MODULEX describing the implementation of modules in

the package on the given computer. (Note that this implies that the MODULE relation

contains the union of modules available in all implementations of a given package.) If

the package is partitioned into sublibraries there is also a set of rows in the SUBLIBX

relation. In this way the GAMS database can effectively represent implementations of

application packages on many computer systems.

A precise description of the attributes within each relation can be found in the

following sections. Some attributes are common to many relations. These include the

names of packages (attribute AP), computers (attribute COMP), modules (attribute

MODULE), and sublibraries (attribute SUBLIB). We do not assume that any of these

names are unique. As a result, we have associated a unique identifier (an integer) with

each of these items. These are the attributes named AP^, COMP^^, MOD^^t, and

SUBLIB^^, respectively. Finally, for each relation we will indicate which attribute (or

set of attributes) may be used as a key for the relation. A key has the property that

it uniquely specifies a row of the relation (there are no duplicate keys).

When the string “-0-” appears as the first three characters of a text field in the

database, then that field is considered empty.

2el The AP Relation

The AP relation contains machine-independent data which describes each package.

Exactly one row appears in the AP relation for each package known to the database.

The attribute AP^ is a key for the AP relation.

The attributes of the AP relation are;

1. AP:^ (Integer; positive)

The unique identifier for this package.

4

2. AP (Text, 12 characters; upper case)

The name of this package.

3. TYPE (Integer; 1, 2, 3, 4, 5, or 6)

Indicates how the package is organized; 1 => subprogram library (not divided

into sublibraries), 2 partitioned subprogram library (library divided into

sublibraries), 3 homogeneous collection of stand-alone programs (i.e., with a

common input syntax), 4 =^> collection of commands in an interactive system, 5

interactive program, 6 => heterogeneous collection of stand-alone programs.

Examples of each type; (1) IMSL, (2) CMLIB, (3) BMDP, (4) Dataplot, (5)

MATLAB, (6) Collected Algorithms of the ACM. The difference between 4 and

5 is that the individual commands within Dataplot have been classified using

the GAMS Classification Scheme, while those within MATLAB have not.

4. PORT (Text, 1 character; E, H, M, or P)

Indicates restrictions on library usage and ease of transporting the software

to other machines; E ^ portable (in the public domain, written in a com-

monly available subset of the programming language, free of dependencies on

the arithmetic of a specific machine and source code is available); H => portable

some conversion required (while most of the code is portable, certain local-

ized portions use proprietary software or machine-dependent constructs); M ^
machine-specific (uses special features of a particular machine); P proprietary

(use of this software is governed by a licensing agreement).

5. DESC (Text, variable length; free format)

A brief description of this package.

6. LANG (Text, 12 characters; upper case)

The computer language in which the package is coded.

7. DEVELOP (Text, variable length; free format)

The name and the address of the organization where the library was devel-

oped and the name of a contact there. Example; National Institute of

Standards and Technology (NIST), Boulder, CO (J. Donaldson)

8. CITATION (Text, variable length; free format)

A reference to a monograph or technical article which describes the package.

Example; W. B. Gone, WISHPACK, Gnome Press, 1973

9. DISTRIB (Text, variable length; free format)

The name and address of the organization which is currently distributing the

software.

5

2.2 The APX Relation

The APX relation contains information about the implementations of packages on

each computer system where they are available. Each row corresponds to the imple-

mentation of a version of a package on a particular computer system. For example,

if a given package is available on three computer systems, there will be three rows in

the APX relation corresponding to this package; they will have the same AP^, but

different COMP^. More precisely, the attribute pair (AP^,COMP^) is a key for

the APX relation.

Only one version of a given package per computer is representable in the current

database. The definition of “computer” is somewhat liberal, however, and some

apparent violations of this principle are, in fact, allowed; see the comments in the

description of the COMPUTER relation for details.

A name substitution feature is assumed active in several fields of the APX relation

(ACCESS, SOURCE, TEST, SAMPLE, LIBDOC, and MODDOC). These fields give

commands which can be used on the given computer system to retrieve items such

as on-line documentation and source code for the given package. If such commands
depend on the particular module in question, then the string <M0D> may be used

to denote the module name in these fields. Programs processing these attributes

will substitute the module name for this substring if information about a particular

module is being processed. One can also use the strings <AP> and <SBL> to denote the

current package and sublibrary, respectively. If more than one command is required,

then they should be separated by the two characters \$; programs which print these

fields will replace these characters by an end-of-line.

The attributes of the APX relation are:

1. AP^^ (Integer; positive)

The unique identifier of this package. This determines the row of the AP relation

that provides machine-independent information about this package.

2. AP (Text, 12 characters; upper case)

The name of the package corresponding to AP^.

3. COMP^^ (Integer; positive)

The unique identifier for the computer on which this package has been imple-

mented.

4. COMP (Text, 6 characters; upper case)

The name of the computer corresponding to COMP^.

5. SUPP (Text, 1 character; 1, 2, or 3)

The level of support provided users of the library on this computer: 1 ^ full

support
;
2 ^ limited support; 3 no formal support.

6

6. ACCESS (Text, variable length; free format)

Command(s) which access this library on the given computer. Name substitu-

tion may be used. Example: INVOKE , GETLIB ,
IMSL .

7. VERt^ (Integer; positive)

A unique identifier for this implementation of the package.

8. VER (Text, 6 characters; free format)

The version name, number, or date, of this implementation. Examples: Mark 9

9. LIBDOC (Text, variable length; free format)

Command(s) which retrieve detailed documentation for this implementation of

the package on the named computer. Name substitution may be used Example:

INVOKE, GETDOC, IMSL.

10. MODDOC (Text, variable length; free format)

Command(s) which retrieve detailed documentation for a module in this pack-

age on the named computer. Name substitution may be used. Example:

INVOKE , GETDOC , IMSL , <M0D>

.

11. CITATION (Text, variable length; free format)

A reference to a monograph or technical article which describes this particular

implementation of the package. Example: W. B. Gone, Using WISHPACK on

CSCS, User Services Document, 1975.

12. SAMPLE (Text, variable length; free format)

A system command which will retrieve a sample usage of modules in this pack-

age. Name substitution may be used.

13. SOURCE (Text, variable length; free format)

A system command on the named computer which can be used to retrieve the

source for modules in the package. Name substitution may be used. Examples:

COPY [DATAPAC. SOURCE] <M0D>. FOR

14. TESTS (Text, variable length; free format)

A system command which will retrieve test programs for modules in this pack-

age. Name substitution may be used.

Three redundant data items are found in this relation: AP, COMP, and VER.
These are symbolic identifiers from the AP, COMPUTER, and APHIST relations, re-

spectively, associated with the unique identifiers for APs, computers, and package

versions (AP^, COMP^, and VER^). These attributes are repeated in this relation

in order to simplify retrieval.

7

2.3 The APHIST Relation

This relation is used to keep a record of which versions of each application package are

or have been implemented on each computer, For each row in the APX relation there

will be one or more rows in the APHIST relation. Each row corresponds to the imple-

mentation of a particular version of a package on a single computer. The dates the ver-

sion was installed and superceded are noted. If the date superceded is nuU, then that

particular version is currently active. The attribute triple (AP 7^,COMP:?^,VER 7^) is

a key for the APHIST relation.

The attributes of the APHIST relation are:

1. AP:ji^ (Integer; positive)

The unique identifier for the package.

2. AP (Text, 12 characters; upper case)

The name of the package corresponding to AP^.

3. VER^^ (Integer; positive)

The unique identifier associated with this version of the package on the named
computer,

4. VER (Text, 6 characters; free format)

The name of the version associated with VER^^^.

5. COMP^^ (Integer; positive)

The unique identifier for the computer on which this version of the package has

been implemented.

6. COMP (Text, 6 characters; upper case)

The name of the computer corresponding to COMP^.

7. DATEINT (Integer, 1 unit)

The date this version of the package was introduced. Format is yymmdd.

8. DATEDEL (Integer, 1 unit)

The date this version of the package was superceded. Format is yymmdd. If

this is nuU, then this version is currently active.

9. CITATION (Text, variable length; free format)

A reference to a monograph or technical article which describes this particu-

lar implementation the package. Example: W. B. Gone, Using WISHPACK on

CSCS, User Services Document, 1975.

8

2.4 The SUBLIB Relation

This relation provides a machine-independent description of all of the sublibraries

known to GAMS. There is one row in SUBLIB for each sublibrary, and the attribute

SUBLIB 7^ is a key. The attribute AP is redundant here (it can be determined from

the AP relation using APt^), but has been added to simplify queries.

The attributes of the SUBLIB relation are:

1. SUBLIB# (Integer; positive)

A unique identifier for this sublibrary.

2. SUBLIB (Text, 12 characters; upper case)

The name of the sublibrary.

3. AP# (Integer; positive)

The unique identifier associated with the package which contains this sublibrary.

4. AP (Text, 12 characters; upper case)

The name of the package corresponding to AP#.

5. PORT (Text, 1 character; E, H, M, or P)

Indicates restrictions on library usage and ease of transporting the software to

other machines. (See AP relation.)

6. DESC (Text, variable length; free format)

A brief description of the sublibrary.

7. DEVELOP (Text, variable length; free format)

The name (and, optionally, the address) of the organization where the sublibrary

was developed, and the name of a contact there.

8. DISTRIB (Text, variable length; free format)

The name and address of the organization which is currently distributing the

software.

2.5 The SUBLIBX Relation

The SUBLIBX relation contains information about the implementations of sublibraries

on each computer system where they are available. Each row corresponds to the

implementation of a version of a sublibrary on a single computer system. For exam-

ple, if a given sublibrary is available on three computer systems, there will be three

rows in the SUBLIBX relation corresponding to this sublibrary; they will have the

same SUBLIB#, but different COMP#. More precisely, the attribute pair (SUB-

LIB#,COMP#) forms a key for SUBLIBX.

The attributes of the SUBLIBX relation are:

9

1. SUBLIB:?^ (Integer; positive)

The unique identifier for the sublibrary. This determines the row of the SUBLIB

relation that provides machine-independent information about this sublibrary.

2. SUBLIB (Text, 12 characters; upper case)

The name of the sublibrary corresponding to SUBLIB^^.

3. COMP:^ (Integer; positive)

The unique identifier for the computer on which this sublibrary has been im-

plemented.

4. COMP (Text, 6 characters; upper case)

The name of the computer corresponding to COMP^.

5. SUPP (Text, 1 character; 1, 2, or 3)

The level of support provided users of the sublibrary on the computer. (See

APX relation.)

6. VER^^ (Integer; positive)

The unique identifier associated with the version of the package which contains

this sublibrary.

7. VER (Text, 6 characters; free format)

The version name corresponding to VER^^i^.

8. SUBLIBDC (Text, variable length; free format)

A command on the given computer which retrieves detailed documentation

for this sublibrary. Name substitution may be used (see the APX relation).

Example: INVOKE, GETDOC,CMLIB,EISPACK.

9. CITATION (Text, variable length; free format)

A reference to a monograph or technical article which describes the sublibrary.

Two redundant attributes are found in the SUBLIBX relation: COMP and VER.
COMP may be determined from the COMPUTER relation using COMP^, and VER
may be determined from the APHIST relation using VER^. They have been repeated

here to simplify queries.

2.6 The MODULE Relation

This relation provides machine-independent data describing each module. There is

one row per module, and the attribute MOD^^ serves as a key.

The attributes of the MODULE relation are:

10

1. MOD:^ (Integer; positive)

A unique identifier for the module.

2. MODULE (Text, 12 characters; upper case)

The module name corresponding to MOD^. If the module name is longer than

12 characters, the remainder are stored at the beginning of the description field.

3. AP (Text, 12 characters; upper case)

The package name corresponding to

4. CLASSES (Text, variable length; fixed format)

A list of all nodes in the GAMS classification scheme at which this module is

classified. The allowable node names are given in the MOD\N relation. Each

node name in the list must be followed by a slash (/). Associated with each

class is a flag which indicates whether this module is designated by its authors

as an easy-to-use version of another module for the problems in that class. If a

module is easy-to-use for a given class, then the node name is preceded by an

asterisk (*). Example: Glala/Klblal/*L8gla/

5. DESC (Text, variable length; free format)

A brief description of the module. If the module name was longer than 12

characters, the remainder of the name is stored here from the beginning of the

field to a \$.

6. HOWTO (Text, variable length; free format)

Gives a statement that invokes the module. If the module is a subprogram,

then the call statement is given. In the case of function subprograms an as-

signment statement is given, with the variable assigned indicating the type of

output (I for integer, S for single precision real, D for double precision real,

C for complex, L for logical, and H for character). If the module is a com-

mand in an interactive system, then the command is given (if more than one

command is required, they should be separated by the two characters \$. If

the module is a stand-alone program this field is undefined. Examples: CALL

CCHDC(A,LDA,P,WORK,JPVT,JOB,IMFO) and S = SASUM (N,NX,INCX)

7. ASSOCMOD (Text, variable length; fixed format)

The names of modules almost always used in association with this module in

order to complete its task. Takes the form of a list of module names (upper

case) separated by blanks. The list may be followed by comments in free format

beginning with the two characters \$. Examples: SGEFA SGECO and BVALU $

for evaluation.

8. AP^^ (Integer; positive)

The unique identifier associated with the package containing this module.

11

9. SUBLIB:}!^ (Integer; positive)

The unique identifier for the sublibrary containing this module. (If the module

is in a package which is not partitioned into sublibraries, then the field contains

-0 -.)

10. SUBLIB (Text, 12 character; upper case)

The name of the sublibrary corresponding to SUBLIB^. (If the module is in

an application package which is not partitioned into sublibraries, then the field

contains -0-.)

Three redundant attributes are found in the MODULE relation: AP, SUBLIB, and

CLASSES. AP may be determined from the AP relation using AP:;i^ and SUBLIB may
be determined from the SUBLIB relation using SUBLIB^. Except for the “easy-to-

use” designations, the information contained in CLASSES can be obtained from the

MOD\t relation using MOD^^. These have been repeated here to simplify queries.

2.7 The MODULEX Relation

The MODULEX relation contains information about the implementations of individual

modules on each computer system where they are available. Each row corresponds

to the implementation of a version of a module on a single computer system. For

example, if a given module is available on three computer systems, there will be

three rows in the MODULEX relation corresponding to this module; they will have

the same MODULE^, but different COMP^^i^. More precisely, the attribute pair

(M0D7^,C0MP#) forms a key for MODULEX.
The attributes of the MODULEX relation are:

1. MOD:;!^ (Integer; positive)

A unique identifier for this module. This determines the row of the MODULE
relation that provides machine-independent information about this module.

2. MODULE (Text, 12 characters; upper case)

The module name corresponding to MOD^^.

3. COMP:^ (Integer; positive)

The unique identifier for the computer on which this module is installed.

4. COMP (Text, 6 characters; uppercase)

The name of the computer corresponding to COMPf^.

5. PREC (Text, 1 character; D, H, O, or S)

The precision in which the primary results are returned by the module on the

named computer: D extra precision (double precision in FORTRAN) S ^
standard precision (single precision in FORTRAN) 0 => other precision H =>

12

half precision. Note that precision is independent of the data type used in the

computation, i.e., integer, real, or complex.

6. ALTMOD (Text, variable length; fixed format)

A list of names of identical modules in this package in other precisions. The list

is composed of items of the form NAME/P, separated by commas. NAME
is the name of the alternate module, and P is one of the letters S, D, H,

or 0 denoting single, double, half, or other precision, respectively. Example:

DGEFA/D,HGEFA/H

7. COMMENT (Text, variable length; free format)

Machine-specific remarks. This can be used to provide information about esti-

mated execution times, the status of vectorization on a supercomputer, etc.

8. AP^^ (Integer; positive)

The unique identifier of the package which contains this module.

9. AP (Text, 12 characters; upper case)

The name of the package corresponding to AP^.

Three redundant attributes are found in the MODULE relation: MODULE, AP, and

COMP. MODULE may be determined from the MODULE relation using MOD^, AP
may be determined from the AP relation using AP^^ and COMP may be determined

from the COMPUTER relation using COMP^. They have been retained in this relation

to simplify queries.

2.8 The COMPUTER Relation

This relation provides background data describing the various computers on which the

software catalog in GAMS is implemented. There is exactly one row for each computer,

and COMP^ is a key. Note that one may use a fairly liberal interpretation of the

word computer if necessary. For example, the NOS and NOS/VE subsystems of a single

Cyber 855 may be considered to be distinct computers, with distinct versions of each

package implemented on them. If more than one Fortran compiler is available on a

given system, then each machine-compiler pair may be considered to be a distinct

computer for Fortran library implementation purposes.

The attributes of the COMPUTER relation are:

1. COMP:^ (Integer; positive)

The unique identifier for the computer.

2. COMP (Text, 6 characters; upper case)

A name associated with the computer. It is convenient, though not necessary,

to make this name unique. Examples: CAMVAX, 205

13

3. LOCATION (Text, variable leirgth; free format)

The organizational and/or physical location of this computer.

4. CONTACT (Text, variable length; free format)

The name, address, and phone number of a systems programmer with respon-

sibility for mathematical and statistical software on the given computer.

5. OPSYS (Text, variable length; free format)

The name and version of the operating system running on the computer.

6. COMPILER (text,variable length; free format)

The name of the Fortran compiler(s) primarily used on the computer.

2.9 The MOD\N Relation

The MOD\n relation contains the text of the GAMS classification scheme. The clas-

sification scheme is tree-structured. The position of a class in the scheme is encoded

in its node name. Two textual descriptions of the class are given, one which is very

succinct and another which is more complete. The attribute NODE^ is a key for the

MOD\n relation.

The attributes of the MOD\n relation are:

1. NODE:?^ (Integer; positive)

A unique identifier associated with this class.

2. NODE (Text, 12 characters; fixed format)

The short name for this class. Alternating single letters and integers. The first

character must be an upper case letter and all remaining characters must be

lower case. The parts of the class name show the path from the root to this

node in the classification tree. Examples: E2a and LlOgla.

3. TEXT (Text, variable length; free format)

A phrase which succinctly describes this class. This phrase may assume that

the context of the class (i.e. its parent and siblings) are apparent to the reader.

Example: Gridded data.

4. VERBOSE (Text, variable length; free format)

A phrase which completely describes this class. In contrast to TEXT, one should

not assume that the context of the node is apparent to the reader. Example:

Interpolation of two-dimensional gridded data.

14

2.10 The MOD\T Relation

The MOD\t relation is used to represent the tree structure of the classification scheme

and also to show which modules are classified at which nodes. Each row of this relation

is an ordered pair (sup,inf) that denotes a (parent,child) relationship between two

classes or a class and a module. There is one row in MOD\t for each row in MOD\n
which does not represent a leaf of the classification tree, and there is at least one

row for each row in the MODULE relation. (There is more than one row for modules

which are classified at more than one node). Although the information encoded in

this relation is already imphcitly available in the MOD\n and MODULE relations, it is

made available here in an abbreviated form in order to facilitate faster processing.

The attributes of the MOD\t relation are:

1. SUP (Integer; positive)

The unique identifier associated with a class in MOD\n.

2. INF (Integer; non-zero)

The unique identifier for a child of the class denoted by SUP. If INF > 0, then

it is the unique identifier associated with a class in MOD\n. In this case, a row

in this relation (SUP,INF) denotes that class INF is a subclass of class SUP. If

INF < 0, then —INF is the unique identifier associated with a module in the

MODULE relation. In this case, a row in this relation (SUP,INF) denotes that

module number —INF is classified in class SUP.

2.11 Database Implementation

To implement the database we use the RIM database management system (rtirim)

[6]. RTIRIM has been implemented for a wide variety of computer systems. It includes

an SQL-like interactive query system and a Fortran interface.

The following text can be used to define the schema of the GAMS database to

RTIRIM. Note that two additional relations are defined. ATTDEF is used to store

information about the attributes in the GAMS database. Its attributes are ATTDESC
(a description of the attribute), ATTFORM (the format of the attribute), and ATTEX
(an example). DEAD\N is used to save rows of MOD\n which have been deleted

using the program REVISETREE (see next section); this information is later used

by the program RECLASSIFY.

15

DEFINE GAMS

ATTRIBUTES

NODE# INT 1 KEY

NODE TEXT 12 KEY

TEXT TEXT VAR FORMAT 20

VERBOSE TEXT VAR FORMAT 20

SUP INT 1 KEY FORMAT 4

INF INT 1 KEY FORMAT 6

COMP# INT 1 KEY FORMAT 4

COMP TEXT 6 KEY

LOCATION TEXT VAR FORMAT 20

CONTACT TEXT VAR FORMAT 20

OPSYS TEXT VAR FORMAT 20

COMPILER TEXT VAR FORMAT 20

AP# INT 1 KEY FORMAT 4

AP TEXT 12 KEY

TYPE INT 1 FORMAT 4

PORT TEXT 1 FORMAT 4

DESC TEXT VAR FORMAT 20

LANG TEXT 12

DEVELOP TEXT VAR FORMAT 20

CITATION TEXT VAR FORMAT 20

DISTRIB TEXT VAR FORMAT 20

SUPP TEXT 1 FORMAT 4

ACCESS TEXT VAR FORMAT 20

VER# INT 1 FORMAT 4

VER TEXT 6

LIBDOC TEXT VAR FORMAT 20

MODDOC TEXT VAR FORMAT 20

SAMPLE TEXT VAR FORMAT 20

SOURCE TEXT VAR FORMAT 20

TESTS TEXT VAR FORMAT 20

DATEINT INT 1

DATEDEL INT 1

SUBLIB# INT 1 KEY FORMAT 8

SUBLIB TEXT 12 KEY

SUBLIBDC TEXT VAR FORMAT 20

MOD# INT 1 KEY

MODULE TEXT 12 KEY

CLASSES TEXT VAR FORMAT 20

16

HOWTO TEXT VAR FORMAT 20

ASSOCMOD TEXT VAR FORMAT 20

PREC TEXT 1 FORMAT 4

ALTMOD TEXT VAR FORMAT 20

COMMENT TEXT VAR FORMAT 20

ATTNAM TEXT 8

ATTDESC TEXT VAR FORMAT 20

ATTFORM TEXT VAR FORMAT 20

ATTEX TEXT VAR FORMAT 20

RELATIONS

MOD\N WITH NODE# NODE TEXT VERBOSE

MOD\T WITH SUP INF

COMPUTER WITH COMP# COMP LOCATION CONTACT +

OPSYS COMPILER

AP WITH AP# AP TYPE PORT +

DESC LANG DEVELOP CITATION +

DISTRIB

APX WITH AP# AP COMP# COMP +

SUPP ACCESS VER# VER +

LIBDOC MODDOC CITATION SAMPLE +

SOURCE TESTS

APHIST WITH AP# AP VER# VER +

COMP# COMP DATEINT DATEDEL +

CITATION

SUBLIB WITH SUBLIB# SUBLIB AP# AP +

PORT DESC DEVELOP DISTRIB

SUBLIBX WITH SUBLIB# SUBLIB COMP# COMP +

SUPP

CITATION

VER# VER SUBLIBDC +

MODULE WITH MOD# MODULE AP CLASSES +

DESC HOWTO ASSOCMOD AP# +

SUBLIB# SUBLIB

MODULEX WITH MOD# MODULE COMP# COMP +

PREC ALTMOD COMMENT AP# +

AP

DEAD\N WITH NODE# NODE

ATTDEF WITH ATTNAM ATTDESC ATTFORM ATTEX

EMD

17

Chapter 3

GAMS Programs and Procedures

There are five principle programs for manipulating the GAMS database:

1. GAMS Interactive Consultant (GAMSIC)
Allows users to interactively search for mathematical and statistical software

for solving problems of interest to them. This is an on-line version of the GAMS
catalog [2]. It is the only GAMS program designed to be called by users.

2. MODIFY
Adds and deletes modules, sublibraries, or packages from the GAMS database.

3. UPDATE
An interactive program for preparing input data for MODIFY.

4. REVISETREE
Adds and deletes subtrees from the GAMS Classification Scheme.

5. RECLASSIFY
An interactive program used to specify changes in module classifications.

An additional set of programs aids in the production of the printed GAMS catalog [2].

3»1 The GAMS Interactive Consultant

The GAMS Interactive Consultant (gamsic) is a program designed to help a computer

user locate mathematical and statistical software for solving particular computational

problems. When using GAMSIC a person traverses a tree-structured classification

scheme of mathematical and statistical problems. The user is alerted when software

is available for solving the problem described by the current tree node, and the user

may then obtain a short summary describing each of these software modules. These

summaries also give information about how to obtain detailed documentation on each

module; this documentation must be obtained outside the GAMSIC system.

19

Table 3.1: Files Required by GAMSIC

Name Unit Type Description

GAMS1.DAT input

GAMS2.DAT input gams/rim database

GAMS3.DAT input

Standard input lUNIT input user’s terminal

ICHELP . TXT HUNIT input help text

Standard output OUNIT output user’s terminal

GAMSIC provides users with complete information on its own usage. When GAMSIC

begins execution a short message giving news of the GAMS project is displayed and

the user is told to type a question mark (?) for help. Various help texts may be

retrieved by typing Tname
,
where name is the title of the help text.

The command structure of GAMSIC is quite simple. A user is always positioned

at a particular node of the problem classification tree. When first positioned at a

node the user is given a list of all children of the current node and a count of the

number of modules available for the associated problem. Typing a minus sign (-)

moves to the parent of the current node, while typing a plus sign (+) followed by one

or more characters moves to the child of the current node whose name is obtained

by appending the given characters to the current node’s name. (For example, when

at node L8a, typing +2 moves one to the node L8a2). If modules have been

classified at the current node, then entering a carriage return obtains a description

of the first one; subsequent carriage returns retrieve information about additional

modules classified there, if any. At any time a user may go immediately to any class

by simply typing its name.

Optional commands are also available which allow users to declare that they are

only interested in modules with certain specific properties. These properties include

portability, precision, membership in a given library, or availability on a particular

computer system.

GAMSIC is implemented in Fortran 77, Access to GAMS data is obtained by calling

Fortran subroutines of the RIM applications program interface. The files required by

GAMSIC are given in Table 3.1

The file ICHELP .TXT contains a collection of text records. Each record may contain

many lines, but must begin with a line containing the characters CCCCCname beginning

in column 1, where name is the name of the record, GAMSIC processes the command
?name by searching the ICHELP.TXT file for a record of the given name; this record,

if found, is copied to the standard output file. Three records with fixed names must

appear in this file:

20

1. DBNAME

the RIM name for the GAMS database.

2. NEWS

a news item which is displayed whenever GAMSIC begins execution.

3. HELP

the help text to be printed when a user types a question mark ?.

3.2 GAMS Maintenance Procedures

In this section we describe how some typical maintenance tasks can be performed on

the gams/rim database. There are two principle means for changing the database:

interactively through the RIM Query Language or indirectly through the GAMS main-

tenance programs listed above. Regardless of which method is chosen, updating the

database should always be a four-step process;

1. Make a temporary copy of the database files;

GAMS1.DAT

GAMS2.DAT

GAMS3.DAT.

Note that RIM is quite particular about the names of the database files, i.e.,

the copies must also be named GAMS1.DAT, GAMS2.DAT, and GAMS3.DAT. The

easiest way to arrange this is to put the copies in a different directory than the

originals.

2. Make the required changes to the temporary database files.

3. Use the RIM Query Language and/or GAMSIC to check whether the changes

succeeded.

4. Replace the original GAMS/rim database files by the temporary ones.

3.2.1 Fixing Errors in the Data

Errors in the AP, APX, SUBLIB, SUBLIBX, MODULE, and MODULEX relations (exclud-

ing the CLASSES attribute) are best fixed using the RIM Query Language. Spelling

errors, for example, can easily be remedied using the CHANGE or EDIT commands.

Changing a given attribute in many rows of a relation can often be accomplished

efficiently with these commands.

In some cases it may be more convenient to use the more extensive facilities of a

text editor to edit data outside of the RIM system. The UNLOAD command can be used

21

to move all data from a given relation to a text file in a form suitable for subsequent

reloading. This file may be edited to etfect any desired changes in the data. Upon
re-entering the RIM system one can delete all rows in the previously unloaded relation

and then use the INPUT command to load the edited data.

There are several types of modifications to the GAMS/rim database that should

never be attempted with the RIM Query System. These include adding or deleting

modules, sublibraries, and packages, reclassifying existing modules, and modifying

the GAMS classification scheme. (In particular, the following attributes should never

be modified; MOD:^, CLASSES, NODE^, NODE, SUP, INF.) Such changes affect more

than one relation and necessary changes are often overlooked when done by hand. The

GAMS maintenance programs listed in section 3 have been provided for this purpose.

In the following sections we describe how they can be used to perform these tasks.

3s2.2 Adding and Deleting Packages and Modules

This is the maintenance task performed most often. Two programs must be run to

do this: UPDATE and MODIFY. UPDATE is run interactively to specify the additions

and deletions to be made to the database. It prompts the user for all necessary data

and checks them for validity. Alternately, module data to be entered in UPDATE can

be prepared first in a file in a fixed format (see the Appendix); upon request UPDATE
will read from this file rather than prompt the user for each data item.

When processing module data from a file, UPDATE reports on the success or failure

of each task performed. This output goes to the screen and to an output log file,

UPDATE.LOG. If some input data items were in error, the input file should be corrected

and UPDATE rerun.

UPDATE does not change the database itself; instead it writes a data file named
MODCOM.DAT which contains directives and data in a fixed format. Errors made while

entering data with UPDATE, such as spelHng errors in module descriptions, can be

fixed by editing the MODCOM.DAT file. (Caution: MODCOM.DAT has a fixed format; see

the Appendix.) The companion program MODIFY can then be run to read this data

file and effect the changes m the database.

3.2c3 Changing the Classification Scheme

Two types of revisions to the classification scheme are distinguished. Simple changes

such as fixing typographical errors or clarifying the wording in the node descriptions

are best made by editing the MOD\n relation with the RIM Query System. More

substantial changes such as the addition or deletion of new nodes must be made
using the GAMS program REVISETREE.

REVISETREE runs in batch mode, i.e., one first prepares a data file containing

REVISETREE commands and then runs REVISETREE specifying this input file. RE-

VISETREE has two basic commands: one to add nodes and one to delete nodes. Both

22

work only on subtrees; that is, one adds an entire subtree or deletes an entire subtree.

Each operation must result in a valid tree-structured classification scheme. REVISE-

TREE will neither add nodes that already exist in the classification scheme, nor add

nodes that do not have an existing parent in the classification scheme. Thus, the

order of commands in the input data file is important.

After REVISETREE is run, the program RECLASSIFY can be used to update the

classifications of modules which were affected by the revision.

3,2<.4 Reclassifying Modules

One should never attempt to reclassify modules except through the program RECLAS-

SIFY. This is because several relations are affected by a reclassification and getting it

right using the RIM Query System itself is not easy.

There are two reasons for reclassifying a module: to fix an error in its existing

classification(s), or to reclassify a module affected by a REVISETREE operation. In the

first case both the existing class and the new class come from the current classification

scheme. In the second case the existing class is from a previous scheme, while the

new class is from the current scheme. The RECLASSIFY program asks which of these

cases applies.

One can reclassify particular modules if their names are known, or one can choose

to reclassify all the modules in a given class. RECLASSIFY is interactive; the user

is presented with the names, short descriptions, and existing class(es) of selected

modules, and the requested changes are applied to the database immediately.

3.3 GAMS Maintenance Programs

In this section we describe the Fortran programs that are used to maintain the GAMS
database in more detail. Each of these programs accesses the database using the

Fortran-callable subprograms of the RIM applications program interface.

3.3.1 MODIFY
MODIFY is used to add modules, sublibraries, and libraries to the GAMS database, as

well as to delete them. Input to MODIFY is a file containing a set of addition and

deletion commands in a rigid format. There are thirteen basic commands; note that

each command name must begin with an asterisk in column one.

1. «ADD AP

Adds summary data describing an application package. Relations affected: AP.

2. *ADD APX

Adds summary data describing the implementation of an application package

on a particular computer. Relations affected: APX.

23

3. *ADD APHIST

Adds historical data describing implementation of an application package on a

particular machine. Relations affected: APHIST.

4. *ADD SUBLIB

Adds summary data describing a sublibrary. Relations affected: SUBLIB.

5. *ADD SUBLIBX

Adds summary data describing the implementation of a sublibrary on a partic-

ular computer. Relations affected: SUBLIBX.

6. *ADD MODULE

Adds data describing a particular software module. Relations affected: MOD-
ULE, mod\t.

7. *ADD MODULEX

Adds data describing the implementation of a software module on a particular

computer. Relations affected: MODULE, MOD\t.

8. *DEL AP

Deletes summary data describing an application package. The data are not

deleted if there exist any implementations of this package (i.e., rows in APX) or

any sublibraries or modules (i.e., rows in SUBLIB or MODULE) associated with

this package in the current database. Relations affected: AP.

9. +DEL APX

Deletes data describing the implementation of a package on a particular com-

puter. The data are not deleted if there exist any sublibraries or modules (i.e.,

rows in SUBLIBX or MODULEX) associated with this package implementation.

Relations affected: APX, APHIST

10. *DEL SUBLIB

Deletes summary data describing a sublibrary. The data are not deleted if there

exist any implementations of this sublibrary (i.e., rows in SUBLIBX) or modules

(i.e., rows in MODULE) associated with this sublibrary in the current database.

Relations affected: SUBLIB

11. *DEL SUBLIBX

Deletes data describing the implementation of a sublibrary on a particular

computer, The data are not deleted if there exist any modules (i.e., rows in

MODULEX) associated with this sublibrary implementation. Relations affected:

SUBLIBX.

24

Table 3.2: Files Required by MODIFY

Name Unit Type Description

GAMS1.DAT input

GAMS2.DAT input GAMS/rim database

GAMS3.DAT input

Standard input lUNIT input user’s terminal

M0DC0M.DAT FUNIT input user’s MODIFY commands & data

Standard output UNIT output user’s terminal

MODIFY.LOG LUNIT output log file

12. *DEL MODULE

Deletes summary data describing a module. The data are not deleted if there

exist any implementations of this module (i.e. rows in MODULEX) associated

with this module in the current database. Relations affected: MODULE, MOD\t

13. *DEL MODULEX

Deletes data describing the implementation of a module on a particular com-

puter. Relations affected: MODULEX.

Each delete command is followed by data giving the name of the particular item to

be deleted. Each add command is followed by a variable number of lines containing

the data to be loaded into the database. The format of these data lines is given in

the Section 3.7. MODIFY does little or no checking of its input data lines.

The files required by MODIFY are listed in Table 3.2. (The user is prompted for

the actual name of the file M0DC0M.DAT at runtime.)

3.3.2 UPDATE
UPDATE is a preprocessor which can be used to generate the M0DC0M.DAT file which

is the input to MODIFY. In comparison to MODIFY, which is intended to run in batch

mode, UPDATE is a friendly interactive program with help facilities and some degree

of input data checking.

When UPDATE begins execution, the user is presented with a menu of six add

and delete commands. When a choice is made the user is prompted for each data

item required to prepare input for MODIFY. If the user types a question mark (?) in

response to any of the prompts then a short description of the data item is displayed

along with examples. UPDATE checks the data for consistency and prompts the user

to re-enter bad data.

The add commands allow modules, sublibraries, or application packages to be

added as new items, or, if they already exist in the data base, to be added as imple-

25

Table 3.3; Files Required by UPDATE

Name Unit Type Description

GAMS1.DAT input

GAMS2.DAT input GAMS/rim database

GAMS3.DAT input

Standard input lUNIT input user’s terminal

M0DIN.DAT MUNIT input user’s module data (optional)

UPDATEHELP.DAT HUNIT input help text

Standard output OUNIT output user’s terminal

M0DC0M.DAT FUNIT output MODIFY commands and data

UPDATE.LOG LUNIT output log file

mentations on a new computer. In addition one may add a new version of an existing

package. When adding packages or modules, the user has the option of prestoring

data in a file for UPDATE to read. The format of this file is specified in Section 3,8.

The delete commands prompt the user for the name of the item to delete. The

user may type the word ALL to denote all items of the indicated type, e.g., all modules,

all sublibraries, or all computers. The order of deletions is important:

• All package, sublibrary, or module implementations must be deleted before the

corresponding package, sublibrary, or module can be deleted.

• All modules in a given sublibrary must be deleted before the sublibrary itself is

deleted.

• All sublibraries and modules in a given package must be deleted before the

package itself is deleted.

UPDATE does not check whether these precedence rules are followed; violating them

will result in error messages when MODIFY runs The user is prompted to verify each

delete command.

The files required by UPDATE are given in Table 3.3. (The actual names to be

used for files M0DIN.DAT and M0DC0M.DAT are specified by the user at run time.)

3o3.3 REVISETREE
REVISETREE is used to add or delete nodes from the GAMS classification scheme. It is

primarily batch-oriented, taking its commands from a file which has a specific format.

There are two commands; note that each command name must begin with an asterisk

in column one.

26

Table 3.4: Files Required by REVISETREE

Name Unit Type Description

GAMS1.DAT input

GAMS2.DAT input gams/rim database

GAMS3 . DAT input

Standard input lUNIT input user’s terminal

REVCMD . DAT FUNIT input user’s REVISETREE commands

Standard output OUNIT output user’s terminal

REVISE.LOG LUNIT output log file

1. *DEL NODES

Deletes the named classification node and all descendant nodes. The node name
is given on the line immediately following the command; it must begin in column

one. Relations affected: MOD\n, MOD\t.

2. *ADD NODES

Adds one or more classification nodes. Each classification has three parts: a

name, a short description, and a long description. Each part starts on a new line;

the descriptions may be continued for up to six lines and must be terminated

with the character The node name must begin in column one and must use

the alternating letter-number scheme described in [1]. The short description

should be appropriate for use when the entire scheme is printed in outline form,

while the long description should allow the node to be recognizable when seen

out of context. Relations affected: MOD\n, MOD\t.

REVISETREE checks for various error conditions before attempting to add or delete

nodes. A node is not added if there is no existing parent in the classification scheme or

if a node with the same name already exists. Appropriate error messages are printed

on standard output to report these occurrences.

A special RIM relation named DEAD\n is used by REVISETREE to save rows of the

MOD\n relation which have been deleted from the classification scheme. This relation

is subsequently used by the program RECLASSIFY to determine which modules must

be reclassified as a result of node deletions in REVISETREE.

The files required by REVISETREE are given in Table 3.4. (The user is prompted

for the actual name of the file REVCMD.DAT at runtime.)

3.3.4 RECLASSIFY
RECLASSIFY is an interactive program used to change the classification of one or more

modules in the GAMS database, as well as to check the consistency of classification

27

Table 3.5; Files Required by RECLASSIFY

Name Unit Type Description

GAMSl .DAT input

GAMS2.DAT input GAMS/rim database

GAMS3.DAT input

Standard input lUNIT input user’s terminal

ICHELP.DAT HUNIT input help text

Standard output OUNIT output user’s terminal

TEMP . DAT CUNIT output/input scratch file

data in the database (the latter operation is referred to as verifying the GAMS tree).

When RECLASSIFY begins execution, the user is presented with a menu. The user

may choose to reclassify a particular module, to reclassify all modules in a given class,

or to verify the GAMS tree. The class name may be from the current GAMS tree or

one previously deleted by REVISETREE. When reclassifying by class, the user has the

option of whether to reclassify only modules in the named class or modules in the

named class and its descendent classes.

For each module the user is presented with the module name, a short descrip-

tion, and a list of its current classifications; the user then may give a set of new

classifications for the module. Optionally, the user can decide not to reclassify the

module.

GAMS tree verification involves checking whether each module in the database

is classified only at nodes currently known to the database. If the verification is

successful, then one is sure that all modules affected by the deletion of nodes by

REVISETREE have been reclassified under the new scheme; if the process fails the

names of modules which require reclassification are printed. Note that this process

IS quite time-consuming since the classifications of each module in the database must

be checked. When the GAMS tree is successfully verified, then one should delete all

rows from the DEAD\n relation (see section 3.3.3).

The files required by RECLASSIFY are given in Table 3.5.

3.4 Portability of the GAMS System

The GAMS system is portable only in a limited sense. GAMS uses the RIM database

management system, and hence this software must also be available. At NIST we use

RTIRIM [6]. This software is currently available on a large variety of systems. There

is no guarantee that GAMS will run under any other version of RIM.

Two steps are required to move GAMS from one system to another: moving the

database and moving the Fortran programs which perform GAMS query and mainte-

28

nance functions. RIM databases may easily be moved between computer systems of

different types using the RIM Query System’s QUTPUT/UNLOAD and INPUT commands.

The former commands can be used to build a text file which contains the database

schema and all data in a machine-independent form suitable for subsequent loading

using the INPUT command.

The GAMS Fortran programs are coded in portable Fortran 77. The machine-

dependent parts have been localized in a few subroutines to ease the transfer to

different machines. These subprograms are;

1. Initialization routines

One of these subprograms exists for each main program (GAM SIC, MODIFY,

UPDATE, RECLASSIFY, REVISETREE), and a call to this routine is the first ex-

ecutable statement in each of these programs. This routine is used to open all

files, set machine-dependent constants, and perform any other machine-specific

preprocessing.

2. Finalization routines

One of these subprograms exists for each main program, and a call to this routine

is the last executable statement in each of these programs. These routines are

used to perform machine-dependent postprocessing.

3. Subroutine GETLN
This subprogram is used to read an 80-character record from an interactive

user’s terminal.

4. GAMS/RIM Interface Routines

The GAMS programs interact with the RIM database through RIM-supplied

Fortran-callable subprograms; this is the “RIM applications program interface”.

Unfortunately, the RIM subprograms are coded in Fortran 66, where CHARAC-

TER variables are not available. Thus, character variables in the GAMS programs

must be passed to RIM subroutines where they are declared with a numeric data

type. This cannot be done directly, and the method for doing so is machine-

dependent. Thus, we provide a collection of short GAMS/rim interface routines

which perform this translation for each system. The interface routines have

the same names as their RIM counterparts, except that the first two characters

(always RM) are replaced with ZZ.

The machine-dependent constants which must be set in the initialization routines are

given in Table 3.6.

In the following sections we describe the status of our conversion efforts.

3.4al Cyber NOS Systems

At NIST, users access the GAMS Interactive Consultant on a Cyber 180/855 (nos

2.4, FTN5 compiler). Because we maintain GAMS on a Vax, we have not attempted

29

Table 3.6: Machine-Dependent Variables in GAMS Programs

Variable Description

NCPW Number of characters which can be stored in a single word.

NWPI Number of words in an integer variable.

NWPR Number of words in a real variable.

NWPD Number of words in a double precision variable.

CUNIT Unit number of a scratch file, (i/o)

FUNIT Unit number of the command file, (i/o)

HUNIT Unit number of the help file, (input)

lUNIT Unit number of standard input (user’s terminal).

LUNIT Unit number of the log file, (output)

MUNIT Unit number of an input file for UPDATE.

OUNIT Unit number of standard output (user’s terminal).

to install any of the GAMS maintenance programs under NOS; subtle changes will

undoubtably be necessary to implement the maintenance programs there.

GAMS programs assume that lower-case characters are representable as single char-

acters and will not operate if they are instead represented in the Cyber’s 6/12 ASCII

code. Thus, all GAMS programs and data must be first converted to upper case before

they can be used under NOS.

The NOS implementation of the machine-dependent subprograms have several

unique features. The initialization and finalization routines call COMPASS routines

to determine the current terminal session mode (NORMAL or ASCII), set the user to

ASCII, and finally to restore the previous mode before exit. This is required to allow

users to type lowercase characters in spite of the fact that GAMSIC only recognizes

uppercase characters under NOS. The subroutine GETLN must be modified so that

a user can type carriage return as a response to GAMSIC. Under NOS, a null line trig-

gers an end-of-file condition, and hence the file INPUT must be closed and reopened in

this case. The GAMS /RIM interface routines must communicate with RIM in character

variables whose length is a multiple of 10; temporary variables are set up in these

routines to effect the translation.

3.4.2 Cyber NOS/VE Systems

At NIST, users access the GAMS Interactive Consultant on a Cyber 180/855 (nos/ve

1,3.1, FORTRAN compiler). Because we maintain GAMS on a Vax, we have not at-

tempted to install any of the GAMS maintenance programs under NOS/VE; changes

will undoubtably be necessary to implement the maintenance programs there.

Since NOS/VE uses the ASCII character set there are no problems associated with

upper/lower case characters as there are under NOS.

30

3.4.3 Sperry EXEC Systems

GAMS was originally developed on a Sperry 1100/82 EXEC system (ASCII Fortran)

using RIM (Version 6) as distributed by Boeing Computer Services. We no longer

maintain a Sperry implementation, and BOEING RIM (version 7) is not being prepared

for Sperry systems. Thus, those interested in GAMS' for a Sperry computer must use

RIM version 6. Our experience with this system would indicate that the conversion to

this system would not be difficult at this time. In particular, the GAMS/rim interface

routines are not required on this machine.

3.4.4 Vax VMS Systems

All gams development and maintenance at NIST is done on a Vax 11/785 running

VMS 4.7. Thus, porting GAMS to another VMS site should pose no problems. When
GAMS is sent to a Vax VMS site, a tape is made, in backup format, of all files in

[GAMS] (see section 3.5).

The only non-standard features in the GAMS machine-dependent subprograms

occur in the GAMS/rim interface routines, where character variables must be passed

to RIM subprograms using the '/.REF primitive so that the RIM subprograms can declare

them using a numeric data type.

3.5 GAMS Implementation Under Vax VMS
All GAMS maintenance and development work at NIST is performed on a Vax VMS
system. This section provides information about the files and procedures used there.

When the GAMS system is distributed copies of these items are made available on a

VMS backup tape.

We have assumed that the Vax system administrator has defined two global sym-

bols;

• RIM : executes the RIM Interactive Query System

• RIMSHR : the RIM Application Programmer’s Interface Library

RIMSHR is a sharable image library; it precludes the use of the common block /RIMCOM/

or the subroutine RMSTAT in the GAMS programs. We also assume that the directory

[GAMS] resides on DISK$USER, i.e., its fully- qualified name is DISK$USER: [GAMS].

3.5.1 Directory GAMS
All files required by GAMS have been placed in the directory [GAMS] or its subdirec-

tories. Found here are the publicly-accessible copies of the GAMS RIM database and

VMS CCL procedures which execute each of the GAMS programs. These files are listed

in Table 3.7.

31

Table 3.7; Files in Directory [GAMS]

Name Description

GAMS1.DAT

GAMS2.DAT

GAMS3.DAT

the GAMS RIM database (part 1)

the GAMS RIM database (part 2)

the GAMS RIM database (part 3)

COMFILE.DAT GAMS database in RIM UNLOAD format

GAMS . COM

MODIFY.COM

RECLAS.COM

REVTREE.COM

UPDATE.COM

Runs the Interactive Consultant

Runs MODIFY
Runs RECLASSIFY

Runs REVISETREE

Runs UPDATE

LIB. DIR

PROC.DIR

PROG. DIR

GAMS RIM Fortran subroutine library

Utility CCL procedures

The GAMS access and maintenance programs

In order for RIM to access the database files, the protection on the files GAMSl .DAT,

GAMS2.DAT, and GAMS3.DAT files must be read and write for all users. Because of this

the GAMS database administrator must maintain an additional back-up copy of the

database files with exclusive write protection. The protection on the remaining files

in this directory is read and execute. The protection on the user’s working directory

must be read, write^ and execute so that RIM can write temporary files there.

On our system a global symbol, GAMS, has been set up, vis.,

GAMS :== "@DISK$USER: [GAMS] GAMS. COM"

which runs the GAMS Interactive Consultant.

In addition to these files, there are three subdirectories (see Table 3.7) which

contain the source, object, and executables of all GAMS programs, as well as numerous

helpful CCL procedures. These are described in the following sections.

3.5o2 Subdirectory [GAMS. PROG]

This subdirectory contains a subdirectory for each principle GAMS program (gamsic,

UPDATE, MODIFY, RECLASSIFY, REVISETREE). Each of these subdirectories contains

the following:

• A .FOR file containing the program source.

• A .EXE file containing the executable version of the program.

• A .COM file which can be used to build the .EXE file by compiling its source and

linking it to all necessary libraries.

32

• A .TXT file containing help text for use by the program, if necessary.

Two libraries are used by the .COM file which builds each program: a library of GAMS
utilities

(
[GAMS .LIB] GAMSLIB .OLB), and the RIM Application Programmer’s Interface

library (the global symbol RIMSHR). In addition, any required machine-dependent

routines are loaded from the directory

[GAMS . LIB .MACHDP. VAX]

.

3.5.3 Subdirectory [GAMS. LIB]

This subdirectory is used to maintain a collection of Fortran subprograms which are

used by the GAMS programs. The contents of this directory are

• GAMSLIB. OLB

A precompiled library of the GAMS Fortran utility routines.

• MAKEGAMSLIB.COM

A CCL procedure to generate GAMSLIB. OLB from its source.

• SOURCE. DIR

A directory containing the Fortran source for GAMSLIB . OLB. Each subprogram

occupies a single .FOR file in this directory.

• MACHDP. DIR

A directory containing all machine-dependent parts of the GAMS programs.

This directory contains subdirectories for each machine implementation of GAMS
(currently only Vax VMS and Cyber NOS are provided. Within these directories

are found the source for the items described in Section 3.4.

3.5.4 Subdirectory [GAMS. PROG]

This subdirectory contains a collection of CCL procedures which are used in main-

taining the database at NIST. The following is a brief outline of what each one does.

Note that here, the private, most current copy of the GAMS database is maintained

in the files

[SPRING. GAMS] DBl. DAT, DB2.DAT, DBS. DAT.

All updates are applied to these files, which are periodically copied to the publicly-

accessible versions,

[GAMS] GAMSl .DAT, GAMS2.DAT, GAMS3.DAT.

• MAKETEMPDB

Copies the files [SPRING . GAMS] DBl . DAT, DB2.DAT into the current directory,

renaming them GAMSl . DAT
, GAMS2 . DAT

,
GAMS3 . DAT.

33

• SAVETEMPDB

Saves the files named GAMS1.DAT, GAMS 2 .DAT 5 GAMS3.DAT in the current di-

rectory in the files [SPRING.GAMSlDBl.DAT, DB2.DAT,

• REPLACE

Updates the publicly-accessible GAMS database files. In particular,

[GAMSlGAMSl.DAT, GAMS2.DAT, GAMS3.DAT

are replaced by the contents of

[SPRING.GAMSlDBl.DAT, DB2.DAT, DB3.DAT,

respectively.

• RIM

Makes a copy of the database files [SPRING.GAMSlDBl.DAT, DB2.DAT into the

current directory, renaming them GAMS1.DAT, GAMS2,DAT, GAMS3.DAT, enters

the RIM Query System, allowing these database files to be edited. After the

editing session, the procedure, at the user’s request, will copy the updated

database files back to DBl.DAT, DB2.DAT, DB3.DAT and add entries in the file

[SPRING.GAMSlDB.LOG which records changes made to the GAMS database.

• MEWLINK

Updates the GAMS utility library [GAMS . LIB] GAMSLIB . OLB. Specifically, a file

with suffix .FOR specified by the user is copied from the current directory to the

directory [GAMS . LIB . SOURCE]
,
the file is then compiled and the object module

is included in the library [GAMS . LIB] GAMSLIB . OLB. All GAMS programs are then

relinked using the new library.

• UNLOAD

Runs MAKETEMPDB.COM, then enters the RIM Query System and executes RIM

commands to unload the database to the file C0MFILE.DAT in the current di-

rectory. The file [GAMS .PROC] UNLOAD. DAT contains the RIM commands which

perform the unloading operation.

3.6 Programs Under Development

Another application of the GAMS database has been the development of a printed cat-

alog of mathematical and statistical software [2]. Various programs have been written

to query the database and produce formatted sections of this document. Versions with

output formatted as a standard text file and instrumented with commands for the

IfTgX text-formatting system [4] have been produced. These programs include:

• GCS (gams Classification Scheme)

Lists the GAMS classification scheme.

34

• MBC (Modules by Class)

Lists modules descriptions in order of the GAMS classification scheme.

• APDICT (AP Dictionary)

Lists detailed information about each application package in sorted order.

• MODICT (Module Dictionary)

Lists detailed information about each module in sorted order.

3.7 MODIFY Input Data Format

MODIFY accepts ten different commands (indicated by an asterisk in column 1, each

followed by lines of data in a fixed format. The templates below illustrate the format

of these data lines. Data fields are denoted by the database attribute names to which

they correspond (in lower case). In addition, the following abbreviations are used:

p = prec

0 = port

s = supp

xxxx = mod#

YY = sublib#

ZZ = ap#

N = comp#

Variable-length text attributes which may occupy more than one line of input are

shown ending with the character this character must be included to indicate the

end of the field. In each case below the first two lines are used to indicate column

positions and are not part of MODIFY input data.

1. Adding modules

0000000001111111111222222222233333333334444444444555555

1234567890123456789012345678901234567890123456789012345

ADD MODULE

module

sublib YYap

classes

howto#

assocmod#

ADD MODULEX

XXXXmodule Ncomp P

ZZap

35

altmod#

comment#

2. Adding sublibraries

0000000001111111111222222222233333333334444444444555555

1234567890123456789012345678901234567890123456789012345

ADD SUBLIB

sublib ap Q

desc#

develop#

distrib#

ADD SUBLIBX

YYsublib Ncomp

Over 1 S

sublibdc#

citation#

3. Adding libraries

0000000001111111111222222222233333333334444444444555555

1234567890123456789012345678901234567890123456789012345

ADD AP

ap SQlang

desc#

develop#

citation#

distrib#

ADD APX

ZZap ver Ncomp S

citation#

access#

libdoc#

moddoc#

sample#

source#

tests#

ADD APHIST

ZZap ver Ncomp

36

dateint

citation#

4. Deleting modules:

0000000001111111111222222222233333333334444444444555555

1234567890123456789012345678901234567890123456789012345

DEL MODULEX

XXXXmodule

Ncomp

DEL MODULE

XXXXmodule

5. Deleting sublibraries:

0000000001111111111222222222233333333334444444444555555

1234567890123456789012345678901234567890123456789012345

DEL SUBLIBX

YYsublib Nconp

DEL SUBLIB

YYsublib

6. Deleting libraries;

0000000001111111111222222222233333333334444444444555555

1234567890123456789012345678901234567890123456789012345

DEL APX

ZZap ver Ncomp

datedel

DEL AP

ZZap

3.8 UPDATE Input Data Format

Normally, UPDATE prompts the user for information about each new module which

is to be added to the database. Sometimes it is more convenient to prepare this

information and place it in a file ahead of time. UPDATE gives the user the option of

doing this, and m this appendix we specify the format of such a data file.

Data for four different relations may appear in such a file: AP, APX, MODULE,
and MODULEX. For each package to be added there must be exactly one ADD AP

record which provides all machine-independent data about the package. This may

37

be followed by one or more *ADD APX records, each of which provides data about

the implementation of the package on a particular computer. Similarly, for each

module to be added there must be exactly one *ADD MODULE record which provides

all machine-independent data about the module. This may be followed by one or

more *ADD MODULEX records, each of which provides data about the implementation

of the module on a particular computer. All modules in a given file must be contained

in a single application package, and at most one AP should be represented in any

given file.

The format of the *ADD MODULE and *ADD MODULEX records are given below. Fields

are designated by the database attribute names to which they correspond. Variable

length input fields (indicated by the character) may occupy up to six lines and

must end with the character (A null entry, designated by only a on the line,

is allowed.) Note that the first two lines are used to indicate column positions and

are not part of UPDATE input data.

0000000001111111111222222222233333333334444444444555555

1234567890123456789012345678901234567890123456789012345

ADD AP

ap

desc#

port

type

develop#

citation#

distrib#

ADD APX

comp

ver

dateint

support

access#

libdoc#

moddoc#

sample#

source#

test#

ADD MODULE

module

classes#

desc#

howto#

assocmod#

altmod#

38

ADD MODULEX

comp

prec

altmod#

comment#

Chapter 4

Format of Unloaded GAMS
Database

The GAMS database is maintained using the RIM relational database management

system [6]. One way to extract data from a RIM database is to unload it. An un-

loaded database is a simple text file which contains all the data in a format suitable

for automatic reloading. (This provides a facility for moving RIM databases among

machines of different types.) The purpose of this part is to briefly describe the format

of an unloaded GAMS database file. This may be of interest to those who wish to

obtain GAMS data but do not have access to the RIM system.

4.1 The Unloaded GAMS Database

A relational database is a collection of tables; the rows of the table correspond to

data records and the columns correspond to fields. In a relational system the tables

are called relations and the fields are called attributes. The database schema is a

description of all the relations and their attributes.

The unloaded GAMS database file contains two parts: a schema definition followed

by the raw data. The raw data is composed of the contents of each row of each relation.

The following template indicates the overall organization of this file. (Everything up

to the NOCHECK statement is the schema.

*(SET SEMMULL)
*(SET DOLLAR=NUIL)

DEFINE GAMS

OWNER "MODIFY "

ATTRIBUTES

list of attributes

RELATIONS

list of relations

41

RULES

PASSWORDS

list of passwords

END

NOCHECK

For each relation:

LOAD name
rows of the named relation

END

(SET SEMI=;)

(SET D0LLAR=$)

This file is in a format suitable for reading and processing by the RIM system.

The text in uppercase are actually RIM commands. The text for each line begins

in column two (except the asterisks, which are in column one), and no line contains

more than 80 characters. A line whose last non-blank character is a plus sign
(+)

is

continued on the next line. Continuation lines may have characters in column one.

The RELATIONS section of the schema indicates which attributes may be found in

each relation. Each relation definition starts on a new line and may be continued on

one or more lines. The format of each entry is, roughly,

relation WITH list

where relation is the relation name and list is a list of attribute names. Each item

is separated by one or more blanks. Both relation and attribute names are at most

eight characters in length.

The ATTRIBUTES section -of the schema gives the properties of each attribute.

These are given in a fixed format, with each attribute definition occupying one phys-

ical line. For those not using RIM only three items are of interest: name (columns

2-9, left justified), type (columns 16-19 left justified), and size (columns 29-31, right

justified). Type can be one of INT (integer) or TEXT. For attributes of type TEXT, size

is either an integer indicating the number of characters for a fixed-length attribute or

the character string VAR indicating that the attribute is of variable length. Attributes

of type INT always have size 1. The following relations are of the most interest to

those outside of NIST without access to RIM:

• MOD\n : the GAMS Classification Scheme

• AP : data about packages

• MODULE : data about modules (programs, subprograms, etc.)

Data for each relation follows the schema. Relations are loaded in the same order

as the relation definitions in the RELATIONS section of the schema. Each row of data

begins on a new line and may be continued on one or more lines. Within a row.

42

data items are separated by one or more blanks and appear in the same order that

they are specified in the RELATIONS section of the schema. Attributes of type TEXT

are enclosed in double-quotes (trailing blanks are truncated on fixed-length TEXT

attributes). Consecutive double-quotes ("") are used to represent a double-quote

character within a text field. Attributes of type IWT occupy 10 character positions

(right justified). The character string -0- indicates that no value has been specified

for the attribute.

As an example, consider the relation MODULE. In the schema it is defined as

MODULE WITH MOD# MODULE AP CLASSES +

DESC HOWTO ASSOCMOD AP# +

SUBLIB# SUBLIB

with the corresponding attribute definitions

MOD# INT 1 KEY

MODULE TEXT 12 KEY

AP TEXT 12 KEY

CLASSES TEXT VAR FORMAT 20

DESC TEXT VAR FORMAT 20

HOWTO TEXT VAR FORMAT 20

ASSOCMOD TEXT VAR FORMAT 20

AP# IMT 1 KEY FORMAT 4

SUBLIB# INT 1 KEY FORMAT 8

SUBLIB TEXT 12 KEY

The following is a valid entry for a row of the MODULE relation in the unloaded

database file.

16 "CCBRT" "GMLIB" "C2/'’ "Complex cube root of com+

plex argument." "C=CCBRT(Z)" -0- 1 9 "FKL+

IB"

From this one finds the following value for each attribute

MOD# 16

MODULE CCBRT
AP CMLIB

CLASSES C2/

DESC Complex cube root of complex argument

HOWTO C-CCBRT(Z)
ASSOCMOD -0-

AP# 1

SUBLIB# 9

SUBLIB FNLIB

43

4.2 Sample Unloaded Database File

(SET SEMI=NULL)

(SET DOLLAR=NULL)

DEFINE GAMS

OWNER "MODIFY "

ATTRIBUTES

NODE# INT 1 KEY

NODE TEXT 12 KEY

TEXT TEXT VAR FORMAT 20

VERBOSE TEXT VAR FORMAT 20

SUP INT 1 KEY FORMAT 4

INF INT 1 KEY FORMAT 6

COMP# INT 1 KEY FORMAT 4

COMP TEXT 6 KEY

LOCATION TEXT VAR FORMAT 20

CONTACT TEXT VAR FORMAT 20

OPSYS TEXT VAR FORMAT 20

COMPILER TEXT VAR FORMAT 20

AP# INT 1 KEY FORMAT 4

AP TEXT 12 KEY

TYPE INT 1 FORMAT 4

PORT TEXT 1 FORMAT 4

DESC TEXT VAR FORMAT 20

LANG TEXT 12

DEVELOP TEXT VAR FORMAT 20

CITATION TEXT VAR FORMAT 20

DISTRIB TEXT VAR FORMAT 20

SUPP TEXT 1 FORMAT 4

ACCESS TEXT VAR FORMAT 20

VER# INT 1 FORMAT 4

VER TEXT 6

LIBDOC TEXT VAR FORMAT 20

MODDOC TEXT VAR FORMAT 20

SAMPLE TEXT VAR FORMAT 20

SOURCE TEXT VAR FORMAT 20

TESTS TEXT VAR FORMAT 20

DATEINT INT 1

DATEDEL INT 1

SUBLIB# INT 1 KEY FORMAT 8

SUBLIB TEXT 12 KEY

44

SUBLIBDC TEXT VAR FORMAT 20

MOD# INT 1 KEY

MODULE TEXT 12 KEY

CLASSES TEXT VAR FORMAT 20

HOWTO TEXT VAR FORMAT 20

ASSOCMOD TEXT VAR FORMAT 20

PREC TEXT 1 FORMAT 4

ALTMOD TEXT VAR FORMAT 20

COMMENT TEXT VAR FORMAT 20

ATTMAM TEXT 8

ATTDESC TEXT VAR FORMAT 20

ATTFORM TEXT VAR FORMAT 20

ATTEX TEXT VAR FORMAT 20

RELATIONS

MOD\N WITH NODE# NODE TEXT VERBOSE

MOD\T WITH SUP INF

COMPUTER WITH COMP# COMP LOCATION CONTACT +

OPSYS COMPILER

AP WITH AP# AP TYPE PORT +

DESC LANG DEVELOP CITATION +

DISTRIB

APX WITH AP# AP COMP# COMP +

SUPP ACCESS VER# VER +

LIBDOC MODDOC CITATION SAMPLE +

SOURCE TESTS

APHIST WITH AP# AP • VER# VER +

COMP# COMP DATEINT DATEDEL +

CITATION

SUBLIB WITH SUBLIB# SUBLIB AP# AP +

PORT DESC DEVELOP DISTRIB

SUBLIBX WITH SUBLIB# SUBLIB COMP# COMP +

SUPP VER# VER SUBLIBDC +

CITATION

MODULE WITH MOD# MODULE AP CLASSES +

DESC HOWTO ASSOCMOD AP# +

SUBLIB# SUBLIB

MODULEX WITH MOD# MODULE COMP# COMP +

PREC ALTMOD COMMENT AP# +

AP

DEAD\N WITH NODE# NODE

ATTDEF WITH ATTNAM ATTDESC ATTFORM ATTEX

RULES

45

PASSWORDS

MPW FOR MOD\N IS "NONE tt

RPW FOR MOD\N IS "NONE It

MPW FOR MOD\T IS "NONE M

RPW FOR MOD\T IS "NONE M

MPW FOR COMPUTER IS "NONE It

RPW FOR COMPUTER IS "NONE It

MPW FOR AP IS "NONE It

RPW FOR AP IS "NONE It

MPW FOR APX IS "NONE It

RPW FOR APX IS "NONE It

MPW FOR APHIST IS "NONE It

RPW FOR APHIST IS "NONE It

MPW FOR SUBLIB IS "NONE tt

RPW FOR SUBLIB IS "NONE tt

MPW FOR SUBLIBX IS "NONE It

RPW FOR SUBLIBX IS "NONE tt

MPW FOR MODULE IS "NONE tt

RPW FOR MODULE IS "NONE It

MPW FOR MODULEX IS "NONE It

RPW FOR MODULEX IS "NONE tt

MPW FOR DEAD\N IS "NONE It

RPW FOR DEAD\N IS "NONE It

MPW FOR ATTDEF IS "NONE It

RPW FOR ATTDEF IS "NONE It

END

NOCHECK

LOAD MOD\N

1 "GAMS" "Classification Scheme" -0-

2 "A" "Arithmetic, error analysis" -0-

3 "Al" "Integer" "Integer arithmetic"

4 "A2" "Rational" "Rational arithmetic"

5 "A3" "Real" "Real arithmetic"

6 "A3a" "Single precision" "Single precision real+

arithmetic"

7 "A3b" "Double precision" "Double precision real+

arithmetic"

8 "A3c" "Extended precision" "Extended precision +

real arithmetic"

9 "A3d" "Extended reinge" "Extended remge real ari+

thmetic"

10

"A4" "Complex" "Complex arithmetic"

46

11 "A4a" "Single precision" "Single precision comp+

lex arithmetic"

12 "A4b" "Double precision" "Double precision comp+

lex arithmetic"

13 "A4c" "Extended precision" "Extended precision +

complex arithmetic"

14 "A4d" "Extended range" "Extended range complex +

arithmetic"

15 "A5" "Interval" "Interval arithmetic"

736 "A5a" "Real" "Real interval arithmetic"

737 "A5b" "Complex" "Conplex interval arithmetic"

732 "A6" "Change of representation" -0-

733 "A6a" "Type conversion" -0-

734 "A6b" "Base conversion" -0-

735 "A6c" "Decorrposition
,
construction" -0-

*

*

END

LOAD MODULE

8 "ICEIL" "PORT" "Cl/" "Finds the smallest intege+

r greater than or equal to x. Input is real, output is inte+

ger." "I = ICEIL (X)" -0- 5 -0- -0-

16 "CCBRT" "CMLIB" "C2/" "Complex cube root of com+

plex argument." "C=CCBRT(Z)" -0- 1 9 "FNL+

IB"

23 "A02ABF" "NAG" "A4b/" "Modulus of a complex num+

ber." "D = A02ABF (XR, XI)" -0- 4 -0- -0-

490 "C05NCF" "NAG" "F2a/" "Finds a zero of a system+

of N nonlinear functions in N variables by a modification +

of Powell's hybrid method. Derivatives of the functions are+

not required. (Comprehensive version of C05NBF.)" "CALL C0+

5NCF (FCN , N , X , FVEC , XTOL , MAXFEV , ML , MU , EPSFCN . DIAG , MODE , FACT0+

R,NPRINT, NFEV FJAC , LDFJAC, R ,LR ,QTF , W, IFAIL) " -0- 4 +

-0 - -0 -

520 "QIDAX" "CMLIB" "H2alal/" "Flexible subroutine +

for the automatic evaluation of definite integrals of a use+

r-defined function of one variable. Special features includ+

e randomization, singularity weakening, restarting, specif i+

cation of an initial mesh (optional) ,
and output of smalles+

t cind largest integrand values." "CALL Q1DAX(F,A,B,EPS,R,E,+

47

1 49 +NINT ,RST , W , NMAX , FMIX ,FMAX ,KF , IFLAG) " -0-

"QIDA"

32 "BFQAD" "CMLIB" ''H2a2al/E3/K6/" "Integrates fun+

ction times derivative of B-spline from XI to X2 . The B-spl+

ine is in ""B"" representation." "CALL BFQAD(F,T,BCOEF,N,K,+

ID,X1,X2,T0L,QUAD,IERR,W0RK)" -0- 1 3 "BS+

PLINE"

*

*

*

END

*(SET SEMI=;)

(SET D0LLAR=$)

48

References

[1] R. F. Boisvert, S. E. Howe, and D. K. Kahaner. GAMS—a framework for the

management of scientific software. ACM Trans. Math. Softw., 11:313-355, 1985.

[2] R. F. Boisvert, S. E. Howe, and 'D. K. Kahaner. Guide to Available Mathematical

Software. NBSIR 84-2824, National Bureau of Standards, 1984. Available as PB
84-171305 from the National Technical Information Service (NTIS), Springfield,

VA 22161.

[3] D. D. Chamberlin. Relational database management systems. ACM Comp. Sur-

veys, 8:43-66, 1976.

[4] L. Lamport. lATjOC.- A Document Preparation System. Addison-Wesley, Reading,

MA, 1986.

[5] BCS-RIM—Relational Information Management System User Guide. Boeing

Computer Services Co., 7980 Gallows Ct., Vienna, VA, 1985.

;6] RTIRIM User’s Guide and Reference Manual. RIM Technology Inc., 11661 SE
First St., Bellevue, WA, 1985.

49

I

n ::

M .1^ I
':

/•'
1 ?;

't'

’! i^fr'

:;5Kv^:1;

' -I'iSsSiy!

.-m

:

U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report No. 3. Publication Date

REPORT NO.
BIBLIOGRAPHIC DATA
SHEET (See instructions) NIST 89-4042 MARCH 1989

4. TITLE and subtitle

Internal Structure of the Guide to Available Mathematical Software

5. AUTHOR(S)

Ronald F. Boisvert, Sally E. Howe and Jeanne L. Springmann

6. PERFORMING ORGANIZATION (If joint or other than MBS. see instructions)

national bureau of standards
DEPARTMENT OF COMMERCE
WASHINGTON, O.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, State, ZIP)

10. SUPPLEMENTARY NOTES

I !

Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most si gnificant information^
bibliography or literature survey, mention it here)

I f document includes a significant

The purpose of the NIST Guide to Available Mathematical Software (GAMS) project
is to provide convenient documentation tools for users and maintainers of scientific
computer software. The main components of this effort are a detailed tree-
structured, problem-oriented classification scheme for mathematical and statistical
software, a printed catalog based upon this classification scheme which integrates
information about all available software, an on-line interactive version of this
catalog, and a relational database containing all information upon which the on-line
and off-line catalogs rely, along with associated maintenance programs. This report
presents a detailed specification of the internal structure of the GAMS database
and the programs used to manipulate it. This information is useful to those who
wish to implement the GAMS systems on their own computer systems.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

documentation system; mathematical software; on-line documentation; relational
database; software catalog; statistical software

13. availability

} Xi Uni imited

i I

For Official Distribution. Do Not Release to NTIS

Order From Suoerintendent of Documents, U.S. Government Printing Office, Washington, D.C.~ 20402.

_;2 Order From National Technical Information Service (NTIS), Springfield. VA. 22161

14. NO. OF
PRINTED PAGES

55

15. Price

$ 14.95

USCOMM-DC 6043-P80

• }
r .(tTADueu'S .1 .MM09 Atf

,

f><5iiT3l3Kt .> i>*iii>i •

3 ,<T I ra U2. oiw^ aijt*T 4
J -iior !o 5 V”

:' it)ao«^uA.J.

'5
': vi. i'" 1-j ''iVbxoa. !•

4-- .:. -H*-

,.
'.-. HMV'I V‘ Ml ..

j T«3j«rs^vti38,j
*1' -3:^1 my^mmAw

- tJma^ viofT ' ;iv.ad;?o

m

ft'

. ifirm

.-ft I ' 1 ;

I 111

'
'''

2 7'“ .'> ,t' 4a’i>pfT»<J- V ,<
!

'n.
, . iyr,.i ,y il-3’> -.o 'O')c;t*-004 Tt

;•' ’• V .s> _

(T,. t ’^.~r-r 'i- '.^.-^A, iCiii'ti' ;'5oh ^iv Irja^nios Skbivo^'q

J.r. . i;'\ I., --j • -i^.. j nu^ rir^'ia , *-jf£v3'l6a 3«3)

; R'j v’t; n,e

;r'/ aj.iijv; lo

. . 4^

'‘.'ia; soX^j- • bnaniac t, .s':

iC’'-’'
.•'>11'^'.;:^ i'n ,H/odt uo:

i > •

j.
'

h j >'I '.L :;fc,idT b'fTE »gf;

RSjotii.Jp's. sni

n.. .'u'X hwll... .>»b

,<

' - '--c r:' f :;^r.i.* e^Bi&oity srf3-_

Ate i^AVj

<(;! •-! . P T. r.lA

.
'. *<j'

.

"'
.

'
, .-., .’lic.'. '<,i v. <

.

••: e ’r.'W! ^.>3

r ,,, ! , •

-Jt

ir R .'(-i... ’S.’V

V' ij) ft » «(s * » P. .* 0 (<1 *1 CJ . n.a ffud>y«d'tjMe
v: 1

/V II' jni'nil'^ S'^cn»nv-- .'i.- ..C J e'r,»-miiift{>Q tO

->5,^1^? .ftovsjtff <i;’ivl («3tnd3i»t uholi

1

\

i

i

