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This paper is devoted to an analysis of the data from the Livermore loops benchmark.

We will show that in a general predictive sense the dimension of this data is rather samll;

perhaps between two and five. Two techniques are used to reduce the 72 loops timings

for each machine to a few scores which characterize the machine. The first is based on a

principal component analysis, the second on a cluster analysis of the loops. The validity

of the reduction of the data to a lesser dimension is checked by various methods.
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1 Introduction

This paper is concerned with the analysis of the benchmark data obtained from the Liver-

more Fortran Kernels (LFK). Our objective is to summarize this data and present it in a

simple, clear manner with minimal loss of information. A related objective is to estimate

the information content of the LFK loop timings.

The LFK code consists of 24 short Fortran code segments along with a driver to execute

and time the segments and present the data in a standard format (McMahon[l986]). The

timing results are given in megaflops (million floating point operations per second). The

segments are all compute bound, no attempt is made to measure I/O rates. The segments

consist primarily of short DO loops which are designed to cover a very wide range of

execution rates. Therefore, the set contains a loop which will vectorize very well and may

run at 1000 megaflops on a certain system, as well as another loop which may run at 4

megaflops on the same system. The loops in the 24 segments are each run with three

different lengths, thus giving a total of 72 different test segments. We have selected 48

different machine/compiler systems from the data given in the report by McMahon and

used this set to test our data analysis techniques. There is extensive experience with

these segments on serial and vector machines, but very few results have been reported for

parallel machines. We will refer to the 24 code segments as the “loops”, and the 72 numbers

obtained from timing the loops as the “loop runs”

.

The LFK benchmark data set describes each system by 72 numbers. Our objective is

to describe each system by far fewer numbers, perhaps two to four. We will refer to these

numbers as the “scores” for each system. McMahon’s report reduces this data to two scores,

the harmonic and geometric means of the megaflops rates. In addition, he sometimes adds

tVe arithmetic mean to 'give three numbers to characterize the systems. It is certainly

desirable that these numbers have an easily understood meaning; for example, one number

might be a mean megaflops rate for loops which vectorize well, and another the rate for

loops which do not vectorize. One way to do this is to divide the loops into two or three
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groups and characterize the systems by the geometric mean megaflops rates over these

groups. One group might contain the “fast” loops which vectorize easily, another those

which vectorize poorly or not at all. Another method is to include all the loops in eaeh

group, but weight the loops differently in each group. McMahon’s paper gives megaflops

rates for 49 different weightings of the loops. The problem with this approach is that the

choice of the groups and/or the weights is rather arbitrary.

The method used to reduce the dimension of the data must preserve the information

in the data. In order to develop a systematic reduction of the dimension of the data, we

must define the information that we are attempting to retain and preferably provide some

way to quantify this information. We will do this by using the reduced data (i.e. three or

four scores for each system
)
to reconstruct an approximation to the original 72 loop runs.

The quality of the reduction can then be measured by the discrepancy between the original

and reconstructed data. Also, we can determine how well the reconstructed data retain the

ranking of the systems on the segments; that is, if one system is faster than another in the

original data it should also be faster in the approximation.

The reduction of the dimension of the data can be obtained from a principal component

analysis of the data matrix A, that is the m x 72 matrix of megaflops rates, where m is the

number of systems. In principal component analysis, the data matrix A is approximated

by the product BC‘ where B has dimension m x q and C has dimension 72 x q. The B

matrix contains q scores for eaoh of the m systems. The q columns of C are the eigenvectors

of A^A corresponding to the q largest eigenvalues of A*A. These q eigenvalues are the

squares of the singular values of A. The q elements 6,y of B for i<y< q then characterize

the system. The quality of this characterization is determined by how well the A matrix

is approximated by the product BC‘.

The dimension of the reduced data, that is q, can be related to the predictive capability

of the LFK data. If this data, for a collection of m systems, adequately describes these

systems, then any given computer code could be modeled as a combination of the 72
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segments weighted in some way. That is, the running time of the given code could be well

estimated by computing the weighted sum of the running tim^ of the segments. If there

are m systems and n of these codes, then the nmning times of these codes form an m x n

matrix which we denote by F. Our problem is to find a 72 x n matrix W of weights which

will predict the running time of these codes from that of the LFK loops. The matrix W
can be defined as the least squares solution of the equation AW = F. As we will see,

the singular values of the LFK data matrix A drop off very rapidly. This means that the

least squares solution is not well determined. Only the first three or four weights for any

given system are well determined. In this sense the dimensionality of the LFK data is quite

small, certainly far less than 24. We will devote considerable attention to the selection of

a reasonable value for the dimension q. However, we are unable to give a precise value for

this dimension - it seems to lie between 3 and 5.

This reduction by means of the principal component analysis has the disadvantage that

the scores in the matrix B, for a given system are not determined solely by the benchmark

times for that system. If a new system is added to the set, then the characterizations for

all the systems may change. Therefore, we will discuss a second technique to define the

scores for the systems.

The technique is cluster analysis. The 72 loop runs are decomposed into a few non-

overlapping clusters. We have experimented with values of q (the number of clusters)

between two and five. The cluster procedure seems to divide the loop runs in accordance

with the degree of their vectorization on the vector systems. Given the clusters, then the

geometric mean (or other means, see Smith[l988]) of the megaflops rates of a given system

over each cluster is used to define the scores for that system. Thus, given q clusters, there

are q scores for each system. Once the matrix B of scores is defined, an approximation

of the original data matrix is constructed from the score matrix. The quality of this

approximation can then be evaluated.

The paper is organized as follows. Section 2 describes the summary statistics for both

3



systems and loops. Section 3 gives a mathematical description of the data reduction tech-

nique used. In sections 4 and 5 we discuss the results of our data reduction based on the

principal component and cluster analyses respectively. The final section summarizes our

findings and identifies directions for further work.

2 The Data and Descriptive Statistics

The data we use consist of 72 loop rates (megafiops) for 48 machine/compiler systems. We

identify each loop run by a three-digit number; the first digit is the ID for the loop length

and the next two-digits the loop segment number. For example, 214 designates loop 14

using the second loop length. The summary statistics for loops are listed in Table 1 . It

indicates that most of the loop distributions are skewed to the left (mean larger than the

median). The range statistic (difference between maximum and minimum rates) can be

used to identify loops that deliver high megafiops rates. The 72 loop runs are all positively

correlated. The correlation coefficients for the loop runs at the first set of loop length range

from 0.2309 (between loops 4 and 22) to 0.9910 (between loops 8 and 18). The correlation

matrix is displayed in Table 2.

The summary statistics for different machine/compiler systems are listed in Table 3,

which includes the three different means, performance ranges, and standard deviations.

3 The Principal Components Technique for Data Re-

duction

In this section we describe the use of principal components as a general data reduction

technique. Given a data matrix A of dimension m x n, our goal is to find a matrix C of

size n X ^ (9 <C n), such that B = AC preserves most of the information in A. In our

case n = 72. More precisely, C is chosen so that the matrix B = AC is the best linear
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predictor of A on the basis of q linear functions. E B can replax:e A without much loss of

information, then only a small number
(9)

of derived variables is needed to retain most of

the variation present in all of the original variables. This dimension-reducing process may

aid in the interpretation of the data.

The criterion for determining the matrix C is based on how well matrix B can predict

matrix A. To reproduce A from B, we attempt to find a matrix R of size q x n such that

A=:BR

is a good approximation of A. Then we will have

A — BR “h c — A “t” c.

The usual least squares estimator for R is (B^B)~^B‘A, or

A AC(C‘A‘AC)-^C‘A'A

Thus, our goal is to find a matrix C such that

||A - All = ||A - AC(C‘A‘AC)-'C‘A‘A|| (4.1)

is a minimum.

There may not be a unique matrix C which yields a minimum norm in equation 4.1.

We will show that one solution for the matrix C is an n x g matrix whose columns are

the first q principal components of A; that is, if Ai > A 2 > " ’
" > A, are the q largest

eigenvalues of A‘A and Pi,...,P5
are the eigenvectors of unit norm corresponding to

Ai, • ‘
’ ,Xq respectively, then C = ( pi p2 - •

• p, ).

By the spectral decomposition of A, we can write

C‘A‘AC (AiPipi + • •
• + A„p„p‘„) ( Pi • •

• p,

)

vp^y
— . .

. ,
Aq),
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since

0, if * 7^ j;

1, if i = j.

p;pi
=

We have

A AC diag{XX^, •
•

•
,
A-^)C‘A*A

A(pi •••

A(pipi +-”- + P5p5).

/Pi A

WqJ

(AiPipi + • • • + A„p„p^)

A matrix result (see Rao[l973] p.70) states that the matrix A of size m x n of rank g, for

which ||A — A|| is minimum, is given by A(piPj H l-p^p^); where pi , . .

.

,Pq are the first

q eigenvectors of matrix A‘A, corresponding to the q largest eigenvalues of A‘A. Thus,

the matrix C whose columns are the first q principal components yields the minimum of

||A-A||.

There are other optimal properties regarding principal components besides minimizing

||A — A||. For more detailed discussions, see Jolliffe[l986|. The goodness of the data

reduction is measured by ||A — A||. Since there is a large variability of the megaflops rates

between and within systems, it makes more sense to look at the relative change; that is,

(a,y — dij) / a,j, not — a,y. This motivates the need of a logarithmic transformation for the

original data. Several other reasons also call for the log transformation. The transformation

helps to correct the skewness of the loop distributions. The transformation results in data

being described by geometric rather than arithmetic means which is more appropriate

(’Fleming and Wallace[l986]) for data which have such a wide range. In addition, it also

resolves the dilemma of whether to use the megaflops rate or the time/megaflop as the unit

of the measurement in the analysis (Smith [1988]).
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4 Principal Component Analysis of Benchmark Data

The first 7 eigenvalues of matrix A‘A (after log transformation) are given below.

1 2 3 4 5 6 7

Eigenvalue 318.714 17.4104 4.72784 1.67885 1.39222 0.82538 0.60049

Proportion 0.9163 0.0501 0.0136 0.0048 0.0040 0.0024 0.0017

Cumulative 0.9163 0.9663 0.9799 0.9848 0.9888 0.9911 0.9929

Here the “Proportion” entry is the ratio of the eigenvalue to the trace of A‘A, and

the “Cumulative” entry the ratio of the sum of the first k eigenvalues to the trace. Since

the sum of eigenvalues is the trace of A‘A, i.e. the total sum of squares of A, the ratio

of each eigenvalue to the sum can be viewed as the proportion of the total sum of squares

accounted for by the corresponding component.

The values of ||A — Al| resulting from using one to seven components are given below,

which indicates that the values of ||A — A|| begin to level off after 3 or 4 components have

been extracted.

No. of Components 1 2 3 4 5 6 7

IIa-aii 37.38 23.70 18.30 15.95 13.69 12.16 10.91

If we consider only the reduction in the size of the eigenvalues of A^A and the difference

||A — A||, then it is difficult to decide how many components should be used to approximate

the data matrix A. However, an inspection of the elements of the C matrix shows a

correlation with the nature of the code segments. The component, shown below, is

simply the column of the C matrix. The first component clearly measures overall

performance of systems as would be expected since all the correlations between the 72 loop

runs are positive and this component accounts for 91.63% of the total variation.
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Run Component 1 Run Component 1 Run Component 1

101 0.14418 201 0.15974 301 0.16854

102 0.08856 202 0.11590 302 0.11592

103 0.11448 203 0.13637 303 0.15791

104 0.07603 204 0.10066 304 0.13150

105 0.09109 205 0.09168 305 0.09192

106 0.07458 206 0.09478 306 0.10090

107 0.15387 207 0.17048 307 0.17601

108 0.14486 208 0.16454 308 0.16442

109 0.14713 209 0.16760 309 0.16765

110 0.11838 210 0.13147 310 0.13194

111 0.07883 211 0.08144 311 0.08280

112 0.11333 212 0.13226 312 0.14183

113 0.07514 213 0.08383 313 0.08504

114 0.09635 214 0.09908 314 0.09947

115 0.07681 215 0.07890 315 0.07881

116 0.07300 216 0.07194 316 0.07209

117 0.10019 217 0.09925 317 0.09941

118 0.13859 218 0.16016 318 0.16010

119 0.09861 219 0.10117 319 0.10123

120 0.10427 220 0.10418 320 0.10397

121 0.12303 221 0.13286 321 0.13659

122 0.11467 222 0.12890 322 0.12892

123 0.10885 223 0.11174 323 0.11171

124 0.06075 224 0.06937 324 0.07914

We observe that the faster loops tend to have a negative second component. That is,

the second component, given in the table below, contrasts loops that deliver high megaflops
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rates (negative coefficients) with the rest (positive coefficients). Also, we observe that the

degree of the loop vectorization is correlated with the magnitude of the second component.

For example, the sign of the coefficients of runs 107, 207 and 307 indicates that the loop 7 is

a vectorized loop; and the magnitude of the coefficients reveals that the loop performance

increases as the loop length increases. Similarly, the loop 9 is also a vectorized loop,

however, the megaflops rate tops out at the second segment of loop length and further

increase of loop length will not increase the performance as indicated by the magnitude of

the coefficients of runs 209 and 309. Thus, after overall performance has been accounted for,

the next source of variation is between systems with vectorization capability and systems

without that capability.
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Run Component 2 Run Component 2 Run Component 2

101 -0.09900 201 -0.15848 301 -0.18935

102 0.14579 202 0.03460 302 0.03422

103 0.02971 203 -0.06082 303 -0.14264

104 0.21104 204 0.11288 304 -0.00798

105 0.12086 205 0.11992 305 0.11773

106 0.18601 206 0.10756 306 0.08142

107 -0.13936 207 -0.19955 307 -0.21774

108 -0.06432 208 -0.13863 308 -0.13815

109 -0.09708 209 -0.17267 309 -0.17254

110 0.01296 210 -0.04306 310 -0.04044

111 0.17253 211 0.16245 311 0.15348

112 0.07387 212 0.00585 312 -0.02722

113 0.23655 213 0.20599 313 0.20063

114 0.12899 214 0.11779 314 0.11658

115 0.11636 215 0.09972 315 0.09886

116 0.15707 216 0.16114 316 0.16001

117 0.06824 217 0.07173 317 0.07185

118 -0.04980 218 -0.12188 318 -0.12138

119 0.08271 219 0.06056 319 0.06047

120 0.02913 220 0.02910 320 0.02987

121 0.01883 221 0.00072 321 -0.00521

122 -0.00758 222 -0.05586 322 -0.05523

123 0.02497 223 0.01623 323 0.01629

124 0.16801 224 0.13680 324 0.09621

The third component, given below, identifies the loop length effect for each vectorized

loop. The smaller the coefficient, the larger the impact of the loop lengths to the loop
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performance. For example, the performance of the loop 1 is an increasing function of all

the 3 loop lengths, while for loop 2, it’s an increasing fimction only for the first 2 loop

lengths. The lajge and almost identical coefficients in loop 20 indicate that the loop is

scalar and therefore there is no loop length effect. Overall, the first 3 components account

for a substantial proportion of the total variation (97.99%).
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Run Component 3 Run Component 3 Run Component 3

101 0.03088 201 -0.03163 301 -0.09567

102 0.13383 202 0.05181 302 0.05461

103 0.04943 203 -0.04193 303 -0.16055

104 0.10000 204 0.03123 304 -0.10619

105 0.08464 205 0.08652 305 0.08539

106 0.07104 206 0.01071 306 -0.01658

107 0.11108 207 0.02954 307 -0.00496

108 0.11022 208 0.00144 308 0.00079

109 0.10966 209 0.01088 309 0.01084

no 0.03193 210 -0.04147 310 -0.04184

111 0.01063 211 0.01121 311 0.00500

112 -.011278 212 -0.19050 312 -0.25377

113 -0.14047 213 -0.19008 313 -0.19405

114 -0.06348 214 -0.07168 314 -0.07946

115 0.01566 215 0.00653 315 0.00664

116 0.01896 216 0.01970 316 0.01901

117 0.15355 217 0.15349 317 0.15349

118 0.06302 218 -0.03120 318 -0.03116

119 0.15346 219 0.17395 319 0.17432

120 0.17536 220 0.17653 320 0.17329

121 -0.04600 221 -0.10913 321 -0.13565

122 -0.08217 222 -0.13985 322 -0.13970

123 0.18905 223 0.17340 323 0.17230

124 -0.15600 224 -0.23161 324 -0.33910
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4.1 Goodness of Reduction

Although the principal components were derived solely based on the minimization of
||
A —

A||, other criteria can also be used to assess the adequacy of the dimension reduction.

Our objective is the simplification of the benchmark data. This requires a reduction in

its dimension. However, looking only at the norm ||A — A|| and the eigenvalues of A‘A

does not provide a clear indication of the number of components which should be used to

reconstruct A. We will use three extra measures of the quality of the approximation of A

by A. The first is a comparison of the geometric means of the megaflops rates for each

system obtained from the original data A with the means obtained from the approximate

data of A. The second is the performance range, the difference between the maximum and

minimum megaflops rates, for each system. The third is the Spearman rank correlation

coefficient (Noether[l967]) for the 72 loop nms for each system. The Spearman correlation

indicates how well the rank ordering of the loop rates is preserved. Specifically, for each

system, the Spearman correlation coefficient between the ranks of the 72 megaflops rates of

A and A is calculated. A large Spearman correlation indicates a good preservation of the

ranking. Table 4 lists the results for one to four components (used in the data reduction).

This table shows the ratio of the geometric mean of the reconstructed data to the geometric

mean of the original data, and also gives a similar ratio for the range of the data for each

system.

Table 4 shows that the Spearman coefficient tends to be smaller for the scalar systems

because there is much less variation of the loop rates compared to that for a vector system.

Therefore the rank order is not as well defined for the scalar systems so that the data in

the A must be more accurate in order to preserve the rank order.

Note that the geometric mean is already quite accurate when only one component is

used to construct A. Also, in Table 4, there is little change in the geometric means obtained

from A in going from one to four components.

However, to preserve the rank ordering of the loop rates for each system, as measured
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by the Spearman correlation, requires three components. There is considerable change in

the Spearman correlations in going from one to two components, and some change from two

to three components. Table 4 is concerned with the ranking of the loops for each system;

thus there are 72 elements in the ranking with the fastest loop at the head of the ranking.

Perhaps a ranking of the systems for each loop is of greater significance to benchmarking.

Here there are 48 systems in the ranking for each loop with the fastest system at the head

of the ranking. For such a ranking of the systems on each loop, the Spearman correlations

are sufficiently large (i.e. generally greater than 0.9) when only two components are used

to generate A.

It is very difficult to accurately reproduce the range using only a few components to

construct the A. The actual range for the ETA205-V is 167 and the approximate range

using four components is only 56. For other vector systems the error was not this large,

but was still in the 20% region. Approximating extreme values is very difficult. It is

difficult to determine how important these extreme values are in the evaluation of the

system. Nevertheless, it seems that three components are the minimum number required

to adequately preserve the central tendency, the spread, and the rank ordering of the

original data.

Another common practice of assessing the goodness-of-fit is to examine the residuals.

Plots of elements of A — A are displayed in Figures la, lb and Ic. They shows that,

among 72 runs, loop 24’s have the most extreme outlying points. Detailed examination

reveals that most of the outliers are from the same group of machines. For example, the

top 3 outliers of runs 224 and 324 are Amdahl (1400VP-V, 1200VP-V, and 1500VP-V);

the top outlier of loop 23 is Apollo300-32; the top 2 outliers of runs 121, 219, and 319 are

Convex (V-32 and V-64); the top outlier of loop 15 is Alliant-V-64-P. In general, most of

the residuals lie within the band of (-0.5, 0.5) indicating that 3 principal components are

probably sufficient in summarizing the data.
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4.2 Component Scores

The matrix B = AC is the matrix of summary scores obtained from the reduction. We

also point out here that the matrix C (and consequently B) is not uniquely determined

and that any other matrix C of size n x q whose columns span the same space as the

columns of C will also solve the data reduction problem, i.e. C = CP where P is any

q X q nonsingular matrix is also an optimal solution. It is easily shown that there exists a

3x3 nonsingular matrix P such that the first column of the matrix C = CP will sum to

1, and the negative and the positive coefficients of the second and the third columns of C

will sum to —1 and 1 respectively. This transformation will allow us to interpret the scores

as geometric means. Let A and B be the data and score matrices in log scale and A the

original data matrix, i.e. A = log(A), then B = AC. The rows of B now represent the

summary scores corresponding to eaeh of the 48 systems.

For score 1, we have

72

f>il
= X] ^kCkl

k-1

72

= ^2 log

ife=l

= login a'D-
k=l

If we let bij = log 6,y, which is the summary score for system i in the original scale, we

have
72

^•1 = n
;k=l

which is a weighted geometric mean of the 72 loop rates with weights Cki, k = 1,2, - •
•

,

72.

For scores 2 and 3 (i.e. j = 2 and 3), we have

^ij y !! ^ik^kj “1* ^ ^ 0-ik^kj

{cfcj>0} {ckj<0}

= iog( n 4'/ n
{cfcj>0} {cfcj<0}

15



or

h= n “ijv n 4*''.

{cfcj>0} {cfcj<0}

which is a ratio of 2 weighted geometric means. These scores are tabulated in Table 5.

Score 1 measures the overall performance of each system. For vector systems, score

1 can be significantly larger than the geometric mean, since the weights c^i have slightly

larger value on vectorizable loops. For scalar systems, score 1 and the geometric mean are

very close, implying that vectorizable loops play no significant roles here. Score 2 is the

ratio of the scalar performance to the vector performance and can be used to easily identify

the vector systems and their vectorizability. The smaller the value of score 2, the more

vectorizable the system. Score 3 measures the loop length effect for the vector systems.

Again, the small value of score 3 implies the significant length effect.

Another advantage of reducing the dimensionality of the data is that we are able to

plot the data. The original 72-dimensional data are impossible to visualize. The first 3

components give the best-fitting 3-dimensional subspaee and preserve a substantial propor-

tion of the total variation. Figure 2 gives the plot of the machines with respect to the first

2 scores. The size of the markers in the plot is proportional to the reciprocal of the third

score. The vector and scalar systems are in separate clusters, with the vector systems at

the bottom of the plot. Note that when the Cray systems are run in scalar mode, they

appear in the scalar cluster. The markers are: Alliant -“d”, AmdaJil -“A”, Apollo -“0”,

Convex -“v”, Cray DEC ETA IBM -“o”, NEC SCS - “o”, Sperry -

“x”, and all others - “®”.

5 Cluster Analysis on Loop Runs

As we mentioned earlier, although the principal components have some desired optimal

properties in data reduction, there is one disadvantage of being data dependent. If a new

system is added to the benchmark data set, then the scores for all the systems may change.

In order to eliminate this data dependence, the 72 loop runs are divided into q clusters.
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The geometric mean of the megaflops rates over each cluster is used to define q scores for

each system. Once the clusters are defined, then the scores for each system are completely

independent of the scores for the other systems. However, the clusters must be defined so

that these scores give a good charaxrterization of the systems.

The decomposition of the loop nms is obtained from a 72 x g matrix G of weights. This

matrix is used to generate a score matrix B in the same way that the matrix C of principal

components generates a score matrix, that is B = AG. This matrix G is restricted to

have a single non-zero element in each row. This non-zero element identifies the cluster

membership and the weight within the cluster for the loop run. Therefore G can be used

to decompose the loop runs into q clusters. The elements of G must be chosen so that the

score matrix B is the best possible predictor of the original data matrix A. In fact, we

could formulate the problem by the same technique used in section 3, i.e. our goal would

be to find a matrix G G F, where F is the collection of all the 72 X q matrices having only

a single non-zero element in each row, such that

||A- AG(G‘A‘AG)~^G‘A‘A|| (6.1)

is a minimum.

The minimization of (6.1) is a difficult (computational) problem. However, in the

general case (i.e. no restriction imposed on G) the problem is equivalent to the minimization

of the trace of the residual vaxiajice of predicting A based on the linear predictor AG (see

Rao[1973], p.593). This residual variance can be expressed as the covariance matrix of A

given A G (that is, the covariance conditional on AG), which is

S - SG(G‘SG)"^G‘S, (6.2)

where S, of size 72 X 72, is the covariaaice matrix of the loop runs. To minimize the trace of

(6.2), we need to maximize trace(SG(G‘SG) ^G‘S). If there were no constraint imposed

on G, the optimum choice of G would be G = C, the q largest principal components of
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E. Also, since (see Rao[l973] p.592) for any 12 x q matrix X

trace(SX(X'SX)"^X'S) = trace(SC(C‘SC)"^C‘S)

= trace(C*EC),

this motivates us to reformulate the problem; instead of finding G G F to minimize (6.1),

we will find G G F such that

trace(G^SG) = gjEgi + • ° + g^Eg^ (6-3)

is a maximum, where g* is the column of G. ff we denote by h,- the column vector

containing the non-zero elements of g^, and E,- the covariance submatrix of E corresponding

to these non-zero elements, then g,-Eg,- = h,-E,h,-. In addition,

max h‘E,hi = c‘E,c,,

where c,- is the eigenvector corresponding to the largest eigenvalue of E, . Thus, the elements

of G which maximize (6.3) can be easily determined if the cluster structure is known.

In this paper, we employ the VARCLUS procedure of the SAS [1986] to find the cluster

components G. It begins with all loops in one cluster and repeats the following steps until

q clusters are obtained.

1. The principal components for each cluster are computed, that is, the eigenvectors

of each E,-. The cluster having the largest second eigenvalue is chosen for further

splitting.

2. The chosen cluster is split into two clusters by finding the first two principal com-

ponents, performing a rotation (Harman[l976|) and assigning each loop run to the

rotated (cluster) component with which it has the higher squared correlation.

Once q clusters axe obtained then an iterative procedure is used to reassign loop runs

to clusters in order to maximize the trace in (6.3).
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Since the principal components were obtained without the constraint, a given number

of cluster components does not explain as much variance as the same number of principal

components. However, the cluster components axe easier to interpret than the principal

components.

The cluster results obtained from the VARCLUS procedure are given in the tables

below. For the two-cluster case, the elements of the matrix G, multiplied by 10®, are given

in the following table.
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Run Cluster 1 Cluster 2 Run Cluster 1 Cluster 2 Run Cluster 1 Cluster 2

101 33061 201 33164 301 32941

102 25069 202 25073 302 25094

103 25102 203 33011 303 32840

104 24585 204 25272 304 32541

105 25440 205 25425 305 25438

106 24978 206 25059 306 24753

107 33129 207 33231 307 33075

108 32830 208 33204 308 33205

109 32947 209 33220 309 33222

no 32580 210 33001 310 33006

111 25129 211 25014 311 24981

112 32792 212 32997 312 32829

113 24702 213 24742 313 24741

114 25129 214 25083 314 25056

115 24804 215 24740 315 24721

116 25292 216 25251 316 25262

117 25394 217 25377 317 25379

118 32941 218 33300 318 33298

119 25159 219 24654 319 24652

120 25262 220 25255 320 25252

121 32726 221 33043 321 33009

122 32737 222 32753 322 32748

123 25063 223 25090 323 25085

124 23645 224 22301 324 27334

As we can see, the weights within each cluster are nearly constant for the above case. In

fact, as the number of clusters increzises, the weights tend to be even less variable within
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each cluster because the clusters become more homogeneous. Thus, we can treat the loop

runs within each cluster equally without loss of much information. The clusters obtained

from the VARCLUS procedure for ^ = 3,4, and 5 are shown below.

Cluster 1 Cluster 2 Cluster 3

102 202 302 101 201 301 124 224 324

103 203 303

104 204 304

105 205 305 107 207 307

106 206 306 108 208 308

111 211 311 109 209 309

113 213 313 no 210 310

114 214 314 112 212 312

115 215 315 118 218 318

116 216 316 121 221 321

117 217 317 122 222 322

119 219 319

120 220 320

123 223 323
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Cluster 1 Cluster 2 Cluster 3 Cluster 4

102 101 201 301 124 224 324 202 302

104 204 203 303 103

105 205 305 304 206 306

106 107 207 307 113 213 313

111 211 311 00o 208 308 114 214 314

116 216 316 109 209 309 115 215 315

117 217 317 110 210 310

119 219 319 112 212 312

120 220 320 118 218 318

123 223 323 121 221 321

122 222 322

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

102 201 301 124 224 324 202 302 101

104 204 203 303 103 304

105 205 305 207 307 206 306 107

106 209 309 113 213 313 108 208 308

111 211 311 212 312 114 214 314 109 209 309

116 216 316 218 318 115 215 315 no 210 310

117 217 317 222 322 112

119 219 319 118

120 220 320 121 221 321

123 223 323 122

The cluster analysis apparently groups the loops according to ease of vectorization and

megaflops rate. Consider the situation when the loops axe broken into four clusters. The

first cluster consists generally of loops that do not vectorize, the second of loops which
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vectorize very well and give high megaflops rates, the third cluster is an anomaly which

consists of a single loop, and the fourth consists of loops which vectorize only moderately

well and do not give high megaflops rates. This can be seen from Table 6. This table lists,

for each of the 72 loop runs, the first and third quartiles (Q1 and Q3) of the megaflops

rates over the 48 systems. Also listed is a vectorization figure. The report by McMahon

gives the extent of vectorization for each of the 24 loops for 6 systems: Cray-1, Fujitsu,

Cyber205, Convex Cl, NECSX-2, and IBM3090. Table 5 of McMahon’s report shows full,

partial, or no vectorization for each of these systems. The “vector” column in Table 6

gives this number for each loop. If the vectorization number is 6, then all systems fully

vectorized the loop. E this number is 4p, then four systems partially vectorized the loop

and two systems gave no vectorization. It is clear that most of the loops in cluster 1 did not

vectorize on any systems, whereas most loops in cliister 2 vectorized on all systems. The

average loop in cluster 4 vectorized on only three systems, thus this cluster is intermediate

between 1 and 2. Cluster 3 contains only loop 24 which is an anomalous case. This loop is

the following:

M = 1

DO 24 K = 2, M

IF (X(K) .LT. X(M)) M=K

24 CONTINUE

The Amdahl vector systems ran this loop an order of magnitude, or more, faster than the

other systems. Therefore the results for this loop have a different structure than those for

the other loops; so much different that this loop forms a cluster by itself. Perhaps the

Amdahl system has a hardware instruction to locate the smallest element in an array, and

the compiler is clever enough to generate that instruction. At any rate, this loop seems to

be an anomaly. It is rather remarkable that this cluster analysis seems to select the loops

based on vectorization.

Next we consider a method to define scores for each system based on this decompo-
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sition of the loops into clusters. Given a decomposition of the loops into q clusters, the

corresponding scores are defined as the geometric mean of the megaflops rates for the given

system over the clusters. Thus, if there are m systems, then we have defined an m x g

score matrix B. This matrix is shown in Tables 7 for q = 2 and q = 4. For the case of four

clusters, the first score is the geometric mean over loops which vectorize poorly, the second

over loops which vectorize very well, the third over the single loop which finds the smallest

element in an array, and the fourth over loops which are partially vectorized.

From the score matrix B, we construct an approximation A of the original data matrix

A. The approximation is obtained by least squares. The values of
||
A — A|| resulting from

using two to five cliisters are given below.

No. of Clusters 2 3 4 5

||A- All 24.61 20.58 17.32 16.30

For a given value of q, the L2 norm ||A — A|| based on the principal components is smaller,

as we might expect, since the principal component approximation is optimal. Also, from
A

this approximation A the geometric mean and range of the loop runs for each system can

be computed. These are shown in Table 8. The mean and range can be compared with

those obtained from the original matrix which are displayed in Table 3. In addition, the

mean and range can be compared with those in Table 4 obtained from the approximation

based on the principal components. The approximation based on cluster analysis requires

four clusters to give roughly the same accuracy for the geometric mean and Spearman

rank correlation as three components of the principal component analysis. However, the

estimate of the range obtained from the scores based on the cluster analysis is superior to

that obtained from the scores based on the principal components.

6 Concluding Remarks

In this paper, we have investigated the “dimensionality” of the 24 Livermore loops. In

this context, dimension is defined as the number of linear combinations of the loop timings
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that can be used as “scores” to characterize a computer hardwaxe/software system. This

dimension is based on a singular value decomposition of the loop timings over a set of

48 computer systems. Therefore, the dimension is not well defined, since it is difficult to

determine when a small singular value should be set to zero and the rank of the data matrix

reduced. However, the dimension is certainly greater than one; a single number, such as

the Linpack timing, has too little predictive value. We find that three to five of these scores

are required to reconstruct the original Livermore benchmark data fairly accurately.

We also present two methods to define the scores for the systems. The first is optimal in

a certain sense and is based on a principal component analysis. It has the disadvantage that

the interpretation of the scores in not obvious. The second method uses a grouping of the

loops into clusters. The scores for a given system are the geometric means of the megafiops

rates taken over each cluster. These clusters are closely related to the vectorization of the

loops.

There are other ways to approach the data reduction problem. For instance one could

ask if a subset of the 72 loop runs will provide essentially the same information as the full

set. This question could be addressed by performing a best subset analysis on the LFK

data. Another important issue is the external validation of the scores derived in this paper.

In particular, the predictive power of the loops could be tested by running the loops on

a set of 10 to 15 systems along with a few small “production” codes. Then the scores

obtained from the loops could be used to give a least squares prediction of the running

times on the production codes. If the loops and the resulting scores really characterize the

systems, the prediction should be fairly good.
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Table 1. Statistics of Loop Runs

Loop Mean Stddev Min Med Max Loop Mean Stddev Min Med Max
101 17.64 28.80 0.007 7.60 158.51 113 1.85 1.75 0.005 1.44 7.00

201 36.57 84.93 0.007 9.02 529.75 213 2.44 3.06 0.005 1.63 14.34

301 61.87 159.17 0.007 9.02 800.05 313 2.56 3.43 0.005 1.70 16.78

102 3.32 3.32 0.007 2.26 15.60 114 3.53 3.98 0.005 2.42 19.59

202 6.80 9.15 0.007 3.83 49.94 214 3.88 4.75 0.005 2.48 24.16

302 6.81 9.16 0.007 3.77 49.94 314 3.96 5.02 0.005 2.53 25.79

103 6.66 8.09 0.007 4.15 43.91 115 2.50 2.17 0.008 2.45 8.91

203 14.30 23.91 0.007 5.42 122.01 215 2.60 2.19 0.008 2.39 8.74

303 44.50 112.01 0.007 5.75 528.67 315 2.60 2.19 0.008 2.41 8.74

104 2.53 2.94 0.006 1.54 15.65 116 2.24 2.22 0.010 1.63 9.85

204 4.41 5.48 0.006 2.60 28.70 216 2.19 2.19 0.010 1.57 9.85

304 15.48 32.87 0.006 3.24 164.18 316 2.20 2.21 0.010 1.59 9.85

105 3.47 3.31 0.007 2.50 13.17 117 4.88 4.65 0.011 3.46 18.10

205 3.54 3.38 0.007 2.52 13.68 217 4.78 4.58 0.011 3.24 17.89

305 3.55 3.38 0.007 2.56 13.58 317 4.79 4.57 0.011 3.35 17.89

106 2.27 2.19 0.005 1.67 10.74 118 12.80 16.61 0.006 7.38 66.72

206 3.65 3.74 0.005 2.47 18.74 218 33.56 71.01 0.006 8.59 349.42

306 4.46 5.35 0.005 2.86 29.30 318 33.52 70.99 0.006 8.59 349.42

107 23.65 36.39 0.009 10.65 178.95 119 4.29 3.83 0.008 3.64 16.17

207 52.53 123.12 0.009 12.02 720.82 219 4.74 4.22 0.008 4.78 18.12

307 75.11 196.46 0.009 12.38 1042.33 319 4.75 4.22 0.008 4.78 18.11

108 15.91 21.12 0.006 6.79 87.20 120 5.75 5.33 0.010 3.84 19.36

208 38.68 82.36 0.006 10.41 415.70 220 5.75 5.29 0.010 3.84 19.29

308 38.59 82.31 0.006 10.40 415.68 320 5.71 5.29 0.010 3.86 19.35

109 18.28 26.42 0.008 8.47 121.10 121 8.34 12.24 0.006 3.83 65.72

209 45.91 112.05 0.008 11.03 705.20 221 13.44 27.01 0.006 3.57 156.56

309 45.97 112.12 0.008 11.06 705.28 321 17.08 40.58 0.006 3.27 253.03

no 7.61 9.39 0.010 3.99 33.96 122 8.03 12.43 0.006 2.80 43.37

210 13.46 23.74 0.010 4.49 120.75 222 15.81 33.22 0.006 3.25 183.36

310 13.48 23.78 0.010 4.42 120.75 322 15.80 33.20 0.006 3.25 183.34

111 2.48 2.30 0.008 1.70 8.32 123 6.51 6.22 0.007 4.60 23.30

211 2.69 2.52 0.008 1.70 8.32 223 7.02 6.80 0.007 4.79 24.48

311 2.79 2.65 0.008 1.70 8.70 323 7.02 6.80 0.007 4.79 24.44

112 5.77 8.21 ^.004 2.48 39.32 124 2.07 2.76 0.033 1.03 12.53

212 12.72 25.73 0.004 2.89 147.41 224 3.94 9.48 0.033 1.07 45.80

312 21.64 50.11 0.004 3.05 242.80 324 12.74 46.89 0.033 1.26 266.58
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Table 2. Correlations of Loops (times 10 “*)

102 103 104 105 106 107 108 109 110 111 112

101 4912 8621 3098 5726 3368 9806 9297 9682 8845 5369 9590

102 6655 9384 8915 9309 5020 6185 5451 5891 8632 5234

103 5964 8041 5722 8577 8443 8216 7951 8016 8518

104 8698 9523 3205 4409 3465 4067 8585 3586

105 87C. 5905 6773 6153 6847 9533 5894

106 3366 4528 3793 4312 8854 4026

107 9686 9866 9375 5354 9407

108 9764 9754 6135 9207

109 9587 5486 9299

110 6055 8776

111 5964

Table 2. Correlations of Loops (continued)

113 114 115 116 117 118 119 120 121 122 123 124

101 7357 8785 6119 6373 6321 9234 5585 6363 9520 8996 6533 4633

102 8392 6960 9150 9272 9522 5928 9006 8817 4988 4322 9294 4284

103 8298 9396 7455 8032 7871 8438 7733 7628 9170 7193 8127 7159

104 7069 5579 8422 8849 8751 4216 8628 7848 3586 2309 8453 4546

105 8047 7752 8883 9245 9564 6788 9764 9410 6629 5204 9670 6658

106 7124 5542 8522 8846 8826 4321 8685 7884 3764 2749 8430 4375

107 7717 9086 6097 6347 6385 9694 5709 6755 9524 9492 6708 5475

108 8450 9258 6870 7014 7296 9910 6682 7731 9022 9576 7633 5818

109 7851 8916 6368 6521 6718 9762 6010 7126 9298 9576 7029 5234

no 8050 8869 6626 6679 7143 9833 6692 7861 8770 9550 7573 6088

111 7813 7435 8517 9153 9152 6043 9212 8450 6136 4458 9028 6456

112 7497 8491 6238 6447 6488 9102 5837 6454 8960 8795 6726 4944

113 9224 8224 8323 8699 8269 8018 8574 7333 7105 8831 6252

114 7500 7999 8046 9199 7502 8076 9100 8282 8220 6895

115 9115 9354 6855 8754 8893 6165 5387 9176 4655

116 9671 6878 9052 8880 6829 5376 9203 5653

117 7149 9585 9542 6651 5718 9790 5522

118 6603 7721 9118 9565 7534 6244

119 9298 6381 5079 9648 5913

120 6918 6587 9745 6399

121 8602 6942 6417

122 6076 4991

123 6104
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Table 3. Statistics of Machine/Compiler Systems

System Harmonic Ceometric Average Std. Min. Max. Range

ALLIANT-S-32 0.637 0.721 0.813 0.390 0.303 1.580 1.277

ALLIANT-V.32 0.801 1.164 1.648 1.434 0.096 5.390 5.294

ALLIANT-S-64 0.573 0.627 0.685 0.283 0.287 1.250 0.963

ALLIANT-V.64-P 1,199 2.257 5.026 6.839 0.280 29,200 28.920

AMDAHL5890-S 6.208 7.020 7.664 2.841 1.730 11.970 10.240

AMDAHISOOVP-V 10.087 17.334 31.248 33.741 2.230 116.300 114.070

AMDAHL 1200VP-

V

11.730 24.712 65.528 97.816 2.700 435.520 432.820

AMDAHL 1400VP-S 6.294 7.396 8.354 3.786 1.700 16.000 14.300

AMDAHL 1400VP-

V

11.940 27.174 88.140 154.868 2.670 819.450 816.780

APOLLO300-32 0.013 0.015 0.020 0.027 0.005 0.143 0.138

APOLLO660-32 0.101 0.109 0.115 0.040 0.044 0.225 0.181

APOLLO300-64 0.007 0.007 0.008 0.005 0.004 0.033 0.029

APOLLO660.64 0.070 0.073 0.076 0.020 0.036 0.112 0.076

SUN3-64 0.287 0.321 0.361 0.189 0.102 0.910 0.808

RIDGE32 0.196 0.202 0.208 0.049 0.121 0.292 0.171

CDC875 3.265 3.653 4.036 1.737 1.240 8.380 7.140

CYBER 176 2.779 3.215 3.664 1.798 1.110 8.270 7.160

CELERITY-32 0.231 0.259 0.292 0.154 0.091 0.809 0.718

CONVEX-S-32 1.123 1.278 1.430 0.679 0.400 3.600 3.200

CONVEX-V-32 1.233 2.640 5.246 6.070 0.123 23.600 23.477

CONVEX-S-64 0.925 1.060 1.193 0.561 0.338 2.750 2.412

CONVEX-V-64 1.035 1.888 3.235 3.301 0.111 12.790 12.679

CRAYl-S 4.801 5.513 6.451 3.831 2.290 15.430 13.140

CRAYl-V 6.589 11.977 23.547 26.339 1.430 95.420 93.990

CRAYXMP-S 5.726 6.647 7.859 4.797 2.620 19.160 16.540

CRAYXMP-V 8.289 17.021 39.363 47.549 2.140 162.190 160.050

CRAYXMP-CFT-S 5.694 6.975 8.524 5.562 1.580 22.700 21.120

CRAYXMP-CFT-V 7.957 17.052 37.546 44.354 1.520 167.720 166.200

CRAY2-S 3.682 4.393 5.288 3.262 1.640 12.120 10.480

CRAY2-V 5.135 11.278 29.041 37.941 1.260 146.400 145.140

MICROVAX2 0.163 0.173 0.181 0.050 0.061 0.280 0.219

VAX8800 0.885 0.948 1.001 0.304 0.307 1.644 1.337

VAX8800-32 1.243 1.343 1.432 0.486 0.460 2.410 1.950

ELXSI6420 1.078 1.179 1.291 0.561 0.517 2.740 2.223

ETA205-S 3.366 4.323 5.570 4.266 0.880 17.600 16.720

ETA205-V 4.253 7.352 17.238 30.321 0.850 167.920 167.070

IBM3033 1.369 1.523 1.643 0.564 0.420 2.400 1.980

IBM3081 2.332 2.441 2.539 0.669 1.190 3.570 2.380

IBM3090-S 6.013 6.571 7.070 2.458 2.900 11.010 8.110

IBM3090-V 7.034 9.104 12.443 11.187 2.020 47.500 45.480

NECSX2-S 11.228 12.895 14.895 8.384 4.590 38.160 33.570

NECSX2-V 18.545 42.022 135.237 221.717 4.470 1042.330 1037.860

FPS264-64 4.690 6.009 7.573 5.315 1.230 21.640 20.410

HONEYWELDPS-90 3.615 4.394 5.340 3.297 1.530 13.570 12.040

NASXL-60 8.539 11.329 13.860 7.631 1.920 28.000 26.080

SCS-S 1.931 2.387 2.908 1.852 0.480 6.870 6.390

SCS-V 2.399 4.523 8.883 9.989 0.470 35.910 35.440

SPERRYllOO-V 3.369 5.510 10.829 13.392 1.080 55.380 54.300
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Table 4. Statistics of Reconstructed Data using Principal Components
* Ratio to Corresponding Entries in Table 3

System

1 Component 2 Components
Geometric* Range* Spearman Geometric* Range* Spearman

ALLIANT-S-32 1.1034 0.1435 -0.6374 0.9896 0.9371 0.7529

ALLIANT.V-32 1.1887 0.0875 0.8802 0.9947 1.0961 0.9092

ALLIANT-S-64 1.1029 0.2658 -0.6334 0.9923 0.9229 0.7550

ALLIANT-V-64.P 1.2353 0.1092 0.8324 0.9980 0.7947 0.8424

AMDAHL5890.S 0.9417 1.5465 0.7193 0.9889 0.9146 0.6717

AMDAH 1500VP-

V

1.0589 0.7491 0.9070 0.9951 1.2184 0.9069

AMDAHL1200VP.V 1.1044 0.3714 0,9078 0.9986 0.7973 0.9085

AMDAHL1400VP-S 0.9595 1.2506 0.7667 0.9859 0.9567 0.7467

AMDAHL1400VP-V 1.1237 0.2350 0.9091 0.9987 0.5721 0.9114

APOLLO300-32 1.3136 0.8723 -0.0836 0.9924 0.1326 0.8375

APOLLO660-32 1.1889 1.6190 -0.2923 0.9923 0.5369 0.8023

APOLLO300-64 1.3581 2.9412 0.1445 1.0029 0.3915 0.7275

APOLLO660-64 1.2091 3.2907 -0.1481 0.9988 0.7308 0.7188

SUN3-64 1.1524 0.4620 -0.5684 0.9936 0.5907 0.6737

RIDGE32 1.1329 2.0640 -0.2762 0.9992 0.6884 0.6050

CDC875 1.0022 0.7627 0.8391 0.9960 0.8212 0.8439

CYBER176 1.0191 0.6126 0.8060 0.9922 0.8390 0.8220

CELERITY-32 1.1528 0.5157 -0.4560 0.9898 0.4688 0.6798

CONVEX-S-32 1.0753 0.1408 0.7620 1.0000 0.6539 0.7574

CONVEX-V-32 1.2359 0.1854 0.9210 0.9982 1.2539 0.9308

CONVEX-S-64 1.0891 0.0701 0.7192 1.0036 0.7051 0.6980

CONVEX-V-64 1.2221 0.1644 0.9184 0.9999 1.2243 0.9298

CRAYl-S 0.9815 0.8496 0.6901 0.9931 0.7509 0.6873

CRAYl-V 1.1348 0.5599 0.9765 1.0044 1.4540 0.9779

CRAYXMP-S 0.9716 0.9195 0.6951 0.9902 0.7598 0.6878

CRAYXMP-V 1.1517 0.5932 0.9792 1.0066 1.6600 0.9807

CRAYXMP-CFT-S 0.9860 0.8025 0.7272 0.9955 0.7312 0.7227

CRAYXMP-CFT-V 1.1438 0.5667 0.9835 1.0096 1.4742 0.9846

CRAY2-S 1.0006 0.7324 0.6558 0.9880 0.8386 0.6657

CRAY2-V 1.2059 0.3629 0.9740 1.0056 1.4706 0.9751

MICROVAX2 1.1742 1.5621 -0.6040 0.9998 0.8195 0.6669

VAX8800 1.0335 0.0154 -0.3762 0.9957 0.4041 0.4184

VAX8800-32 1.0324 0.2395 0.6077 0.9916 0.6810 0.6396

ELXSI6420 1.0575 0.1266 0.6546 0.9960 0.6591 0.6715

ETA205-S 1.0427 0.4808 0.7702 1.0045 0.6998 0.7684

ETA205-V 1.1362 0.1411 0.8879 1.0112 0.3658 0.8811

IBM3033 1.0366 0.3788 0.6525 0.9953 0.8853 0.6625

IBM3081 0.9852 0.9616 0.6930 0.9933 0.8357 0.6880

IBM3090-S 0.9422 1.7432 0.7305 0.9951 0.9426 0.6903

IBM3090-V 1.0292 0.6280 0.9125 0.9980 0.8165 0.9114

NECSX2-S 0.9199 1.2557 0.6352 0.9897 0.6312 0.5942

NECSX2-V 1.1278 0.3694 0.9670 1.0125 0.8266 0.9636

FPS264.64 1.0194 0.6801 0.7862 1.0088 0.7521 0.7845

HONEYWELDPS-90 0.9958 0.6323 0.6095 0.9924 0.6564 0.6081

NASXL-60 0.9609 1.4039 0.7901 0.9853 1.1245 0.7799

SCS-S 1.0613 0.4022 0.7174 1.0004 0.8363 0.7275

SCS-V 1.2079 0.3204 0.9489 1.0097 1.4317 0.9455

SPERRYllOO-V 1.1425 0.2680 0.7738 1.0001 0.8204 0.7917
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Table 4. Statistics of Reconstructed Data using Principal Components (continued)

* Ratio to Corresponding Entries in Table 3

System

3 Components 4 Components
Geometric* Range* Spearman Geometric* Range* Spearman

ALLIANT-S-32 0.9935 1.0300 0.9106 0.9923 1.0414 0.9087

ALLIANT-V-32 0.9944 1.0957 0.9096 0.9974 1.1746 0.9022

ALLIANT-S-64 0.9958 1.0337 0.9352 0.9953 1.0255 0.9360

ALLIANT-V-64-P 0.9920 0.8441 0.8994 0.9900 0.8250 0.9114

AMDAHL5890-S 0.9931 1.1172 0.9189 0.9975 1.0981 0.9238

AMDAH1500VP-V 0.9904 1.2343 0.9463 0.9982 1.4390 0.9723

AMDAHL1200VP.V 0.9915 0.8647 0.9669 1.0004 0.9677 0.9880

AMDAHL1400VP-S 0.9903 1.0618 0.9264 0.9936 1.0701 0.9179

AMDAHL 1400VP-V 0.9907 0.6343 0.9680 0.9998 0.7039 0.9832

APOLL0300-32 0.9946 0.1437 0.8435 1.0007 0.3163 0.8281

APOLLO660-32 0.9946 0.6627 0.8713 0.9943 0.6584 0.8734

APOLLO300-64 1.0018 0.4921 0.6831 1.0056 1.0879 0.6859

APOLLO660-64 1.0005 0.9149 0.8312 1.0012 0.9513 0.8388

SUN3-64 0.9963 0.6297 0.7673 0.9975 0.6561 0.7750

RIDGE32 0.9999 0.7447 0.6190 1.0023 1.1488 0.6881

CDC875 0.9997 0.9204 0.9605 0.9993 0.9245 0.9619

CYBER176 0.9969 0.9537 0.9735 0.9978 0.9494 0.9720

CELERITY.32 0.9919 0.4979 0.7488 0.9903 0.4710 0.7493

CONVEX-S-32 1.0044 0.7609 0.9226 1.0044 0.7607 0.9224

CONVEX-V-32 1.0012 1.2467 0.9102 1.0011 1.2442 0.9102

CONVEX.S.64 1.0081 0.8323 0.9067 1.0082 0.8299 0.9056

CONVEX-V.64 1.0027 1.2200 0.9010 1.0023 1.2102 0.9002

CRAYl-S 0.9979 0.8575 0.9484 0.9992 0.8502 0.9407

CRAYl-V 1.0036 1.4557 0.9781 0.9989 1.3370 0.9867

CRAYXMP-S 0.9953 0.8601 0.9391 0.9962 0.8573 0.9281

CRAYXMP-V 1.0053 1.6646 0.9847 0.9995 1.4955 0.9904

CRAYXMP-CFT-S 1.0010 0.8102 0.9340 0.9994 0.8115 0.9416

CRAYXMP-CFT-V 1.0086 1.4769 0.9838 1.0017 1.2994 0.9914

CRAY2-S 0.9932 0.9474 0.8887 0.9931 0.9474 0.8887

CRAY2-V 1.0041 1.4758 0.9774 0.9978 1.3099 0.9889

MICROVAX2 1.0020 0.9340 0.8290 1.0029 0.9549 0.8280

VAX8800 0.9985 0.6632 0.7283 1.0027 0.8151 0.8363

VAX8800-32 0.9951 0.9279 0.8933 0.9986 0.9540 0.9451

ELXSI6420 0.9990 0.7470 0.7966 1.0019 0.8176 0.8352

ETA205-S 1.0092 0.7367 0.9114 1.0078 0.7303 0.9071

ETA205.V 1.0101 0.3663 0.8850 1.0048 0.3336 0.8889

IBM3033 0.9987 1.0993 0.8835 1.0021 1.1648 0.9016

IBM3081 0.9957 1.0609 0.9128 0.9990 1.0952 0.9324

IBM3090-S 0.9986 1.1408 0.8962 1.0021 1.0882 0.9306

IBM3090.V 0.9993 0.8198 0.9283 1.0022 0.8672 0.9509

NECSX2-S 0.9949 0.7598 0.9058 0.9971 0.7350 0.9142

NECSX2-V 1.0088 0.8346 0.9751 1.0041 0.7641 0.9790

FPS264-64 1.0120 0.7751 0.8141 1.0127 0.7810 0.8292

HONEYWELDPS-90 0.9921 0.6521 0.6060 1.0026 1.2820 0.8554

NASXL-60 0.9917 1.2294 0.9647 0.9968 1.2997 0.9813

SCS-S 1.0057 0.9360 0.9292 1.0031 0.9443 0.9330

SCS-V 1.0102 1.4304 0.9436 1.0019 1.2280 0.9717

SPERRYllOO-V 0.9961 0.8321 0.8415 1.0006 0.9076 0.8548
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Table 5. Component Scores

System Score 1 Score 2 Score 3

ALLIANT-S-32 0.7821 0.42106 1.98566

ALLIANT.V-32 1.4168 0.15247 0.94384

ALLIANT-S-64 0.6733 0.47188 1.85831

ALLIANT-V-64-P 3.0050 0.06459 0.34938

AMDAHL5890-S 7.5879 0.49322 1.91722

AMDAH1500VP-V 22.6980 0.08722 0,39978

AMDAHL 1200VP-V 34.7384 0.04568 0.25894

AMDAHL1400VP-S 8.1875 0.38367 2.01681

AMDAHL1400VP-V 39.1866 0.03546 0.22349

APOLLO300-32 0.0147 0.91159 1.69671

APOLLO660-32 0.1112 0.68069 1.60787

APOLLO300-64 0.0072 1.07103 0.99907

APOLLO660-64 0.0739 0.77801 1.47658

SUN3-64 0.3440 0.47283 1.63853

RIDGE32 0.2056 0.78035 1.19632

CDC875 4.0243 0.42162 1.78946

CYBER176 3.5725 0.37246 2.14754

CELERITY.32 0.2729 0.52357 1.50559

CONVEX.S-32 1.4067 0.41459 2.10933

CONVEX-V-32 3.5574 0.06571 1.63490

CONVEX-S-64 1.1665 0.42512 2.14767

CONVEX-V-64 2.4531 0.09266 1.58552

CRAYl-S 6.1201 0.37491 2.13668

CRAYl-V 16.4429 0.06193 0.80529

CRAYXMP-S 7.3995 0.35960 2.20850

CRAYXMP-V 24.3583 0.04372 0.71873

CRAYXMP-CFT-S 7.9166 0.31946 2.37490

CRAYXMP-CFT-V 24.2260 0.04826 0.77259

CRAY2-S 4.8969 0.34352 2.28666

CRAY2-V 16.4532 0.03538 0.71848

MICROVAX2 0.1810 0.62098 1.56825

VAX8800 0.9779 0.70629 1.63581

VAX8800-32 1.4197 0.56096 1.83011

ELXSI6420 1.2668 0.49606 1.67830

ETA205-S 5.0314 0.26380 2.13186

ETA205-V 9.7528 0.08137 0.78092

IBM3033 1.6318 0.53444 1.77900

IBM3081 2.5638 0.63028 1.47998

IBM3090-S 7.0721 0.53424 1.70343

IBM3090-V 11.0311 0.17673 1.13940

NECSX2-S 14.2086 0.39965 2.23597

NECSX2-V 62.8027 0.02995 0.46890

FPS264-64 6.9922 0.27576 1.61119

HONEYWELDPS-90 4.8738 0.36721 0.89663

NASXL-60 12.9588 0.29169 2.73871

SCS-S 2.7112 0.31604 2.39840

SCS-V 6.1840 0.06379 1.03702

SPERRYllOO-V 7.2000 0.08270 0.47504
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Table 6. Vectorization Statatistics of Loops

Cluster Loop Q1 Q3 Vector Cluster Loop Q1 Q3 Vector

1 102 .7225 4.935 4 2 101 1.7700 19.603 6

104 .5435 3.653 4 201 1.7700 25.960 6

204 .9388 6.393 4 301 1.7700 31.975 6

105 .7518 5.598 0 203 1.3875 15.745 6

205 .7353 5.818 0 303 1.4575 22.930 6

305 .7600 5.863 0 304 1.1600 10.450 4

106 .6190 3.253 3 107 2.1400 22.760 6

111 .4820 4.473 0 207 2.2175 32.420 6

211 .4563 5.045 0 307 2.1650 34.625 6

311 .5075 5.088 0 108 1.3720 18.793 6

116 .5260 3.555 0 208 1.4208 24,495 6

216 .5198 3.515 0 308 1.3720 24.488 6

316 .5203 3.515 0 109 1.8850 19.250 6

117 .9308 8.325 0 209 2.0500 26.618 6

217 .9308 7.905 0 309 2.0500 26.615 6

317 .9270 7.905 0 110 .9210 9.550 4

119 .8205 6.933 0 210 .9985 11.728 4

219 .8330 7.253 0 310 .9885 11.728 4

319 .8213 7.253 0 112 .7168 7.308 6

120 1.2305 9.688 0 212 .7620 10.215 6

220 1.2373 9.703 0 312 .7770 12.138 6

320 1.2005 9.710 0 118 1.4700 13.925 6

123 1.1593 10.735 2p 218 1.4725 22.690 6

223 1.1908 10.923 2p 318 1.4725 22.128 6

323 1.1600 10.915 2p 121 .9618 11.055 6

4 202 1.3250 8.028 4 221 .9265 11.120 6

302 1.3075 8.028 4 321 .9618 11.088 6

103 1.1918 9.430 6 122 .8180 7.078 6

206 .9988 6.448 3 222 .8408 7.890 6

306 1.0238 6.663 3 322 .8418 7.890 6

113 .2910 3.103 4p 3 124 .3590 3.025 0

213 .2910 3.430 4p 224 .3603 3.130 0

313 .2910 3.488 4p 324 .3603 3.330 0

114 .5425 5.163 4p

214 .6515 5.163 4p
314 .6385 5.163 4p
115 .7303 3.475 2

215 .8393 4.083 2

315 .8393 4.083 2
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Table 7. Cluster Component Scores

System

2 Clusters 4 Clusters

Score 1 Score 2 Score 1 Score 2 Score 3 Score 4

ALLIANT-S-32 0.620 0.880 0.721 0.908 0.339 0.515

ALLIANT.V-32 0.690 2.325 0.643 2.343 0.799 0.813

ALLIANT-S-64 0.553 0.741 0.635 0.760 0.347 0.462

ALLIANT.V-64-P 0.954 7.056 0.642 7.112 1.284 2.059

AMDAHL5890-S 6.058 8.532 7.693 8.761 3.783 4.234

AMDAHISOOVP-V 7.600 51.584 7.014 50.774 26.168 7.980

AMDAHL1200VP.V 8.683 98.557 7.487 96.574 46.282 9.819

AMDAHLHOOVP-S 5.948 9.865 7.487 10.232 3.300 4.291

AMDAHL1400VP.V 8.853 119.766 7.503 116.614 52.966 10.341

APOLLO300-32 0.016 0.013 0.019 0.013 0.039 0.011

APOLLO660-32 0.106 0.112 0.117 0.113 0.103 0.088

APOLLO300-64 0.008 0.007 0.008 0.007 0.033 0.006

APOLLO660-64 0.073 0.072 0.081 0.072 0.087 0.060

SUN3-64 0.287 0.372 0.341 0.379 0.210 0.222

RIDGE32 0.198 0.207 0.209 0.205 0.284 0.172

CDC875 3.109 4.521 3.439 4.715 1.260 2.956

CYBER176 2.715 4.019 3.122 4.193 1.130 2.399

CELERITY=32 0.234 0.295 0.263 0.301 0.159 0.201

CONVEX-S-32 1.097 1.565 1.321 1.637 0.400 0.909

CONVEX-V-32 1.237 7.196 1.548 7.916 0.408 0.972

CONVEX-S-64 0.912 1.292 1.136 1.351 0.338 0.711

CONVEX-V-64 0.973 4.542 1.204 4.951 0.340 0.772

CRAYl-S 4.679 6.848 5.459 7.103 2.290 3.935

CRAYl-V 4.908 38.974 5.128 42.919 2.140 5.114

CRAYXMP-S 5.622 8.294 6.530 8.619 2.620 4.800

CRAYXMP-V 6.120 65.846 6.317 73.316 2.590 6.546

CRAYXMP-CFT-S 5.607 9.312 6.610 9.879 1.580 5.007

CRAYXMP-CFT-V 6.549 60.457 6.472 68.266 1.553 8.224

CRAY2-S 3.700 5.511 4.195 5.738 1.640 3.322

CRAY2-V 3.857 46.622 3.900 52.073 1.673 4.263

MICROVAX2 0.159 0.194 0.190 0.196 0.135 0.118

VAX8800 0.934 0.967 1.121 0.973 0.839 0.681

VAX8800-32 1.249 1.478 1.509 1.506 0.888 0.932

ELXSI6420 1.083 1.318 1.174 1.345 0.713 0.997

ETA205-S 3.301 6.176 3.501 6.590 0.880 3.591

ETA205-V 3.620 18.763 3.971 20.793 0.857 3.772

IBM3033 1.332 1.816 1.675 1.853 0.983 0.926

1BM3081 2.218 2.770 2.613 2.802 1.923 1.692

1BM3090-S 5.749 7.841 7.092 8.067 3.340 4.270

1BM3090-V 5.757 16.690 6.606 17.596 3.321 4.881

NECSX2-S 11.205 15.528 13.435 16.172 4.590 9.204

NECSX2-V 13.989 179.995 12.875 203.412 4.540 19.069

FPS264.64 4.587 8.588 4.925 9.161 1.237 4.873

HONEYWELDPS-90 3.427 6.105 3.523 6.025 7.690 2.942

NASXL-60 8.831 15.750 12.121 16.520 3.706 5.685

scs-s 1.926 3.171 2.276 3.377 0.480 1.744

SCS-V 1.996 13.346 2.088 14.910 0.477 2.261

SPERRYllOO-V 2.445 16.138 2.083 16.633 4.651 3.042
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Table 8. Statistics of Reconstructed Data using Cluster Components
* Ratio to Corresponding Entries in Table 3

System

2 Clusters 3 Clusters

Geometric* Range* Spearman Geometric* Range* Spearman

ALLIANT-S-32 1.0000 0.4861 0.6752 1.0000 0.7485 0.8687

ALLIANT-V-32 1.0000 0.9231 0.9052 1.0000 0.8570 0.9050

ALLIANT-S.64 1.0000 0.4734 0.6546 1.0000 0.7109 0.8724

ALLIANT-V-64-P 1.0000 0.9153 0.8527 1.0000 0.7902 0.8669

AMDAHL5890-S 1.0000 0.6435 0.7080 1.0000 0.6813 0.7393

AMDAHISOOVP-V 1.0000 1.5581 0.9199 1.0000 1.1525 0.9601

AMDAHL 1200VP-

V

1.0000 1.1162 0.9136 1.0000 0.7810 0.9828

AMDAHL1400VP-S 1.0000 0.6852 0.7371 1.0000 0.7596 0.7755

AMDAHL 1400VP-

V

1.0000 0.8093 0.9165 1.0000 0.5489 0.9786

APOLLO300-32 1.0000 0.2127 0.4794 1.0000 0.2284 0.4674

APOLLO660-32 .1.0000 0.5154 0.6455 1.0000 0.4045 0.8575

APOLLO300-64 1.0000 0.6024 0.6232 1.0000 1.2886 0.3474

APOLLO660-64 1.0000 0.9654 0.4955 1.0000 0.7052 0.6672

SUN3-64 1.0000 0.2865 0.4955 1.0000 0.3696 0.7272

RIDGE32 1.0000 0.7042 0.4617 1.0000 0.7990 0.4410

CDC875 1.0000 0.4825 0.8189 1.0000 0.7456 0.9424

CYBER176 1.0000 0.4368 0.7939 1.0000 0.6704 0.9409

CELERITY.32 1.0000 0.2446 0.5555 1.0000 0.3551 0.7770

CONVEX.S.32 1.0000 0.3288 0.7310 1.0000 0.6405 0.9089

CONVEX-V-32 1.0000 0.9670 0.9220 1.0000 1.1683 0.9321

CONVEX.S.64 1.0000 0.3612 0.6620 1.0000 0.7020 0.8861

CONVEX.V.64 1.0000 0.9659 0.9228 1.0000 1.1710 0.9309

CRAYl-S 1.0000 0.4177 0.6802 1.0000 0.5443 0.7851

CRAYl-V 1.0000 1.5999 0.9793 1.0000 1.7540 0.9793

CRAYXMP-S 1.0000 0.4137 0.6695 1.0000 0.5369 0.7648

CRAYXMP-V 1.0000 1.9515 0.9824 1.0000 2.1305 0.9828

CRAYXMP-CFT-S 1.0000 0.4375 0.7108 1.0000 0.6473 0.8907

CRAYXMP-CFT-V 1.0000 1.5529 0.9841 1.0000 1.8692 0.9827

CRAY2-S 1.0000 0.4260 0.6252 1.0000 0.6006 0.7611

CRAY2-V 1.0000 1.6586 0.9784 1.0000 1.8297 0.9789

MICROVAX2 1.0000 0.5768 0.4119 1.0000 0.6573 0.7236

VAX8800 1.0000 0.0590 0.3337 1.0000 0.1485 0.5744

VAX8800-32 1.0000 0.2595 0.6095 1.0000 0.4616 0.7744

ELXSI6420 1.0000 0.2296 0.6527 1.0000 0.4257 0.7688

ETA205-S 1.0000 0.4195 0.7714 1.0000 0.6215 0.8987

ETA205-V 1.0000 0.3207 0.8904 1.0000 0.4000 0.8816

IBM3033 1.0000 0.5379 0.6446 1.0000 0.6778 0.6895

IBM3081 1.0000 0.5782 0.6639 1.0000 0.5589 0.6544

IBM3090-S 1.0000 0.7075 0.7230 1.0000 0.8025 0.7855

IBM3090-V 1.0000 0.6630 0.9103 1.0000 0.6941 0.9127

NECSX2-S 1.0000 0.3937 0.6209 1.0000 0.4909 0.7525

NECSX2-V 1.0000 0.9208 0.9665 1.0000 1.0223 0.9656

FPS264-64 1.0000 0.4849 0.7994 1.0000 0.6945 0.7940

HONEYWELDPS-90 1.0000 0.5<107 0.6167 1.0000 0.7861 0.5755

NASXL-60 1.0000 0.6719 0.7561 1.0000 0.7956 0.8414

SCS-S 1.0000 0.4535 0.7178 1.0000 0.8016 0.9018

SCS-V 1.0000 1.3033 0.9517 1.0000 1.6378 0.9558

SPERRYllOO-V 1.0000 1.0163 0.8043 1.0000 0.8664 0.8490
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Table 8. Statistics of Reconstructed Data using Cluster Components (continued)

* Ratio to Corresponding Entries in Table 3

System

4 Clusters 5 Clusters

Geometric* Range* Spearman Geometric* Range* Spearman

ALLIANT-S-32 1.0000 0.8504 0.8772 1.0000 0.8855 0.8751

ALLIANT-V-32 1.0000 0.7910 0.9029 1.0000 0.6632 0.8953

ALLIANT-S-64 1.0000 0.8545 0.9002 1.0000 0.8553 0.9002

ALLIANT-V-64-P 1.0000 0.6544 0.9173 1.0000 0.8431 0.9049

AMDAHL5890.S 1.0000 1.1312 0.9345 1.0000 1.0712 0.9523

AMDAH1500VP=V 1.0000 1.2484 0.9754 1.0000 1.0842 0.9741

AMDAHL1200VP-V 1.0000 0.8112 0.9893 1.0000 0.8774 0.9899

AMDAHL1400VP-S 1.0000 1.0917 0.9224 1.0000 0.9645 0.9454

AMDAHL1400VP-V 1.0000 0.5627 0.9864 1.0000 0.7230 0.9841

APOLLO300-32 1.0000 0.2462 0.7460 1.0000 0.2453 0.7353

APOLLO660-32 1.0000 0.5298 0.8440 1.0000 0.5312 0.8340

APOLLO300-64 1.0000 1.2736 0.7258 1.0000 1.2288 0.7533

APOLLO660-64 1.0000 0.8522 0.7989 1.0000 0.8521 0.7989

SUN3-64 1.0000 0.5644 0.7891 1.0000 0.8403 0.8502

RIDGE32 1.0000 1.0004 0.6564 1.0000 1.0365 0.6747

CDC875 1.0000 0.7546 0.9443 1.0000 0.8406 0.9486

CYBER176 1.0000 0.7218 0.9632 1.0000 0.7561 0.9628

CELERITY-32 1.0000 0.4190 0.7696 1.0000 0.7402 0.8257

CONVEX-S-32 1.0000 0.7108 0.9279 1.0000 0.7169 0.9315

CONVEX-V-32 1.0000 1.3530 0.9096 1.0000 1.3539 0.9096

CONVEX-S-64 1.0000 0.8287 0.9238 1.0000 0.8301 0.9225

CONVEX-V.64 1.0000 1.3428 0.9021 1.0000 1.2456 0.9066

CRAYl-S 1.0000 0.6328 0.9143 1.0000 0.6063 0.9167

CRAYl-V 1.0000 1.7415 0.9793 1.0000 1.1914 0.9881

CRAYXMP-S 1.0000 0.6145 0.8826 1.0000 0.6297 0.8821

CRAYXMP-V 1.0000 2.0948 0.9839 1.0000 1.4904 0.9863

CRAYXMP-CFT-S 1.0000 0.6803 0.9051 1.0000 0.6603 0.9282

CRAYXMP-CFT-V 1.0000 1.5839 0.9896 1.0000 1.2167 0.9876

CRAY2-S 1.0000 0.6468 0.8391 1.0000 0.6287 0.8430

CRAY2-V 1.0000 1.7499 0.9818 1.0000 1.1928 0.9861

MICR0VAX2 1.0000 1.0851 0.8562 1.0000 1.0885 0.8556

VAX8800 1.0000 0.8057 0.8118 1.0000 0.8343 0.8587

VAX8800-32 1.0000 0.8177 0.9151 1.0000 0.8877 0.9290

ELXSI6420 1.0000 0.4576 0.7958 1.0000 0.6107 0.8295

ETA205-S 1.0000 0.5557 0.7996 1.0000 0.5110 0.7905

ETA205-V 1.0000 0.3773 0.8926 1.0000 1.1272 0.9198

IBM3033 1.0000 1.2658 0.9166 1.0000 1.2209 0.9165

IBM3081 1.0000 1.1812 0.9513 1.0000 1.1186 0.9590

IBM3090-S 1.0000 1.1744 0.9303 1.0000 1.1957 0.9331

IBM3090-V 1.0000 0.8143 0.9509 1.0000 1.0878 0.9590

NECSX2-S 1.0000 0.5693 0.8942 1.0000 0.6292 0.9057

NECSX2-V 1.0000 0.8513 0.9734 1.0000 1.0966 0.9761

FPS264-64 1.0000 0.6367 0.7650 1.0000 0.7279 0.7851

HONEYWELDPS-90 1:0000 0.7983 0.7892 1.0000 0.9471 0.9001

NASXL-60 1.0000 1.1732 0.9793 1.0000 1.0808 0.9761

SCS-S 1.0000 0.8092 0.9062 1.0000 0.8051 0.9198

SCS-V 1.0000 1.4492 0.9625 1.0000 1.3654 0.9653

SPERRYllOO-V 1.0000 0.8201 0.8566 1.0000 0.6755 0.8466
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