
NISTIR 89-4023

Small Computer System
Interface (SCSI) Command
System

Software Support for Control of

Small Computer System
Interface Devices

Documentation: John Gorczyca

Software: John Gorczyca and Eduardo Sanchez Villagran

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

(Formerly National Bureau of Standards)

National Computer Systems Laboratory

Advanced Systems Division

Gaithersburg, MD 20899

January 1 989

NISTIR 89-4023

Small Computer System
Interface (SCSI) Command
System

Software Support for Control of

Small Computer System
Interface Devices

Documentation: John Gorczyca

Software: John Gorczyca and Eduardo Sanchez Villagran

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

(Formerly National Bureau of Standards)

National Computer Systems Laboratory

Advanced Systems Division

Gaithersburg, MD 20899

January 1989

National Bureau of Standards became the

National Institute of Standards and Technology

on August 23, 1988, when the Omnibus Trade and

Competitiveness Act was signed. NIST retains

all NBS functions. Its new programs will encourage

improved use of technology by U.S. industry.

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Ernest Ambler, Director

U.S. DEPARTMENT OF COMMERCE
C. William Verity, Secretary

^ -K '

'^J *^. M ~ ‘ "

TABLE O F CONTENTS

page
I . FOREWORD i i

II. DISCLAIMERc iii

1 SYSTEM DEVELOPMENT

1 . 1 PROBLEM 2

1 . 2 SOLUTION 2

1 . 3 APPLICATIONS 10

2 USER'S GUIDE

2 . 1 SYSTEM OVERVIEW 12
2 . 2 USER'S GUIDE OVERVIEW 13

SECTION ONE
2 . 3 PROGRAMMING OVERVIEW 16

2.3.1 COMMAND INTERFACING FUNCTION 16
2.3.2 INCLUDE FILES AND STRUCTURES ... 16
2.3.3 BUFFER USAGE AND I/O 17
2.3.4 PROGRAM COMPILING AND LINKING 18

2.4 UPPER LEVEL PROGRAMMING 19

2.4.1 DISCUSSION OF UPPER LEVEL EXAMPLES 19

2 . 5 LOWER LEVEL PROGRAMMING 2 2

2.5.1 LOWER LEVEL FUNCTION CREATION EXAMPLE 2 3

2.5.2 FUNCTION EXAMPLE FROM THE LIBRARY 2 6

2.5.3 LOWER LEVEL BUFFER EXAMPLE 2 7

SECTION TWO
2.6 THE FUNCTION LIBRARY 3 0

2.7 FUNCTION SYNTAX LISTING 94

3 SOURCE CODE

3.1 INSTALLATION INSTRUCTIONS 98
3.2 SCSILIB.C 100
3.3 GIF. ASM 119

4 REFERENCES

4.1 REFERENCES 12 2

1

I. FOREWORD:
The National Computer and Telecommunications Laboratory of

the National Institute of Standards and Technology (NCTL/NIST) is
currently assisting the National Archives and Records
Administration in developing a testing methodology that can be
used to predict life expectancy of optical disk media. This
testing methodology can be applied in evaluating one or more
physically different types of optical digital disks. The results
of such testing will assist government managers in planning how
long information may be stored on optical disk media without
significant degradation.

To develop this testing process, it is first necessary to
develop methods for the examination of media characteristics.
These tests will determine if the media characteristics are
changing after submitting the media to different aging and stress
simulations, such as heat, humidity and pressure. Further
investigation into media defect mechanisms will also be
necessary.

Tests for media characteristics such as the bit/byte error
rate and the carrier-to-noise ratio are being measured at this
time using commercially available drives. Two different types of
media are currently being studied, one disk is a poly-carbonate
substrate based media and the other is based on a glass
substrate. Other types of media, such as magneto optic media,
will be incorporated into the program at a later date. The media
made of the poly-carbonate substrate is SONY 12" WORM (Write Once
Read Many) media and runs in a SONY WDD-3000 disk drive. The
controller for this SONY drive is the WDC-2000-10/A. The glass
media being researched is the ATG Gigadisc, also a 12" WORM disk,
that runs in ATG GC/GD 1001, the drive/controller unit. Both
drive controllers communicate to their hosts through a Small
Computer System Interface (SCSI)

.

SCSI control software with a large number of commands and
convenient data access would clearly aid this type of study. This
publication describes the SCSI Command System that provides
variable structures and a library of SCSI commands for software
assisted device control. It was designed and developed by
NCTL/NIST personnel. Written on the IBM PC/AT, the software
utilizes a Micro Design International SCSI HA-1 PC host adapter
to establish bus communications. The SCSI Command System enables
the control of the SCSI bus and input/output data processes.

11

II. DISCLAIMER
Because of the nature of this report, it is necessary to

mention vendors and commercial products. The presence or absence
of a particular trade name product does not imply criticism or
endorsement by the National Institute of Standards and
Technology, nor does it imply that the products identified are
necessarily the best available for the purpose.

iii

1 SYSTEM DEVELOPMENT
1.1 PROBLEM:

The Institute's goals demanded that a software assisted SCSI
device control system be created. The software for this control
system should have the ability to execute any SCSI command or any
manufacturer unique command for the SCSI bus. It should also have
the ability of convenient and precise data access. Data should be
available so that it can be analyzed on a byte by byte basis.
System programming would be most beneficial if it could be done
in the 'C' language. Also, system programming should allow the
ability to create and utilize libraries of functions. These
features would ideally be present in an economical, portable, and
practical system.

1.2 SOLUTION;
Working with the Micro Design International (M.D.I.), HA-l,

SCSI host adapter, NCTL/NIST personnel first developed a
function to send commands on the SCSI bus. The function was
written in assembly language and calls the ROM entry point of the
M.D.I. host adapter. The call to ROM sends a pointer to a command
block structure as defined in the M.D.I. host adapter manual. The
card's ROM then drives the command information onto the SCSI bus
where it can be received by the appropriate devices. The function
was named 'cif', for the 'Command Interfacing Function'. This
routine can be accessed from 'C' language.

After successfully writing this function, it was necessary
to develop the variable structures to be used within the system.
The structures must be accessible globally for use by 'cif'. 'C'
language programming allowed easy variable passing and simplest
command/data interfacing. Two system structures were created; the
command block named 'cmdblk' and the buffer called 'buffer'. The
buffer structure can be explained easily. There are lOK bytes
which the system relies on for all data transactions. The
command block structure is more sophisticated. Its members
include bytes reserved for Micro Design International's driver
codes. Additionally, environment parameters such as the buffer's
length, offset and segment in memory are configured here. The
command block structure directs the command to the proper device,
using its information regarding target and logical unit number.
This structure is modeled after the form that is presented in the
Micro Design International HA-1 host adapter manual.

The next step in system development was to utilize the
command interfacing function and system structures, to establish
a library of commands. As preliminary steps to this aspect of
system construction, support files and functions to set up the
system's environment were generated.

2

Two files were created for the purpose of defining system
structures and functions. The files are to be included in
programming for the system. The file "scsi.h" contains the
parameter syntax of the command library and enables proper
calling and value passing. The file called "def.h" is used to
define the command block and buffer structures. It enables the
usage of library functions and allows the usage of system
variables in programming.

Subroutines were created to properly set command block
structure members. These library utilities enable user
interactions to configure the system and edit the system's
operation parameters. A function called 'tidlu' was created to
assign the target id and the logical unit number. Other functions
assume the target and logical unit numbers to be set before they
are executed. 'Setbufd' was developed next. This function,
through its proper configuration of the buffer parameters in the
command block structure, establishes a buffer which the system
uses for handling all input and output of data. Returning error
codes were dealt with by having most library functions return a
flag indicating the command's success or failure. A function
called 'erdec' was designed to retrieve and decode error data. It
supplies a message regarding exactly what failure occurred. By
eliminating the need to reference a technical manual and/or
examine the command block, 'erdec' saves time and simplifies the
debugging of programs for the system.

After development of these preliminary system files and
functions was completed, a library of functions was built. This
was done with the aid of Microsoft C's and Turbo C's library
management software. Because of hardware considerations complete
sets of commands for SONY and ATG drives were included. In
addition, many commands from the SCSI standard were included. The
commands provided form a well rounded set that can accomplish
many tasks. For the sake of convenience data manipulation
functions which store, display and recall data were also
developed.

The list of functions contained in section two of the user's
guide, shows exactly what was included in the writing of the
library. The list presents the function's name, a brief
description and the function type. A function type can be SONY,
ATG, SCSI, or TOOL [see figure 1]. These classifications arose
naturally from the origin and/or run time result of each library
member.

After the library was created, the system evolved into what
could be called two levels of usage; the level that can create
libraries, and the level that uses them. The upper level entails
the usage of the library functions. Lower level programming
implies interactions of the system's variable structures (figures
2 and 3 illustrate this hierarchy) . The entire library is based

3

LIBRARY FUNCTION TYPES

1 TOOLS

=DO NOT COMMUNICATE WITH DEVICES
•DIRECT, MODIFY, OR SUPPLY DATA

2 ATG
-MANUFACTURER'S COMMANDS

rrr
A

^
SONY WD-2000

3 SONY

-MANUFACTURER'S COMMANDS

= SCSI4

- COMMANDS FROM THE SCSI STANDARD
FOR ALL SCSI DEVICES.

FIGURE 1

on this style of programming. The two levels of programming are
different, but are in no way isolated from one another. Most
programs contain both programming styles, mixing the levels, and
allowing them to interact. Figure 4 illustrates the system
programming possibilities.

An example of the lower level programming style is a
function created in the writing of the library. Below is an
actual section of the library's source code, it is the short read
function:

/***/
/SHORT READ FUNCTION */
/***/

sread (len , addr

)

long addr; /* receives address */
byte len; /* receives the length */

/* function assumes a buffer is set up */
/* function assumes that the target/ lun are set */
/* function send the short read command */

{

byte ah,am,al;
clear 0 ; /* clear the command block */
ah=mh(addr) ; /* high byte of addr. */
am=ml(addr); /* middle byte of addr. */
al=lo(addr) ; /* low byte of addr. */

/THE SHORT READ COMMAND /
cmdblk . cdb [0] =0x08

;

cmdblk.cdb[l]=(cmdblk.cdb[l] & OxeO)
|

ah;
cmdblk . cdb [2

] =am

;

cmdblk . cdb [3
] =al

;

cmdblk , cdb [4] =len

;

/**/
return (cif (Scmdblk)) ; / sends the command /
)

This function is sent the length of the read to occur and the
address at which to read. The long unsigned integer
representing the address is broken into its separate bytes
using library functions. The command block is set up and a
call to the interfacing function is made to send this data.
Note that this section of code contains no "include" type
files. This is because all definitions necessary for its use
occur elsewhere in the same module of code. The remainder of
the function library was developed with lower level
programming similar in structure to the example above.

5

SYSTEM ORIENTATION

FIGURE 2

SYSTEM PROGRAMMING

USER PRCX3RAMMING

LOWER LEVEL PROGRA^f^lNG
USING THE SYSTEMS

VARIABLES

UPPER LEVEL
PROGRAK/flVirJG

CALLS FDR
FUNCTIONS

FIGURES

SYSTEM USAGE AND OVERVIEW

USER PROGRAMMING

SCSI COMMAND LIBRARY USER GENERATED LIBRARY

* OPTION POSSIBLE ONLY WITH THE
USE OF A LIBRARY MANAGER PROGRAM

FIGURE 4

Upper level programming deals with the library of
functions. An example in this style of programming was
developed in the early stages of system use:

/***/
/* example program #1 */
/* the classic read example */
/* */

#include "scsi.h" /* must be included */
include "def.h" /* must be included */

main()
{

setbufd(1024)

;

/* establish a 1024 byte buffer */
tidlu(0, 0)

;

/* target=0 logical unit=0 */
sarsto(l) ; /* start the drive */
sread (1 , 0X203L)

;

/* read logical sector 203hex, IK */
sarsto (0)

;

/* stop the drive */
displbu ()

;

/* display the buffer on the screen*/
makebuf ("b : data . dat ”) ; /* make a disk copy of the buf */
prinbuf ()

;

/* print a buffer hard copy */

} /* end of program */
/* */
/************************************jf******************/

This example gives a basic idea of how the functions of the
library can be used. Many programs similar to this were
developed in the testing that took place to verify each
library command.

Upon completion of the software, a manual describing the
system and its proper use was written. This user's guide is
intended to provide information regarding proper library use
and function syntax. Another portion of text discusses lower
level programming and system variable uses. In depth examples
of both programming levels are provided. In addition, the
function library section describes each function and provides
information allowing the user to interact with the system
more quickly and easily. Source code and installation
instructions (for Turbo and Microsoft C) are included with
this user's guide.

9

1.3 APPLICATIONS:
Currently the system is being used for many differing

applications. The system is being run in both TURBO C and
Microsoft 'C' based machines. Programming for byte/bit error
rate has been developed for SONY and ATG hardware using the
library of commands and the system's variables in the
Microsoft 'C' machine. Diagnostic test programs for this
hardware have also been written using the system, enabling
examination of the hardware's state, signals and current
operational parameters. Individual users are making their own
libraries based on the system to meet their specific needs.
In addition, the original command library is under constant
expansion as new command ideas develop. The system will have
many other useful applications with respects to SCSI hardware
and data analysis in the future.

10

2 U S E R GUIDE
2.1 SYSTEM OVERVIEW:

The SCSI Command System has many useful features that
are a direct result of the Institute's goals. The system is
very portable. It is compact and yet remains very flexible,
providing the possibility of implementing any SCSI command, be it
standard or manufacturer unique. The system is based on
programming that is close to the data describing these commands.
By providing simple user access to one byte or an entire buffer,
the software also furnishes powerful input/output data
capabilities. Data examination tools and a large set of commands
are provided in the function library. Others can easily be
created. The structure and focus of the included library is
intended to provide power with easy programming. Because commands
are specific in nature, it takes a minimal amount of programming
to implement them. The command function library offers many
convenient and practical programming benefits. As for the SCSI
Command System, it offers unlimited power in a sense that any
command can be implemented, and all data can be accessed with
ease.

Programming with the system will be discussed as two levels
of interaction: lower level and upper level. Both levels utilize
the command interface function named 'cif'. This function is a
library member and is utilized by most of the remaining library
functions. The command interface routine makes device control
with this system possible. Note that the two levels of
programming are different, but are in no way isolated from one
another. A program for the system can, and usually does, contain
both levels of programming, referencing low level system
variables and calling members of the function library.

The term 'upper level' programming implies interaction with
the system's library of functions. The library was written in the
lower level style. It sets up commands and calls the interfacing
function 'cif'. Parameters passed to the routines enable proper
execution. For example, a function may require an address, a
length or both. Upper level programming techniques provide the
user with a powerful yet convenient method for developing
programs. It is, however, somewhat more isolated from data,
providing a limited set of data display functions. Standardized
functions to make and recall data files on floppy disk are
library members and are very useful. There are also 'include'
type files for use in programs constructed at this level. The
library offers many benefits in the form of preprogrammed
conveniences and is constructed with lower level programming.

Lower level programming deals directly with the system
variables representing the input/output data and the command to

12

be sent to an external SCSI device. Command execution occurs
after command variables have been properly configured. 'Cif' can
then be called to establish the command interface, that is, send
the command. In this way, new functions can be created for the
library; useful object modules can be established as well. The
lower level of programming is very close to the input/output
data, enabling easy displays and examinations of data.
Input/output data can also be used as inner program parameters,
limiting a loop or directing a program's path for instance. There
are 'include' type files and functions provided in the library
that further simplify this level of programming.

2.2 USER'S GUIDE OVERVIEW:
This user's guide is divided into two sections. The first

discusses system programming. After important preliminary steps
for all programing are examined, upper level programming is
discussed. Offering insight into buffer usage for input and
output, this section provides an understanding necessary for
programming in the upper level style. Additionally, it offers
information helpful for the lower level programming style.
Essential programming steps are presented and discussed. Examples
are provided and fully examined.

Lower level programming is the next topic discussed in
section one. Its direct interaction with command and input/output
data, and the very important command interfacing function are
explored. The variable structures of the library that are
constantly dealt with in this programming style are examined and
their members are clearly defined. Library functions essential to
low level programming and 'include' file usage are discussed to
establish proper programming techniques for this aspect of the
system. Examples directly from the included library's source
code, as well as other examples are provided.

The second section serves as a reference for the function
library. It contains all available functions, defining their
purpose and parameters in a standard page format. Additional
sections provide usage hints and examples of 'C' language calls.
A listing of each function's syntax is also presented for
reference purposes.

13

V •

' /

"..y.v..,'
v:.

ad
n.:

-V a-

' .'-^r ^

ndi’’ •^I'a^if-f!''
''

..I. •• M -

J

,'»%'
, .:

"%>

;:'.r,;-,f -t - v

>r-..
'

' j . f -.-rj-A,

u. ‘‘-on

.•' r:j' .;!'!'»)•;;
'• ;><iC3

]•“ '-
' jf ,' -'.

'-
' '

1

.'
'i- ' .k ??*-i

'

. .

:4di

fe'

fWl.M

U S E R GUIDE; SECTION ONE
2.3 PROGRAMMING OVERVIEW

When programing with this library there are programing steps
which must be included in all programs. This overview section
presents information that will be useful to both levels of
programming. It is presented as a preliminary to all programming
to be done with the system.

2.3.1 COMMAND INTERFACING FUNCTION

The Command Interfacing Function is the heart of the SCSI
Command System. It interfaces the variables of the system to the
ROM present on the host card, which in turn drives the command.
The library functions set up the command structure and call this
function. Low level programming will also utilize 'cif' to
implement non-library commands for SCSI devices. 'Cif' is
presented in the function library portion of text. Its
description states that it must always send a pointer to a
command. The pointer reveals any command that the command block
structure currently contains. The format of this command block is
presented in the lower level programming description and is also
described in the Micro Design International host adapter manual.

2.3.2 INCLUDE FILES AND STRUCTURES

"Scsi.h" and "def.h" are two files that are essential to
proper program execution. They must be included in system
programs for compilation and linkage to take place. "Scsi.h"
contains the syntax definitions of all the functions in the
library. "Def.h" is a structural definition block that allows the
buffer and command block structures (the system's variables) to
be accessed directly in main programs. The benefits of direct
library variable access are discussed in the lower level
programing portion of the manual.

All programs or functions intended for use with the library
of functions must include the two ".h" header files mentioned
above. They define and make accessible the structures that are
used throughout the programing, enable all library functions, and
allow proper compilation and linkage. They should be included
outside any main program intended for the system as follows;

#include "scsi.h"
include "def.h"
main (

)

{

16

or outside a function that uses library functions such as:

#include "scsi.h"
include "def.h"
name (

)

{

The above programing statement will be used most frequently and
is valid for programs and functions that use the system's library
and variables. Once these files have been included, proper
compilation will occur. Linkage to the library will resolve
unknown externals when these files have properly been included.

In lower level cases where a function is created that uses
no library members , the following statement can be included:

#include "def.h"
name (

)

{

This allows system variable usage within the function only. No
library functions are anticipated with this type of 'include'
declaration.

The examples provided can be examined to yield a further
understanding of include file usage at both the upper and lower
levels.

2.3.3 BUFFER USAGE AND I/O

The program established buffer is used in all aspects of
input and output. The buffer must always be established before
any data transfer can occur. Not only read and writes require the
buffer, many of the library functions use it for a parameter list
or an allocated memory location for returning data. It will
frequently be used in lower level programs and functions as well.
Input of new data to the buffer will supercede any information
currently stored there.

A read command needs to have a buffer established so that
data read from a device will have some place to be stored. Data
retrieved during a read will be placed in the buffer. The write
command writes the data from the buffer to the medium. If there
is no buffer there is no data to write. If the buffer has not
been loaded, there is still no data to write. Unloaded, the
buffer is filled with random values (usually zero). Once the
buffer is loaded, a write command will transfer the desired data.
Data is written from the buffer to the medium.

17

A request sense command returns sense data. In the case of
this system, it does so into the data buffer. Likewise any
command that returns values, e.g, mode sense, first blank sector
search, receive diagnostic results, etc., will do so in the
buffer. Like any buffer data, device parameter data can be
examined with the buffer output commands.

Consider a mode select command. A mode selection requires a
parameter list describing the mode to be selected. The data for
this selection must be placed in the program buffer before this
function is called. Likewise any other commands that require a
data list will look for the data in the buffer. Send diagnostics,
a SONY command, also works as above. The subcommands for this
command must be present in the buffer before execution occurs.

The simple upper level examples provided show how a buffer
works in all the scenarios mentioned. With a limited amount of
use it becomes apparent that the buffer is used for all data at
both levels of system use. If a function requires a list of data,
it will look for it in the buffer. If it returns any kind of
data, it will be returned there.

2.3.4 PROGRAM COMPILING AND LINKING

Main programs should contain the "include" type files for
proper compilation and linkage. System use was confirmed with
Microsoft C and TURBO C. The following compilation/linkage
instructions for system programs are dedicated to these two 'C'
language systems.

TURBO C users should create programs under a project file
such as the following:

/* PROJECT FILE */
progname.c(def .h, scsi.h)
scsilib. lib
/****************/

'Progname' is the name of the program being edited. The files
"def.h" and "scsi.h" define the system, while the 'scsilib'
statement provides linkage to the library of prefabricated
functions. This project file must be specified in the 'project'
and 'primary c file' of the compiler's environment. TURBO C's
parameters must also be configured as follows?

Compiler: Model: SMALL
Optimization for: SPEED

Linker: Case sensitive link: OFF

18

All other parameters: ON

The SCSI Command System installation instructions also review
TURBO C's needs for proper usage.

Microsoft C users, after standard 'msc progname.c'
compilation, need only to answer the linker's prompt of
' Libraries [.LIB] =' with 'scsilib. lib' . Drive specification of the
library must be properly specified. This should eliminate all
unresolved externals and allow proper linkage. Installation
instructions for MSC also provide this information regarding main
programs

.

2.4 UPPER LEVEL PROGRAMMING
The term 'upper level' implies usage of the provided library

of functions. The function calling level of system use is simple.
Programs are short, quick and powerful. In addition, very little
knowledge of 'C' language is needed to operate the system in this
way.

As in all programs that use the library it is necessary to
include "scsi.h" and "def.h". Establishing a buffer is also an
important step to remember at this level of usage. In order to
send a command to the proper controller the target identification
and logical unit number must be set. In regard to establishing a
buffer and setting the target/unit there are simple to use
functions, as demonstrated in the examples below.

The examples below use many functions, but do not describe
their syntax. All functions are described in the 'Function
Library' portion of text.

NOTE: All excimples are in 'C' language.

2.4.1 DISCUSSION OF UPPER LEVEL EXAMPLES

1) Example number one is the 'classic' read example. As a
first step, the two files, "scsi.h" and "def.h" are included.
Remember that this step is essential. After a buffer is
established by calling 'setbuf', the target i.d. and logical unit
number are set. Setting the 'tid/lun' creates a communication
path between initiator and target. The start medium rotation
command is sent. A read of one logical sector takes place, sector
203 hex. After the read, the drive is stopped, the buffer is
displayed, a disk copy is made, and a hard copy is created.

/**/
/* example program #1 */
/* the classic read example */
/* V
/* V

19

#include "scsi.h" /* must be included */
^include "def.h" /* must be included */

main()
{

setbufd(1024) ; /* establish a 1024 byte buffer */
tidlu(0,0)? /* target=0 logical unit=0 */
sarsto(l) ; /* start the drive */
sread(l, 0x203L) ; /* read logical sector 203hex, IK */
sarsto(O) ; /* stop the drive */
displbu() ; /* display the buffer on the screen*/
makebuf ("b: data.dat") ; /* make a disk copy of the buffer */
prinbuf(); /* print a buffer hard copy */

} /* end of program */
/* V
/**/

2) Example number two is a write example. After including
the proper files, the main program is opened and a buffer is
created. The device is then selected using the ^tidlu' function.
The program buffer for the write is filled from two sources. The
first data source is a disk filei it fills the first 512 bytes of
the IK buffer. The other 1/2K is filled from the 'userbuf^
command. 'Userbuf' will ask the user for 16 bytes of information.
This pattern of 16 bytes will be repeated for the remaining 1/2K,
thus filling the remainder of the buffer. After the drive is
spun-up, the write takes place. 'Erdec' performs a request sense
and decodes the data it receives. It will respond with the proper
information in the event that an error has occurred. When the
command is completed the drive is stopped.

**/
/* example program #2
/* the classic write example

/

/* must be included
/* must be included

/* establish a 1024 byte buffer
/* target=0 logical unit=0

, 512 , 0) ;/*load l/2k from disk file
/* 16 byte pat for the other l/2k

start the drive
write to logic sect 204hex, IK
check for errors
stop the drive
end of program

/*
/*
/*
/*
/*

*/
*/

*/
*/

#include "scsi.h"
#include "def.h"

main (

)

{

setbufd(1024) ;

tidlu(0, 0) ;

loadbuf ("b : data . dat"
userbuf (16, 512 , 512)

;

sarsto(l)

;

swrit (1, 0X2 04L) ;

erdec ()

;

sarsto(O) ;

)

/*
/**/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

20

3) Example number three executes a mode selection command.
It demonstrates how the 'userbuf' function can be used to fill
the buffer with the mode selection data through user interaction.
Again, the program starts as the last two examples do. The
'userbuf' statement asks that a six byte pattern be entered by
the user. The pattern is then repeated in bytes 0 to 5. 'Userbuf'
will prompt the user for those six bytes of data required for a
mode select. The 'mosel' command selects the mode according to
this data in the buffer.

/***/
/* example program #3 */
/* the buffer as a parameter list */

#include "scsi.h" /* must be included */
include "def.h" /* must be included */

main (

)

{

setbufd(6) ; /* establish a 6 byte buf */
tidlu(0,0); /* target=0 logical unit=0 */
userbuf (6, 6, 0) ; /* user enters the mode select dat */
mosel(6); /* param list of 6 bytes in buffer */
/* V
/* EXPLANATION: The mode selection data is input by the user by
using the 'userbuf' function. The user enters the data describing
the mode desired for selection. That data, now in the program
buffer, is used as the parameter list for the mode selection. All
functions that need a data list will expect the data to be in the
program's buffer before the command is called.

/* V
) /* end of program */
/***/

4) The last example performs a mode sense. The six bytes of
data are returned to the program buffer, where they can be
displayed or saved as any other data in the buffer.

/**/
/* example program #4 */
/* the buffer allocation */

include "scsi.h" /* must be included */
include "def.h" /* must be included */

main(

)

{

setbufd(6)
; /* establish a 6 byte buffer */

tidlu(0,0); /* target=0 logical unit=0 */
mosen(6)

; /* 6 bytes of data are to be sensed*/
bufnum(l,6); /* display the returned mode data */

21

/* EXPLANATION: The mode selection data is returned to the
program's buffer. The data can then be displayed. All SCSI
functions that return data will do so in the program's buffer.

*/

}
/* end of program */

y ** *y'

Note that the above examples use many of the library
functions, but do not specifically describe them. If further
information regarding a function is needed, refer to the second
section of the user's guide. All functions are completely
described there.

2.5 LOWER LEVEL PROGRAMMING
As discussed before, there are two essential structures to

this software,' the buffer structure, and the command block
structure. These variables can be modified in a main program, or
a function can be created based on them. This type of programming
is referred to as lower level programming. The two structures are
defined in 'C' language as follows:

struct

{

unsigned char by [10240] ? /* the lOK buffer */
}buffer

;

struct

(

unsigned char cmd; /* the command driver byte */
unsigned char tidlun; /* target id/ logical unit*/
unsigned char cdb[12];/* the command block */
unsigned char scsirc; /* the driver return code */
unsigned char targrc; /* the target return code */
unsigned int bufseg; /* the buffer segment */
unsigned int bufoff; /* the buffer offset */
unsigned int buflen; /* the buffer length */
)cmdblk; /* the structure's name */

/* NOTE: unsigned char = 1 byte = 8 bits
unsigned int = 2 bytes = 16 bits */

The buffer structure represents the program's buffer, whose
maximum size is lOK. Any element in the buffer can be referred to
by its number in the structure, for instance 'buffer .by [122]

' is
the one hundred twenty second byte, eight bit quantity, of the
buffer. This is especially useful when displaying the entire
buffer is not desirable, or when buffer information is needed for
some other purpose. There are 10240 possible bytes, each
representing a unique byte of data. Within main programs these
variables can be accessed by their unique names to examine the
data that they represent.

The cmdblk structure is somewhat more complicated. The first
byte, cmd, is the command driver byte and can be either 00 or 60

22

hex. Hex 00 implies that a command will follow while 60 hex
implies a bus reset. Byte two, tidlun, is the byte containing
information about the target id and logical unit number. In all
cases, this byte can properly be set up using the 'tidlu' library
function. The next thirteen bytes describe the command block. The
command data should be installed here. The next two bytes
describe the driver return code and target return code. They are
used to indicate erroneous command transfer or execution. The
'erdec' routine has been provided in the function library to
eliminate the need to deal with these two return codes. 'Erdec'
decodes errors and displays their meaning. The last three
structure members describe the buffer's segment, offset and
length in memory. These are set up by using the 'setbufd'
command.

The variables primary concern are those representing the
buffer, and the 13 bytes which describe the actual command data
in the command block. Further documentation on the command block
structure can be found in the Micro Design International Host
Adapter Manual. This system follows the Micro Design command
block format exclusively.

2.5.1 LOWER LEVEL FUNCTION CREATION EXAMPLE

This example illustrates use of the program's variable
structures in a main program and then converts that main program
into functions. These functions, when in object form, can be
permanently installed in a library or linked with main programs.
This example covers the steps required to achieve this. Note that
two library functions which are very useful in this type of
programming are used in these examples. They are called 'clear'
and 'cif', and are discussed in the function library portion of
the text.

The first part of the example shows command block
modification and buffer access through variable reference. The
command block modification sets up the normal SCSI start command.
The ANSI SCSI manual can be referred to, confirming this
command's syntax. The assembly language routine 'cif' is then
called to send the command. With the drive started, and a buffer
set up, a library short read command is performed. With the data
read into the buffer, access through variable name is used to
produce a byte by byte buffer display. This display is unlike
'displbu', which displays in a special format (a 16 byte by 16
byte display) . Note that the limit on the loop is the buffer
length element of command block structure. This is an example of
a main program with lower level characteristics and is the first
step in the creation of a new function.

23

/************STEP NUMBER ONE************/
#include "scsi.h"
include "def.h" /* INCLUDE AS NORMAL*/
main (

)

{

int i

;

i=0;
setbufd(1024)

;

tidlu(0, 0)

;

clear ()

;

cmdblk . cdb [0] =0xlb

;

cmdblk. cdb [4
] =1

;

cif C&cmdblk)

;

sread(l, 0x200L)

;

initialize the counter
set up a IK buffer
set the target/ lun

*/
*/
*/

/*
/*
/*
/* clear the command block*/

/* the start/stop command */
/* the start bit */

drive the command */
a short read of 200h */
display buffer bytes as*/
a column, note the use */

/*
/*
/*
/*
/* of the variable buflen */

while (i<= cmdblk. buflen) {

printf ("#%d. . . %x\n ''

,

i , buffer.by [i]) ;

i++;
)

}

To make a 'byte display' and 'unit start' object function
modules, we must first isolate them from the main program. It is
helpful to try functions in their non-library form to insure that
they are working properly. As seen in step two, the main program
calls the functions still included below in the source code. This
step can eliminate a lot of parameter passing problems before the
object file library stages of function creation.

/********* STEP NUMBER 2

#include "scsi.h"
#include "def.h" /*
main()
{

tidlu (0,0)

;

start () ; /*
setbufd(1024)

;

sread(l, 0x200L)

;

byter () ; /*
}

/******************/
start (

)

{

clear () ; /*
cmdblk. cdb [0]=0xlb; /*
cmdblk. cdb [4]=1; /*
cif (Scmdblk)

; /*
return

;

}

/*******************/

******** */

include both files */

the new 'unit start' */

the new 'byte display' */

clear the command block */
set up the start command*/
start bit */
send the start command */

24

/*******************/
byter (

)

{

int i

;

i=0;
while (i<= cmdblk.buflen) /* byte display */

{

printf("byte number%d. . .%x\n", i,buffer.by[i])

;

i++;
}

/*********************/
return

;

}

Having established that the functions do indeed work, they
can now be isolated from the main program. Note that the function
'byter' contains only "def.h". This is because 'byter' user no
functions in the library: it needs only the variables defined.
The functions are now ready to be compiled into an object form.
The object files created are now of a useful form. To be used by
a main program, they need only to be added to the main program by
the linker. As a further step, a library manager control command
which adds new modules to the existing library can be executed.
For the Microsoft Library Manager it is simple. Use the library
line command 'lib scsilib.lib + name of the new object module'.
Turbo C's library manager command is similar.

/*FILEONE V
/* new start function to be added to the lib */
#include "def.h" /* include these files */
#include "scsi.h" /* */
/******************/
start (

)

{

clear 0

;

cmdblk . cdb [0] =0xlb

;

cmdblk . cdb [4
] =1

;

cif (&cmdblk) ,*

return

;

}

/*******************/

/*FILETWO V
/* byte display function to be added to lib */
/* or linked to by main programs */
#include "def.h" /* include only this file */
byter

0

{

25

int i

;

i=0;
while (i<= cmdblk.buflen) {

printf("byte number %d. . . %x\n" , i,buffer.by[i])

;

i++

;

}

return

;

}

A new main program can now be written to test the object
versions of the new functions. The last part of this example
represents this program. When linked to the new object file or
files, it should test the newly created functions. If the new
functions have been added to the library then normal library
linkage should eliminate all unresolved externals. The functions
generated in the above example are members of the library and
were originally added by use of the procedure involving the
Microsoft Library Manager. Later they were added to the main
module of code. These functions can be renamed and reused to
practice low level programming and function creation skills.

/* the new main program to call library */
/* or to link object modules to */
#include "scsi.h"
include "def.h"

main (

)

{

tidlu(0, 0)

;

start ()

;

setbufd (1024)

;

sread (1 , 0x200L)

;

byter ()

;

)

2.5.2 FUNCTION EXAMPLE FROM THE LIBRARY

As a further example of a low level function, a segment of
code describing the library's short write is provided:

/***/
/* SHORT WRITE FUNCTION */
/***/

swrit (len , addr

)

unsigned long addr; /* receives the address */
byte len; /* receives the length */
{

/* function assumes a buffer is set up */
/* function assumes the buffer is full of data */
/* function assumes the target/logical unit are set */

26

/* function simply sends the write command */
byte ah,am,al;
clear 0

;

ah=mh(addr) ; /* break the long int into */
am=ml(addr); /* its separate bytes */
al=lo(addr); /* */
cmdblk.cdb[0]=0x0A; /* the short write command */
cmdblk.cdb[l]=(cmdblk.cdb[l] & OxeO)

|

ah; /* */
/* mask&tid/lun or addr high*/

cmdblk. cdb [2] =am; /* the middle low addr byte */
cmdblk.cdb[3]=al; /* the lower addr byte */
cmdblk. cdb [4]=len; /* length */
return (cif (Scrndblk)) ; /* send the command */

}

This function is sent the length of the write which is to
occur and the address at which to write. The long unsigned
integer representing the address is broken into its separate
bytes by using library functions. The command block is set up for
the short write. Note that cmdblk. cdb [1] requires some logic. The
lun is needed in the top 3 bits and is assumed to be set up as
so. A bit mask prevents extraneous data from being entered in the
command. This byte is then 'or'ed with the high byte of address.
Finally the call to the command interfacing function is made to
send the command. Note that this section of code contains no
include files, that is because all definitions necessary for its
use occur elsewhere in the same module of code. See also the
function library portion of text; 'swrit' is described from a
usage point of view there.

2.5.3 LOWER LEVEL BUFFER EXAMPLE

The following example is a function that allows a mode
selection. It places data in the buffer for a mode selection,
then executes that mode selection with a library command.

/***/
/* SPECIAL MODE SELECT FUNCTION */
/***/

#include "scsi.h"
#include ’’def.h"
spmode (

)

{

/* function assumes a buffer is set up */
/* function assumes target and logical unit are set */
/* */
buffer.by [0]= 0x80; /* placing mode data in the */
buffer .by [1]= 0x12; /* first six bytes of the */
buffer. by[2]= 0; /* program buffer */
buffer. by[3]= Oxff; /* */
buffer.by [4]= OxOa; /* */

27

buffer.by [5]= 0;
mosel (6)

;

/*
/* call for a mode select with
/* the buffer data

*/
*/
*/

return

;

)

Though the library provides data manipulating capabilities it is
often more convenient to interact directly with the buffer
variables c This mode selection is a much cleaner approach than
upper level example number three. This routine is much more
flexible and requires only a knowledge of the buffer structure to
be written. Additionally, it can be added to the set of library
functions to further expand system capabilities.

28

U S E R' S GUIDE; SECTION TWO
2.6 THE FUNCTION LIBRARY

The function library portion of text discusses each function
that is available for use in the system. It describes each with
the following format:

NAME

FUNCTION NAME: returned name (parameters)

FUNCTION TYPE; ATG, SONY , SCSI , or TOOL

PARAMETERS PASSED: name==>type
name==>type
name==>type

PARAMETERS RETURNED: type

PURPOSE

:

REQUIREMENTS

:

SPECIAL:

EXAMPLE

:

RETURNS

:

The function type can be SONY, ATG,SCSI or TOOL. A SCSI type
function implies that it is general and can be used with any SCSI
device. A TOOL function works within the program and usually
directs, modifies or supplies data. TOOL types do not affect SCSI
devices or communicate directly with them. For each function a
purpose is discussed. The purpose describes the result of
executing the command. The requirements subsection of each
function description repeats the type of parameters and
provides a definition for each. If the parameters have a limited
set of values the range is presented here. Special is a section
that is intended to eliminate program errors by presenting the
'tricks', if you will, to each function. It should give you a
better chance of using each function without encountering
difficulty. Examples of how the function call will look in a 'C'
language program are provided. Comments on the example's code
describe the result of that line at run time. The values returned
by the function, if any, are examined lastly. The definitions of
the values returned are given. Each function description is
intended to describe purpose, parameters and proper use.

30

The functions appear in this section in alphabetized order
as follows.

.

NAME TYPE DESCRIPTION

ascibuf TOOL displays buffer as ascii
bufnum TOOL displays a buffer section
byter TOOL displays buffer byte by byte
GIF SCSI command interface function
clear TOOL clears the command block
displbu TOOL displays the entire buffer
dread ATG diagnostic read
dwrit ATG diagnostic write
edsene SONY eject sense toggle
erdec TOOL error decoder
fillbuf TOOL fills the buffer with 1 byte
firbl ATG first blank sector search
hi TOOL returns the long's high byte
inqir SCSI the inquiry function
lo TOOL returns the long's low byte
loadbuf TOOL loads the buffer from disk
makebuf TOOL creates a buffer copy on disk
mh TOOL returns the middle high byte
ml TOOL returns the middle low byte
mosel SCSI mode selection function
mosen SCSI mode sense function
prealo ATG medium removal toggle
prinbuf TOOL print the buffer's contents
readb ATG read the drives buffer
readc ATG read the drive capacity
readdr ATG read data redundancies
readid ATG read the disk id
readl SCSI long read command
recodw SONY recover disk warning
rese SCSI reset of the SCSI bus
resen SCSI request sense
rodis ATG read the ODI status
rzzo SCSI rezero the drive
saiifo SONY sense alternate information
sarsto SCSI start/stop toggle
scopy SONY the SONY copy command
scssix SCSI user generated command
scsten SCSI user generated command
scstwl SCSI user generated command
sdisej SONY disk eject command
seekbs SONY blank sector search
seekl SCSI long seek command
seekws ATG written sector search
setbufd TOOL set up the data buffer
setmp ATG set medium parameters
smove SONY the move command
srdres SONY receive diagnostics

31

sread SCSI short read
srele SONY release command
srese SONY reserve command
ssdia SONY send diagnostics
sseek SCSI short seek
start SCSI starts the medium
swrit SCSI short write
tesur SCSI test unit ready
tidlu TOOL set the target/ lun numbers
userbuf TOOL user generated buffer
verif ATG verify command
writeb ATG write to the drive buffer
writl SCSI the long write command
wrver ATG write and verify command

32

ASCIBUF

FUNCTION NAME: ascibuf (

)

FUNCTION TYPE: TOOL

PARAMETERS PASSED: none

PARAMETERS RETURNED: none

PURPOSE

:

Ascibuf dumps the contents of the buffer as ascii
characters to the screen. If the buffer is IK it displays that
IK. Ascibuf will always display the entire buffer as characters

REOUIREMENTS : none

SPECIAL: The entire buffer will
is the size of the buffer.

be dumped, the size of the dump

EXAMPLE

:

ascibuf (); /* displays the buffer as char*/

33

BUFNUM

FUNCTION NAME: bufnum (start , stop

)

FUNCTION TYPE: TOOL

PARAMETERS PASSED: start ==> integer
stop ==> integer

PARAMETERS RETURNED: none

PURPOSE

:

Bufnum displays the buffer from the byte number
specified by start to the byte number specified by stop.

REQUIREMENTS

:

Start and stop are integers representing the byte
to start the display and the byte to end the display.

SPECIAL: If start and stoD are
be displayed.

equal only that specific byte will

EXAMPLE

:

bufnum (0, 6) ; /* display bytes 0 to 6 */

bufnum (12 ,12)

;

/* displays only byte 12*/

34

BYTER

FUNCTION NAME: byter (

)

FUNCTION TYPE: TOOL

PARAMETERS PASSED: none

PARAMETERS RETURNED: none

PURPOSE: Bvter is the bvte
developed and added to the

displaying subroutine that is
library in the lower level program

example. Byter displays the entire buffer in a column form,
presenting each byte and its number.

REQUIREMENTS

:

none

SPECIAL: The entire buffer will be displayed.

EXAMPLE

:

byter 0

;

/* displays the buffer */

35

GIF

FUNCTION NAME : int

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

cif (Scrndblk)

SCSI

pointer to the command block
structure

int

PURPOSE

:

CIF is the assembly language routine that drives the
command. It sends the pointer to the command block to the ROM on
the host adapter car and the command is placed on the SCSI bus
for the proper target/lun.

REQUIREMENTS

:

CIF must send a pointer to a command block
structure

SPECIAL: The syntax shown below is proper for pointing to the
library's command block. It should be use in this way to drive
all lower level programming commands.

EXAMPLE

:

cif (Scrndblk) ; /* drive the command */

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error

36

CLEAR

FUNCTION NAME: clear (

)

FUNCTION TYPE: TOOL

PARAMETERS PASSED: none

PARAMETERS RETURNED: none

PURPOSE: Clear initializes the command block structure. Clear
does not effect the buffer parameters set with "setbufd", or the
target id and logical unit

REOUIREMENTS : none

SPECIAL: none

EXAMPLE

:

numbers set with "tidlu"

.

clear ()

;

/* clears the command block */

37

DISPLBU

FUNCTION NAME: displbu (

)

FUNCTION TYPE: TOOL

PARAMETERS PASSED: none

PARAMETERS RETURNED: none

PURPOSE: Displbu dumps the contents of the buffer to the screen
in a special 16 byte format. If the buffer is IK it displays that
IK. Displbu will always display the entire buffer.

REQUIREMENTS

:

none

SPECIAL: The entire buffer will be displayed.

EXAMPLE

:

displbu 0

;

/* displays the buffer */

38

DREAD

FUNCTION NAME: int dread (len, addr)

FUNCTION TYPE : ATG

PARAMETERS PASSED: unsigned int ==> len
long unsigned int ==> addr

PARAMETERS RETURNED: int

PURPOSE: Dread performs the diagnostic read command when the
drive is in the diagnostic mode. Dread reads user data but also
obtains additional information such as edac code. Because this
additional data is read the buffer must be of a size to
accommodate sectors of 1115 bytes in length.

REQUIREMENTS

:

Len represents the number of logical sectors to be
read, or the length of data transfer. Addr represents the address
to start the reading of data. Three bytes of address are allowed.

SPECIAL: The drive must be put into diagnostic mode before this
command can be used. It is also important to remember that
sectors read include additional information besides user data.
Each sector is 1115 bytes in size

EXAMPLE

:

dread (1, 0x205L) ; /* read 1115bytes from 205h*/

dread (10 , IL) ; /* read ten sectors starting
at 1 */

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

39

WRIT

FUNCTION NAME : int

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

dwrit(len,addr)

SCSI

unsigned int ==> len
long unsigned int ==> addr

int

PURPOSE

:

Dwrit performs the diagnostic read command when the
drive is in the diagnostic mode. Dwrit writes data in frames of
1115 bytes without edac error correction.

REQUIREMENTS

:

Len represents the number of logical sectors to be
written, or the length of data transfer. Addr represents the
address to start the writing of data. Three bytes of address are
allowed.

SPECIAL: The drive must be put into diagnostic mode before this
command can be used. It is also important to remember that
sectors size is 1115 bytes.

EXAMPLE

:

dwrit (1 , 0x205L) ; /* write 1115bytes to 205h*/

dwrit (10 , IL) ; /* write ten sectors starting
at 1 */

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

40

EDSENE

FUNCTION NAME:

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

int edsene(flag)

SONY

unsigned int ==> flag

int

PURPOSE

:

This command prevents or allows the sensing of the disk
eject command.

REQUIREMENTS

:

Flag must be an unsigned integer. If flag is equal
to 1 then the drive is enabled to sense the eject command. If
flag is equal to 0 then the eject command has been disabled, the
drive is now unable to sense the command,

SPECIAL: Flag must be only 1 or 0.

EXAMPLE

:

edsene(l) /*eject sense is enabled*/

edsene(O) /*eject sense is disabled*/

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

41

ERDEC

FUNCTION NAME:

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

erdec (

)

TOOL

none

none

PURPOSE

:

Erdec performs a request sense command then decodes the
data received and finally prints out the error that occurred.

REQUIREMENTS

:

none

SPECIAL: This command should be used in conjunction with the
returned value indicating error that most of the functions
feature. If the returned value of a command is FFh then erdec can
be used to find out what happened.

EXAMPLE

:

erdec 0

;

/* decodes sense info */

42

FILLBUF

FUNCTION NAME: fillbuf (element, fill , start)

FUNCTION TYPE: TOOL

PARAMETERS PASSED:

PARAMETERS RETURNED:

unsigned char ==> element
unsigned int ==> fill
unsigned int ==> start

none

PURPOSE

:

Fillbuf is a subprogram that repeats element for the
desired length in the program buffer. Fillbuf fills the buffer
with element.

REQUIREMENTS

:

Element is the byte to repeat in the buffer, it
should be a single byte of information. Fill is an unsigned
integer representing how much of this pattern should be placed in
the buffer. Start is also an unsigned integer, it depicts where
in the buffer the data will begin.

SPECIAL: The total fill size and the start value should not
exceed the upper boundary of the program buffer.

EXAMPLE

:

fillbuf (02 , 1024 , 0) ; /*fills the buffer with IK of
02 */

fillbuf (Oxff, 512 , 152) ; /*fills a 1/2K space in the
buffer starting at the 152th
byte with Oxff. */

43

FIRBL

FUNCTION NAME: int

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

firbl (nos, addr, rel)

ATG

long unsigned int ==> nos
long unsigned int ==> addr
unsigned int ==> rel

int

PURPOSE

:

Firbl performs a search for the first blank sector. It
returns the address of this sector in the buffer.

REQUIREMENTS

:

The number of sectors, nos, must be a long unsigned
integer. Only the low two bytes of this value will be used. Addr
is the variable that specifies the 4 byte address. Rel is used to
implement the relative addressing mode. (l=relative addressing)

.

SPECIAL: The address of the first blank sector found in the
search will be returned in the buffer. It is important to
properly set up the buffer before use. (see buffer examples)

EXAMPLE

:

firbl (lOL, 204L, 0) ; /*search lOsect. starting */
/*at address 204 */

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

44

HI

FUNCTION NAME: unsigned int

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

hi (luint)

TOOL

long unsigned int ==> luint

unsigned int

PURPOSE

:

This function is used to return the highest byte of a
long unsigned integer.

REQUIREMENTS

:

The value you send to this routine must be a long
unsigned integer.

SPECIAL: none.

EXAMPLE

:

hi(0xl0203040L) ; /*will return 10*/

RETURNS

:

One unsigned integer is returned. It is the highest byte
of the long unsigned integer which was sent.

45

INQIR

FUNCTION NAME: int inqir (alio)

FUNCTION TYPE: SCSI

PARAMETERS PASSED: unsigned integer ==> alio

PARAMETERS RETURNED: int

PURPOSE

:

Inqir performs the SCSI inquiry function.

REQUIREMENTS

:

Allocation is an unsigned integer between 0 and 255
specifying the allocation length of the inquiry.

SPECIAL: Allocation should by between 0 and 255.

EXAMPLE

:

inqir (0) ; /*zero allocation length*/

inqir(255) ; /*255 allocation length */

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

46

FUNCTION NAME; unsigned int

LO

FUNCTION TYPE:

PARAMETERS PASSED;

PARAMETERS RETURNED;

lo (luint)

TOOL

long unsigned integer==>luint

unsigned int

PURPOSE

:

This function is used to return the low byte of a long
unsigned integer.

REQUIREMENTS

:

The value you send to this routine must be a long
unsigned integer.

SPECIAL: none.

EXAMPLE

:

lo(0xl0203040L) ; /*will return 40*/

RETURNS

:

One unsigned integer is returned. It is the low byte of
the long unsigned integer which was sent.

47

LOADBUF

FUNCTION NAME : int

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

loadbuf (name, length, start)

TOOL

char [20] ==> name
unsigned int ==> length
unsigned int ==> start

int

PURPOSE

:

Loadbuf loads a data file in the standard format into
the program buffer.

REQUIREMENTS

:

Name is a character string up to 20 characters long
which specifies the drive and name of the data file to be
created. Length specifies the length of data to be read from the
file and placed in the program buffer. Start specifies where the
data should begin in the buffer.

SPECIAL: The file read from disk must be in the standard format,
the format that the 'makebuf' command creates. The upper boundary
on the programs data buffer should not be exceeded.

EXAMPLE:

loadbuf ("b: random, dat" , 1024 , 0) /*loads IK from
random.dat in the
'b' drive and starts
at the beginning of
the program buffer.*/

loadbuf ("b: random.dat" , 512 , 512 ,*/*loads 1/2K from
random.dat in the
^b' drive and starts at
the 512th byte of the
program buffer.*/

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

48

MAKEBUF

FUNCTION NAME : int

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

makebuf (name)

TOOL

char [20] ==> name

int

PURPOSE

:

Makebuf takes the current program buffer and creates a
disk file of it in the standard format.

REQUIREMENTS

:

Name is a character string 20 characters long which
specifies the drive and name of the data file to be created.

SPECIAL: The entire buffer will be placed in the disk file. This
file is in the proper format for reloading with the 'loadbuf'
command

.

EXAMPLE

:

makebuf ("b: random.dat") ; /*makes a disk file called
random.dat of the current
program buffer.*/

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

49

MH

FUNCTION NAME: unsigned int mh(luint)

FUNCTION TYPE: TOOL

PARAMETERS PASSED: long unsigned integer ==> luint

PARAMETERS RETURNED: unsigned int

PURPOSE

:

This function is used to return the middle high byte of
a long unsigned integer.

REQUIREMENTS

:

The value you send to this routine must be a long
unsigned integer.

SPECIAL: none.

EXAMPLE

:

mh(0xl0203040L) /*will return 20*/

RETURNS

:

One unsigned integer is returned. It is the middle high
byte of the long unsigned integer which was sent.

50

ML

FUNCTION NAME; unsigned int

FUNCTION TYPE;

PARAMETERS PASSED;

PARAMETERS RETURNED;

ml (luint)

TOOL

long unsigned integer ==> luint

unsigned int

PURPOSE

;

This function is used to return the middle low byte of a
long unsigned integer.

REQUIREMENTS

;

The value you send to this routine must be a long
unsigned integer.

SPECIAL; none.

EXAMPLE

;

ml (0X10203040L) ; /*will return 30*/

RETURNS

;

One unsigned integer is returned. It is the middle low
byte of the long unsigned integer which was sent.

51

MOSEL

FUNCTION NAME : int

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

mosel (pll)

SCSI

unsigned integer ==> pll

int

PURPOSE

:

Mosel performs the SCSI mode selection function. It
transfers mode select data to the target during the data out
phase. The mode selection data to be transferred should be stored
in the buffer before this functional call.

REQUIREMENTS

:

Pll is an unsigned integer between 0 and 255
specifying the parameter list length for the selection of mode.

SPECIAL: Pll should by between 0 and 255. It is usually set to 6.

Before this command can be executed mode selection data must be
entered into the buffer. This can be done with the userbuf
function. (See buffer use examples)

.

EXAMPLE

:

mosel(O); /*zero param. list length*/

mosel(6); /*6 allocation length */

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

52

MOSEN

FUNCTION NAME: int

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

mosen (alio)

SCSI

unsigned integer ==> alio

int

PURPOSE

:

Mosen performs the SCSI mode sense function. Data is
transferred from the target regarding the device parameters.

REQUIREMENTS

:

Alio is an unsigned integer between 0 and 255
specifying the allocation length provided for the information
being returned. The data returned by this function is stored in
the program buffer. The allocated length should not exceed the
buffer size.

SPECIAL: Alio should be between 0 and 255. It is usually set to
6. Before this command can be executed the buffer must be set to
at least the size allocated. The data returned with this command
is placed in the buffer. (see buffer examples)

.

EXAMPLE

:

mosen (0) ; /*senses 0 bytes of data*/

mosen (6) ; /*senses 6 bytes of data*/

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

53

FUNCTION NAME: int

PREALO

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

prealo (flag)

ATG

unsigned integer ==> flag

int

PURPOSE

:

Prealo performs the prevent/allow medium removal
function. It also enables or disables the front panel drive
controls.

REQUIREMENTS

:

Flag is an unsigned integer and should be only a 1

or a 0. A 1 indicates prevent medium removal/disable front panel,
and a 0 indicates allow medium removal/enable front panel.

SPECIAL: Flag should be only 1 or 0.

EXAMPLE

:

prealo(l); /* prevents medium removal */

prealo(O); /* allows medium removal */

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

54

PRINBUF

FUNCTION NAME: int prinbuf (

)

FUNCTION TYPE ; TOOL

PARAMETERS PASSED: none

PARAMETERS RETURNED: int

PURPOSE

:

Prinbuf dumps the contents of the buffer to the
printer. If the buffer is IK it prints that IK. Prinbuf will
always print the entire buffer.

REQUIREMENTS

:

none

SPECIAL: The entire buffer will be dumped; the size of the dump
is the size of the buffer.

EXAMPLE

:

prinbuf ()

;

/* prints out the buffer*/

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

55

READB

FUNCTION NAME: int readb(tl,bn)

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

ATG

unsigned int ==> tl
unsigned int ==> bn

int

PURPOSE

:

Readb reads data from the specified scsi device drive
buffer.

REQUIREMENTS

:

Tl can be one or zero. When tl=0 read length is
1024 bytes. When tl=l the command reads 1115 bytes from the drive
buffer. Bn is the buffer number, 0 corresponds to drive buffer 0

and 1 corresponds to drive buffer 1.

SPECIAL: The drive must be put into diagnostic mode before this
command can be used. It is also important to remember that
sectors size can be 1115 bytes in size the buffer should be able
to accommodate this.

EXAMPLE

:

readb (1 , 1) ;/*read 1115 bytes from drive buffer 1*/

readb (0 , 0) ;/*read IK from drive buffer 0 */

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

56

READC

FUNCTION NAME : int

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

readc (addr , rel

)

ATG

long unsigned int ==> addr
unsigned int ==> rel

int

PURPOSE

:

Readc performs the SCSI read capacity command which
request that information regarding the capacity of the logical
unit be returned to the initiator.

REQUIREMENTS

:

Addr is a long unsigned integer describing the
logical sector address for the capacity check. Rel is a 1 or 0 to
indicate relative addressing or normal addressing. (l=relative)

SPECIAL: The address is specified to be 4 bytes long truncation
of oversized long integers will occur. Before this command can
occur there must be established a buffer for the read capacity
data to be transferred into. The buffer can be setup using
setbufd.

EXAMPLES

:

readc (OOL, 0)

readc (1024L, 1)

/*capacity of 0 without rel.*/

/*capacity of relative 1024 */

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

57

READDR

FUNCTION NAME s int

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

readdr (len , addr

)

ATG

unsigned int ==> len
long unsigned int ==> addr

int

PURPOSE

:

Readdr performs the read data and redundancies command,
an ATG diagnostic function.

REQUIREMENTS

:

Len is an unsigned integer representing the length
of the read to occur and is in the units of logical sectors. Addr
is the address of the sector at which to begin reading.

SPECIAL: A buffer must be established to execute this command and
the length of the read should not exceed the buffer length. The
drive must be in diagnostic mode before this command can be
executed

.

EXAMPLE

:

readdr (1 , 6L) ; /* read the dat and redun of
sector six*/

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

58

FUNCTION NAME: int

READID

readid(

)

FUNCTION TYPE ; SONY

PARAMETERS PASSED: none

PARAMETERS RETURNED: int

PURPOSE

:

This reads the disk id of the current specified disk.

REQUIREMENTS

:

There must be at least a IK buffer established
before this command can take place. It will always return Ik of
data from the shortest radius of the disk.

SPECIAL: This command needs a IK buffer,

EXAMPLE

:

readidO /*reads disk id (Ik)*/

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

I'

59

READL

FUNCTION NAME: int readl (lenw, addr, rel)

FUNCTION TYPE: SCSI

PARAMETERS PASSED: long unsigned int ==> lenw
long unsigned int ==> addr
unsigned int ==> rel

PARAMETERS RETURNED: int

PURPOSE: Readl performs the SCSI long read command. It will read
data of the specified length from the 4 byte address into the
program's data buffer.

REQUIREMENTS

:

Lenw should be a long unsigned int representing the
length of the read to occur in logical sectors. Addr is a long
unsigned integer describing the logical sector address for the
write on the medium, four bytes of address are possible. Rel
specifies the relative addressing mode, it should be one or zero.
The bytes describing the address should be modified as necessary
if this convention is used,

SPECIAL: The address is specified to be 4 bytes long, as opposed
to sread where you only have 3 bytes for address. Length is a
word in this function; its value should not exceed the buffer
length established before the command occurs, (see read
examples .

)

EXAMPLES

:

readl (1 , 0X208L, 0) /*reads one sector from 208h*/

readl (10 , llllL, 0) /*reads 10 sectors from 1111*/

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

60

RECODW

FUNCTION NAME: int recodw()

FUNCTION TYPE : SONY

PARAMETERS PASSED: none

PARAMETERS RETURNED: int

PURPOSE: This command is used to obtain the alternate information
from the disk during the disk warning condition.

REQUIREMENTS

:

Alternate information is 4K in length, a buffer
must be established before this command can take place. It will
always return 4K of data.

SPECIAL: This command needs a 4K buffer.

EXAMPLE

:

recodwO /*reads disk's alternate info(4K)*/

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

61

RESE

FUNCTION NAME: rese (

)

FUNCTION TYPE: SCSI

PARAMETERS PASSED: none

PARAMETERS RETURNED: int

PURPOSE

:

Rese is the SCSI command to reset the bus. It is the
same as powering down the drive and powering it back up. It can
be used to reset the bus if an illegal phase has occurs.

REQUIREMENTS

:

none.

SPECIAL: Time must be allowed for the reset to occur. Commands
directly following a rese call will result in a drive not ready
error. It is best to perform a request sense in a loop until the
drive is ready.

EXAMPLE

:

rese(); /* resets the SCSI bus */

62

RESEN

FUNCTION NAME : int

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

resen (alio)

SCSI

unsigned integer ==> alio

int

PURPOSE: Resen performs the SCSI request sense function. Data is
transferred from the target to the initiator of the command
regarding the device parameters.

REQUIREMENTS

:

Alio is an unsigned integer between 0 and 255
specifying the allocation length provided for the information
being returned. It should not be greater than the buffer size at
the issuing of the command.

SPECIAL: Again, alio should be between 0 and 255. It is usually
set to 6. It is important that before this command is executed
the buffer be set to at least the size allocated for information
to be returned. The data returned with this command is placed in
the buffer. (See buffer examples.)

EXAMPLE

:

resen (0) ; /*the short sense command */

resen (6) ; /*the extended data command*/

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

63

RODIS

FUNCTION NAME:

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

int rodis(allo)

ATG

unsigned int ==> alio

int

PURPOSE

:

Rodis reads the logical unit's ODI status.

REQUIREMENTS

:

Alio is the allocated length for returning ODI
status information.

SPECIAL: The drive must be put into diagnostic mode before this
command can be used. Also it is necessary to remember that
allocation length should not exceed the length of the buffer
established previously.

EXAMPLE

:

rodis(10)i /*receive 10 bytes of ODI info*/

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

64

RZZO

FUNCTION NAME: int rzzo (

)

FUNCTION TYPE: SCSI

PARAMETERS PASSED: none

PARAMETERS RETURNED: int

PURPOSE

;

Rzzo is the SCSI command to rezero the drive. The head
is repositioned and the medium begins rotation.

REQUIREMENTS

:

none.

SPECIAL: none.

EXAMPLE

;

rzzo(); /* rezeros the current target/lun */

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. ^Erdec' can be called to decode
the error

65

SAIIFO

FUNCTION NAMES int saiifo()

FUNCTION TYPE s SONY

PARAMETERS PASSED; none

PARAMETERS RETURNED; int

PURPOSE

;

This reads what is called alternate information by the
SONY documentation. Alternate information exists if disk trouble
occurred during a read or write.

REQUIREMENTS

:

Alternate information is 4K in length, a buffer
must be established before this command can take place. It will
always return 4K of data.

SPECIAL; This command needs a 4K buffer.

EXAMPLE

:

saiifoO /*reads disk^s alternate info(4K)*/

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

66

SARSTO

FUNCTION NAME: int sarsto (flag)

FUNCTION TYPE: SCSI

PARAMETERS PASSED: unsigned integer ==> flag

PARAMETERS RETURNED: int

PURPOSE

;

Sarsto performs the start/stop medium function.

REQUIREMENTS

:

Flag is an unsigned integer and should be only a 1

or a 0. A 1 indicates start medium rotation and a 0 indicates
stop medium rotation.

SPECIAL: Flaa should be only 1 or 0.

EXAMPLE

:

sarsto (1); /*starts medium rotation*/

sarsto(O); /*stops medium rotation */

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

67

SCOPY

FUNCTION NAME : int

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

scopy (pllw)

SONY

long unsigned int ==> pllw

int

PURPOSE

:

Scopy is the data copy command. Data can be copied from
disk to disk or onto the same disk by using this command.

REQUIREMENTS

:

Pllw is a long unsigned integer specifying the list
of parameters describing the type of copy to take place. It
should by a number from 0 to 256.

SPECIAL: Data describing the type of copy to take place should be
present in the buffer before command execution. Construction of
such ^copy command data' is discussed in the Sony manual.

EXAMPLE

;

scopy(12L) ; /*specifies a param list of 12*/

scopy (256L) ; /*specifies the longest possible
parameter list.*/

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

68

SCSSIX

FUNCTION NAME int scssix (bl,b2 ,b3 ,b4 , b5 ,b6)

FUNCTION TYPE TOOL

PARAMETERS PASSED unsigned integers ==> bl”b6

PARAMETERS RETURNED int

PURPOSE

:

This function uses the six bytes sent to it as the
command block.

REQUIREMENTS

;

All parameters sent must be bytes.

SPECIAL: As the user creates the command block through the
parameters sent it is important to be sure of the validity of a
command before it is sent. As well^ if the command involves the
input/output of data or a parameter list the appropriate buffer
must be established.

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec^ can be called to decode
the error.

69

SCSTEN

FUNCTION NAME;

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

int scsten (bl , b2 , b3 # b4 , b5 ^ b6 , b7 ^ b8 ^ b9 , blO

)

TOOL

unsigned integers ==> bl- blO

int

PURPOSE

:

This function uses the ten bytes sent to it as the
command block.

REQUIREMENTS

:

All parameters sent must be bytes.

SPECIAL: As the user creates the command block through the
parameters sent it is important to be sure of the validity of a
command before it is sent. As well, if the command involves the
input/output of data or a parameter list the appropriate buffer
must be established.

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. ^Erdec^ can be called to decode
the error.

70

SCSTWL

FUNCTION NAME: int scstwl (bl , b2 , b3 , b4 , b5 , b6 ,b7 , b8 , b9 , blO , bll , bl2

)

FUNCTION TYPE : TOOL

PARAMETERS PASSED: unsigned integers ==> bl”bl2

PARAMETERS RETURNED: int

PURPOSE

:

This function uses the twelve bytes sent to it as the
command block.

REQUIREMENTS

:

All parameters sent must be bytes.

SPECIAL: As the user creates the command block through the
parameters sent it is important to be sure of the validity of a
command before it is sent. As well, if the command involves the
input/output of data or a parameter list the appropriate buffer
must be established.

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

71

SDISEJ

FUNCTION NAME? int sdisej (

)

FUNCTION TYPE? SONY

PARAMETERS PASSED? none

PARAMETERS RETURNED:; int

PURPOSE ? The sdisei
drive.

REOUIREMENTS ? none.

SPECIAL? none.

command simply ejects the disk from the

EXAMPLES ?

sdisejO /*ejects the disk from the drive*/

RETURNS

:

One integer is returned,, It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. ^Erdec' can be called to decode
the error.

72

FUNCTION NAME: int

SEEKBS

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

seekbs (addr , rel

)

SONY

long unsigned int ==> addr
unsigned int ==> rel

int

PURPOSE

:

Seekbs searches the disk from the specified address
until it encounters the first blank sector

»

REQUIREMENTS

:

Addr is a long unsigned integer that specifies four
bytes of address. Rel specifies the relative addressing mode when
it is equal to 1, and the normal addressing mode when 0.

SPECIAL: There must be a buffer for this command to properly
return the address it has found. The buffer should be setup using
'setbufd' before the command is sent.

EXAMPLES

:

seekbs (1024L, 0) /* searches from the Ik address*/

seekbs (0^1) /*search from the current addr */

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

73

FUNCTION NAME: int

SEEKL

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

seekl (addr , rel

)

ATG

long unsigned int ==> addr
unsigned int ==> rel

int

PURPOSE

:

Seekl moves the laser head of the selected logical unit
to the specified address. The address is "pointed to".

REQUIREMENTS

:

Addr is a long unsigned integer describing the
logical sector address. Rel is a 1 or 0 to indicate relative
addressing or normal addressing.

SPECIAL: The address is specified to be 4 bytes long; truncation
of oversized long integers will occur. The logical sector address
should be in the following range: 0 to F423Fhc Because there is
no data transferred with this command it is not required to have
a buffer for execution.

EXAMPLES

:

seekl (00L,0) /* 'points' to 0 logical sect*/

seekl (0x207L, 0) /*'points to sector 207 */

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

74

FUNCTION NAME: int

SEEKWS

seekws (addr , rel

)

FUNCTION TYPE : SONY

PARAMETERS PASSED: long unsigned int ==> addr
unsigned int ==> rel

PARAMETERS RETURNED: int

PURPOSE

:

seekws searches the disk from the specified address
until it encounters the first written sector.

REQUIREMENTS

:

Addr is a long unsigned integer that specifies four
bytes of address, Rel specifies the relative addressing mode when
it is equal to and the normal addressing mode when 0.

SPECIAL: There must be a buffer for this command to properly
return the address it has found. The buffer should be setup using
'setbufd' before the command is sent,

EXAMPLES

:

seekws (1024L, 0) /*searches from the Ik address */

seekws (OL^l) /*searches from the current addr*/

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command, ^Erdec' can be called to decode
the error.

75

SETBUFD

FUNCTION NAME:

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

setbufd (buffer_length)

TOOL

unsigned ==> buffer_length

none

PURPOSE

:

Setbufd is a tool function which sets up the data buffer
for program use. It must be used before any data transactions can
occur, failure to create a buffer will result in a main program
crash.

REQUIREMENTS

:

Setbufd requires one parameter. Buffer__length is
the length of the data buffer to be used. The buffer length must
be under lOK. lOK is the maximum data buffer size. Buffer_length
is expressed in bytes.

SPECIAL: Again, the buffer length can not exceed lOK, and should
be expressed in bytes.

EXAMPLE

:

setbufd (1024)

?

/* sets a IK buffer */

setbufd(10240)

;

/* sets a lOK buffer */

setbufd (0x800)

;

/* sets a 2K buffer */

76

SETMP

FUNCTION NAME int setmp (mid, irrt, orrt , irwp, orwp)

FUNCTION TYPE ATG

PARAMETERS PASSED unsigned int ==> mid
unsigned int ==> irrt
unsigned int ==> orrt
unsigned int ==> irwp
unsigned int ==> orwp

PARAMETERS RETURNED int

PURPOSE: Setmp performs the function allowing the drives medium
parameters to be set.

REQUIREMENTS

:

Mid represents the medium identification, that is,
disk style. Irrt, Orrt represent the values of inner and outer
radius reading thresholds. Irwp and Orwp represent the inner and
outer radius writing power.

SPECIAL: In normal conditions all parameters are set in the drive
during the disk spin up. It is not necessary to use this command
unless the drive is unable to spin up this information. See the
ATG manual for a further discussion.

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

77

SMOVE

FUNCTION NAME ? int

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

smove (addr)

SONY

long unsigned int ==> addr

int

PURPOSE I Smove moves the drive head to the specified sector of a
disk.

REQUIREMENTS

:

Addr is a long unsigned integer equal to a three
byte address.

SPECIAL: Remember that only 3 bytes of address are considered.

EXAMPLE

:

smove (lOL); /*moves the head to sector 10*/

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

78

SRDRES

FUNCTION NAME; int

FUNCTION TYPE:

PARAMETERS PASSED;

PARAMETERS RETURNED;

srdres (allw)

SONY

long unsigned int ==> allw

int

PURPOSE

:

Srdres receives diagnostic information formed in the
execution of the send diagnostics commando

REQUIREMENTS

:

Allw specifies the amount of diagnostic data to be
returned. Allw is a long unsigned integer of which the lowest two
bytes are used.

SPECIAL: Due to the complicated nature of this command it is best
to reference the SONY manual

.

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

79

SREAD

FUNCTION NAME : int

FUNCTION TYPE;

PARAMETERS PASSED;

PARAMETERS RETURNED;

sread (length , addr

)

SCSI

unsigned integer ==> length
long unsigned int. ~> addr

int

PURPOSE

:

Sread performs the SCSI short read function. Data is
transferred from the medium into the specified buffer.

REQUIREMENTS

:

Length is an unsigned integer between 0 and 255
specifying the length of data to be read. Length has the units of
logical sectors. Addr is an long unsigned integer specifying the
address of the read data.

SPECIAL; Length should be between 0 and 255 and should not exceed
the length of the data buffer set up with the setbufd function,
as data is read into this buffer. The address must not exceed
three bytes in length, if it does only the 3 least significant
bytes are considered as the address.

EXAMPLE

;

sread (1 , 204L) ; /*reads IK from addr 204 */

sread (10 , 0x255L) ; /*reads 10k from addr 255h */

RETURNS

;

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. ^Erdec' can be called to decode
the error.

80

SRELE

FUNCTION NAME: int srele (tp, tpid)

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

SONY

unsigned int ==> tp
unsigned int ==> tpid

int

PURPOSE

:

Srele releases exclusive control of a drive unit
obtained through the reserve function ^srese^.

REQUIREMENTS

:

If tp=0, no tpid (third party id) is required. If
tp=l, then the tpid needs to be specified. In this situation the
device the command is sent to is released from exclusive control
by the specified party.

SPECIAL: If tp=0 no third party id is necessary.

EXAMPLE

:

srele (1, 2)

;

srele (0^ 0) ,*

/*releases the lun

/releases the lun
controller*/

from device

from the

2 */

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

81

SRESE

FUNCTION NAME: int srese (tp , tpid)

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

SONY

unsigned int ==> tp
unsigned int ==> tpid

int

PURPOSE

:

Srese gains exclusive control of a drive unit.

REQUIREMENTS

:

If Tp=0, no tpid (third party id) is required. If
tp=l, then the tpid needs to be specified. In this situation the
lun the command is sent to will be reserved by the specified
third party.

SPECIAL: If tp=0 no third party id is necessary.

EXAMPLE

:

srese(l^ 2) ;/*reserves the lun for device 2 */

srese (0, 0) ?/*reserves the lun for the controller*/

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

82

SSDIA

FUNCTION NAME int ssdia (pllw, st , devl , unio)

FUNCTION TYPE SONY

PARAMETERS PASSED long unsigned int ==> pllw
unsigned int ==> st
unsigned int ==> devl
unsigned int ==> unio

PARAMETERS RETURNED int

PURPOSE

:

Ssdia sends the diagnostic command to execute diagnostic
commands with subcommands or a self test.

REQUIREMENTS

;

Unio is an unsigned integer of 1 or 0. When equal
to 1, unio allows writing to occur during diagnostics in the
medium test area. If equal to 0 no writing will occur. If devl is
set to 1 diagnostics will affect other logical units on the same
target. If devl is 0, only the current target/logical unit is
affected. St specifies self test when equal to 1. If equal to 0,

a level 2 diagnostic is implied. Level two diagnostics require a
subcommand. The length of this subcommand should be specified by
the long unsigned word pllw, the parameter list length. The
parameters that specify the sub command should be in the
program's buffer before this function is called.

SPECIAL; Due to the complicated nature of this command it is best
to reference the SONY manual.

RETURNS

;

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

83

FUNCTION NAME: int

SSEEK

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

sseek(addr)

SCSI

long unsigned integer ==> addr

int

PURPOSE

:

Sseek performs the SCSI short seek command. This command
essentially moves the laser head to the requested sector on the
medium. No data transfer occurs,

REQUIREMENTS

:

Addr is a long unsigned integer. It specifies the
address to seek. Only the low three bytes of this variable will
be considered as the address. If any bytes higher than three
exist, they will be ignored.

SPECIAL: It is important here to remember to properly use the
long integer variable type.

EXAMPLE

:

sseek (0x256L) ,* /*moves the head to 255h */

sseek (6L) ,* /*move the head to 6 */

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec^ can be called to decode
the error.

84

START

FUNCTION NAME : start (

)

FUNCTION TYPE: SCSI

PARAMETERS PASSED: none

PARAMETERS RETURNED : none

PURPOSE

:

Start is the drive start function that is developed and
added to the library in the lower level program example in the
programming portion of the text. Start simply starts medium
rotation.

REQUIREMENTS

:

none

SPECIAL: none

EXAMPLE

:

start 0 ? /* starts the drive */

85

SWRIT

FUNCTION NAME : int

FUNCTION TYPES

PARAMETERS PASSED?

PARAMETERS RETURNED:

swrit (len , addr

)

SCSI

unsigned int ™>len
long unsigned int ==> addr

int

PURPOSE

:

Swrit performs the SCSI short write command. It will
write the data supplied in the program buffer to the supplied
address. Length is variable controlled.

REQUIREMENTS

:

Len should be an unsigned integer representing the
length of the write in logical sectors. Addr is a long unsigned
integer describing the logical sector address for the write on
the medium.

SPECIAL: The address is specified to be 3 bytes long. Truncation
of oversized long integers will occur. Before this command can
occur there must be data to write. Data should be loaded to the
buffer before this function is used.

EXAMPLES

:

swrit (1, 0X208L)

swrit (10, llllL)

/*writes one sector to 208h*/

/*writes 10 sectors to 1111 */

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

86

TESUR

FUNCTION NAME:

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

int tesurO

SCSI

none

int

PURPOSE

:

Tesur performs the SCSI test unit ready command

e

REQUIREMENTS

:

none.

SPECIAL: This command can be used in conjunction with the erdec
routine to establish the status of a given target.

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

87

TIDLU

FUNCTION NAME: tidlu (targ^lun)

FUNCTION TYPE: TOOL

PARAMETERS PASSED: unsigned integer ==> targ
unsigned integer ==> lun

PARAMETERS RETURNED: none

PURPOSE

:

Tidlu is a TOOL function which initializes the target
i,d. and logical unit number in the command block. It can be used
to change the target i.d./ logical unit number when addressing a
new device is desired.

REQUIREMENTS

:

Targ and lun represent the target id and the
logical unit number respectively. These parameters should be
unsigned integers between zero and seven. Failure to conform to
these standard limits will result in a random target/lun
combination. All following commands will consequently be
misdirected.

SPECIAL: Targ and lun must be between 0 and 7.

EXAMPLE

:

tidlu(0, 0)

;

/* sets the target id and lun to
0 and 0 . */

tidlu (1,

3

)

t

/* sets the target id and lun to
1 and 3 respectively. */

88

USERBUF

FUNCTION NAME: userbuf (patlen, fill , start)

FUNCTION TYPE; tool

PARAMETERS PASSED;

PARAMETERS RETURNED;

unsigned
unsigned
unsigned

int ==> patlen
int ==> fill
int ==> start

none

PURPOSE

;

Userbuf is a user interactive subprogram that
establishes a pattern then fills the desired portion of the
program buffer.

REQUIREMENTS

:

Patlen is the pattern length represented by an
unsigned integer. The user will be prompted for this number of
bytes. The fill unsigned integer represents how much of this
pattern should be placed in the buffer. Start is also an unsigned
integer; it depicts where in the buffer the data will begin.

SPECIAL: The user will be prompted for values of the pattern. The
total fill size and the start value should not exceed the upper
boundary of the program buffer.

EXAMPLE

;

userbuf (2 , 1024 , 0) ; /*2 byte long pattern filling a IK
space in the buffer starting a 0*/

userbuf (12 , 512 ^ 152) ;/*12 byte long pattern filling a
1/2K space in the buffer starting
at the 152 byte*/

89

VERIF

FUNCTION NAME I int verif (nos ^ addr

,

rel ^ btch

^

blkv)

FUNCTION TYPE o ATG

PARAMETERS PASSED

^

PARAMETERS RETURNED

2

long unsigned int ==> nos
long unsigned int ==> addr
unsigned int ==> rel
unsigned int ==> btch
unsigned int ==> blkv

int

PURPOSE

:

Verif has several differing functions. It can do a byte
by byte check of the specified address. It can also be used to
verify that a sector is blank. For a description of how to use
the command's different functions refer to the ATG manual.

REQUIREMENTS

:

Addr is a long unsigned integer describing the
logical sector address which is to be verified. Nos is the number
of sectors to be checked. Btch specifies that a byte check is to
occur; if equal to one a byte by byte check of data occurs. Blkv
as a one specifies that a blank sector check is to take place.
Rel is a 1 or 0 to indicate relative addressing or normal
addressing.

SPECIAL; The address is specified to be 4 bytes long; truncation
of oversized long integers will occur. The logical sector address
should be in the following range: 0 to F423Fh.

EXAMPLES

:

verif (IL, 6L, 0 , 0 , 1) /*verify that 6 is blank */

verif (IL, 6L, 0 , 1 , 0) /*verify the data on sect 6*/

RETURNS

;

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

90

WRITES

FUNCTION NAME:

FUNCTION TYPE:

PARAMETERS PASSED:

PARAMETERS RETURNED:

int writeb (tl ,bn)

ATG

unsigned int ==> tl
unsigned int ==> bn

int

PURPOSE

:

Writeb writes data to the specified scsi device drive
buffer,

REQUIREMENTS

:

Tl can be one or zero. When tl=0 the length written
is 1024 bytes. When tl=l the command writes 1115 bytes to the
drive buffer. Bn is the buffer number, 0 corresponds to drive
buffer 0 and 1 corresponds to drive buffer 1, The command will
write the data to the specified drive.

SPECIAL: The drive must be put into diagnostic mode before this
command can be used. It is also important to remember that
sectors size can be 1115 bytes. The buffer should be able to
accommodate this. Data is written from the program buffer to the
external device buffer, therefore the program buffer must be
loaded with the desired data before this command is executed.

EXAMPLE

:

writb(l,l),* /*writes lllSbytes from the program
buffer to the drive buffer 1*/

writb(0,0)? /*writes Ik from the program buffer to
the drive buffer 0 */

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

91

WRITL

FUNCTION NAME : int

FUNCTION TYPE:

PARAMETERS PASSED

S

PARAMETERS RETURNED

J

writl (lenw , addr , rel

)

SCSI

long unsigned int ==> lenw
long unsigned int ==> addr
unsigned int ==> rel

int

PURPOSE

:

Writl performs the SCSI long write command. It will
write the data from the buffer to the supplied address. Length is
variable controlled.

REQUIREMENTS i Lenw should be a long unsigned integer representing
the length of the write to occur in logical sectors. Addr is a
long unsigned integer describing the logical sector address for
the write on the medium. Rel specifies the addressing mode
(l=relative)

.

SPECIAL: The address is specified to be 4 bytes long truncation
of oversized long integers will occur. Before this command can
occur there must be data to write. Data should be loaded to the
buffer before this function is used. The length of the write is a
long unsigned integer; only the low two bytes of information will
be regarded for this parameter.

EXAMPLES

:

writl (IL, 0x208L, 0) /*writes one sector to 208h*/

writl (lOL, llllL, 0) /*writes 10 sectors to 1111*/

RETURNS

;

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

92

WRVER

FUNCTION NAME! int wrver(lenwyaddr^rel^btch)

FUNCTION TYPEj ATG

PARAMETERS PASSED

s

long unsigned int ==> lenw
long unsigned int ==> addr
unsigned int ==> rel
unsigned int ==> btch

PARAMETERS RETURNED: int

PURPOSE

:

Wrver performs the ATG write and verify command. It will
write the data from the buffer to the supplied address. Length is
variable controlled. Mode of data verification can also be
controlled.

REQUIREMENTS

;

Lenw should be a long unsigned int representing the
length of the write to occur in logical sectors. Addr is a long
unsigned integer describing the logical sector address for the
write on the medium. Rel specifies the addressing mode
(l=relative) . Btch specifies the mode of the command. When btch
is 0, a simple medium verification takes place. When 1 , a byte by
byte data comparison occurs.

SPECIAL: The address is specified to be 4 bytes long; truncation
of oversized long integers will occur. Before this command can
occur there must be data to write. Data should be loaded to the
buffer before this function is used. The length of the write is a
long unsigned integer; only the low two bytes of information will
be regarded for this parameter.

EXAMPLES

:

wrver (IL, 0x208L, 0, 0) /*verifies the medium */

wrver (lOL;, llllL, 0 , 1) /*verifies the written data*/

RETURNS

:

One integer is returned. It is used to indicate error.
If the returned value is equal to FFh then an error has occurred
in the execution of the command. 'Erdec' can be called to decode
the error.

93

2.7 FUNCTION SYNTAX LISTINGS
#define u unsigned int
#define 1 long unsigned int
#define v void
#define i int
#define c char [20]
#define b unsigned char

/***/
/* FUNCTION DEFINITIONS */
y***/

V ascibuf ()

;

/* displays buffer as ascii */
V bufnum(u,u)

;

/* displays a buffer section*/
V byter ()

;

/* displays byte by byte */
i cif (Scmdblk)

;

/* command interface funct. */
V clear 0

;

/* clears the command block */
V displbuO ? /* displays the entire buf */
i dread (u, 1) ; /* diagnostic read */
i dwrit (u^ 1)

;

/* diagnostic write */
i edsene(u)

;

/* eject sense toggle */
V erdec()

;

/* error decoder */
V fillbuf (b^ i ,

i

)

?

/* fill the buffer option */
i firbl (1, 1 ,u) ? /* first blank sector search*/
u hi(l) ; /* returns the high byte */
i inqir(u) ; /* the inquiry function */
u 10(1) ; /* returns the low byte */
V loadbuf (c^u,u) /* loads the buf from disk */
V makebuf (c)

;

/* creates a buf cop on disk*/
u inh(l) ; /* returns the middle high */
u ml(l)

;

/* returns the middle low */
i mosel (u)

;

/* mode selection function */
i mosen(u)

;

/* mode sense function */
i prealo(u)

;

/* medium removal toggle */
V prinbuf ()

;

/* prints the buffer out */
i readb(u,u)

;

/* read the drives buffer */
i readc(l,u)

;

/* read the drive capacity */
i readdr (u, 1)

;

/* read data redundancies */
i readid()

;

/* read the disk id */
i readl (1 , 1 ^u)

;

/* long read command */
i recodw()

?

/* recover disk warning */
i rese () ; /* reset of the SCSI bus */
i resen (u)

;

/* request sense */
i rodis(u)

;

/* read the GDI status */
i rzzo()

;

/* rezero the drive */
i saiifoO > /* sense alternate info */
i sarsto(u)

;

/* start/stop toggle */
i scopy(l)

;

/* the SONY copy command */
i scssix(u,u,u,u,u,u)

;

/* user generated command */
i scsten (u,u,u,u,u,u,u,u,u,u) .*/* user generated command */

94

i scstwl (u,u,u,u,u,u,u, u,u,u,u,u) ;/*user generated command*/
i sdisej ()

;

/* disk eject command */
i seekbs(i,u)

;

/* blank sector search */
i seekl (1/U) ; /* long seek command */
i seekws(l,u)

;

/* written sector seek */
V setbufd(u)

;

/* set up the data buffer */
i setinp(u,u,u,u,u) ; /* set medium parameters */
i sinove(l) ; /* the move command */
i srdres (1)

;

/* receive diagnostics */
i sread (u, 1)

;

/* short read */
i srele(u,u)

;

/* release command */
i srese (u^u)

;

/* reserve command */
i ssdia(l,u,u,u)

;

/* send diagnostics */
i sseek(l)

;

/* short seek */
V start ()

;

/* start medium */
i swrit (u, 1)

;

/* short write */
i tesur()

?

/* test unit ready */
V tidlu(u,u)

;

/* set the target/lun nums */
V userbuf (u, u,u)

;

/* user generated buffer */
i verif (1, l,u,u,u)

;

/* verify command */
i writeb(u,u)

;

/* write to the drive buffer*/
i writl (1, l,u) ,* /* the long write command */
i wrver (1 , 1 ,u,u)

;

/* write and verify command */

95

.m

I. y
. ,|. v., _iti.

;;. Jt;

\ '->^1 f a5'^,?le«B
,^, „ ;:

*

r
.' ,L> ,. M ' SJ

'i {Jl)©V0J5fS -

. 5 (L)ae“^£>';2.© ^'X

^ -' - ='j'

^

•I ‘ -V
'

-it' ‘t it •>' - t -
', •></ j! ^

.

'•'..0:0'
, ,

i i

t (I)
''^'

w'

,•-.: -..ri

- ‘ f *
, i-t iL. (t'--'e/'r :4r.'t^!-y<!^

'.•^1

!W'-

^W,iyW,V]tX
' * ' •

'
.1

'

T
.

I iu.'.u \/Jk.

.X /l.'ib

tif v-^ i'

^•'<-
''

"."! -y

SsS)
m

“
' f

v(r’ , .,. it

V.v;:"-

'""
^^-“•

rKi 4

?'

,' "ji -V j ,
,

’’. . «• -» •

it.'t Sri {''ii-

.>5v*
(

’

I

(...

iCB'
Jm^^

/ -

t'f.T.i ‘

.'X'
«tr nt^vi

4riv.*
^ . f., •» «'

" -r,.* ..^tcT;' ‘

•y-i'^ w
.;\.A wopv

t,>)v

\' kill-
'’^X'.L- i.’.w

SCSI COMMAND SYSTEM INSTALLATION:
Installation of the SCSI COMMAND SYSTEM can be achieved as

follows

:

FOR TURBO C:

#1] Compile the command interfacing function using the
Microsoft Macro Assembler.

C> masm cif.asm

The file 'cif.obj' will be created.

#2] Compile scsilib.c with TURBO C to get the new file
'scsilib.obj '

.

#3] Create the library with the TURBO C library manager
as follows:

OTLIB scsilib . lib+scsilib . obj+cif . obj

The system is now ready for use.

TURBO C MAIN PROGRAMS

#1] Main programs for TURBO C should be compiled and
executed under a project file like the following, named
'myprj .prj '

.

progname . c (def .

h

, scsi . h)
scsilib. lib

Where progname is the name of your program. 'Def.h' and
'scsi.h' are command system files and should be included in
^progname. c'

.

#2] When compiling the following parameters should be set
in TURBO C.

PROJECT NAME : niyprj . prj

PRIMARY C FILE: progname.

c

COMPILER: model: SMALL
optimization for: SPEED

LINKER: case sensitive link: OFF
everything else: ON

98

#3] Use the 'f-9' key option and 'make' the project run.

FOR Microsoft C:

#1] Compile the command interfacing function using the
Microsoft Macro Assembler..

C> masm cif.asm

The file 'cif.obj' will be created.

#2] Compile 'scsilib.c' with MSC to get the new file
'scsilib. obj .

' as follows?

C> msc scsilib.c

#3] Create the library with the MSC library manager
as follows?

OLIB scsilib. lib+scsilib.obj+cif .obj

The system is now ready for use.

MSC MAIN PROGRAMS

#1] Main programs for MSC should include the files 'def.h'
and 'scsi.h'. Take for instance 'program. c'?

OMSC prograjn.c

will yield the object file 'program. obj ' . 'Program. obj ' can
be linked as follows:

Olink progrcon.obj

At the linker's 'lib' prompt the following should be
answered

:

Libraries [.LIB]: scsilib. lib

This should resolve all external calls. The resulting file
can be run.

99

(/)

u»

o>
o
(/}

c_
o

B

C/)O
UJ
0^
(/)

u,
4-»

(/)

«
«
«
*
«
«

«
*
«

«
•ft

Ui -ft

•ft

U. -ft

3 *11

•ft

ee *
•ft

•ft

•ft< "ft

•ft

H= -ft

•ft< •ft

•ftO •ft

•ft

</» -ft

«
•ft

ft ft

u
01

od

c
0)

o; c
Crt .P-

(A 0>
o>
0» </)

o« L. C ««^ O) 3 C
(A 0> w 0>
O) CA
0) II II II

t- W C
OJ 0> »- 0)
^ (A O —

^

tA ^ H-

S 5 ^ iD . e 0

(Q ^ ^ ^
l! !q ^ ^
CA O O U

ft

Ĉ
3 C—

» 3

03

01
Xo

•M u
II 11

c c
3 3

m ^ ^ in ^
V A *0
V A o

3w 03

:e^
*> ^

(0 ^ 03
4^ w 4-*

II ^ ^ II

Soil is
•M U O ^ U c_

oX c—« L.n 3
1 ^

ft

ft

ft

ft

ft

ft

ft

ft

UJ ft

ftS ft

ft
«-< ft

ft

I— ft

ft3 ft

ftO ft

ft

ft

ft

OS ft

ft3 ft

ft

CA ft

ft

(/} ft

ft3 ft

ft

QQ ft

U W U I-

O
O

ftftftftftftftftftftft ftftftftftftftftftftftftftftftft

exo
<

>- —I
cl

0£ M><
fSl

ex UJ
3:

CO u

oo
ex<3O

Z fSlu3 DCO
U. C9

1

UJ ft

ft

QC ft

ft3 ft

ft

I- ft

ftO ft

ft3 ft

ft

QC ft

ft

I— ft

ft

CA ft

ft

< ft

ft

ft

ft

CA ft

ftZ ft

ftO ft

ft^ ft

ftftftftftftftftftftftft

o
*5

0> 03

O O
c c
£ i

03 4-»

f c
o •—

g'S

CA CA
C C
3 3

03 0)

T3 “D^ %

03

Q.

03
Si
£
3
C

C 4-» J= Cm 0) 4^
cecAO)»^-
0) O) M- c 03 *3

01 u- 03 T3
CA O

U (. 03 4->

03 03 03 03 03 03jr03

O) s-
03 ^

•— O) CA O
C O) H- C
03 03 03—' CA O —

'

M- C C C
3 03 03 03

CA CA CA

CA 03 03 03 03 03"0‘0“0"D"0"D

U TO "O ^
3 E TO U fO
e. U ^ U CA 4-*

vu ..

1

.. ..1
L. C O
03 3

03 0) CO
4-» -» OV ^ 3:^ U 4-* ^

U
3

rzzoO

inqir(allo)

i

byte

alio;

clearO;

C

ctndblk.cdb[0]=1;

clearO;

cmdblk.cdb[1]=cindblk.cdb[1]

&

OxeO;

cmdblk.cdb

[01=0x12;

« «
« *
* «
* *
* *

* *
* *
* *
* *
* M
* «
•It -it

•K •It

•K *
* *
* *
* *
* *
it H
* *
it it

it it

it *
a *
a *
it *
•1C it

it n
it a
a it

it *
* *
it it

it ^ it

* it

it Q it

it it

it ^ it

it it

it it

it it

it u it

it a
it ^ it

it it

it ^ it

it it

it it

O
O
Xo

*0

^ O JX

o to *0
11 II E

f-i O^ nj- oaU W
n Si ^
T3 -U —
u u u

^ 3

tj O

it n
it it

it it

it it

it X it

it it

it Q it

it it

it ^ it

it it

it it

it it

it u it

it it

a ^ it

* it

it ^ *
* *
it it

it *
it it

it it

it it

it it

it u it

it it

it iii it

it it

it ^ it

it it

it HI it

it it

it (A it

it it

it it

it *
it HI i
it it

it G it

it a
it O *
it it

it ^ it

it it

it it it

o
o
Xo

o

Q. ww a>

CO

o ^ ^
in ^ ^
^ ^ ^ SO U Q.'Q
11 II II E^ ^ <J

2 C
^ ^ ^
T} 13 U

• « O U U U
•w ^ ^ C
C. W w ^ c.
CO ^ ^ ^ 3
ii'g'SE o
o u u u u

(0 —

'

w <0 w'
C C.
a> 0^ CO
CO <!-• O
E ^ O

O
> u

•It

it

it

i
—I -It

•It

<;
> ;
o {

•It

•It -IC

•It LU •It

•It it

it ^ it

it it

it it

it it

it

a it

•It 3 •»

•It it

it ^ it

it it

:

:

it it

it a
* it

* 3 *
•It -It

* n *
•It
O *

it it

it ^ it

it it

* ^ it

it ^
it

it

it

it

it

it

it

it

it

it

it

it

it

it

it

it

it

it

it

it

it

< i

UJ -It

•It

UJ {

a:
•It

a *

o
o
Xo

•D

O)
CO •«.—» O)

CO 0)
<D <«-•

U

4) 3 0> ^^ "Q to —•
X £ w jQO U M- *Q
II II II E
fi r-j « <Jo ^ >t oa

^ ^ XI ^
O'O'D —

• « o o o u
w ^ ^ ^ c
C. W w w (.
(0 ^ 3
i; "g ^
o u u o c-

o *

o
<0—» O)

CO
cmdblk.cdb[0]=0x1b;

cmdblk.cdbll]

=cnidblk.cdb[1]

&

OxeO;

cindblk.cdb[1]=cmdblk.cdb[1]

&

OxeO;

ciTidblk.cdb[4]=al

lo;

cmdbl

k.

cdb

[4]

=f
I
ag;

return(

c
if

(&cmdbl

k)
)

;

returnCci

f

(&cnxdblk));

>

o
o
Xo

O
u

O £
X oO w
II II

» o ”
t.\o ^

cX

E w 5
<0 <5 *0
II le E

^ :o -o -o
"O *0 O u
03 (0 • •w w ^ ^
E ® IS S
03 (Q U U

^ ^ '4-

^^ TJ •-
u o u
^ .X c

ms
U O t» (-S

0)
Xo

•D

• % ^ !q0 0*0
II II E

J3 JQ
"O *0 —

»« O O U

(G J3 JQ 3
iJlil ^
o u o o

=8
(G

C u
01 3 c
-- “O 03

•— OS 03
C. C W
3 O
c/s —« <a '

03 01
4-* 03

^ o

o
03
Xo

JQO
o

§1 ..
X O EO W <0
II II II

O*: 8* 0^ O ^ ^
L. (. ^ ^ ^
2 32 2 "O “O ^
“O "D *0 U U O
<0 (0 (Q e e 0w w ^ ^ «X

“i E -2 S S IS

03 03 (G O O O

o «
«

o «

*
3- *

«u *

o
03
Xo

-Q
T3

03

• • C
0)

(G w
II II

r- CU Kl >t

? s
03 —

»

O) 03
C ^
O >.

^ 2 2 2'^
% 8^ Q o t5 u

^ X)
T) *0
o u

^ n
*0 *o
o u
cX ^
!o Id

c_^—# o—»-»—»-»—

»

03 03E E--»-Q-Q-Q-Q^
>^-c ^

" '§'§"§'§'8
—«J3’v^oo3(aa3uuuoo

UJ «
«

</> «

*o
o

U 03 “Q
II II E

QO «
«

03 ^w 03
C
03 03
(/> 4>^

03 >«
c. X> '

o
IIn f-« 1-1 oo ^ ^ oa

^ -Q ^
o*o*o*-

• «. o o u o
w ^ ^ ^ c
L. —« ^ ^ C_
03 ^ 3
- 1 1 «
o O O U (.

cmdbl

k.

cdb

[4]

=
Ien;

sseek(addr)

return(cif

(&cmdblk));

long

addr;

>

%

K u i? E °SO w (0 (0 (Q flS u
II II II II II II E^ ^ f—« 1-^ Oo «- fvj ro nJ- od

*00000000
^ ^ ^ c

mil
w <0

c
g o^— L.
II —«w II

«
se *

«o
«

*-» <K

«
H»

«O «
«2 «

«
>- *

*
U. «

«

11} « w

O O O

(/)

_ (/) CO

xT .. i S
cn ^ w w
C w O w

E
O (Q M IIW o —^ -C

^ CO CO

(D

I
II

i>—^^s^^occcncTJO}
m
o
<H

« z «
* *
* O *
* «
n
« «

o
o
Xo

« u «

O
o

•It •»

u

? 2 ..
CO o o

>«.

3 «><0
C 8- ^

Xf —

»

w isw CD (.
u
41 0» 41
> C ^

o

§

i
(0

u

o
41
Xo

J3

X uO w
il tB

1

CD C
4j 41

3 —* ^ <0 O

CO

e w
It

C JZ
O II

cC
3 CO

L. C.

CO CO

II II

§ E
CO CO

^ ^ ^
V -D X
V o o
u • «

> ^ ^
*1? 3 S
^gl
.o o u

.£ S E
CO CO CO CO
II II II II

«V PO *4' t/>

^ ^ ^ ^X X X X
u u u o
.X ^ ^ <x

3 3 3 3
1111
u o u u

3
II II

^ s

u u

Si Si

11
u u

X
3

•It

•It

•n

•n

•It

•It

•It

•It

•It

•It

•It

•It

•It

•It

•It

•It

•»

•Itz *
*O -It

•It

<— •»

•It

H- •>

•It

CJ «

a
•It

•It

•It

•It

•ItX •»

•ItZ •It

•It< *
•It^ •»

&-> •»

•It

•It

dc •»

•It^ *
*

u. -K

•It

1 s
CO c

O) o
C •!-•

•- o

w o —

'

E
CO II II

o ^
» <n

a>

’*— U C C

oo
Xo
II

• « ^ •- o
C- t- ^ •

to 2 -o t- JD
2 "O X X X
"O to CO "O o
<0 w w <0 •W X— E E O -»
f II II ^ ^
II .C — II "Q
JC E E E
<0 (0 <0 (0 u

o
rH

V

>
3

SiX

'4- -g •« X
rvj e
X u.Cb E^ 0) c/)^OwCOCOCOCOCC'Q
II II II II II II II II E
r—, ^ ^ r-^ ^ <J

xxxxxxxx*-ouuuuuouo
o Si—' il

II >

X

^ o

xxxxxxx c

1111111

-

uuuuuuot-<-s

CO

1

1 3
_ c
(0 <u

3
C t. 0«
4» X —

»

-» tS 4)w CO t.

4-* O) 41— C 4-1

O X

3 3
c c
4) <U4) 4) t- X- - X -q

o
’ — E

II II

c c
4) 41

3 ^ ^ u

1
CO W
.-i
.C II

Ji-i
(0 (0

X3X
u
X

«.o3

,51
X uO w
II II

• o ”
^ Si Si
32 X XX o u
CO • *

•W X X
-2 S 3
(0 o o

c § E
c
41

E _
(0 CO 3

II II

OJ PO >4* m N.

C X
Q) —

'

-» ^
irl

Si Si
'O "O
u o
X X
3 3
11

^ ^ ^XXX
u u o
XXX
3 3 3
111

^ s-X —
o o
X 3^ C-^ 3
1 1;UUUUUUC-r^

« 3 «

XO

jy
“D

•O ^
C*. C W^ a> ^
<0 -- T|
tl II E

13 JQO *0 •-
O U U

glS
u o c.

<0

c tT
« S c—» *D O

• «> ^

X uo W
II II

• c
£ w O ^
<0 <C —-

—
II II ir-g

S 2 32 ^
. T3 ^ ^ o t)^ (Q

» o r- rvj hJ* o«

«-\d ^

O) 01 0>
C. C 4-* <M
3 O >^ >
*0 —» ^ ^

15 ^
0) II

(0 (Qw w «:x <x

E ^ 2 S
(0 (Q U O

^ ^ ^ '4-
*0 -O -D —
O O O O
0 « e w^ ,x ^ c
^ ^ 2 3mt;
u o u u

^.5

T3

00 ^
'51

jD ^D •D
»«. O U

o •w .X JX

CO !S 2
iJll

— C JD
«*-> ^ "Q
II II E

1-^ p-> O
Ki

J3 J3
TJ “O —
U U U

JD Si

11'«^UOOOUC-i^
IT)

O

*0

«- rvj po m
J3 ^
TD *0
O U

JD JD
TO *0
O U

^ ^ cX ^
JD JD

11
!o JQ

11
U U

CA CA JD

f f 1^ i-i U
N- 00 oa

JD ^ H-
“0 -D —

<x ^ c
2^3
11

«
</) «

•ic

QO *
«

UJ «
«
*
«

LU «
«

< «
•H

QO *
*< *
«

O. *

LU «
•H

c/>

«

o
CL JD

•o

O ^
^1o o
II II

4-* 0.0.^
c. 3 3 w
(. c_ (. ^
O •- O Q
II II II E

o^>tin>OKoOoa

U U U 4^

Si Si
*3 *D

• « o u

<0 Si Si

«11
o o o

JD JDO "O
U U
JX JX

n ^
11
o u

JD JD JD M-.D "O *0 "-
O U O U
• •^ ^ ^ c
2 2^3
iiiii;
U U U (-

1
(0

c oT
oj 2 c
—'•DO)w <0 —

'

T5
(0 o> 0)
0) C 4-*

c- O
•D —' JD '

o
0)

X

JDD

JD
CO 2
0) E

• o ^ rsj

(. (. ^ ^ JD
*D T3 "D TD "D TJ

•- "D "D 'D O U U
(0 <0 CD « e •w w w w JX ^ ^

1. ^ O —' —' —

»

<0 e e 13 XI XI

ii i E - 1 1 1
u m (0 (0 u u u

clear(

); cmdblk.cdb[0)=0xfa;

cnndblk.cdb[1]

=cnidblk.cdb[1]

&

OxeO;

* *

o

81
X uO W
II tl

"O “D
m ”Dw <0

> O)
O C
E O
(A w <

.

0) II

U t. jO ^
S 2 "O *o
•D ”D *0 O O
<0 (0 41 • «w w w ^ ^

“i S !q

iJiii
09 (D O U

e — ^
(0 (0 'Q
II II E
f-i f-» O
(\J f>n odu u ^^ ^ H-
"O *0
o o o
^ ^ c^ ^ u^ n zi

11 lii

u o t- »-s

- ...

•5.1
^ Q.

a
4-* Q.

V
V
*u

» Q. V

“O
”

5.

o
o
Xo

•u
u

E ^
o ^

X w ^O “O
II II E

f-i OO ^ o«^ w^ ^ ^
.TJ *0 "•«

u u o
- . . .X oX c
U II ^ L.
<0 *0 4-’ ^ ^ 3
1 -a UlI 1 t:«V04^4->UOC.«^

4c Z 4C

4c 4c

4c 0 4C

4c 4C

4c 4c

4c 4C

4C 4C

4C 4C

4c 0 4c

4c «
41 Z 4c

4c 4c

4C 3 4c

4c 4C

4c bi. 4c

4t 4c

4C 4c

4c 4t

4c 4C

4c 4c

4c 4c

4c 4c

4C UJ 4c

4c 4s

4c </> 4e

4c 4c

4c < 4c

4C 4c

4c UJ 4C

4C 4c

4C 4c

4c 4c

4C UJ 4c

4c 4c

4c 4C

4c 4c

4c 4c

4C 4t •0
4c 4c -o
4c >» 4c

4c 4c 4-». Q.
4c 4t e> 4-»

4c z 4c a 0 ^
4C 4C Q.
4t 0 4c w> 4-»

4C 4c Lo
4C C/J 4c w 0 to
4c 4c QJ 4^ 0
4C 4K 4c c-

CA 3 w<»

VO
o
fH

3 «
«

u. «
4C

4c

4t

>« *
«U «

1:5
II II

JD ^ 3
11 ^
U U C- rN

LU «
•It

0^ 41

4t

H» -H

41< 4t

4t

O 4t

4t

4t

O 4t

4C< 4t

4t

LU 4t

4t

OC 4t

4C

4c *

1

3o

[if 1

..111^ to <0 <0;;l Su cs ^ to

4>to'^E-S
to C 4^ 4-* 4> II U II

Q> 0 >^ >^—».CE—

»

u to to to

3 JDO "D
3 ^
~0 *0

• « JX
c —

»

0 ^
IT'S

-a
o u o u u o

—. o —
2 ^ 3 3
u u u u o

4t 4C

4t 4c

4t — 4c

41 4c

4c O 41

4C 4t

4e O 4C

* 4c

* 4c

4t 4C ^
4C O 4c O
4t 4t —*0
4e < 4c —

#

0)

§ ^u ^ •

-Q
*0

.0 O ^
X ^ ^ SO U to “D
II II 11 E

3-Q3H-
'O'OTD-*-

•«. O O U O
w .X ^ ^ C
C. —< w ^ t.
to 3 .a ^ 3
- "§

"S o
U O O U t-

tpid=tpid«1;

return(cif(&cmdblk)),"

tp=tp«4;

>

cmdblk.cdbCO]

=0x17;

cmdblk.cdb[1]=((ciiKlblk.cdb[1]

&

OxeO)

{tp
|
tpid)

&

Oxfe;

return(ci

f

(&cmdbl

k)

);

/********************

* *

0}
Xo

“O
o

a-
II

<•«> S 3 3 3^
3 Q. -- w w -D^ W —* U

^ ^ CL a, Q. «

CL a w w w ^
55 -i

°

*D XJ
O O

*o XJ
o u

^ ^ ^
C ^ 01 II ^
2 V' ^ Q. L> o u u u

^ 1

c •

o ^

o
o
Xo

TJ
U

X uO
II 11

e — ^
<T3 fl3 12
II II E

1-1 p-i i-i U

? L'
<0 3 o
Ui (0 -

^ u> o
0 C •!-»

01 o >>
M ^ ^

. .1 ?^ <0

u t.

??
<D (Qw

E
II II

i E
(Q (D

D "O
U U

CO • •w ^ ^
2]q]d
^'g'g
(D O U

II II

a "o
XJ ^ H-D "O —
o u u

^ ^ ^ ^ c
^ ^ D

u o u u u
r-
o

>
01
*0

3
«

(/) «

o
o
X

> 4-»

01 (/)

*D
1 O

4-» •—
0) C
^ 3
3 1 •«.— — 3w > —

»

Q. 0> •w
13 a

(Q
•- o o»
"D <-* C
« o

a
ic
0> (0
-* 0)

^ o

i. <»-• II —

*

(A —

«

II >
4-* 0)
c/) *D

•D

•1 i3 ^
Q *g ^

o w a CL 12
II II II II E

PI f-? u
• 1 o vj* oa

n n Si n ^
—'"O'D'O'O*-

u u o o oa • • • •w JX ^ ^ ^ c
o ^ W (.

Si Si ^ Si 3

CL U O U U (.

z *
*O «

o «
«

< «

o «
«

«

111 *
«^ *
*o «
«

LU «

O

O ^ -C o'"

—- 3 3 O ^ M >t
(0 ^ uj t-i i-i

— Si Si
<D TJ *D

J3 JD
"D TJ

U U U U

I C) (0
4-* 01

s-* ^ u

o^ ^ ^
o s s
CO u u

Si Si

clearO; cmdbl

k.

cdb

[0]

=0xC1

;

cindblk.cdb[1]=cindblk.cdb[1]

&
OxeO;

cmdblk.cdb[4]=f

lag;

retum(cif(&cnidblk));

o «

o
o
Xo

•D
U

< ŵ ^

jQ ^

If 1
(-«? U

(XI

T3
U O

T3
(0
0)

oX c
L. <—0 •W (.
(Q ^ 3
iJiE t;

V? u o u

O
*« *

«

*

«

«O «
«

0
01
Xo

•o

.DO 12 —

»

X i ^© u 12
II II E

ja ^ ^
•D °D »-

«« u u u
a 0w cX oX C^ w L>

(C ^ 3
iill IS
o u u s-

3
"O
o
u
o

? L. O*
(0 ^w -O O
C/) (0 u
3^ a> a>
a> c w
01 o
c/) w jQ I

E
(Q

fO

0
01
Xo

O
u

u jc

II II

^ £ — n
(n <0 "Q
II II £

? ? 3 ^“ <0 “O o

O II

O (D

<0w w <0

o ^—

»

II

~

“O *0
^ jQ-0-0-0 —

u o u u u o

- ^ E

gl
o u

^ ^ ^ c
2 2 !q 3

t:
U U O L.

XI
13
u

E ^
If?

-D ^ '4-

-0 13 —
> u u u

(0 ^ ^
il flj

' u o u u

ClearO;

edsene(flag)

cmdbl

k.

cdb

t0]=0xC4;

byte

flag;

cmdblk.cdb[1]=cmdblk.cdb[1]

&

OxeO;

return(cif(&cmdblk)),”

unsigned

long

forby;

Od
Ô

O ^
c

O (.
a> 3

II 4-»

X o o^ W k.

o *
—

*U 4t

«z «
«

«
u. «

«
•k^ «

o «
«z «

< «
*£ «

ae «

o «
«u «

«

«< «
«

UJ «
«^ «
•ku «
•k

« «

•g =e =a =e =e £

^ ^ ^ ^ ^

u o o u o u

. . « e «> « B « o O OO O O O II H II

II II II II r-9 ^ r-^^ o «- rvj

^2 2 £ C C H
^ ^ J3 ^ ^ ^ ^
"O "O "O "O *0 *D *0
o u u u u u u
^ ^ ^ ^ ^ ^ ^
2222222
u u o u o u u

•k

H» *
•k

Cl «
•kz «
•k3 «
«

u» «
«
«
•ko «
<k

UJ *k

•k£ «
k< k
k

o£ k
ko k
kO k
k

og k
k

a. k
k
k

Q£ k
k

UJ k
k

(/) k
k3 k
k

C
t_

3
4-*

o
C 'V ^

O k
k

k

m
<n

-Q >4*
•

^ ro
«» >^

(M ^
<n f\j
• >^

>= ^

o ^
>^ «»

^ ow >^
X ^
CA 0)
CA -M
O >
CA ^ •

O «- CNJ Kl
>. >. >^ >.
Si ^ JH Si
II II II II

Si Si Si SiO *3 T3 TJ
>>« u o u u
w ^ ^
(_ W w w
(0 ^ ^ ^ ^
-1111
o o u u u

k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
It

k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k

C\
O

ozo

<

o

k k k k

H- >4' H-
f\4 Xn AO

C A •«.

o oa ^—» ^ >^ •- c- £
^T3 > O .Q <0

u C (0 II O C
O O) M- U
H- •— Cl ^ II 3w (A 4-* (_ > 4-»

•- C X O £ 4»£ 3 C** ^ H- (0 C

“O

(- c
O O)

w V>

"i 3 ^ MK

A O
A
>• od
JQ >

> O ^ ^
.C *4- l_ —
E M O C

>» >4- l_

0) ^ II 3
> 4J

5.0^ 01

>^T3^ 01
c C
O CA

> od ^
Si >

> O J!) £
H> (. w

£ II O C
H- t-

01 ^ II 3
<M t. > 4-*

O —» 01
E 3 JD s-

(Az
(X^ 3^ H—^ UJ

C QC
O

2 k

cmdblk.cdb

[43

=by4;

cmdblk.cdb[5]

=by5;

return(cif

(&cmdblk));

clearO;

switch(buffer.by[0]

&

0x7f)€

a: T? T3o
c_ c.

O O
UJ ^ u

c. u.
O 4)

o o o
c c

s C "O
c ^ o

"O u
<0 Q>

W 0)
Q£ 'DO
0^ O U

C O
liJ u

a> u
> o

O ^ ^ C.6

4-=) 4-* 4-!*

a> c c c (Q
efl •— •— a>
(D c. c. t.
u a Q. a<D

^ «4«> H- 8 *»

4^ 4-» 4-» ^
0) C C C <0
(fl 0,- 0^ ^
<0 ^ C» U. U
u Q. a

(/» 0 ei CO • • CO 00 00

CO <3 >• CO C3 >- CO o >-
< 1— z < Z < l~ z
< o < o < ou !P u m u (O

w w w ec W w • 0 w
csi «•» fO *- e<». «4-> ^

4-* 4-» ^ 4-» 4-f 4-* ^ 4-f 4-» 4-» ^
o c C C (Q 01 c c C <0 Oj c c C (0
CA (A 01 (A »o- 01
<0 £„ c. (. (. (0 L. (. &. c. (0 f. L. C.

o a a u a Q. Q.^ U a a

o *

(MK>^LO'Or^OO<>—

»

V -QX>>S>. X>s>>.>s,
II II II II II 11 II II II

0^fNJK>>4'm'ON-GOO^od

D'OXJ'O'O'O'OTJ'OTD*-uuooououuuu
c

uouuuouoouu

«
*

o. «
«

O jQ

o*
«» >*

^ Si

^ <>

OO* jQ
>. •^ eo

>-
rs. jQX ^
Si
• >»

>0 jQ
>^ «•

- >.
in ^
^ m

«» >*
ro ^
^ PO
• >.

CNJ J3
*

^ rvj

^ -Q
>^ *

Si ow >^^ Si
3
4-* 0)
(/) 4-*

u >

<!- CV fO '4*

>. X >^ >^^ ^ ^ ^
II II II II

m >o

Si
II II

h>» CO
>^ >
Si Si
It II

^ II

II r-i

o^fMro^tn'Or^ooO'
Si Si Si Sio T3 "a *0
o u u u

Si Sio "O
u o

Si Sio -a
u u

s s
TJ ~0

<D S
<U "g

u u

s s s s
111^
u u o u

s s
11
o u

s s
11

s s
11
u u

cindblk.cdb[11]=by11;

printf

("CLASS

0

ERROR

5\n");

return(cif(&c(ndblk));

printfC

ATGi

controller

busy

\n

");

>

printf

("SONY:

no

error

detected\n");

break;

printfC

ATG:

reset

has

occured

since

previous

conmandXn"

);

default;

printf

("SONY:

unit

attention

condi

tion\n");

err1(buffer.by[0]

&

OxZf);

break;

break;

c
(/)

(A
01
C_

?
(0

•U
Q>
>
o
o
L.
o>

Q>

c

o<

3%

c

8

(A ^
(Q S
J1 C
(A "O
(A
O L.
U 3
<0 O

CA

E
eg

3
*3

c

o
Q.
O

u. C
Oi "O

C ^^ s
c

0«, £. • «> t. 0«. U CO 0) s UJ O 0« L.

o 3 o £ T3 C. > u 0> o
s c. U t_ 3 3 L.

C u. C) c t_ C U. c O c TO (J c 4-4 C_
0) o 01 u o o CJ c O OJo rvj c u ro 4-4 o O in c
0) CA 0) o u u u o

CO u. CA OJ 0) CA c. CA O£ o 1. CA CO 3 CO CA QC
Q£ CO cr CO OJ Of OJ t. Of U JZ Q£ c_

O 4.4 Cr. O 4-4 o 0> o nX O o o T7
u o oc () 4-» Of JQ ce c l_ QC ,c u cx 4-4 CD
0) (_ oe 0) 3 QC CO Q£ CO o cx o o ex o JZ

UJ u u UJ (_ o UJ T> o UJ c_ UJ 4-4 u UJ OJ u
lU 0» (» CO u t. CO (_ (A 4.^

o o E 0) 4-4 o F o CO

o u o 0) (_ c c CA T5 H
c o r c o o o o (0 C
3 UJ 3 4-4 3 u c c E c 3

(/) • fl 00 (/» 00 00 (/> ,, 00 (/) • • 00 C/) 00 00 CO 00 00

(/) o >• (/> (3 >» (/> O V </) o >- (/) o >- CO a >-
< z < z < - z < z < H- z < 1— z

o «c o < o < o < o < o < O
u u (/> u <A u (/> u (/> '4‘ u CO CJ CO

o OJ s s s s 5 s 5
u u w 'O w w w X X w w w X w X X
OJ o x: 0 « o *» • «> o • « o H- 0 « o a *1 o '4- *+- '+-w 0> u 4-4 4i4 4.4 4-4 4-4 4.^ 4.4 4-4 4-4 4-4 4-4 4-4 4-4 4^ 4-4 JX 4-4 4-4 4-4

4-* 0) c c c CO 0> c c c CO 0) c c c CO 0> c c c CO 0> c c c CO OJ c c c
4.4 CA 01 CA o CA 01 CA 0> CA o> CA

1. c 3 CO C. U t. c. CO c. c_ CO c- c. CO Ln Ln u u CO u u c. c. CO i:.. £.

OJ ^ CA U a Q. a>^ o a a a J3 a a a J3 u a a Q.^ (J a CL a ^ U a a Q.

rH
(H

c
H*
(/)

Ui3O
UJ
QC

U
Vw •«

<D S
C

4-»

C -O
o o
CA 4-»^ O O

= (. 0)
c a <M^ o
N- 4-* -O

O
C u

o
QC ^ L.

O <0 U
OC C 4)
Q£ O)
UJ

CA •M

O
(_W O

..5 t
o o

I “'S
00 C 4^

u
a>

(. —

»

Qo o a>o (- u
QO c.
Qo a> 01

c
CA
(.
OJ
4-*

I
(0
C.
(Da

SL

c o :
c< Q-

3
*3

4-* OJ
Of 0) 4->

O CA c.

S -o 5
UJ CO

U >•
> ao c o

u

V ^^ 4^
L. C_

35
U CO

o
OJ ^

CO c-w Q)a
o -g

•«« o> o^0)0
S -D 4-*

C - cu^ t. -Q
CO W

U CA

O “O c-

OC C O
Of CO 4-»

0> 4-»

CA
o c

c
f.

o
u •«
c- ^
o s

Q. ^
3

•D
4-» 0>
OJ 4-»

CA C.

o 5
4-* CO

3
CO g
*0 CO

> o
c

55-
CO •—

CO

c u^ CO 4-»

CJ ua o>
0) —

»

C. 01
OC CA
O 0) 0>
OC O) t.
QC -D

O
4-»

0>
CA

••.TJ

2 -» 3
C CO u^ > oO C O

O 0>
(A
O O

0) 2
E C
CO

CO 0)

>
c o— c

(/> <3 >-
< ^ z^ < o
CJ (/>

4^ 4-» 4-A ^
0> C C C CO
(/) Q)
CO c_ c. c. c.
u a Q.

</j .• «•

(/) o >-
< »- z
-J < o

00
4-f 4-» 4-» ^

0> C C C CO
(fl

C0 C-t-C-(-
u a Q. a ja

o _ w
O ^ w w^ ^ ^4_

4^ ^
0> C C C CO
CA O
CO c_ (_ C. L.
U Q. Q. ax)

(/) <3 >-
< z
-J < o

4^ 4oi 4-» ^
0) C C C CO
(/i 0^
CO (- t. (- u
u Q. a

(/i .• a.

C/> (3 >-
< - Z
-J < Oo _ w

fSJ W W W
«— H-

4-» 4-» 4-f

0> C C C
CA
CO
u

a»
L. U. U. U.
Q. a

(/i .• «•

</> C3 >-
< H* z^ < oO C/)

4-t 4~t 4J ^
C C C CO
•— — •— 0)

C/>

(/) <3 >“
< I— Z
—I < O
CJ

U Q. Q. Q.^

4-» 4^ 4-» ^
C C C CO

O
U U U U
CL Q. Q.X2

c

D

a>
4-«

c

•o ^
#*. (0^ » c
S (O
C > E^ c-o 4^ a>

O 4-»

c

g.2 8

C/3 .t «e

</j a >-
< »- 2

• 0 ^ < oO O </)

<M S £ S
X w wO ^ 0^

•!-» 4-« ^
d; c c c <0
Crt •-> ^
(0 c. t_ c. (_

u a a

c :^ c
d>
O) (.
c o
(0 C-
U L.

4)

§ >.

r ^ oL
c

o dj
o

4>» (0
3
O C.

QC OO V) W
QC C
QC
UJ (.

o^ >
u «*»

rvf d) c-
</) °D

(/) C9 >-<1-2^ < o^ <J </>

rvs £ s =
X ^ ^O 't- ^ 8%

4^ 4-» 4W ^
d» C C C (D
(/) 0^ ^
(0 (_ C_ t.
o a a

d) c
TO
1-

3X O^ Ja
£ ^
C TJ^ d> ••-

CsJ > "O
d)

O)
o c

fit di ••-

o *« ‘O
o£

"

“8^

C 80

d» c

««« (0

c
CA
O

u >
O (.
(A O

4-*

(A «

d>
3

</5 88 «•

(/3 C9 >-
< t- 2

•8 ^ < O
r\j u (/»

rvs £ £ £
X w w wO ^ ^ ^ «»

4.J 4^ 4-» ^
d> c c c (0
C/) O
(0 t» {. (. t_
u a Q.

•8 ^ < omu </1

rsj S £ £
X w w wO ^ '4-'

d»

4°» 4>^ 4-* <X
C C C CO
r- o
C_ C. (_ L.a a a.Q

d)
s.a

ii

O 8«.

< ^
g 1:

4-» d>
CO c.

3

1/^ CJ
(VS £
X w
o c
<A ••“

(0

O Q.

O’ <- c- SI
d) dj <D 3
C. (A O O

OC w u
-n d) Q£ O 4->

c —

»

UJ U

i'B
O d)
4^ *D
o —

5 a CVS C. W
U CA Q. CA

• a ec (/> e •(!

C3 >» CO o >-
1— 2 < 1— 2< O c c < O

>0
fVJ
u to

X w w
8% o *+- s-

4-* 4-* ^ 4-> ^ 4-*

C C CO d> c c c
(A

£.£»(_ CO c. (.
Q, u Q. a Q.

CN
(H
rH

C
CA
CA

d>
I.

?
CO

>
o
o
(_
O)

d) •«
1_ ^a £

c
c

d> <A—' CO

CO

•TJ

“o

u •-
<O :
UJ c

S

Q) U
u t.
L. dJ
O
u u
c u
3 UJ

</) O >-
< »— 2

• • —I < o
>0 O _ (/3

X W w wO H- ^ ••.

4-* 4-< 4^ ^
d> c c c CO
i/i ^C0UC.C-I-
U a Q. Q. JD

o
d> d)^ o t-

£ X 3
c dj u

u
s. CO o

UJ CA C-
C_ (.
o dj

</) o >-
< 1—2

•8 «J < O
h* o cn

c
T3
dj^ T3

. c- d>

8. 3
dj u

C C C CO
>- 0)
(. C_ (- u
Q. Q. a ^

3
COa
u<o

"D
_ CO

C dJ

*D
dJ ^
(A £
(A C
d>
U

. fO ^

i!

c

d>
o
*D

=8
CO

u x: u u x' o
CO o o o < 4-* o CD c. o

t_ c o O
o CA CA c CA 4-0 CA
(. CO CO CO O CO2 (_ JZ cx (_ oc c SI CX dj <co dj o o o CO O CA

tx (_ oe u i. cx u C. 2 S.
oc p o (X u o tx o (X .w o
UJ $ t_ UJ d» (_ UJ c. L. UJ CO t_

>* (_ t_ o U o t.
CO d) CO dJ 4-> d) d)

4-* o CJ>
d> o CO o d) o o o
X? c *D c CA c c

to ce es to • e ,, to ,, ,, to ,, so

(O a >- to o >- to C9 >- to o >-
< 2 < »— 2 < - 2 < »— 2< O •• _i < o • -J < o 0 < O 0 %

to u CO CO o to n u to
£ £ £ £ £ £ s s s s s s so <J u

X X X vx vx >x W t> o
H- '4- •«. o H- o «4- M- 8*. o dJ 0

4^ 4-* 4^ ^ 4^ 4iJ 4.J 4^ 4-» ^ 4-* 4^ 4-0 ^ 3
c c C CO d> c c C CO d) c r C CO dj c c C CO <0 CM CO CM

CA CA CA VK t_ d> 1.
c. (_ I_ CO u. t_ u u CO l_ c_ C. (. CO c. (_ t. dj L. C_ S« u
Q. a. a ^ u a a CLSi <J a a a u a. a a TJ dj SI C o

c ^

^ t- H-
S D H-
C U O^ UO O (A

O S.

£
<A
<a
x:

o c.
C T3

c/) .. •«

c/> o >-
< »» 2

.« -J < OO U (O
ro = s s
X w w wO «4» ^ 0*

4-» 4-* <M ^
C C C (0

tfj .p. 0^ ^
(Q t. U C. f.
u a a

^ *j c

T- O •-

rr-^
<\j o

o

3 •«

(A S
(A C
«) ^

"D 44 CA
.X JX o <0 (Q

et c c 2 C c Q£ 44
a (0 o (9 o 032 QC (A QC D C_2 cD 2 QC O
UJ CA UJ UJ c.

4-A 44 03 O (.
(A •o (A > (_ 03
L. t. (0

o ro (_ ro 03 O
c T3 CA c

(A «• • • (A «e ,, (A 0* ,,

(A C3 >> (A C9 (A (3 >• V< 2 < 2 < H* 2< o _J < o < o uO CA (NJ CJ (A PO CJ CA u
s s s : s s ro : : s • e O u 03

X w X w w w 44 (J o O
•4- <4- «4-. o« o H- '4- •4- e- o '4- H- •- 03 03 o x:
4-» 4-4 4-1 ^ 4-» 4-* 44 44 44 44 ^ 3 <X w 03 o
c c C (D 03 c c C (0 03 c c C (0 03 nO- (0 >0* 44

CA 03 CA c. 03 c. 44
Ln Ln u c. (Q lU iL. (. t_ 03 Ln (. (_ 03 (. {. B«, (_ c 3
o. a O Q. a. O.^ U On a Q. ^ X3 03 ^ ^ c 03 CA

C
&.
o

e« 4^

S 03
C^ 0>
*o

• <» 4-*

U. 4-»

s 3 •-
CO—'

uo o «»

O)
CA C
(0 ••-

cx ^ CO t.
0£ (. (0

O 3
UJ C_

1. a>

c/)

(/> C3 >-<1—2
-I < OU (/>

4-» 4-1 4-1 ^
C C C 03

•— •— <u
{. C. U C.a a. ajQ

c

03

C :

^ 5
.2 § C

0)3
03
(- (Qa 3

..c'E^ O 03
: X
C 0)^ 4-* c
N. .-

u
3 03

2 0^
O «M 3
QC O2 4-« U

“t;
4_« O

(V ^ ^
03 CA

U 44

•« 44 44 • «>

4^ O *4-

: 03 03 s
c — c^ 03
00 CA CA o

03
03 nC

2 Q TJ 2O £ (0 O2 03 22 T3 .c 2
UJ UJ

(.
03 03
> CA

CM C (0 (M

^.2
C M-

i ^
-» c
&.2

O 3
c *5

? ^
03 0)

^ s o
= c o
C ^ 4^

« (A 0)

O 32 E Q
LU *0

u
O
u

(NJ 0)

^ O)

C jC

^4^0
: M O
C O 4->

2 03 03
O <M 32 032 T3 S.

c c

% -p
•• > 2»^ c. (.
: 03 3
C CA O^ 0) ou c. o

032 C £O 3

^ 03
O)
o o—

» c

<A •• ••

(/) o >-
< ^ 2

• • —I < O
N. CJ </3

(NJ s : s
X w wO ^ ^ •«

4^ 4-* 4>i ^
03 C C C 03
</) 03
03 (- U (. (.
U Q. Q. Q.^

</y •• ••

(/> o ^< h- 2^ < O
eo o in
(NJ s s s
X w w wO *4- *4> ^ •«

4^ 4i^ 4-< ^
03 C C C (Q
CA — 03
03 U (_ (. (.
u a Q.

(/> C9 >>
< F- 2

.* -I < O
O' (J CA
(Ni : : r
X W w s.^O *4- ^ «4- •«*

4-» 4-« <M ^
03 C C C 03
(/i ... 03
03 U (. (. (.
U a Q. Q..D

03 U
(NJ r ;

X wO H-
4-f 4-» 4-* ^

c c
•- .p- 03
C. t_ (.a

(/) ..

(A C3 >-
< 1-2

^ -J < O^ U _ (A

X w w wO ••»

4-* 4-» 4-< ^
03 C C C (9
tfl 03
03 (- U C. (.
(J Ou CL Ql^

CA C3 >-
< 1—2
—i < O

(NJ

XO
C C C (D

03U U U U
Q. a

4-* o—
. 03 •>*

3 ^
03 ro 03

C. 03
03 t- (-^ 03 ^

err3(ecc)

case

0x41:

int

ecc;

printf

("CLASS

4

ERROR

1\n");

i

printfC

ATG:

no

error

has

occured\n");

swi

tchCeccX

printfC'SONY;

write

error,

disk

is

no

longer

valid

for

write\n");

o '4-

>
c. 4-*

0) o
(A c
o> (A
c CA

0)
c
O CA U
3?
O <0

CL ^
2
oc »f-

o u

O tf»

o ^
> s
t. c
0) ^
tf) "g

O) 13

c o
•I- »-

O 4-*

e«> (Q o^ u C
: 4-^

C CA^ w^ <0

*0 o
(0 o
C. W

O ^ jQ
OL C
flC «^ (/)

UJ C/)

&. 4»
O c-

m t ?
O (Q

^ c
: o
c^ "C
O <0
> o
C. (>
a;

c o>^ c c
(NJ •— (0

c u
CL CA
(A a>

C "D
<TJ

(- 0)
O U

ro c 4-»

o o
•- c
4-*

0^ (CO N —

«

QC 3
QC »# O
UJ (0 U

4>J (0
4^m c (0

«- 13

u "D
3 <0
U V
o u
o

0)
(A W
(Q ^

0) O
u

o c
C 3

c
41-^ S
= > c
C t- ^^ om E u

OJ o
E u

(_

0£ £ 0)

O
Û

4-* (Q

</> e« 00

(/) LS >>
< Z

• • ^ < OO U </)

ir% s s s
X w wo '4> ^ ^

4-* 4-* 4-» ^
0) C C C <Q
CA 4J
(0 £» I. 1. U
u a a

</) .0 0.

(/) o >-
< ^ z^ < o

o ^ o«»

4^ 4-» 4-» ^
Q> C C C (0
CO 0^ 0>
(C u u u u
O Q. Q.

C C C
p- 0^ OJ
U t. C.a a Q.^

c/s 00 ••

<A O >•
< Z

• * —» < O
K> CJ (/>

I/S s s :
X W W ’Omi'

O 'H- '«4-> •**

4-* 4-» 4-* <X
OJ C C C <Q
CO OJ
(Q I. C. C. (.

U Q. a Q.^

c/s •• •«

cn o >>
< »— z

• • —I < oO (/>m s s s
X W wO ’4» ^ e*.

4-* 4-» 4-* ^
OJ C C C <D
CO OJ
<Q U L. U S.
U a. Q. CL^

C/S 00 ec

</) o >-
< Z

•« oJ << O
in o c/)m s s s
X W w wo ^ ^ ««.

4-rf 4-» 4-* ^
0) C C C (0

CO o
(0 c_ t. u c.
u a a

c/s 00 .0

(/S o >-
< »>> z

0 « _J < O
nO o ^ ^
X W w wO ®*

4-» 4-» 4-» J»<

<U C C C (0

CO .o- .0- 0)
(0 L. L.

U Q. Q. a> ^

c

(A
3

rH

c
<0^ l_ u

S 3
c u ^

O tA
rsi o

c
fO

s a>
c c

o
"O

. 0) u
(- o
3 u
u c.

O 0)

.^S
S 3 (.cue.^ U 0)

o

c

<. ^
: 3 •«
c u ^^ u s

c :^ cD
« <U 4»^ C. W

r 3 ^
C O 3^ u o
N. o t-

ID *0 4-* 4^ 4^
(A CA (A u CA u CA o> (A
(D (Q "O (0 QJ CD <u (0 c (Q c

QC JC c. ex <0 ex .C 4J ex JZ 4-» ex ex .C oo O O QJ O o O o O *c O
(. u QC (. (. QC t. c. QC I. c. ex u 1. ex L. 4^

QC o c. ex O QC o a CL o a ex o (0 ex o (0
UJ u o UJ c. 4^ UJ u. UJ 1. UJ c. 3 UJ C. c

(. c. o c. <D e. 0/ c. (. (.
0) u c o 4^ 0) 4^ o M. u CJ

CA c CA 4-»o -4- o CD >4 o (. o C. o n4 oc 13 c U c 3 c 3 c *5 c (0

(/) o >-
< I— z

• • -I < o
rg o _
X W w wo

o
L_

J!)

4^ 4J 4-» ^
C C C eo— ••- ••“ o
t. U (. L.

Q. a Q.^

ro u
>t =
X N-^O '4-

4-«

0) c
CO •*“

(D (.

U Q.

<D >•
4- Z< o

4-< 4-» ^
C C <0
- 0/
(.(.(.
Q. CLXi

(/> •«

(/> C9< -
• » -J <

CJ^ s =
X W wO H- H-

c c
£- 1. _a a

4^ oX
C <0
..- o

m u
>1' =
XO

4-» ^
C (Q

a>

nO U _ (O

X w w wo ^

C/S 00 .0

</) <J5 >-
< I- z

• • .j < o

X w wO
4^ 4-> 4-» ^
C C C
»“ •*- •- o
t. {. i. (.
Q. Q. a.^

4-^ UW 0/ ®<o

3 W ^
(D m <0

*4- C. <U
0) (. C.O U -Q

o

4.^ ^
C (D

0)

^ 7
5 3 4.^

C U (-^ U Q^ O
<̂0

(/)

(0 </i

0£ ^ <JO •«-

to 4-«

0^ O M
UJ <- O

C. C
4) 0>

<0
>o O **-

c -o

a—
<

Cj c
Cfl

(0 t.
U Q.

c
m

(9

r"?
c —

» ^ o
^ SL

C/) o. ••

(/) o >-
< ^ z

• 0 ^ < Omo c/>

>C s s :
X w w wO ^ •«*

4-» 4-» ^
O C C C (0
(/) o
(0 (- t. c.
U Q. Q. O.^

3 ^
<9 (9

O
0) c.

”D ^

«

«
u» «

^ «

V) «

•It

O -It

*
*Z -It

*o «
•It

Qg *
*

Um> «
<»

•It

•H

0£ -It

•It

a. *
*

(/» -It

•It« -It

c —^ -Q
C -Q

0) 4-*—
< c

^
t- + +
Q. E —

» o o o
II II II

. JC E

C s
‘ c

“8

^ u o
S 3 (-cut.

o a
o

3
• « O^ u
= o
C^ </i

"O <9
0) £

. L.
(_ t.

3 O
U U
U U
o 0)

o

-o
: 4)
C —

^ u
r ^ ^
c
o

O (0
L. 4-»

L. (9
4) "U

C :
c

"D ^
.« 4) 4)^ t- t-
= 33
C U —

'

(/)

(9 ^f U
4)

C- f
O O
L.
U ^
4> C

(9

O -»
C jQ

41 4->

C
o o
c u

</> •• ••

V) o >-
< I- z

• • o < O
00 o _ w
X W w wo ^

4-» 4^ 4-« ^
41 C C C (9
0) 4)

u a a

u u
o ow 4>
nO

4> ^ C
c_

3
4-»

c/> o >^ < I- z
U •> o < O
u o o </>

4) >0 S S S^ X w w w£ O
o
4-* 41
••- W
3 (9

c/) u

4-* 4-« ^
C C C (9
- •— — 4)
c- u (. c.a a Q.^

(/> C3 >-
< I— z

• • —I < O^ O (/>^ s = s
X W wO H-

4-» ^
C <9

4;
c c
t. t_
Q. a Q.^

(/) .• .•

C/J O >“
< I— z

•C -J < O
CM O (/>

>o = = =
X W W wO •••

4-* 4-* -M ^
4> C C C 4J

4;
<9 t. (-
U Q. Q.

case

0x63:

printf

("\n'');

printfC'CLASS

6

ERROR

3\n");

h++;

printfC

ATG:

no

error

has

occured\n");

>

int

8dd[200]

,buf

len,e,h,

i
,in;

FILE

*in;

if

(

(in=fopen(name,"w"))

!=

NULL)

* «

JQ

u

>o

X

o o o •—
II II II JZ
a> £ X

c
Z. o“

* ft

ft

ft

•K ft

ft

M ft

•K ft

ft

ft

•H ft

•K ft

ft

ft
e « ft

fto ft

« ft

<K ft

>> ft

ft

ft

Q. ft

03 « ftO ft

H- « ft

E ft

ft

ft

ft

ft ft

ft ft

ft UJ ftX ft ft

ft

ft

ULo ft

ft

ft ft

ft ft

c ft 3 ft

ft ft

ft CO ft
«- • % ft ft

ft ft

c 5 ft o ft

C ft ft

«- + + ft UJ ft

^ t + s ft ft
'4- E t *> ft :s ft

c ft ft

C ft ft

ft ftW e ca ft ft

4-» 03 ft ft

c <0 ft UJ ft

o x: ft ft

+ w o ft o ft

Oc ^ U II « ft

H- JC r*^ 03 .-S ft ft

•

«

ft QC ft

03 ft ft

(0 03 ft Ul ft

ft ft

rs 03 c ft C/3 ft
t. ft ft

3 ft 3 ft

4-* ft ft

03 ft ft ft

E S.
c_

4-»

0) C
D »-

VO
fH
fH

« « «
« *
« «
•n «
* *
* *
* *

* «
« O «

E
oH

O
oe «

"OD
CD

od

^ X
>0 c\i

r-i (0O W
(M W)

(0 »-* -
CO ? -T

c

o

O V)

^ X

•M s
(_ o
03 C
4^
(0 W
+
C C
01 (0 •«—' u o
3 (0 II^ H- £

03 C— CO
•— U +

42 |.t

^ •W ••»

C_ C- w
<0 CO 03M ^

t/) •—
II ^
•- 3

—» II w
03 03 1^ C

5
*a

i s
<0 —

*

^E
c_
(0 4^
-C c
o •— « «

whi

le(

i<=patlen){

printfC'**

enter

pattren

element

%d:

scanf(‘'%X",&patr[iJ

);

while

(

i<=tralen+start-1

){

buffer.

by[i]=patr[m]

;

if

(m==patlen)

{

*

•K

*
*
*
*
*
*

•K

*
*

*
*
*
«

*
*
*

•It

*
*
*
•It

•It

•H

•It

•It

•It

•It

•It

•It

•It

•It

•It

•It

•It

•It

•It

•It

•It

•It

•It

•It

•It

*
*
*
*
*
*
*
*
•It

•It

•It

•It

•H

Q.

<
a

o

>-

o.

o
u

oe

UJ

3

Ul

<

•It

•It

*
n
•n

•It

•It

•It

•It

•It

•It

•It

•»

*
•n
•»

•It

•It

•It

•It

•»

*
*
•k

•k

•k

•k

•k

•k

•k

•k

•k

k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k

X
C\J

>o

k

c
s.
o

— c —

X
3$

fc + +
JO CL
3 4-

E -
O O •*-

11 II JO
•*“ =C 3

1 .1 ^
c

Q. •!> U
s- jC /-S ^ 01 0)

< k
k

k k

O
</>

*s

3
0)
t-

k O k

k k
k 35 k
k k
k CD k 1 • % •

«

k k 4^ ^ +
k k U 41 ^ II 4’

k O k (0 E
k k •M 4^ 0)
k 111 k C. II C
k k (0 + f--) 41
k z k C
k k </) 4-f 41 »—» 4-»

k k t_ >s m
k k C <0 (0 ^ Q.
k k at ^ L. B II

k k —* CO 4-* C. II

k LU k II 4) €
k k u c c •«. V *- w O
k o k •M o o «- Ui
k k —^ II

.s:::k k 41 (Q •M c u 41
k DC k —« (_ 4! 41 m
k k 41 •!-* a-* • «> 4-*

+ +
•t I

k Lu k w «.

k k H~ o (0 II II II

k —« 4-* return;

ascibufO

pr
i
nt

f
(

"\n\n\n\n"

);

buf

nutn(

start

.stop)

while

(h

!=

cmdblk.buf

len/16)

int

start,

stop;

CO
fH

*

X
5$

'O^ Si ^
—c 0) . ;r

H- s ^
S 't £w 5 '4-

"
a> ^ 4-»

—» w c •
•- •— CO

3 — a o ^

*- !i
Q. ^

c ^
.— + +
^ ±. + c
d. fe I*s ^

c
•— +
t- +
Qo £ I

a.z<X

O 'I-

II M

O >3“M ^^ ^
T3 "D d
O <J "g

w> ^ U
C. —* ^ o<|
(Q ^ XI w
^ ^
O <J <J u

c
0)

:kC

s
1
o
II

V

4-» o '*-

C II ^

•K

«

H
«
•K

«

c
u
3
4-4

C- r*>

H

•H

«
•K

«
-K

«
*
*

i

I

printf("byte

number%d.

.

.

.%X\n",

i

.buffer.

by[i]

);

comment *

+

+

+
+
+

+
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY +

scsi command software for optical +
disk controlers meeting this standard +
[for use with the M.D.I. scsi-1 board]

+
Command interface function +

+ SCSI FUNCTION LIBRARY +
+ developed by; J.GORCZYCA and EDUARDO SANCHEZ VILLAGRAN +
+ +

*

9

dgroup group __data,_bss
9

_text segment byte public 'CODE'
assume cs;_text,ds; dgroup
public _cif

9

ROMADD
ROMSEG

DW 0009H
DW 0D800H

:=if proc near
push bp
mov bp , sp

push di
push si
push es
push ds
mov si, [bp+4]
call dword ptr ROMADD
mov ax ,

0

jnc home
mov ax,OffH

home; pop ds
pop es
pop si
pop di
pop bp
ret

_cif endp
•
9

_text ends
•
/

_data
_data

segment word public 'data'
ends

•
9

_bss
_bss

segment word public 'bss'
ends
end

119

4.1 REFERENCES

1) American National Standards Institute, publication
X3. 131-1986 Small Computer System Interface (SCSI).

2) Art Tech Gigadisc, GC 1001 OEM MANUAL, Ref s 39 369 507,
ATG Gigadisc (available from ATG, Woburn, MA)

.

3) IBM (1981) , IBM Personal Computer Language Series,
Macro Assembler by Microsoft.

4) Micro Design International, SCSI-1, SCSI HOST ADAPTER
MANUAL (available for MDI, Winter Park, Florida)

.

5) Microsoft Corporation, Microsoft 'C'; Microsoft C
compiler, library reference manual, user guide and reference
manual

.

6)
Controller,

Guide.
7)

Guide.
8)

122

NBS»n4A (REV. 2 »6 C)

U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report No. 3. Publication Date

BIBLIOGRAPHIC DATA
REPORT NO.

SHEET (See instructions) NISTIR 89-4023 JANUARY 1989

4. TITLE and subtitle

SCSI COMMAND SYSTEM
software support for the control of SCSI devices

5. AUTHOR(S)

John Gorczyca

6. PERFORMING ORGANIZATION (If joint or other than N BS. see in structions)

NATIONAL BUREAU OF STANDARDS
U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, 2V1D 20899

7o Contract/Grant No.

8 . Type of Report & Period Covered

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)
10.

SUPPLEMENTARY NOTES

I I
Documwit describes a computer program; SF“I85, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200~word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

The SCSI Command System was created by NIST/NCTL personnel for the control of SCSI

devices from a micro computer equipped with a SCSI host adapter. The Command

Interfacing Function permits all SCSI standard and manufacturer unique commands to be

sent to external devices. The system allows two levels of user programming. The

upper and lower levels offer the ability to utilize libraries of commands, and the

ability to edit system parameters and commands directly by using the system's

variables. Programming for the system is done in the 'C language. Also included

with the documentation are references, they provide additional information that may

be of reader interest.

12.

KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

C language; Command Interfacing Function; Command Libraries; Host adapter; Lower level
programing; Manufacturer Commands; Micro Computers; SCSI Devices; SCSI commands;
System variables; Upper level programing

13, availability

[X3 Unlimited

I I

For Official Distribution. Do Not Release to NTIS

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

127

15. Price

$18,95

USCOMM-OC 6043.P80

M. ,rii ,v.i

.*:.i;.i,'we«5 f!ti'5;i;H
•

'SI'ShTi

. '<

i

v>-'

.J-j '- * __ III II 'i—i— rrnTiiM i' r
- ’ ^ \^^tt-.\' >,•*••

i
'''

.

'

-.#13

./.•« -;. .
.

\
"i 'tt'X ; '.'.'ni^^ V'Mv** i<» M

i baa'^lty.ajfe

" i'i. ' ^'0l,u

' .- .'oo- I.*-':.”

4
"r,!" ^r-J.. <i •'^)'3 e' '.'ti '.>'«l3 '':'.i.^%.-'t#||fe'^?»^^^^

^.._ vj.*,
'

', ^ 't . 0^r>a4St4ia»’l *‘iig

;.<:' iM

S-,* frv’A^l'
- -,.

‘ ^ J L.--rr». fl-r T.. —
. ^V--| V r«»»<-s. v-.> y IT**** «^iy.v^^^iai<g i|

.r.,B ,r ,..,.-Hf)(y\.«, yA'-*-' hli':'\m,^M!t y'yjy.u;

jjrtlaflti :-sQ-Yg •'‘' l'.»vi».l..
.

.', .»f

,
gJ'*M

yjf».t. «!»*•<» ' ilOi/p MjINffAWVs'i,; ^'u

.;* V »,' Sw' • *«• “

.a»*i

