
U.S. DEPARTMENT OF COMMERCE National Institute of Standards and Technology

NISTIR 88-4022

National
Computer
Systems

Laboratory

ISSUES IN INTERPRETING
THE EXPORT ADMINISTRATION
REGULATIONS' "PROCESSING
DATA RATE"

Vivian Lawrence

U. S. DEPARTMENT OF COMMERCE
National institute of Standards and Technology
National Computer Systems Laboratory

Advanced Systems Division

Gaithersburg, MD 20899

February 1989

COMPUTER MEASUREMENT
RESEARCH FACILITY

FOR HIGH PERFORMANCE
PARALLEL COMPUTATION

F#£ COPY

CO NOT REMOVE

Sponsored by the

Bureau of Export Administration

Department of Commerce
14th and Constitution Avenue
Washington, D.C. 20230

ISSUES IN INTERPRETING THE EXPORT
ADMINISTRATION REGULATIONS’
PROCESSING DATA RATE"

Vivian Lawrence

Advanced Systems Division

National Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

Sponsored by the

Bureau of Export Administration

Department of Commerce

U.S. Department of Commerce, Robert A. Mosbacher, Secretary

Ernest Ambler, Acting Under Secretary for Technology

National Institute of Standards and Technology

Raymond G. Kammer, Acting Director

February 1989

TABLE OF CONTENTS

INTRODUCTION

OVERVIEW OF THE DEFINITIONS

COMMENTS ON THE DEFINITIONS AND THEIR INTERPRETATION

Definition of Most Immediate Storage

Consideration of Concurrent Processing Capabilities

M3MD Architectures ...

Attached Coprocessors

SIMD Architectures

Pipelining

Choice of Instructions

Use of Base Registers

Number of Bits in an Operand

Non-Arithmetic Data Processing

CONCLUSIONS

Recommendations

Acknowledgments

REFERENCES

Page

...... 1

2

2

2

4

5

6

7

7

7

8

10

11

11

11

12

...... 12

-m-

-

_

.

ISSUES IN INTERPRETING THE EXPORT
ADMINISTRATION REGULATIONS’

"PROCESSING DATA RATE"

Vivian Lawrence

The Processing Data Rate (PDR) is one of several criteria used to control export

of computer systems. New and varied computer architectures make consistent in-

terpretation of the definitions to be applied in computing the PDR difficult This re-

port identifies those aspects of the definitions for which interpretation may be difficult,

and reviews a draft "PDR Handbook” which attempts to provide an interpretation

methodology.

Key words: bit processing rate; computers; export PDR; performance; processing data

rate.

INTRODUCTION

To adequately protect concerns of national importance, and at the same time equitably allow the

export of non-critical technologies, a figure of merit for a computer system’s computational capability —

referred to herein as the Processing Data Rate (PDR) — has been one of several criteria upon which ex-

port control decisions are based. The PDR is essentially a bit processing rate, taking into account the

fixed and floating point arithmetic capabilities of a given system. The definitions necessary for the

computation of the PDR have evolved over the past 15-20 years, and are contained in Advisory Note 16

of Export Control Commodity List Number (ECCN) 1565A of the Export Administration Regulations

[EAR87].

Unfortunately, the variety of computer architectures currently available and under development

makes a single, concise interpretation of the PDR definitions difficult. Neither would it be a simple

task to redefine a good single performance measurement. Nevertheless, recent disagreement over the

appropriate interpretation of these definitions, and consequent variation in PDR values that might be as-

signed to a given computer, has led to an attempt to clarify the requirements for the PDR calculation

through an explanatory interpretation with examples. Toward this end, the Department of Defense has

recently made available a "PDR Handbook" [D0D88].

This report identifies the major issues to be addressed in such an interpretation and, with these in

mind, reviews the draft PDR Handbook.

Throughout this report, italicized words and phrases refer to concepts defined in [EAR87].

Displayed definitions are likewise from [EAR87], unless otherwise attributed. Comments on the con-

tents of the PDR Handbook refer to the version dated June, 1988 [D0D88]. The Figures from this ver-

sion were unavailable, however, so references to Figures herein are to those in the PDR Handbook dat-

ed September, 1986 [D0D86].

- 1 -

OVERVIEW OF THE DEFINITIONS

This section provides brief general descriptions of the relevant definitions from [EAR87].

The processing data rate of a central processing unit is defined to be the maximum of its fixed

point processing data rate and its floating point processing data rate

.

If there are no fixed or floating

point addition or multiplication instructions, then the processing data rate is zero. The definitions of

total processing data rate and cumulative total processing data rate provide formulas for combining the

processing data rates of multiple central processing units.

The fixed and floating point processing data rates are computed by dividing an unnormalized

weighted average of the number of bits in an instruction and in an operand by the execution time.

The definition of number of bits in an instruction restricts consideration to those instructions that

permit "full direct addressing of main storage ," and provides directions for cases when multiple instruc-

tions are required to simulate an appropriate single instruction, and when a base register is used to ex-

pand the addressing capability of an instruction.

The definitions of number of bits in a fixed point operand and number of bits in a floating point

operand specify, for fixed and floating point operations, that the shortest available operand length (sub-

ject to a certain minimum in each case) be used.

The definition of execution time specifies that the instruction to be timed is the fastest satisfying

restrictions on the addressing mode, the locations of the instruction and operands, and the destination of

the result; it provides formulas for computing a single execution time when a range of times is given;

and it provides instructions for the cases when multiple instructions are required to simulate an ap-

propriate single instruction, and when a base register is used to expand the addressing capability of an

instruction.

The definitions of main storage and most immediate storage provide the basis for determining the

location of the instruction and one operand (as directed by the definition of execution time) and the re-

quisite addressing capability of an instruction (according to the definition of number of bits in an in-

struction).

COMMENTS ON THE DEFINITIONS AND THEIR INTERPRETATION

Definition of Most Immediate Storage

Most immediate storage is of importance because it is taken to be the location of the instruction

and the second operand in determining the execution times of operations. The definition of most

-2 -

immediate storage depends on that of main storage ,
which is:

The primary storage for data or instructions for rapid access by a central processing

unit. It consists of the internal storage of a digital computer and any hierarchical

extension thereto, such as cache storage or non-sequentially accessed extended

storage.

Most immediate storage is then defined as:

The portion of the main storage most directly accessible by the central processing

unit:

(a) For single level main storage , this is the internal storage; or

(b) For hierarchical main storage
,
this is:

(1) The cache storage;

(2) The instruction stack; or

(3) The data stack.

It is important to define the extent of main storage , particularly addressing the possible inclusion

of storage locations that are most directly accessible by the central processing unit. In particular, an in-

terpretation is needed as to whether program-addressable registers and/or internal registers (or possibly

only some internal registers) are to be considered most immediate storage .

[D0D88] suggests that the definition of main storage be interpreted "in a manner consistent with

the accepted [International Organization for Standardization] ISO definition of ’main storage’":

Program addressable storage from which instructions and other data can be loaded

directly into registers for subsequent execution or processing.

Several potential problems arise if this suggestion is to be taken into account in interpreting the

definitions in [EAR87]:

Instruction and data stacks (called out in the definition of most immediate storage in [EAR87]) are

not always program addressable.

It is not clear whether the ISO definition means to exclude all registers from consideration as

"main storage," whether it means to exclude registers functioning as accumulators, or whether program

addressability is meant to be the primary criterion for inclusion. If registers are never to be considered

main storage , then machines with extensive register structures in lieu of cache might have low process-

ing data rates that do not necessarily reflect their apparent processing capabilities. On the other hand,

if some registers are to be considered part of main storage , then clarification of the above issues is

necessary because, for example, registers functioning as accumulators can be program addressable.

Section 3 of [D0D88], which provides a technical discussion of the definitions in [EAR87], seems

to favor the inclusion of program addressable registers, including those "from which data can be operat-

ed on." In contrast to section 3, Example 5 of section 4 of [D0D88] describes a machine with register-

to-register instruction formats in which the two register operand locations are specified. Despite the

-3 -

fact that at least some of the registers are therefore program addressable, registers are not taken to be

most immediate storage.

In Example 6 of [D0D88], however, the instruction registers are considered to be part of main

storage (and therefore most immediate storage). It is explained that executed instructions are not neces-

sarily pushed off the stack maintained in those registers, but sometimes remain and are program ad-

dressable, for example when they occur in a loop. If it is the case that non-loop instructions do not

remain on the instruction stack, then this is an interpretation that could be made the other way with

equal ease. Such an interpretation should be accompanied by a more complete description of the

system’s capabilities, and justified in terms of general principles that would provide guidance for related

interpretations.

Finally, considering program addressability in determining the extent of main storage could lead to

an incompatible set of numbers being used in the calculation of the processing data rate: If registers

are considered to be most immediate storage , then execution time will be computed using register-to-

register operations. However, the number of bits in an instruction, fixed or floating point, addition or

multiplication is defined to be:

The appropriate shortest single fixed or floating point instruction length that permits

full direct addressing of the main storage .

Thus, the number of bits in a longer instruction would be counted, but the execution time would be that

of a shorter, faster instruction. The issue of whether the same instruction should be used in computing

execution time and the number of bits in an instruction is discussed further in the section entitled

"Choice of Instructions" below. It should be noted that [D0D88] consistently uses the execution time

for the instruction chosen.

Consideration of Concurrent Processing Capabilities

Concurrent processing capabilities can be a result of a variety of design features. These include

Multiple Instruction Stream/Multiple Data Stream, or MIMD, architectures (with or without a shared

memory); processors with attached coprocessors (whose purpose is to execute some subset of the in-

structions provided to the main processor); Single Instruction Stream/Multiple Data Stream, or SIMD,

architectures; and pipelining.

The possible concurrency provided by such architectures has substantial bearing on the perfor-

mance capabilities of the machines, and should be adequately reflected in the total processing data rate.

An interpretation of the appropriate definitions is needed to ensure that the rates associated with com-

puters having these features provide accurate relative measures of their capabilities. In their current

form, the definitions do not adequately address the architectures currently available.

The notion that export evaluation should assume the maximum possible concurrency was discussed

in [LYO88] in the context of multiple processors, and is consonant with the treatment of instruction

prefetch in the examples in [D0D88] (see discussion of pipelining below). It also follows what appears

to be the philosophy behind the definition of execution time in [EAR87], in which the instruction and

one operand are taken to be in most immediate storage , with no derating applied for the cache hit rate

-4 -

in the case when cache is most immediate storage. This approach should be considered in developing

interpretations to reflect the effects of concurrency.

MIMD Architectures. [EAR87] provides instructions for taking into account the presence of multiple

processors or of multiple functional units within a single processor in the definition of total processing

data rate:

(a) Of a single central processing unit, is its processing data rate ;

(b) Of multiple central processing units that do not share direct access to a common
main storage , is:

The individual processing data rate of each central processing

unit, i.e., each unit is separately treated as a single central pro-

cessing unit as in (a) above; or

(c) Of multiple central processing units that partially or fully share direct access to a

common main storage at any level is the sum of:

(1) The highest of the individual processing data rates of all cen-

tral processing units; and

(2) 0.75 times the processing data rate of each remaining central

processing unit, sharing the same main storage ;

assuming the configuration of equipment that would maximize

this sum of rates.

The definition of total procesing data rate could be usefully augmented by describing the motiva-

tion behind it. Such motivation would provide a needed basis for interpreting the definition when the

architecture in question does not clearly fit into case (b) or case (c) above. For example, consider a

machine in which each processor has it own "local" memory — that is, memory it can access without

use of the interconnection network linking it to the other processors - but in which any processor can

directly access any other processor’s memory, albeit in a somewhat longer period of time. A written

record of the motivation behind the definition of total processing data rate would provide the most gen-

eral basis for interpreting that definition for this example and for other architectures.

[D0D88] introduces, without resolving, a new issue which could require interpretation: The state-

ment in section 3.1 that the formula for the total processing data rate for multiple central processing

units sharing direct access to a common main storage assumes "that the memory speed and bus rate are

adequate to support full-speed operation of all attached CPUs" provides arguable grounds for derating

based on inadequate memory and bus speed. No example is given, however, of when and how this

might appropriately be done. Moreover, the definitions in [EAR87] do not appear to provide any basis

for such derating.

The definition of total processing data rate in case (b) above specifies that multiple central pro-

cessing units are to be treated individually, with no regard for any additional capabilities the system

derives by virtue of their interconnections. The problem is somewhat mitigated by the definition of cu-

mulative total processing data rate :

-5 -

The sum of all total processing data rates in a given transaction.

Unfortunately, the cumulative total processing data rate is not a criterion in all export control determi-

nations of ECCN 1565A, allowing in some cases relatively large numbers of processors to be exported

as one machine, while for other configurations involving fewer processors export would be denied.

Example: (This example is based on the criteria set forth in Advisory Note 17 of [EAR87], which has

since been revised. It is included as an indication of the sorts of problems inherent in the definitions as

they now read.) Advisory Note 17 of ECCN 1565A [EAR87], which controls exports to the People’s

Republic of China, specifies that the following limits not be exceeded if an export license is to be ap-

proved:

Central processing unit - main storage combinations, either

(i) Total processing data rate - 155 Mbit per second and total

connected capacity of main storage - 72 Mbit; or

(ii) Total processing data rate - 100 Mbits per second and total

connected capacity of main storage - 134.5 Mbit

Consider the following two configurations:

Configuration 1 is a sixteen node hypercube in which each node consists of a processor with pro-

cessing data rate equal to 88 million bits per second and eight megabits of local memory. With each

processor treated separately, the limits of 100 million bits per second for total processing data rate and

134.5 million bits for total connected capacity of main storage are not exceeded. Thus, an export

license would not be precluded.

Configuration 2 comprises only two processors identical to those used above, but connected instead

to an 80 megabit shared memory. In this case, the total processing data rate is greater than 100 mil-

lion bits per second, and the total connected capacity of main storage exceeds 72 million bits, so an ex-

port license would not be approved.

Thus, due to the failure of Advisory Note 17 to consider the cumulative total processing data rate ,

the configuration with substantially greater ability to do useful computation would be exportable, while

the less capable system would not.

Attached Coprocessors. In Example 1 of [D0D88], a microprocessor and its floating point coprocessor

are treated as a single CPU because they share a common instruction stream. According to the informa-

tion given in the example, it is possible that a mix of fixed and floating point operations could be ac-

complished with some concurrency. If the maximum possible amount of concurrency is to be con-

sidered, guidance should be given for accounting for the differences in execution times between a

processor/coprocessor pair in which no parallel execution is possible and one in which parallel asyn-

chronous operation can occur.

-6-

SIMD Architectures. It is not clear how to interpret the definitions in [EAR87] in the case of a SIMD
machine, or whether it would be more appropriate to augment, rather that interpret, these definitions.

Given a typical configuration, with a control unit which will fetch, decode, and broadcast instructions,

and multiple processing elements which find the needed operands in their own memories, as opposed to

in that of the control unit, the definition of execution time requiring both the instruction and second

operand to be in most immediate storage makes no sense. It is also unclear whether the individual pro-

cessing elements should be considered to be "central processing units," in light of the functionality tak-

en over by the control unit. Finally, the lock-step, replicated nature of computation in these machines,

interspersed with communication among processing elements, might call for yet another definition of to-

tal processing data rate , beyond those for the cases of central processing units with and without access

to a common main storage.

SIMD architectures, in which a single instruction is executed on multiple data, need not be imple-

mented with massive, or even moderate, parallelism. For example, a single central processing unit

might possess the capability to simultaneously execute a single arithmetic operation on several distinct

pairs of operands. Such capability is not explicitly treated in [EAR87], nor is it discussed in [D0D88].

A distinction might appropriately be drawn between this case and the large scale parallelism of SIMD
machines in which the communication among processing elements mentioned above is a major perfor-

mance factor.

Pipelining. In cases where an architecture permits an instruction to be prefetched during the execution

of a previous instruction, as in Examples 1 , 2 , and 4
, [D0D88] computes execution time assuming the

instruction has been prefetched. Thus, the startup cost (the time for the first instruction fetch) is

effectively amortized over infinitely many operations, and so adds nothing to the execution time. This

interpretation is consistent with the notion of assuming maximum possible concurrency.

Example 6 depicts the pipelining of arithmetic operations, and handles the question of startup costs

somewhat differently. For the fixed point add instruction, for example, the pipeline is implemented by

using different register sets for each iteration of the operation. The number of iterations to be pipelined

is effectively taken to be limited by the number of register sets; the startup cost is amortized over this

number of operations. The sequence is shown in the timing analysis of Figure 4-25 of [D0D86] as res-

tarting one clock cycle after the read of the operand from the last register set, but it would appear that

the sequence could restart one clock cycle after the read of the operand in the first set of registers, recy-

cling through the registers as they become available. Performing the analysis this way assumes max-

imum possible concurrency, and decreases the execution time computed in [D0D88] by 25%.

Choice of Instructions

The choice of instructions on which to base the computation of processing data rate is constrained

by the definitions of number of bits in an instruction and execution time.

The number of bits in an instruction, fixed or floating point , multiplication or addition , is defined

to be:

The appropriate shortest single fixed or floating point instruction length that permits

-7 -

full direct addressing of the main storage.

The following note is added:

If the addressing capability of an instruction is expanded by using a base register,

then the number of bits in an instruction
,
fixed or floating point, addition or multipli-

cation is the number of bits in the instruction with the standard address length in-

cluding the number of bits necessary to use the base register.

The definition of execution time contains the following:

(a) The time certified or openly published by the manufacturer for the execution of

the fastest appropriate instruction, under the following conditions:

(1) No indexing or indirect operations are included;

(2) The instruction is in the most immediate storage ;

(3) One operand is in the accumulator or in a location of the

most immediate storage that is acting as the accumulator;

(4) The second operand is in the most immediate storage ; and

(5) The result is left in the accumulator or the same location in

the most immediate storage that is acting as the accumulator.

The following note is added:

If the addressing capability of an instruction is expanded by using a base register,

then the execution time shall include the time for adding the content of the base re-

gister to the address part of the instruction.

It should be noted that [EAR87] does not explicitly specify that the same instruction format should

be used in computing the number of bits in an instruction and the execution time. Indeed, when there

are several appropriate instructions, the definition of number of bits in an instruction requires using the

operation of shortest length, while the definition of execution time requires the fastest; these may not al-

ways be the same. [D0D88] consistendy uses the same instruction for both computadons. The extent

to which this must be done should be made explicit.

Use of Base Registers

The use of base registers to extend the addressing capability of an instruction is specifically men-

doned in both the definitions cited in the previous section. Two problems arise in this context:

-8 -

The distinction between addressing using a base register and addressing using indexing, which is

proscribed by the definition of execution time ,
should be spelled out. In some machines, index registers

can be used in the same way as base registers.

The notion of the number of bits necessary to use a base register requires explication. Possible in-

terpretations include combinations of the number of bits required for its specification and/or the number

of bits required to change the value it contains, and the number of bits it actually contains. The full ad-

dress length generated as a result of using the base register is yet another possibility. A notion of the

motivation behind this definition would help in developing an appropriate interpretation. If, on the one

hand, it is meant to describe the number of bits processed in accessing an address, then it might be in-

terpreted to include the number of bits in the base register specification, as well as the number of bits in

the base register. On the other hand, if it is meant to reflect the size of main storage ,
then it might ap-

propriately be interpreted as the length of the computed address.

In Example 1 of [D0D88], the instructions to account for the use of a base register are ignored. In

this example, full direct addressing of all of main storage would require 20 bits, but the computation of

number of bits in an instruction accounts for only 16 address bits. These 16 bits allow direct address-

ing only within a contiguous segment of memory; the use of a base register would be necessary to real-

ize the full 20 bit addressing capability. The execution time , similarly, does not include the time for

adding the contents of the base register to the address part of the instruction. [D0D88] justifies these

choices by making the assumption that operands are found in the same memory segment This claim is

unjustified by the information given in the example.

This issue arises also in Example 5 of [D0D88]. In this example, the only appropriate instruction

involves the use of a base register, and the number of bits to account for that use is taken to be the

number of bits to specify that register.

The issue is further complicated by the following note, appended to the definition of number of

bits in an instruction :

When multiple instructions are required to simulate an appropriate single instruction,

the [number of bits in an instruction] is defined as 16 bits plus the number of bits ...

that permits full direct addressing of the main storage .

In example 4, the number of bits in a fixed point instruction includes 12 bits of mode and dis-

placement used for addressing in the fixed point memory-to-register arithmetic instructions. All floating

point operations are, however, implemented as stack operations, requiring the operands first to be loaded

onto the stacks. Since two instructions are required, the above note is invoked, and the number of bits

in a floating point instruction is taken to be 16 bits plus the number of bits that permits full direct ad-

dressing of the main storage. Despite the fact that 12 bits of mode and displacement were adequate for

addressing in the fixed point case, [D0D88] claims that addressing, through the use of base registers, re-

quires 16 bits in this case.

(One of the examples in [D0D88] contains an obvious error: Example 3 describes a system that

can be configured with a standard memory addressable with 15 bits, or with expanded memory requir-

ing a 20 bit address, generated through the use of a base register. The instruction formats considered to

calculate the number of bits in an instruction use the 15 bit address, but the execution times are taken

assuming the extended memory.)

.9.

Number of Bits in an Operand

The number of bits in a fixed point operand and the number of bits in a floating point operand are

used to determine the bit processing rates of fixed and floating point arithmetic operations.

The following definitions are made in [EAR87]:

Number of bits in a fixed point operand:

(a) The shortest fixed point operand length; or

(b) 16 bit;

whichever is greater.

Number of bits in a floating point operand :

(a) The shortest floating point operand length; or

(b) 30 bit;

whichever is greater.

The following interpretation is made in Example 5 of [D0D88]: Although 16 bit fixed point

operations are supported in this example, such operands are converted internally to 32 bits (because of

the internal register structure). [D0D88] requires the processing data rate computation to account for

all 32 bits. This might equally reasonably be interpreted the other way, requiring only 16 bits. In ei-

ther case, the interpretation made should be based on a stated general philosophy, so that other, similar

interpretations can be made consistently.

The definitions above place a premium on 16 bit fixed and 30 bit floating point operations and,

indeed, ignore any faster computational capabilities a machine may exhibit on longer operands. It

should be noted that shorter operand lengths are not the most important for many scientific computa-

tions. Thus, a processing data rate computed using these definitions is not as reflective of computational

capabilities of interest as would be one, say, that took the highest processing data rate over all operand

lengths.

Note that the definition of execution time contains the following:

(d) If the longest fixed point operand length is smaller than 16 bit, then use the time

required for the fastest available subroutine to simulate a 16 bit fixed point opera-

tion,

but no similar instruction is given for floating point operations.

- 10-

Non-Arithmetic Data Processing

As it is defined in [EAR87], the total processing data rate takes no account of non-arithmetic data

processing capabilities.

CONCLUSIONS

The Processing Data Rate should ideally provide a relative ranking of the computational capabili-

ties of various computers. Its computation for a given machine should be consistent and predictable,

based on the machine’s architectural features. As discussed in this report, these goals are difficult to at-

tain. By virtue of the variety of architectures currently available and under development, it is difficult

to develop definitions for a single figure of merit, and equally difficult to provide adequate guidelines

for the interpretation of such definitions.

The definitions relevant to the computation of the Processing Data Rate, as they appear in

[EAR87], are inadequate in light of the current technology; that is, there are commonly-used architec-

tures for which they appear not to provide a meaningful result Further, they have shortcomings in ex-

pressing computational capabilities that are of interest and probably should be of concern in the export

control arena.

Given the definitions as they are now written, however, interpretations are needed to match

definitions to modem architectures, and to remove vagueness and possible contradictions from the

definitions. [D0D88] contributes six examples, which illustrate some of the simpler instructions from

[EAR87] and which address some, but not all, of the difficult issues identified in this report There is

inadequate general discussion of how the definitions in question are to be interpreted. In some cases

the interpretations given appear to be inconsistent, and questionable interpretations are made with inade-

quate justification. Nevertheless, these examples are a good start and could be expanded upon to pro-

vide much needed guidance.

Recommendations

1. The definitions of [EAR87] need to be revised to meaningfully reflect the computational capa-

bilities of machines with the architectural features identified in this report. If such revisions

are not made, interpretations should be written to clarify the scope of applicability of these

definitions.

2. Changes to the definitions or interpretations thereof are necessary to remove or clarify apparent

inconsistencies.

3. Consideration should be given to changing the definitions to reflect a wider range of computa-

tional capabilities.

- 11 -

4. Minor inconsistencies in the presentation of [D0D88] should be corrected.

5. [D0D88] should provide a general discussion of the suggested appropriate interpretations of the

definitions, rather than relying primarily on an incomplete set of examples. As discussed in

this report, the difficulty of providing sufficiently general interpretations might be alleviated

by describing the motivations behind the definitions and interpretations; the recording of such

motivations would at least provide a basis for future revisions or extensions that are consistent

with current use.

Acknowledgments

This report benefited from the author’s extensive discussions with Robert Carpenter and Gordon

Lyon.

REFERENCES

[D0D86] "Interagency Computer Export Licensing Data System, Technical Reference Volume I: Pro-

cessing Data Rate (PDR) Handbook," Interagency Review Draft, September, 1986

[D0D88] "Interagency Computer Export Licensing Data System, Technical Reference Volume I: Pro-

cessing Data Rate (PDR) Handbook," draft, June, 1988

[EAR87] Export Administration Regulations, ECCN 1565A, October 1, 1987

[LYO88] Lyon, G., ed., "Benchmarks to Supplant Export ’FPDR’ Calculations," NBSIR 88-3795, Na-

tional Bureau of Standards, 1988

- 12 -

HBS-1T4A (rev. 2»ac>

! U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report NoJ 3. Publication Date

BIBLIOGRAPHIC DATA
REPORT NO.

SHEET (See instructions) NISTIR 88-4022 FEBRUARY 1989

4. TITLE AND SUBTITLE

Issues in Interpreting the Export Administration Regulations' "Processing Data Rat<

5. AUTHOR(S)

Vivian Lawrence

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDS
U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

3. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, State, ZIP)

Office of Export Administration
Department of Commerce
Herbert C, Hoover Building
14th and Constitution Avenue, N.W.
Washington, DC 20230

7. Contract/Gram No.

S. Type of Report & Period Covered

10c SUPPLEMENTARY NOTES

r 1 Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information , If document includes a significant

hi bliography or literature survey, mention it here)

The Processing Data Rate (PDR) is one of several criteria used to control export
of computer systems. New and varied computer architectures make consistent
interpretation of the definitions to be applied in computing the PDR difficult.
This report identifies those aspects of the definitions for which interpretation
may be difficult, and reviews a draft "PDR Handbook" which attempts to provide an
interpretation methodology.

12. KEY WORDS (Six to twelve entries ; alphabetical order; capitalize only proper names; and separate key words by semi colon s)

bit processing rate; computers; export; PDR; performance; processing data rate

13. availability

| 1
Unlimited * •

For Official Distribution, Do Not Release to NTIS

*
|

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

20402.

[__j Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

15. Price

U SCOMM-OC C043-P80

