Time & Frequency Bulletin No. 375 February 1989 (NISTIR 89-3910-2)

National Institute of Standards & Technology

NIST TIME & FREQUENCY BULLETIN (Supersedes No. 374 January 1989)

NO. 375 FEBRUARY 1989

1.	GENERAL BACKGROUND INFORMATION	1
2.	TIME SCALE INFORMATION	1
	International Timing Center comparisons via GPS common-view	2
3.	UT1 CORRECTIONS AND LEAP SECOND ADJUSTMENTS	2
4.	PHASE DEVIATIONS FOR WWVB AND LORAN-C	3
5.	GOES TIME CODE INFORMATION	4
6.	BROADCAST OUTAGES OVER FIVE MINUTES AND WWVB PHASE PERTURBATIONS	4
7.	NOTES ON NIST TIME SCALES AND PRIMARY STANDARDS	5
8.	SPECIAL ANNOUNCEMENTS	7

This bulletin is published monthly. Address correspondence to:

Gwen E. Bennett, Editor Time and Frequency Division National Institute of Standards & Technology 325 Broadway Boulder, CO 80303 (303) 497-3295

NOTE TO SUBSCRIBERS: Please include your address label (or a copy) with any correspondence regarding this bulletin.

1. GENERAL BACKGROUND INFORMATION

ABBREVIATIONS AND ACRONYMS USED IN THIS BULLETIN

APL	-	John Hopkins University Applied Physics Laboratory			
BIH	-	International Time Bureau, France			
CCIR	-	International Radio Consultative Committee			
CRL	-	Communications Research Laboratories, Japan			
Cs	-	Cesium standard			
CSIRO	-	Commonwealth Scientific and Industrial Research Organizatio	n, A	us	tralia
GOES	-	Geostationary Operational Environmental Satellite			
GPS	-	Global Positioning System			
TEN	-	National Institute of Electronics, Italy			
INPL	-	National Physical Laboratory, Israel			
LORAN	-	Long Range Navigation			
MC	-	Master Clock			
MJD	-	Modified Julian Date			
NIST	-	National Institute of Standards & Technology			
NPL	-	National Physical Laboratory, England			
NRC	-	National Research Council, Canada			
NOAA	-	National Oceanic and Atmospheric Administration			
OP	-	Paris Observatory, France			
PTB	-	Physical Technical Federal Laboratory, Germany			
SI	-	International System of Units	ns	-	nanosecond
SV	-	Space vehicle	μs	-	microsecond
TA	-	Atomic Time	ms	-	millisecond
TAI	-	International Atomic Time	S	-	second
TAO	-	Tokyo Astronomical Observatory, Japan	min	-	minute
TUG	-	Technical University of Graz, Austria	h	-	hour
USNO	•	United States Naval Observatory	d	-	day
UTC	-	Coordinated Universal Time			
VLF	-	very low frequency			
VSL.	-	Van Swinden Laboratory, Netherlands			

2. TIME SCALE INFORMATION

The values listed below are based on data from the BIH, the USNO, and the NIST. The UTC - UTC(NIST) values are extrapolations since UTC is computed more than two months after the fact. The UTC(USNO,MC) - UTC(NIST) values are averaged measurements from NAVSTAR satellites 3,4,6, and 8 (see references on page 6).

OOOO HOURS COORDINATED UNIVERSAL TIME

JANUARY 1989	MJD	UT1 - UTC(NIST) (± 5 ms)	UTC - UTC(NIST) (± 0.2 µs)	UTC(USNO,MC) - UTC(NIST) (± 0.04 µs)
5	47531	-121 ms	0.0 µs	1.20 µs
12	47538	-131 ms	0.0 µs	1.16 µs
19	47545	-137 ms	0.0 µs	1.12 µs
26	47552	-145 ms	0.0 us	1.06 µs

INTERNATIONAL TIMING CENTER COMPARISONS VIA GPS COMMON-VIEW

The table below is a weighted average of the indicated GPS satellites used as transfer standards to measure the time difference of Timing Center (i) - UTC(NIST) by the simultaneous common-view approach (see references, page 6). The day-to-day variations of this technique are less than 10 ns. The time of the measurement is interpolated to OOOO UTC for the particular MJD ending in 9. These data are prepared for the BIPM for the computation on TAI and of UTC. All differential delays are 0 unless otherwise noted.

UTC(i) - UTC	C(NIST) (ns)					
UTC(i)	SV NUMBERS	47519	47529	47539	47549	
UTC(APL) - UTC(NIST)	3,6,9,11,12,13	487	9	1038	931	
UTC(CRL) - UTC(NIST)	3,6,9, 12	1550	1507	1452	1384	
UTC(CSIRO) - UTC(NIST)	**	19467*	19424	19379	19347	
UTC(IEN) - UTC(NIST)	9,11,12	-647	-230	187	598	
UTC(INPL) - UTC(NIST)	VIA OP	-93416	-94877	-96295	-97665	
UTC(NPL) - UTC(NIST)	9,11,12	-2806	-2530	-2287	-2032	
UTC(NRC) - UTC(NIST)***	3,6,9,11,12,13	12717	12870	13057	13194	
UTC(OP) - UTC(NIST)	9,11,12	1793	1794	1711	1682	
UTC(PTB) - UTC(NIST)	9,11,12	-4235	-4217	-4247	-4250	
UTC(TAO) - UTC(NIST)	3,6,9, 12	2438	2471	2479	2492	
UTC(TUG) - UTC(NIST)	9,11,12	4385	4134	3857	3605	
UTC(USNO,MC) - UTC(NIST)	3,6,9,11,12,13	1285	1218	1156	1089	
UTC(VSL) - UTC(NIST)	9,11,12	-3878	-911	-992	-1021	

* This value has been updated from that printed in last month's Bulletin.

** UTC(CSIRO) - UTC(NIST) is computed from the average by CRL, TAO and WWVH.

*** UTC(NRC) - UTC(NIST) has a differential delay of 41.2 ns; all other comparisons are computed using
zero (0).

APL was experiencing a frequency step of approximately -1.05 E-12 during MJD's 47525 - 47529. Therefore no value is computed for MJD 47529.

3. UT1 CORRECTIONS AND LEAP SECOND ADJUSTMENTS

The master clock pulses used by the WWV, WWVH, WWVB, and GOES time code transmissions are referenced to the UTC(NIST) time scale. Occasionally, 1 second is added to the UTC time scale. This second is called a leap second. Its purpose is to keep the UTC time scale within ± 0.9 s of the UT1 astronomical time scale, which changes slightly due to variations in the rotation of the earth.

Positive leap seconds, beginning at 23 h 59 min 60 s UTC and ending at 0 h 0 min 0 s UTC, were inserted in the UTC timescale on 30 June 1972, 31 December 1972-1979, 30 June 1981-1983, 30 June 1985, and 31 December 1987. When future leap seconds are scheduled, advance notice will be provided in this bulletin.

The use of leap seconds ensures that UT1 - UTC will always be held within \pm 0.9 s. The current value of UT1 - UTC is called the DUT1 correction. DUT1 corrections are broadcast by WWV, WWVH, WWVB, and GOES and are printed below. These corrections may be added to received UTC time signals in order to obtain UT1.

	=	0.0	beginning	0000	UTC	25	August 1988
DUT1 = UT1 - U	TC =	-0.1	s beginning	0000	UTC	10	November 1988
	=	-0.2	beginning	0000	UTC	19	January 1989

4. PHASE DEVIATIONS FOR WWVB AND LORAN-C

- WWVB The values shown for WWVB are the time difference between the time markers of the UTC(NIST) time scale and the first positive-going zero voltage crossover measured at the transmitting antenna. The uncertainty of the individual measurements is ± 0.5 µs. The values listed are for 1500 UTC.
- LORAN-C The values shown for Loran-C represent the time difference between the UTC(NIST) time pulses and the 1 Hz output of the Loran-C receiver. The stations monitored are Dana, Indiana (8970 M) and Fallon, Nevada (9940 M). The values shown are four-hour averages taken from 1600 to 2000 UTC daily. If data are lost, the symbol (-) is shown in place of the phase value.

TANDIADY		ITTC(NICT) LERID(60 HHz)	UTC(NIST) - RECEIVED PHASE (in µs)				
1989	MJD	ANTENNA PHASE (in µs)	LORAN-C (DANA) (100 kHz)	LORAN-C (FALLON) (100 kHz)			
1	47527	5.69	5137.12	3948.94			
2	47528	5.67	5137.00	3948.96			
3	47529	5.66	5137.30	3949.13			
4	47530	5 .63	5137.30	3949.20			
5	47531	5.61	5137.39	3948.82			
6	47532	5.54	5137.42	3948.97			
7	4 753 3	5.64	5137.24	3948.88			
8	47534	5.60	5137.18	3948.88			
9	47535	5.56	5137.52	3949.12			
10	47536	5.71	5137.49	3949.12			
11	47537	5.66	5137.63	3949.12			
12	47538	5.66	5137.65	3949.24			
13	47 539	5.64	5137.68	(-)			
14	47540	5.63	5137.61	3949.19			
15	47541	5.61	5137.49	3949.11			
16	47542	5.59	5137.40	3949.17			
17	4754 3	5 .58	5137.47	3949.45			
18	47544	5.67	5137.53	3949.50			
19	47545	5.68	5137.45	3949.57			
20	47546	5.59	5137.38	3949.41			
21	47547	5.69	5137.14	3949.40			
22	47548	5.68	5137.18	3949.39			
23	4754 9	5.67	5137.21	3949.62			
24	47 55 0	5 .65	5137.22	3949.54			
25	47551	5.62	5137.41	3949. 54			
26	47552	5.59	5137.25	3949. 58			
27	4755 3	5.69	5137.25	4949.57			
28	47554	5.69	5137.17	(-)			
29	47555	5.69	5137.22	(-)			
30	47556	5.69	5137.3 9	3949.83			
31	475 5 7	5 .66	5137.34	3949.79			

5. GOES TIME CODE INFORMATION

A. TIME CODE PERFORMANCE (1-31 January 1989)

GOES/East: Performance within normal limits during this period except for the following outage periods:

(1) 25 January, 1934-2330 UT: Satellite maneuver caused temporary time code deviations of about 100 μ s as observed in Boulder.

<u>GOES/West</u>: Performance within normal limits during this period. Failure of the GOES/West visual imaging system on 21 January is <u>not</u> expected to impact the GOES/West time code operations in any way.

- B. SPECIAL REMINDER: Current satellite locations are 65° W. for GOES/East and 135° W. for GOES/West.
- C. SPECIAL ANNOUNCEMENT

At 1104 UT on October 26 NOAA switched the GOES/East time code from GOES-7 at 75° West longitude to GOES-5 at 65° West longitude. The transmitted position data were therefore in error until about 1430 UT. NOAA informs us that the GOES/East time code will remain on GOES-5 indefinitely and that the orbital location will stay at 65°. This change has the following consequences: (1) the path delay is now different for the new location, but, in the case of automatic path-delay-correction receivers, is compensated for; (2) if signal is lost or weakened, antenna repointing may be necessary; and (3) some receivers may show a blinking "East" satellite indicator light. This only indicates that the 65° position is "abnormal," but the time data are still valid.

D. GOES STATUS REPORTS

A brief message from NIST giving current GOES time code status information is available from the U.S. Naval Observatory's Automated Data Service computer system in Washington, DC. The message may be accessed 24 hours per day without charge by using a variety of terminals operating at 300, 1200, or 2400 Baud and even parity. Two different sets of telephone access numbers are available: (1) for 300 or 1200 Baud and the Bell 103 standard use (202) 653-1079 (commercial), 653-1079 (FTS), or 294-1079 (Autovon); (2) for 1200 or 2400 Baud with either the CCITT V.22 standard or the Bell standard use (202) 653-1783 (commercial), 653-1783 (FTS), or 294-1783 (Autovon). To receive the GOES status message, use the following procedure:

- 1. Access the USNO computer database by dialing one of the appropriate telephone numbers above;
- 2. In response to the prompt for identification, type your name and the name of your organization, followed by a carriage return;
- 3. Type "@NBSGO" followed by a carriage return to receive the status message at your terminal;
- 4. Disconnect by typing Control-D.

6. BROADCAST OUTAGES OVER 5 MINUTES AND WWVB PHASE PERTURBATIONS

OUTAGES						PHASE PE	PHASE PERTURBATIONS WWVB 60 kH				
STATION	JANUARY 1989	MJD	BEGAN (UTC)	ENDED (UTC)	FREQUENCY	JANUARY 1989	MJD	BEGAN (UTC)	ENDED (UTC)		
WWVB	NONE					NONE					
WWV	NONE					NONE					
WWVH	12	47538	0059	0103	2.5 MHz	NONE					

7. NOTES ON NIST TIME SCALES AND PRIMARY STANDARDS

The frequencies of the time scales, TA(NIST) and UTC(NIST), are calibrated with the NIST primary frequency standards. The UTC(NIST) scale is coordinated within a microsecond of the internationally coordinated time scale, UTC, generated at the BIH. It is used to control all of the NIST time and frequency services. The last calibration of the relative frequency offset, y, of UTC(NIST) as generated in Boulder, Colorado, gave:

1) $y_{\text{UTC(NIST)}}$ (July 1987) - $y_{\text{NBS-6}}$ (July 1987) = (-0.6 ± 2 (1 sigma)) x 10⁻¹³

for the date shown. This calibration includes a correction for the systematic offset due to room temperature blackbody radiation, which is approximately (delta y_{BB}) = -1.7 x 10⁻¹⁴. Using GPS¹, the frequency of TAI for the dates shown were measured to be:

2) y_{TAI} (July 1987) - y_{NBS-6} (July 1987 on geoid) = (+1.7 ± 2 (1 sigma)) x 10⁻¹³

where account has been taken of the gravitational "red shift."

Starting 1 January 1975, an accuracy algorithm was implemented to bring the second used in the generation of TA(NIST) closer to the NIST "best estimate" of the SI second (see references, p.6). The relative frequency associated with this "best estimate" is denoted YCs(NIST). The last calibration (July 1987) covered the period from October 1986 through July 1987.

3) $y_{Cs}(NIST) = y_{NBS-6} = (+1.4 \pm 2) \times 10^{-13} (July 1987)$

and

4) $y_{TAI} - y_{Cs(NIST)}$ on geoid = (+0.3 ± 0.7) x 10⁻¹³ (July 1987)

This algorithm should provide nearly optimum accuracy and stability for TA(NIST) since it uses all past frequency calibrations with the NIST primary standards. These calibrations are weighted proportionately to the frequency memory of the clock ensemble that generates atomic time. This algorithm, therefore, capitalizes on a weighted combination of all the frequency calibrations with the primary standards in order to gain a "best estimate" of the SI Second while simultaneously obtaining the best uniformity available from the ensemble of working clocks in the atomic time scale system. The relative frequency of TA(NIST) is steered toward $y_{Cs}(NIST)$

FA(NIST) and UTC(NIST) are no longer simply related by an equation. TA(NIST) is now computed each month using a Kalman algorithm which minimizes the mean square time dispersion. UTC(NIST) is now independently computed using a different algorithm and is steered in frequency to keep its time within a microsecond of UTC(BIH). Fable 7.1 lists monthly values of the time difference between UTC(NIST) and TA(NIST). A linear interpolation between monthly values will typically be within 10 ns of the actual time difference, TA(NIST) - UTC(NIST).

The primary standards of NIST (NBS-4 and NBS-6) are used in either of two modes: as calibrators of frequency to provide a reference for the SI second; or as member clocks of the NIST clock ensemble, to help keep the proper to time for TA(NIST) and the coordinated time for UTC(NIST). Operating in the clock mode, NBS-4 and NBS-6 are only used and weighted according to their stability performance. Accuracy enters only when they are used as frequency calibrators, in which case clock operation is necessarily interrupted.

¹GPS is the Global Positioning System, a network of navigation satellites.

Table 7.1 is a list of changes in the time scale frequencies of both TA(NIST) and UTC(NIST) as well as a list of the time and frequency differences between TA(NIST) and UTC(NIST) at the dates of leap seconds, and/or frequency or frequency drift changes.

		F	REQUENCY CHANGES		
DATE	(MJD)	TA(NIST)	UTC(NIST)	TA(NIST) - UTC(NIST)	y[UTC(NIST)] - y[TA(NIST)]
1 Aug 87	47008	0	0.75 ns/d	23.045 100 768 s	-3.42 E-13
1 Sep 87	47039	0	1.25 ns/d	23.045 101 681 s	-3.44 E-13
1 Oct 87	47069	0	1.25 ns/d	23.045 102 583 s	-3.47 E-13
1 Nov 87	47100	0	0.50 ns/d	23.045 103 512 s	-3.38 E-13
1 Dec 87	47130	0	0.50 ns/d	23.045 104 367 s	-3.40 E-13
1 Jan 88	47161	0	-1.00 ns/d	24.045 105 306 s	-3.56 E-13
1 Feb 88	47192	0	-1.00 ns/d	24.045 106 272 s	-3.53 E-13
1 Mar 88	47221	0	-1.25 ns/d	24.045 107 137 s	-3.58 E-13
1 Apr 88	47252	0	-1.50 ns/d	24.045 108 130 s	-3.85 E-13
1 May 88	47282	0	-1.50 ns/d	24.045 109 170 s	-4.29 E-13
1 Jun 88	47313	0	-1.50 ns/d	24.045 110 358 s	-4.47 E-13
1 Jul 88	47343	0	-1.60 ns/d	24.045 111 523 s	-4.64 E-13
1 Aug 88	47374	0	-0.40 ns/d	24.045 112 802 s	-4.89 E-13
1 Sep 88	47405	0	-1.00 ns/d	24.045 114 144 s	-5.15 E-13
1 Oct 88	47435	0	1.00 ns/d	24.045 114 515 s	-5.15 F-13
1 Nov 88	47466	0	1.00 ms/d	24.045 116 854 s	-4 88 E-13
1 Dec 89	47406	0	1.50	24.045 110 094 5	-/ 60 R-12
I Dec 88	4/490	U	1.50 ns/d	24.045 118 088 S	-4.09 E-13
1 Jan 89	47527	0	1.50 ns/d	24.045 119 325 s	-4.57 E-13

TABLE 7.1

UTC(NIST) is steered in time toward UTC by occasional frequency changes of the order of a few nanoseconds per day; 1 ns/d is approximately 1.16E-14. Otherwise, y[UTC(NIST)] is maintained as stable as possible.

REFERENCES

.

Allan, David W., et al., "Fn accuracy algorithm for an atomic time scale," Metrologia, Vol.11, No.3, pp.133-138 (September 1975).

Wineland, D.J., et al., "Results on limitations in primary cesium standard operation," IEEE Trans. on Instr. and Meas., Vol.IM-25, No.4, pp.453-458 (December 1976).

Allan, David W. and Weiss, Marc, "Accurate Time and Frequency Transfer During Common View of a GPS Satellite," Proc. 34th Annual Symposium on Frequency Control, p.334 (1980).

Allan, David W. and Barnes, James A., "Optimal Time & Frequency using GPS signals," Proc. 36th Annual Symposium on Frequency Control, p.378 (1982).

8. SPECIAL ANNOUNCEMENTS

AUTOMATED COMPUTER TIME SERVICE (ACTS)

On March 9, 1988, NIST initiated operation of a telephone time service designed to provide computers with telephone access to NIST time at accuracies approaching 1 ms. Features of the service include automated compensation for telephone-line delay, advanced alert for changes to and from daylight savings time and advanced notice of insertion of leap seconds. The ASCII-character time code should operate with standard modems and most computer systems. While the system can be used to set computer time-of-day clocks, simple hardware can also be developed to set other clock systems.

During the first six months, the service will be operated in a test phase to identify problems and obtain feedback from users on both the format and operation of the service. After completion of the test phase, there may be some revisions in the service. The service telephone number is (303) 494-4774. The number may be changed at a later date. A help message can be obtained by returning a ? during the first 6 s of transmission.

With appropriate user software, the NIST-ACTS service provides three modes for checking and/or setting computer time-of-day clocks.

1. In the simplest form of the (1200 Baud) service, the user receives the time code and an on-time marker/character which has been advanced a fixed period to nominally account for modem and telephone-line delays. Accuracy in this mode should be no worse than 0.1 s unless the connection is routed through a satellite.

2. At 1200 Baud, if the user's system echoes all characters to NIST, the round-trip line delay will be measured and the on-time marker advanced to compensate for that delay. The accuracy in this mode should be better than 10 ms. Our experience to date indicates that the asymmetry in conventional, 1200-Baud modems limits the accuracy at this level. Repeatability is about 1 ms.

3. At 300 Baud the user can obtain the same type of service as described in item 2 above, but there is generally less problem with modem asymmetry at this rate and our experience indicates that the accuracy is about 1 ms.

The accuracy statements here are based upon the assumption that the telephone connection is reciprocal, that is, that both directions of communication follow the same path with the same delay. Discussions with telephone carriers indicate that this is the general mode of operation and our tests to date indicate that the lines are both stable and reciprocal.

In order to assist users of the service, NIST has developed documentation of the features of the service, some example software which can be used in conjunction with certain popular personal computers and simple circuitry which can be used to extract an on-time pulse. This material is available on a 5½-in, 360-kbyte DOS diskette with instructions for \$35.00 from the NIST Office of Standard Reference Materials, B311-Chemistry Bldg, NIST, Gaithersburg, MD, 20899, (301) 975-6776. Specify the Automated Computer Time Service, RM8101. Further technical questions and comments should be directed to NIST-ACTS, NIST Time and Frequency Division, 325 Broadway, Boulder, CO 80303.

SEMINAR ON SPECTRAL ANALYSIS FOR PHYSICAL APPLICATIONS

A seminar on spectral analysis for physical applications will be given by Donald Percival, Ph.D., University of Washington, based on a new book with A. Walden, Ph.D., featuring PiTSSa software on a Mac II. It will be held March 13-17, 1989, 9am-3pm at the National Institute of Standards and Technology in Boulder, Colorado. Topics in spectral analysis include:

> Stationary Processes Deterministic Functions Spectral Representation Theorem Non-Parametric Spectral Analysis Parametric Spectral Analysis

Multiple Taper Spectral Analysis Linear Filtering Power Law Spectral Density Est. Unequally Spaced Data The Allan Variance

Cost \$500

Contact:

DeeAnna Gibson, NIST, 576 325 Broadway Boulder, CO 80303 (303) 497-3294

N85-1144 (REV. 2-6C)			
U.S. DEPT. OF COMM.	1. PUBLICATION OR	2. Performing Organ. Report N	o. 3. Publication Date
BIBLIOGRAPHIC DATA	NICTID PO 2010 2	B89-0064	1000
SHEET (See instructions)	NISTIR 89-3910-2		January 1989
4. TITLE AND SUBTITLE			
Time & Fr	equency Bulletin		
5 AUTHOR(S)			
3. AUTHOR(3)			
6. PERFORMING ORGANIZA	TION (If joint or other than NB)	s, see instructions)	7. Contract/Grant No.
NATIONAL BUREAU OF	STANDARDS		
DEPARTMENT OF COMM	ERCE		S. Type of Report & Period Covered
WASHINGTON, D.C. 2023	4		
SPONSORING OD CANUZAS	NON NAME AND COMPLETE	DDBESS (Street City State 7)	
3. SPUNSURING ORGANIZAT	TON NAME AND COMPLETE A	ADDRESS (Street, City, State, 21	F)
	c		
IN SUFFLEMENTARY NOTE	.5		
	Computer program: SE-195 ELE	S Software Summary is attached	
11 ABSTRACT (A 200-word o	loss factual summary of most	sissificant information If decu	
scales and a variet NIST services,	y of broadcasts (and	related information on pe	to users of the
12. KEY WORDS (Six to twelv	e entries; alphabetical order; co	apitalize only proper names; and	separate key words by semicolons)
clocks; dissemina	ition; frequency; GPS;	; oscillators; time	
13. AVAILABILITY			14. NO. OF
Unlimited			PRINTED PAGES
X For Official Distributi	on, Do Not Release to NTIS		8
Order From Superinten	dent of Documents, U.S. Govern	nment Printing Office, Washington	n, D.C.
20402.			15. Price
Order From National 1	echnical Information Service (N	ITIS), Springfield, VA. 22161	

÷

USCOMM-DC 6043-P80

AN EQUAL OPPORTUNITY EMPLOYER

U.S. Department of Commerce National Institute of Standards and Technology Time & Frequency Division Boulder, Colorado 80303

.

OFFICIAL BUSINESS Penalty for Private Use, \$300

FIRST-CLASS MAIL POSTAGE & FEES PAID NIST Permit No. G195

GWEN BENNETT DIVISION 524 COPY 3 NATE BUREAU OF CLANDARDS 325 BROADWAY BOULDER, CO 8030 C