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ABSTRACT

We consider the problem of efficiently multiplying matrices on distributed-

memory, message-passing computers. Block decomposition and wavefront comput-

ing are employed to yield a communication-efficient solution. We also explore in-

terconnections between distributed data structures, physical networks of nodes, and

virtual networks of nodes and processes. The notion of wavefront computing is ex-

tended to include pipelining of data between nodes of networks of processes as well

as physical networks of nodes. Algorithms are developed in layers to facilitate port-

ing between topologies and programming environments; we also show how
different topologies can be employed in a single application. A mathematical char-

acterization of data-routing for efficient matrix multiplication on distributed-

memory machines is developed, which exhibits a wavefront version of the

Dekel/Nassimi/Sahni algorithm as a special case. We also discuss the notion of

granularity in this context and use it to distinguish between algorithms on grounds

of communication complexity.
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1.

Introduction.

We consider here the problem of efficiently computing C = A * B for M x M matrices A and B on a mul-

tiprocesssor with no shared memory. We assume there are s
2 nodes available, each with processor and private

memory. Communication between nodes is by packet-switched message-passing, via direct links between nodes.

Nodes operate asynchronously. In the algorithms we develop all nodes will execute the same program, with

masking of instructions. Hence the full power of MIMD computing is not used, although typically it is available

in such machines. An important example of such machines is the hypercube [21].

The application we consider, matrix multiplication, serves as a focal point for a treatment of a number of

topics related to message-passing environments, including:

1. Minimization of communication cost.

2. Distributed data structures.

3. Wavefront computing.

4. Networks of processes.

5. Topology of networks.

6. Topology of algorithms.

7. Changing topologies.

8. Modular software.

9. Characterization of relevant algorithms.

Minimization of communication cost is critical for fine-grained computing in particular; here this occurs for

some algorithms when M/s is fairly small, and when M/s 2
is small for others. We will return to this in Section

13, where we also observe the effects of different architectures such as the Mark II [24] and the Intel iPSC [5].

Distributed data structures play an important role in minimizing communication, as noted in [11], They are

discussed in the context of hypercubes in, e.g., [12], [14], [20]. In [20] a scheme is developed to permit

distributed-memory machines to simulate shared memory. In Section 7 we note that this would simplify some

of the discussion here, although we do not incorporate it. In [12] the term areal decomposition is used for the

block scheme we employ here. In [3] this is shown to be optimal for the algorithm given there for hypercubes.

Block decomposition is also readily adapted to the Dekel/Nassimi/Sahni algorithm [1] which we adopt here.
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Our implementation of matrix multiplication is via wavefront computing ([9], [10]). This involves asynchro-

nous pipelining of data through a processor array. It employs the notion of dataflow to modify the systolic ap-

proach ([7], [8]). Thus computation at a node is triggered by receipt of operands; there are no synchronization

points. The usage of wavefront computing in the context of hypercubes has been noted previously (e.g. [4]).

We also extend the notion of wavefront computing by permitting data to be pipelined not only through the

physical network of nodes, but also through a virtual network of processes. We assume that matrix multiplica-

tion is only one node in the latter. This second level of pipelining, also asynchronous, may further reduce com-

munication delay. In particular, if processes represent steps in an iterative algorithm, data may flow continuously

through the entire algorithm, avoiding possibly costly synchronization at the end of steps.

We regard the s
2 nodes as forming an s x s array, with rows and columns numbered 0, ... ,s-l. Assume that

each of A,B,C is an array[0..M-l,0..M-l] of some unspecified element type. Also assume for simplicity that M

= m * s for an integer m. We partition A,B,C into s x s arrays of blocks { A(i J)) ,
(B(ij)}, [C(ij)) , where a

block is an array[0..m-l,0..m-l]. In expressions such as A(ij), parentheses are used for referencing positions in

the s x s array of blocks forming A,B,C, or in the s x s array of nodes. Brackets are used to reference elements

of data arrays. The block A(i j) is defined by

A(i j)[k,n] = A[m*i+k,m*j+n] (0 < k < m, 0 < n < m, 0 < i < s, 0 < j < s)

and similarly for B(ij) and C(i j). The awkward notation on the left above and the overloading of the symbols

A,B,C will cause no problem since we will never again refer to individual elements of blocks.

The agents for the distribution of { A(i j)} and (B(ij)} will be assumed to be previously loaded processes;

i.e. for each i and j, on the node in row i, column j of the node array we assume a process Asource(ij) outputs

A(ij), and a process Bsource(ij) outputs B(ij). We will construct process Multiply(ij), to be loaded to the same

node, which will receive A(i j) and B(iJ) and output C(i j). Presumably the latter becomes input for yet another

process loaded to the same node, namely Csink(i j). This situation might arise, for example, in an iterative algo-

rithm calling matrix multiplication as a subroutine. The initial configuration of the {(A(ij)} and { (B(i j)} , and

the final configuration of the {C(ij) } ,
are an important part of Multiply; in fact an appropriate way of viewing

such an algorithm is via state transitions of such configurations.
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Collectively we refer to {Asource(ij)} as process aiTay Asource, and similarly for {Bsource(ij)},

(Multiply(ij)} and (Csink(ij)). Presumably Asource, Bsource, Multiply and Csink form part of a network of

process arrays hosted by the underlying s x s node array. The latter is a virtual entity formed from the underly-

ing physical network of nodes, which might be a hypercube, toroidal mesh etc. The structure of the network of

process arrays is fixed by the application, and we assume the hardware is not reconfigurable. However, we can

alter the configuration of nodes in the virtual s x s node array at will. Thus each process array can be hosted by

a private node array, whose structure presumably reflects the topology of the process array in some sense. Thus

process arrays can execute on virtual machines.

The { A(i j)} will flow through rows and the {B(i J)} through columns of the node array, with computation

on a node triggered by the receipt of operands. The process arrays Asource, Bsource and Csink may themselves

be wavefront-based; then data can flow asynchronously from Asource and Bsource to Multiply, and from the

latter to Csink. Thus the flow of data may be viewed as a three-dimensional wavefront through the network of

process arrays and the rows and columns of the node array, as illustrated for three nodes in Fig. 1.

Measured in terms of the number of transfers of m x m blocks between neighboring nodes, the wavefront

approach gives a communication cost of O(s) for any physical network of nodes with a toroidal mesh as a sub-

network, assuming an initial configuration of data as described above. This cost estimate is essentially indepen-

dent of the hardware. In contrast, the algorithm in [3] for hypercubes, which is synchronous and broadcast-based,

may accrue a cost of up to 0(s * log s) depending on packet size. Even if the hardware is augmented with sup-

port for broadcasting through rows or columns of the virtual node array, e.g. by broadcasting to subcubes of a

cube, the cost is still O(s). The wavefront approach is much more cost-effective in this event, although the ad-

vantages of broadcast are greater for meshes [22]. Hence the wavefront approach challenges, at least with re-

gard to matrix multiplication, the recommendation in [2] that hardware support for broadcasting to subcubes be

included as a standard for hypercubes.

The existence of algorithms for hypercubes and meshes with O(s) communication cost can be deduced from

the development in [1], This was noted by Johnsson [6], who, however, specified no implementation. The attai-

nability of O(s) cost is also noted in [16].
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In Section 7 we note that algorithms oriented to a certain topology may be ported to another by altering the

interface to the network of process arrays. This is an instance of the development of modular software for

message-passing machines. It requires considerable caution, especially on a machine such as the iPSC where

messages are qualified by a type number rather than the identity of the sender.

In the same spirit, in Section 6 we develop a mathematical characterization of algorithms for matrix multi-

plication on arrays of nodes, independent of interconnection topology. Thus, for example, we are able to view

algorithms for toroidal meshes and hypercubes as special cases of a more general data-routing paradigm.

Finally, we note in passing that the traditional method of evaluating the efficiency of algorithms does not

fully apply here. Typically matrix multiplication would be a phase in an overlying algorithm; because of pipelin-

ing of data between processes, the start and end of a matrix multiplication phase on different nodes is asynchro-

nous. A process representing a single phase can only be evaluated meaningfully in terms of its functioning as a

node in the network of process arrays, which presumably represents the overlying algorithm. More generally, it

has become clear that new models need to be developed to describe algorithms on distributed-memory machines;

these might, e.g., focus on algorithms as manipulations of distributed data structures. Classical theories which

view algorithms as mappings from input to output are clearly inadequate in this setting.
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2. Node arrays.

Here we formalize the notion of the virtual node arrays mentioned in the previous section. Let S = {0,1, ... ,

s-1 } and let I be the identity matrix of order s. Throughout the paper the symbols s, S and I will be fixed. We

also define three data types:

type Boolean = element of {0,1};

Nodelabel = injective mapping from S 2
to {0,1, ... , s

2
-l };

Permutation = permutation on S;

Letting T* denote transpose of T, a permutation matrix T on S will refer to an array[0..s-l,0..s-l] of Boole-

an with T * T* = I. We define a bijection Q from the set of Permutations to the set of permutation matrices on

S as follows: given a Permutation o, define a permutation matrix T on S by T[ij] = 1 if j
= a(i) and 0 other-

wise; then set T = Q(a). If T = Q(a) then T* = Q(ct
-1

).

DEFINITION 2.1. An adjacency matrix of degree d is a symmetric array[0..s-l,0..s-l] of Boolean with ex-

actly d ones in each row and column, or equivalently all row and column sums equal to d.

DEFINITION 2.2. We represent node arrays by ordered pairs:

type Nodearray = (Nodelabel, adjacency matrix);

In Nodearray (P.E), nodes P(ij

,

j,

)

and P(i
2 , j 2 ) are adjacent if i

j

= i
2
and E[j

1
,j 2 ] = 1, orifjj = j 2

and

E[i
j

,

i
2 ]

= 1.

A Nodearray (P,E) may be interpreted physically as an s x s array of nodes labeled by P; i.e. P(i,j) is the

label of the node in row i, column j. Adjacency means that nodes are joined directly by a serial link; the sym-

metry of E means the links are bidirectional. If E has degree d, then each node is adjacent to exactly d nodes in

each row and column, and no others. If a row or column is viewed as an undirected graph then it is regular of

degree d, with E determining its edges.

Two Nodearrays (Pstan,Ehyp) and (Pgc.Ecyc) with s = 4 are illustrated in Fig. 2, along with a permutation

matrix T. We note that adjacencies of nodes in (Pstan,Ehyp) and (Pgc,Ecyc) are identical; e.g. node 9 is adja-
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cent to nodes 1,8, 11, 13 in both Nodearrays. This is not a coincidence. In Fig. 2 we note that if Pstan and Pgc

are treated as arrays, Pstan = T* * Pgc * T and Ehyp = T* * Ecyc * T. In general, if E and E are adjacency ma-

trices and E[i,j] < E[ij] for ij e S write EcE.

DEFINITION 2.3. Suppose (P,E) and (P,E) are Nodearrays, T is a permutation matrix on S, P = T* * P *

T, and EeT**E*T. Then we write (P,E) c (P.E) with transformation matrix T.

For example, if (PJE) and (P, E) are Nodearrays and EcE then (P, E) c (P,E) with transformation matrix

I.

LEMMA 2.1. If E and E are adjacency matrices with EcE and T is a permutation matrix on S, then T* *

E* T c T* * E * T.

Proof: immediate from T[ij] > 0 for all ij e S.

DEFINITION 2.4. If (P,E) and (P ,E) are Nodearrays, T is a permutation matrix on S, P = T* * P * T, and

E = T* * E * T, we say (P,E) is equivalent to (P,E) with transformation matrix T.

LEMMA 2.2. If (P,E) and (P,E) are Nodearrays then the following are equivalent:

i. (P.E) is equivalent to (P,E) with transformation matrix T.

ii. (P,E) is equivalent to (P,E) with transformation matrix T*

.

iii. (P.E) £ (P.E) c (P,E) with transformation matrices T and T*, respectively.

Proof: suppose (i) holds. Then P = T* * P * T and E = T* * E * T. Thus P = T*P*T‘andE = T*E*

T*

.

Hence (ii) holds. Similarly (i) holds if (ii) holds. Suppose (i) and (ii) hold. Since E cEwe have E c T *

E * T* , and similarly E c T* * E * T. Thus (iii) holds. Finally, if (iii) holds, then E c T* * E * T and EcT*

E * T’

.

By Lemma 2.1, T*E*T‘cE and T* * E * T c E . Hence (i) and (ii) hold.

Lemma 2.2 induces an equivalence relation on the set of Nodeairays. Now if (P,E) and (P, E) are Nodear-
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rays and (P, E) £ (P.E), then viewing their rows and columns as graphs, the graphs for (P, E) are subgraphs of

the corresponding graphs for (P,E). More generally we have

LEMMA 2.3. Suppose (P,E) and ( P , E ) are Nodearrays and (P.E) £ (P,E) with transformation matrix

Q(ct). Then

i. P(ij) = P(o(i),o(j)) (ij e S)

ii. E[ij] > E [a(i),a(j)] (ij e S)

iii. if nodes are adjacent in (P,E) then they are adjacent in (P.E).

Proof: let T = Q(c). Since P = T* * P * T we have P = T*P*T‘,so

P(iJ) = L X T[i,k] * PM * TU.n] (ij e S)
i=0 n =0

Also T[i,k] = 1 iff k = a(i), and T[j,n] = 1 iff n = a(j). This proves (i); (ii) is similar. Now suppose P(ij,j|

) and P ( i^ , j^ ) are adjacent in (P.E). Let i
r
= a’ 1

(i') and j r
= a' 1

(

j

'), r = 1,2. Now if i' = i
2
and E

[

j

' , j^

]

=

1, then i, = i
2 ,

and by (ii), E[jj ,j 2 ] > E[o( jj ),o( j 2 )] = E[jj ,j 2 ] = 1. Thus E[j, ,j 2 ] = 1. Hence P(ij
, j j ) and

P(i
2 , j 2 ) are adjacent in (P,E). The same is true if jj = j 2

and E[ij ,i
2 ] = 1. By (i), P(i

r , j r ) = P(i',j'); this

proves (iii).

COROLLARY 2.1. If (PJE) and ( P , E ) are Nodearrays and ( P , E) is equivalent to (P,E) with transforma-

tion matrix Q(o) then

i. P(ij) = P (a(i),o(j)) (i j € S)

ii. E[ij] = E [a(i),a(j)] (i j e S)

iii. Nodes are adjacent in (P,E) iff they are adjacent in (P,E).

Proof: (i) is direct from Lemmas 2.2iii and 2.3i. By Lemma 2.2iii again, (P,E) c (P,E) with transformation

matrix Q(a '). Applying Lemma 2.3ii to C 1 we find
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E[i',j']>E[cr 1
(i'),<r

1

(n] (i\T e S)

Writing V = a(i),
j' = c(j) in the above gives E[a(i),a(j)] ^ E[ij]. Combined with Lemma 2.3ii applied to

a this gives (ii). Similarly (iii) follows from two applications of Lemma 2.3iii.

Equivalent node arrays are representations of rearrangements of the same underlying physical network of

nodes. Now a process array procarray is a collection of processes {procarray(ij)]; a priori these have no connec-

tions to Nodearrays.

DEFINITION 2.4. We say process array procarray is hosted by Nodearray (P,E) if for ij € S, procarray(ij)

is loaded to P(ij).

A process array may prefer to be hosted by a certain Nodearray because of alignment of data. For example,

a specification in Section 1 is that Multiply(ij) receives A(ij) from Asourcefij) which is also on P(ij). This in-

terface occurs with minimal communication cost; the restriction is that process arrays Asource and Multiply

must be hosted by the same Nodearray. The same is true for Bsource and Multiply. The alignment of { A(i j)}

and { B(i j) } upon receipt by Multiply is inherited from the topology of the common Nodearray. Presumably this

topology is geared to Asource and Bsource. Multiply may wish to have a private topology; i.e. it may wish to

be hosted by its own Nodearray. This may be effected physically by a realignment of the { A(i j)} and (B(ij)}

using a wavefront equivalent to a transformation matrix. In deference to Csink, Multiply can realign {C(i j)} be-

fore passing them along, using the inverse of the previous transformation matrix. In Section 7 we show how

this can be done transparently by inserting filters between communicating process arrays hosted by different No-

dearrays.
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3. Permutations, adjacency and wavefronts.

The characterization of adjacency in Nodearray (P.E) by the definition of E is local; i.e. it tells us where we

can send a block from a node with minimal communication cost. Of greater interest is a characterization of how

we can interchange blocks among nodes in a row or column concurrently; this will permit us to construct wave-

fronts flowing through rows, columns or both. Since we do not want to send two blocks to one node, the basic

unit for a step of a wavefront is the permutation. A wavefront is thus represented by a composition of permuta-

tions. Now we define a family of generic data types by

type Permarray[t] = array[0..t-l] of Permutation;

Generic refers to the parameter t. This definition is in deference to static languages such as C which require

the array bound t to be specified at load time, thereby instantiating the data type.

If 7t is a Permarray[t] then the components of tt are designated as n
0 , ... , , where rt

z
is a Permutation.

Let ;t be the Permarray[t] defined by

(jf
1

) I = (7C
lpl

.,)'
1

(0 < z < t)

For the same n let L* be an associated PermarTay[t+l] defined by

L
2
= n0° - ° 71

2-1 (1 < Z < t)

L
o G) = j G e S)

It follows that

L
*

' =(L ?)-
1

Also define the ordinary array L K : {1, ... ,t) x S -> S by

L* [z j] = L* (j) (1 < z < t, j e S)

We will note later that compositions of the form L * describe data flow in wavefronts. We will wish to re-

tain the option of disabling the flow at a node during a step; thus we introduce another family of generic types:

type Mask[t] = array[0..t-l,0..s-l] of Boolean;
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A Mask is an ordinary array when s and t are instantiated at load time. Full enabling of nodes is represent-

ed by J
t ,

a fixed Mask[t] defined by J
t
[zj] = 1 for 0 < z < t

, j e S. If n is a Permarray[t] and x is a Mask[t]

let W** be an associated Permarray[s] defined by

W = K
-*[0 .1]

o n
-Zh-Ul

m (ie S)

where for any permutation a, a°(j) = j- For the same x and n define ordinary array W, _ : S 2 —> S by

Wxx [zj] =W^0) (zje S)

Now in addition to their later use in wavefronts, we can use Permarrays to characterize adjacency in No-

dearrays. First we need the following:

DEFINITION 3.1. Suppose 7t is a Permarray[t] and for each i € S, 7t
z
(i) * 7t

z
.(i) for z * z'. Then we say n

is discordant.

The study of discordant permutations in combinatorial and statistical settings (e.g. [18]) predates their ap-

pearance here by nearly three centuries [13]. For example, a well-known fact is that the probability that an arbi-

trary Permarray[2] is discordant is very close to 1/e, e = 2.718..., essentially independent of s.

Discordant permutations are fundamental to minimization of communication cost in data-routing on

distributed-memory machines. They represent routings of data among a collection of positions so that data nev-

er visits the same position twice (cf. Remark 5.1). Moreover, they provide an orthogonal characterization of ad-

jacency for Nodearrays:

DEFINITION 3.2. Suppose rc is a discordant Permarray[t]. With Q as in Section 2, let INC(tc) be the

array [0..s-l,0..s-l] given by

INC(n) = '£ Q(rt
z )

i=0

Then we say INC(7t) is the incidence matrix of n.

LEMMA 3.1. Suppose n is a discordant Permarray[t] and E is the incidence matrix of n. Then

10



i. E[ij] is the number of z satisfying j
= 7t

z
(i).

ii. E[ij] is the number of z satisfying i = 7t
z
'(j).

iii. E is an array of Boolean.

iv. E has exactly t ones in each row and column.

v. if E is symmetric then E is an adjacency matrix of degree t.

Proof: let T
z = Q(n

z ) for 0 < z < L Then

E[ij] = X T, [i j] (ij e S)
1=0

Now T
z
[ij] = 1 iff j = rc

z
(i); this proves (i). Also j

= tc
z
(i) iff i = Tt'^); this proves (ii). Now if j

= n
z
(i) =

7t
z
-(i), since tc is discordant we have z = z\ By (i), E[ij] < 1. Since E[ij] > 0, (iii) follows. Also

t- 1 t- 1 t- 1 r-l r-l

Z E[ij] = Z Z T
z
[ij] = £ T

z
[i,rt

z
(i)] = Z 1 = t

j =o i^) j=a i=o z =o

Similarly

Z E[ij] = Z T
z

[rc
z (j)J]

= t

i=0 z=0

This proves (iv); (v) is immediate.

LEMMA 3.2. Suppose E is an adjacency matrix of degree L Then there exists n, a discordant Permarray[t],

with incidence matrix E.

Proof: we note that E is Boolean and has all row and column sums equal to t. By ([19] p. 57) there exist

permutation matrices T
0 , ... , T on S with

r-l

E=2T,
2=0

Define n to be the Permarrayft] with tc
z = Q

1 (T
z ) for 0 < z < L Since E is Boolean,

11



E[ij] = XTJij]<l
i=0

If 7t
k
(i) = rc

k
.(i) for some ijc,k' with k * k', since T

z = Q(7t
z ) we have

E[i,7C
k
(i)] > T

k
[i,rc

k
(i)] + T

k - [i,K k - (i)] = 2

This is a contradiction; hence 7t is discordant. Also

INC(rt) = £ Q(rc
z ) = E

DEFINITION 3.3. Suppose n is a discordant Permarray[t] with E = INC(rc). Then we say n is a basis for E.

Lemma 3.2 says that bases exist for adjacency matrices; but they are not unique.

LEMMA 3.3. Suppose n is a discordant Permarray[t], (P,E) and (P.E) are Nodearrays, (P.E) is equivalent

to (P.E) with transformation matrix T, and n is a basis for E. Then

i. in (P,E) the nodes adjacent to P(ij) are

{P(i,7r
z (j))} 0Sz<t

u {P(7c
z (i)J)} 0Sz<l

ii. if n is the Permarray[t] defined by n = Q' 1 (T* * Q(rr
z )

* T) then rt is a basis for E .

Proof: we have E(j, jO = 1 iff there exists z with j' = 7r
z (j); (i) follows from definition. For (ii) we have

E = !Q(n
z )

1=0

E= lT‘*Q(n
z
)*T= £QU z )

2=0 2 =0

Also E : S 2 —> {0,1} . Thus n is discordant and E = INC( it).

Lemma 3.3i shows that the adjacency structure of Nodearray (P,E) is characterized by any basis for E.
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Lemma 3.3ii shows that the homomorphic image of a basis is a basis for an equivalent node array. Lemma 3.2

guarantees that a basis for E can always be found. Now we need to interconnect these facts with wavefronts. We

noted earlier that the latter may be characterized by compositions of permutations. However, these will only be

efficient with regard to communication cost if they are related to basis elements. Specifically, each permutation

should be achievable in one parallel step involving only communication between neighboring nodes.

DEFINITION 3.4. Call a Permutation a realizable in Nodearray (P.E) if for i e S, E(i,o(i)) = 1 or a(i) = i

(in the latter case i is a fixed point of a). Equivalently, a is realizable in (P£) iff P(i j) is adjacent or equal to

P(i,o(j)) and P(a(i)j) for ij e S.

Compositions of realizable permutations represent dataflow in a row or column with communication only

between adjacent nodes at each step.

DEFINITION 3.5. If n is a Permarray[t] and (P,E) is a Nodearray, we say rc is realizable in (P,E) iff n
z

is

realizable in (PJ~) for 0 < z < t.

If n is a realizable Permarray[t] and L* is discordant, the latter represents a series of data routings yielding

minimal communication cost: t nodes are visited by a datum in t steps, with each step involving only transfers

between adjacent nodes. As we note later (specifically, during the alignment phase of matrix multiplication),

discordancy is sometimes too strong. Fixed points permit masking in some steps. Other violations of discordancy

may be indications of nonoptimality in algorithms.

LEMMA 3.4. Suppose (P,E) is a Nodearray and E has degree L Then

i. If rt is a discordant Permarray[t] with no fixed points, INC(7t) = E iff n is realizable in (P.E).

ii. If n is a discordant Permarray[tl with no fixed points and n is realizable in (P,E), we can find

{rt
2 ) t'sz<t

so that the extension 7t is a discordant Permarray[t] with INC(7t) = E.

Proof: exercise.
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4. Programming and the network of process arrays.

Here we describe our assumptions concerning processes and the communications subsystem which we as-

sume when writing pseudocode. Also we describe the structure and interfacing of the process arrays Asource,

Bsource, Multiply and Csink. More generally we address some issues relevant to writing modular software for

message-passing machines such as the iPSC.

We assume that a process definition consists of a collection of definitions for procedures, types and symbol-

ic constants, with one procedure designated as main. We assume that a procedures’s referencing environment

consists of the definitions which are part of the definition of the process containing it, plus locally defined ob-

jects. The default parameter transmission mode will be call by value (i.e. in only). If call by result is used (out

only) it will be explicitly indicated by the keyword "out" in a procedure heading.

We use < > to refer to generic or unspecific code; e.g. <Element> might be real, double precision etc. If

buf is a pointer, *buf refers to the contents of the area buf points to. If arr is an array, arr = a means assigning a

to each element of arr.

We assume that at load time a process is supplied with a user-defined integer identifier, with unique

identifiers assigned to processes on a node. Furthermore we assume that all processes in a process array are as-

signed the same identifier; then we define the identifier of the process array to be this common integer.

If a process array procarray is hosted by Nodearray (P.E), we assume that procarray(ij) may define func-

tions Row( ) and Col( ) which yield i and j, respectively. Presumably these are synthesized from a system call

yielding P(i j).

We define two generic types:

type Block = array [0..m-l,0..m-l] of <Element>;

Blockpointer = pointer to Block;

In the above, <Element> may be real etc. We also define standard procedures

procedure Null(x,y: Block;

a: Blockpointer);

begin

end Null;
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procedure Ccomp(x,y: Block;

a: Blockpointer);

begin

<a=a+x*y>

end Ccomp;

The code for Ccomp is unspecific; it computes the product of the blocks x and y in standard sequential

fashion.

Each message sent by a process will consist of one Block. A send by a process is a system call of the

form

send(type,buffer.identifier,node);

where type is a user-defined integer qualifier for messages, buffer is a Blockpointer, identifier is the identifier of

the process to which *buffer is to be transmitted, and node is the label of the node on which the latter process is

located.

A receive by a process is a system call

recv(type,buffer);

where type and buffer are as above. This fills *buffer with the first block sent to the process with a matching

type. This follows the format of the Intel iPSC; in particular the source of a message is not explicitly identified.

We define a unit block transfer by a process to be the issuing of a send to an adjacent node.

LEMMA 4.1. If n is a Permarray[t] realizable in (P,E) and process array procarray is hosted by (P,E) then

procarrayfij) incurs one unit block transfer when it issues a call of the form

send(type,buffer,identifierj5
(i,rt

z (j)); (0 < z < t)

or

send(type,buffer,identifierj>
(7t

z
(i),j); (0 <= z < t)

Proof: direct from definition.
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In the following we assume Nodearray (P
0
,E

0 ) is fixed.

DEFINITION 4.1. We assume Csink is hosted by (P
0
,E

0 ) and has identifier 0. Also assume that each

Csink(i j) includes in its code

var CL: Blockpointer;

recv(2,CL);

Suppose Csink(ij) issues no receives of type 2 prior to the above, no sends with identifier 1 and no sends

with identifier 0 and type 2.

DEFINITION 4.2. We assume Asource is hosted by (P
0
,E

0 ) and has identifier > 2. Assume each

Asource(ij) includes in its code

var AL: Blockpointer;

ij: integer,

i = Row( );

j = Col( );

send(0,AL,lJ>
0
(ij));

Assume Asource(ij) includes no other assignments to i or j, no other sends with identifier 1, and no sends

with identifier 0 and type 2. Suppose also that when it issues the above send, *AL = A(i,j).

DEFINITION 4.3. We assume Bsource is hosted by (Pq.Hq) and has identifier > 2. Assume each

Bsource(i j) includes in its code:

var BL: Blockpointer;

ij: integer,

i = Row( );

j = Col( );
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send(l,BL,l,P 0
(i,j));

Assume Bsource(ij) includes no other assignments to i or j, no other sends with identifier 1, and no sends

with identifier 0 and type 2. Suppose also that when it issues the above send, *BL = B(i j).

DEFINITION 4.4. Suppose f has specification

procedure f(al,bl: Blockpointer;

cl: out Blockpointer;

p: Nodelabel);

Suppose all sends issued by f have identifier 1. Then write f e PREMUL(s.m).

sends and receives issued by f have a < type < b. Then write Typerange(f) = [a,b).

Suppose further that all

Implicitly we assume that if Typerange(f) = [a.b) then a and b-1 are used as types, so that Typerange is

well-defined.

DEFINITION 4.5. Suppose f e PREMUL(s,m), Typerange(f) = [a,b), P is a Nodelabel, and for each ij e S,

P(i j) has some process proc(i j) with identifier 1 which makes a call of the form f(AL,BL,CL,P). Suppose at the

time of this call on P(ij) we have *AL = A(ij) and *BL = B(i,j). Suppose any send with identifier 1, issued by

any process, with the exception of sends issued within the single call to f in a proc(i j), has type < a or > b. Sup-

pose any receive issued by a proc(i j), with the exception of receives issued within its call to f, has type < a or >

b. Then let Out(f;P,ij) be the value of *CL at the time of exit from the call to f on P(i j).

LEMMA 4.2. In Definition 4.5, the value of Out is independent of the (proc(ij)).

Proof: the values of *al, *bl and p received by an f are fixed by the hypothesis of Definition 4.5, and *cl is

out only. Hence the data received by an f in the form of parameters does not depend on the calling process.

Now proc(ij) is the unique process on a p(ij) with identifier 1. Hence all sends in a call to an f are to some

proc(i,j). Any receives in a proc(i j) outside its call to f have type < a or > b, and cannot be matched with a send

from an f. Thus all sends from within a call to an f are matched with a receive in a call to an f. Conversely,
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sends not issued from within an f, with identifier 1, have type < a or > b, and cannot be matched with a receive

within an f. Hence all receives within an f are matched by sends from within an f. Thus a copy of f receives

data by message transmission only from copies of f; and all copies receive fixed data via parameter transmission.

Hence the value of *cl on exit is independent of the calling process.

DEFINITION 4.6. Suppose f € PREMUL(s,m). Define g = NETLAYER(f) by

procedure g(p: Nodelabel);

var al,bl,cl: Blockpointer;

ij: integer;

begin

i = Row( );

j = Col( );

recv(O^tl);

recv(l.bl);

f(al,bl,cl,p);

send(2,cl,0,p(ij))

end g;

As their names suggest, PREMUL represents potential kernels for multiply routines and NETLAYER sur-

rounds these with an interface to the network of process arrays. Elements of PREMUL thus communicate among

themselves exclusively. The following verifies that the interface to the network functions properly.

LEMMA 4.3. Suppose f e PREMUL(s,m), Typerange(f) = [a,b), a > 3 , and g = NETLAYER(0- Suppose

process array procarray is hosted by (P
0
,E

0 ) and has identifier 1. Suppose procarray(ij) has the form

<definitions>

procedure main( );

var P
0 : Nodelabel;

begin
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<define P
0
>

g(P
0 )

end main.

Suppose procarray, Asource, Bsource and Csink are the only processes loaded. Then

i. procarray(i j) receives A(i j) from Asource(ij) and B(ij) from Bsource(ij).

ii. After Csink(ij) executes recv(2,CL) we have *CL = Out(f;P
0 4 j).

Proof: f issues no sends of type 0, so neither does g, so neither does procarray. Referring to Definitions 4.1

- 4.3, Bsource issues no sends with identifier 1 and type 0; Csink issues no sends with identifier 1. Referring to

the format of Definition 4.6, the recv(0,al) in the call to g in procarray(ij) can only be matched by the send in

Asource(ij) with identifier 1. Conversely, the latter send cannot be matched with a receive in Asource, Bsource

or Csink since these have identifiers * 1. Also, f has no receives of type 0. Hence the recv(0,al) in g in

procarray(ij) is matched by the send in Asource(ij) with identifier 1. Thus the former yields *al = A(ij). Simi-

larly the recv(l.bl) in g in procarray(ij) gives *bl = B(ij). This proves (i).

Now in Definition 4.5 take p = P
0 ;

note procarray(ij) makes a call f(al,bl,cl,p) via its call to g. By (i), at

the time of this call we have *al = A(ij) and *bl = B(ij). Sends by Asource and Bsource with identifier 1 have

types < a (in fact 0 or 1); Csink issues no sends with identifier 1. Also, sends by procarray, outside of f, have

type < a (in fact = 2). Hence sends not in a call to f, with identifier 1, have type < a. Receives issued by procar-

ray, outside of f, have type < a (in fact 0 or 1). Hence the conditions of Definition 4.5 are satisfied, and the call

to f within the call to g in procarray (i,j) gives

*cl = Out(f;P
0
,ij)

Now Asource, Bsource and Csink issue no sends with identifier 0 and type 2. Also, f issues no sends of

type 2. Thus the recv(2,CL) in Csink(ij) can be matched only by the send in g in procarray (i j). Conversely, the

send in g has identifier 0, and hence cannot be matched with a receive in Asource, Bsource, or procarray. Thus

it matches the receive in Csink(i j). This proves (ii).
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5. A wavefront.

We develop code in this section for what might be termed a symmetric dual masked wavefront flowing

through a Nodearray. Dual means data flows horizontally and vertically, and symmetric means the two flows

have similar structures. Masked means that only designated nodes are enabled in a given step of one of the

flows. If the mask is set to 1 then the flows are homogeneous, i.e. data flow within a row (respectively column)

is the same for all rows (respectively columns). Such a wavefront can be coded as

procedure Wave(horbuf,verbuf,accum: Blockpointer;

p: Nodelabel;

compute: procedure(hbl,vbl: Block;

acc: Blockpointer);

base,hostid,steps: integer;

k : Permarray[steps];

X : Mask[steps]);

var i j,z: integer;

begin

i = row( );

j = col( );

for z = 0 to steps- 1 do

begin

if x[z.»] = 1 then

begin

send(z+base,horbuf,hostid,p(i,7t
z (j)));

recv(z+base,horbuf)

end;

if xfzj] = 1 then

begin

send(z+steps+base,verbuf,hostid,p(rc
z
(i)j));

recv(z-t-steps+base,verbuf)
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end;

compute(*horbuf,*verbuf,accum)

end

end Wave;

In the above, compute represents activity at a node when data has arrived; accum stores the result; steps is

the number of steps comprising the wave. The flow of data is described by compositions of Permutations, name-

ly the components of n. The use of z+base and z+steps+base as types ensures that messages are received in

correct order.

DEFINITION 5.1. Suppose P is a Nodelabel and a process on P(ij) issues a call of the form

Wave(x,y,accum,P,compute,b,hostid,steps,:t,x);

Then this call defines functions h and v where for 0 < r < steps, h(r;ij) and v(r;ij) are the values of *hor-

buf and *verbuf respectively after r iterations of the loop in Wave (these definitions are strictly local to one call

on one node).

LEMMA 5.1. Suppose P is a Nodelabel. Suppose that for each ij € S, P(ij) has a process proc(ij) with

identifier 1 which includes a declaration

var X,Y: Blockpointer,

and a call

Wave(X,Y,Accum ,P.Compute ,b, 1 ,t,7tJ
t
);

Suppose no sends with identifier 1 and b < type < b+2t are issued by any process except for sends issued

within the above call to Wave by a proc(ij). Suppose no proc(ij) issues receives with b < type < b+2t except

within its call to Wave. Then for the call to Wave on P(i j):
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i. h(r+l;ij) = hfowr;^)) (0 < r < t)

ii. v(r+l;ij) = v(r;rt;
1

(i)j) (0 < r < t)

iii. h(r;ij) = h(0;i,L*(j)) (0 < r < t)

iv. v(r;ij) = v(0;L*(i)j) (0 < r < t)

v. the executions of Compute are equivalent to:

for z = 0 to t-1 do Compute(h(0;i,L *
+1

(j)),v(0;L*
+1

(i)j),Accum);

Proof: after r iterations of the loop in Wave on any node, 0 < r < t, we have z = r in the next pass through

the loop. In the call to Wave on P(ij) the first receive is

recv(r+b,horbuf);

It is issued from P(ij) by proc(ij) which has identifier 1. Since b < r+b < b+t, by hypothesis it can only be

matched by a send from some Wave. Since second sends in Waves have type > b+t, the matching send must be

the first. The latter will be issued from some P(i'j') and will have the form

send(z '+b,horbuf, 1 ,P(i\n
z
.
(j ')));

For the receive and send to match, necessarily z' = r , \ = i and n
z

. (jO = j; the latter gives j' = n
r

a

(j)

.

Now proc(ij) is the unique process on P(ij) with identifier 1. Also, since b < z+b < b+2t, by hypothesis

proc(ij) cannot receive the above send outside its call to Wave. Hence the above send and receive do match.

Now this send occurs after r iterations of Wave on PO'jO; by Definition 5.1, the value of *horbuf in the send is

h(r;i'j0- Then upon completion of the first receive in Wave on P(ij) we have *horbuf = h(r;ij). Now verbuf

points to a different area; hence the second receive in Wave on P(i j) does not alter the above, which becomes

the value of *horbuf on P(ij) after r+1 iterations of the loop in Wave. This proves (i); (ii) is similar.

Now (iii) is true for r = 0; assume true for some r < t. By (i),

h(r+l;ij) = h(0;i,(L* o <)())) = htf);^ (j))

This proves (iii) by induction; (iv) is similar. Also, the sequence of Computes is given by
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for z = 0 to t-1 do Compute(h(z+l;ij),v(z+l;ij),Accum);

Combined with (iii) and (iv), (v) is an immediate consequence.

LEMMA 5.2. Suppose P is a Nodelabel. Suppose for each ij e S, P(ij) has a process proc(ij) with

identifier 1 which includes

var X: Blockpointer;

Wave(X,Xjiullaccum J\Null,b, 1 ,t,rtJ , );

Suppose that no sends with identifier 1 and b < type < b+2t are issued by any process, except by a proc(ij)

within its call to Wave. Suppose no proc(ij) issues receives with b < type < b+2t except in its call to Wave.

Then for the call to Wave on P(ij) we have h = v and

h(t;ij) = h(0;L*(i),L*(j))-

Proof: horbuf and verbuf point to the same area, so h = v. Now in the pass through the loop in Wave with

z = r, the second receive is to the same area as the first. Given ij e S let V = it'* (i) and j' = it'* (j)- Now on

P(i'jO, the first send is

send(r+b,horbuf,l ,P(i
'j);

In the above, *horbuf = h(r;i'j'). By hypothesis this send must be matched by a receive within the Wave

on P(i'j). Since b <= r+b < b+t it must be matched by the first receive. The latter is

recv(r+b,horbuf);

By hypothesis, only the above send can match this receive. This transfers h(r,i'jO to horbuf = verbuf on P(i'j).

Now the second send on the latter is

send(r+t+b,verbuf, 1 ,P(i j));

This must be matched with a receive within the Wave on P(i j). Since first receives have type < b+t, the above

must be matched by the second receive on P(i,j), namely
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recv(r+t+b,verbuf);

By hypothesis this receive can only be matched by the above send. This transfers h(r;i'j') to horbuf = verbuf

on P(ij). Hence

h(r+l;i j) = hfoTt^O),*;^)) (0 < r < t)

As in Lemma 5.1, it follows by induction that

h(r;ij) = h(0;L*(i),L*(j)) (0 < r < t)

The result follows.

COROLLARY 5.1. With the hypothesis of Lemma 5.2, the action of Wave on P(ij) is equivalent to

send(b,X,l,P(L?(i),L*G));

Proof: immediate from Lemma 5.2.

LEMMA 5.3. Suppose P is a Nodelabel. Suppose for each ij e S, P(ij) has a process proc(ij) with

identifier 1 which contains

var X,Y: Blockpointer;

Wave(X,YjiullaccumJ>,Null,b,l,t,K,x);

Suppose no sends with identifier 1 and b < type < b+2t are Issued by any process, except by a proc(ij)

within its call to Wave. Suppose no proc(ij) issues receives with b < type < b+2t except in Wave. Then for the

call to Wave on P(i j) we have

h(t;ij) = h(0;i,W
x
Jij])

v(t;ij) = v(0;W
z „U4]J)

Proof: similar to Lemma 5.1. After r iterations of the loop we take into account whether P(i,j) is enabled

horizontally or vertically. This yields
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h(r+l;ij) = h(r;i,7t
r

* Ir,ll

(j))

and similarly for v(r+l;ij). Analogues of the results in Lemma 5.1 are immediate.

COROLLARY 5.2. With the hypothesis of Lemma 5.3, the action of Wave on P(ij) is equivalent to

send(b^,U>(i,W
x1t

[ij]));

send(b+l,Y ,Hostid,P(W
x^

[j,i] j));

Proof: immediate from Lemma 5.3.

REMARK 5.1. If n is realizable, a Wave(...,7t,x) routes all messages explicitly, i.e. sending blocks between

adjacent nodes at each step. However, a store-and-forward system such as the iPSC provides virtual circuit ser-

vice, i.e. implicit routing by the system of messages between non-adjacent nodes. On such a machine the results

of Corollaries 5.1 and 5.2 can be used to abrogate the sequence of messages used in Wave in Lemmas 5.2 and

5.3. Implicit routing may reduce overhead, although the cost is the same if measured by unit block transfers. On

the other hand, our wavefront routes data with maximum parallelism at each step because of the use of permuta-

tions; this holds "conflicts" at nodes to a minimum. The latter is in reference to the buffering necessary when

several messages must pass through a node concurrently. In fact, if our wavefront were synchronous (i.e. systol-

ic), system buffering would be unnecessary. To compete with implicit routing, which probably uses paths of

minimum length, the wavefront should do the same. In particular L* should be discordant, except for fixed

points produced by masking; otherwise some paths will contain cycles. Even with the number of steps (t if n is

a Permarray[t]) minimal, however, it may be advantageous to keep both implicit and explicit routing as options

in store-and-forward systems.

LEMMA 5.4 Suppose n is a Permarray[t] which is realizable in Nodearray (P,E). Suppose a process on

P(i,j) makes a call of the form

Wave(x,y,acc,P,compute,b,hostid,t,7t,x);

Then the process will incur at most 2n unit block transfers in executing this call, where n is the maximum
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column sum of X- If X = J
t
lhen exactly 2t unit block transfers are incurred.

Proof: direct from Lemma 4.1.
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6. Matrix multiplication.

We show here that the search for a process array Multiply meeting the specifications of Section 1 can be

reduced to the search for certain ordered triples. The main result will show that a suitable class of such triples

can be characterized in purely mathematical terms. Examples are given in Sections 8, 9 and 11. Having

identified an instance of this class, it is straightforward to turn it into a process array by adding two layers: one

to interface with the network of process arrays, and the other to interface with the programming environment

The latter permit development of multiplication modules which can be used with different algorithms and ported

between machines, respectively. Furthermore we can change topology: in Section 7 we will show that once we

have located a triple for a given Nodearray we can in effect port it to other Nodearrays by adding another outer

layer. In Section 12 we give an example.

For s and m as in Section 1, t an integer, P a Nodelabel, n a Permarrayft], y a Permarray[s] and x a

Mask[t] define a generic process Mulproc(s,m,t,P,7t,y,x) via the code segment

< define constant s,m,t: integer;

type Block,Blockpointer,Nodelabel,Permutation,Boolean,Permarray[ ],Mask[ ];

constant J
s

: Mask[s];

function Row,Col;

procedure Wave,Null,Ccomp >

procedure main( );

var P: Nodelabel;

AL,BL,CL: Blockpointer;

ij: integer;

7t: Permarray[t];

y: Permarray[s];

%: Mask[t];

begin

< define P,7t,y,x >

i = Row( );

j
= Col( );

27



recv(0,AL);

recv(13L);

*CL = 0;

Wave(AL,BL,CL,P,Null,3,l ,t,7c,x);

Wave(AL,BL,CL,P,Ccomp,3+2t,l,s,y,J
s );

send(2,CL,0,P(ij))

end main;

In the above. Nodelabel, Permutation, Boolean, Permarray [ ] and Mask[ ] are as in Section 2; Block, Block-

pointer, Row, Col, Null and Ccomp as in Section 4; and Wave as in Section 5. These and s,m,t3J, ,rc,\g,x must

be instantiated to produce a concrete process. The characterization of s^n.tj, as symbolic constants external to

main( )and P, 7t,y,x as variables within main( ) is unimportant and merely reflects anticipated programming en-

vironments such as Unix. The two waves above represent what Dekel, Nassimi and Sahni [1] refer to as the

alignment and shift-multiply phases of a matrix multiplication algorithm. In the following, (P
0
,E

0 ) will be as in

Section 4.

DEFINITION 6.1. A Latin square on S is an s x s array whose rows and columns are Permutations.

A Latin square on S differs from a discordant Permarray[s] only in that the rows and columns of the latter

have a particular labeling.

DEFINITION 6.2. Suppose 7t is a Permarray[t], y is a Permarray[s], and x is a Mask[t]. Suppose further

that L
y

is a Latin square, W
2JC

is symmetric, and

v,n w w y,*w
i

°Lk = L
k
oW

i

(i e S; 1 < k < s)

Then write (7t,\y,x) G KER(s).

The above provides the mathematical characterization we alluded to at the start of the section. In particular,

it will permit us to isolate the salient features of the Dekel/Nassimi/Sahni algorithm for hypercubes. The

remainder of the section is devoted to showing that the above triples are a suitable class for instantiating
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Mulproc, thus providing a unified description of matrix multiplication algorithms on machines with embedded

toroidal meshes.

DEFINITION 6.3. Consider the generic procedure definition

procedure f(al,bl: Blockpointer;

cl: out Blockpointer;

p: Nodelabel);

var n\ Permarray[t];

\y: Permarray[s];

X'-
Mask[t];

begin

< define 7t,y,x >

*cl = 0;

Wave(al,bl,cl,p,Null,3,l,t,7t,y);

Wave(al,bl,cl,p,Ccomp,3+2t,l,s,\|/J
t )

end f;

If f is as above write f = F(ti,\|/,x).

LEMMA 6.1. Suppose n is a Permarraytt], v is a Permarray[s], and x is a Mask[t]. If f = F(7t,y,x ) then

i. f e PREMUL(s.m).

ii. Typerange(f) = [3,3+2t+2s).

iii. If n and \\i are realizable in Nodearray (P.E) and a process on P(ij) makes a call of the form

f(AL,BL,CLJ>
);

then the process incurs at most 2s+2n unit block transfers in executing this call, where n is the max-

imum column sum of X-
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Proof: in Definition 6.3, the first Wave has types for sends and receives starting at 3; the second Wave has

largest type 3+2t+2s-l. This proves (i) and (ii); (iii) is direct from Lemma 5.4.

DEFINITION 6.4. Suppose n is a Permarraytt], y is a Permarray[s], and x is a Mask[t]. Suppose further

that Out(F(7t,y,x);p,i,j) = C(ij) for each Nodelabel p and all ij e S. Then write (:t,y,x) e MUL(s).

THEOREM 6.1. Suppose 7t is a Permarraytt], y is a Permarrayts], x is a Mask[t], and ( rc.y.x ) e KER(s).

Then (rc.y.x) e MUL(s).

Proof: let f = F(n,y,x). By Lemma 6.1, f e PREMUL(s,m) and Typerangeff) = [3,3+2t+2s). Suppose P is a

Nodelabel and for each ij e S, P(ij) contains a process proc(i j) with identifier 1 which includes

var AL3L: Blockpointer;

f(AL3L,CL,P);

Suppose *AL = A(i j) and *BL = B(ij) on P(ij) when f is called. Suppose any send with identifier 1 issued

by any process, with the exception of sends issued within the single call to f in a proc(ij), has type < 3 or >

3+2t+2s. Suppose any receive issued by a proc(ij), with the exception of receives issued within its call to f, has

type < 3 or > 3+2t+2s. Now in the call to f on P(i j), referring to the format of Definition 6.3, we have

Claim 1: on exit from the first Wave in f on P(i j), *al = A(i, W^
n
[ij]) and *bl = B( W^

n
[j,i] j).

Claim 2: on exit from the second Wave in f on P(i j), *cl = C(i j).

We note that we have satisfied the hypothesis of Definition 4.5, and hence Out(f;P,i j) is the value of *CL

on exit from f on P(i j), or equivalently the value of *cl on exit ffom the second Wave. Hence the Theorem fol-

lows from Claim 2.

Proof of Claim 1: on entry to the first Wave on P(ij) we have *al = A(ij) and *bl = B(ij). In the notation

of Definition 5.1, for this call h(0;ij) = A(ij) and v(0;ij)= B(ij). On exit from the first Wave *al = h(t;ij) and

*bl = v(t;ij). Now by hypothesis, no sends with identifier 1 and 3 < type < 3+2t are issued by any process, ex-

cept by a proc(i j) in its call to f. Sends and receives issued in the second Wave in f have type > 3+2t; hence no
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sends with identifier 1 and 3 < type < 3+2t are issued outside the first Wave in f. Also by hypothesis, any re-

ceive issued by proc(ij) outside of its call to f has type < 3 or > 3+2l Hence no proc(ij) issues receives with 3

< type < 3+2t except in the first Wave in its f. Thus the conditions of Lemma 5.3 are satisfied for the first Wave

in f on P(i j), and we have on exit from the first Wave

*al = h(t;iJ) = h(0;i,W
x
Jij])

*bl = v(t;ij) = v(0;W
z1t [j4]j)

Claim 1 follows.

Proof of Claim 2: on entry to the second Wave in f on P(ij), the values of *al and *bl are as in Claim 1.

Now in the notation of Definition 5.1 applied to the second Wave in f,

h(0;ij) = A(i,W
x
Jij])

v(0;ij) = B(WXK U,i]j)

By hypothesis, no sends with identifier 1 and 3+2t < type < 3+2t+2s are issued by any process except for

sends by a proc(ij) in its f. Sends and receives in the first Wave in f have type < 3+2t. Hence no sends with

identifier 1 and 3+2t < type < 3+2t+2s are issued outside the second Wave in f in a proc(i j). Also by hypothesis,

no proc(ij) issues receives with 3+2t < type < 3+2t+2s except in its f. Hence no proc(ij) issues receives with

3+2t < type < 3+2t+2s except in the second Wave in f. Thus Lemma 5.1 applies to the second Wave, and the

executions of Ccomp are equivalent to:

for k = 0 to s-1 do Ccomp(h(0;i,L
+̂1
(j)),v(0;Lj

+]
(i)j),*cl);

or equivalently:

for k = 0 to s-1 do Ccomp(A(i,W
zn [i,L^

1
(j)]),B(W

Xff [j.Lk+1
(i)]j),*cl);

Taking into account *cl = 0 at the start of f we find that on exit from the second Wave in f on P(i j).



= t A(i,( wr C L
k )(j))

* B(( wj* o Lj)(i)j)

*=

1

= t A(i,( L
k

o wf* )(j))
* B(( L

k
o W- )(i)j)

*=i

= t A(i, L*( W [ij])) * B( L*( W 04])j)
*=i

= £ A(i, L*( W [ij])) * B( L*( W [ij])j)
*=i

Fix i and j for the moment and define (only for this claim)

$00 = L
k

V
( \V Jij]) = L

¥
(k, W

x1t
[ij]) (1 < k < s)

Then

*cl = £ A(i£(k» * B(^(k) j)
*=i

Now is a Latin square on S; hence its columns are Permutations. Thus E, is a Permutation. In the last

sum above we can write

k = i;'
1 GO (0 < k' < s)

yielding

*cl = £ Am * B(k J) = C(ij)

*=

o

Now i and j are arbitrary; Claim 2 follows.

DEFINITION 6.5. Suppose f e PREMUL(s.m). Let g = NETLAYER(f). For i j e S define Mul(ij) by

< define type Block,Blockpointer,Nodelabel,Permutation, Boolean, Permarray[ ],Mask[ ];

constant s,t: integer;

J
s

: Mask[s];
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function Row.Col;

procedure g,Wave,Null,Ccomp >

procedure main( );

var P
0

: Nodelabel;

begin

< define P
0 >

g(P
0 )

end main;

This defines process array Mul. Suppose Mul is hosted by (P
0
,E

0 ) and has identifier 1. Then write Mul =

PROGLAYER(f).

DEFINITION 6.6. Suppose (rc.y.x) e KER(s) and n and vjr are realizable in Nodearray (PJE). Then write

(K,V,X)e KER(s;P,E).

THEOREM 6.2. Suppose t is a positive integer, re is a Permarray[t], y is a Permarray[s], x is a Maskft],

and ( 7c,y,x ) e KER(s;P
0 JE 0 ). For each i,j e S let Multiply(ij) = Mulproc(s,m,t,P

0 , n,\|/,x )• Then if Asource,

Bsource, Multiply, and Csink are the only processes loaded,

i. Multiply(ij), Asource(ij), Bsource(ij) and Csink(ij) are all loaded to P
0

(i j).

ii. Multiply(ij) receives A(ij) and B(ij) from Asource(ij) and Bsource(ij) respectively.

iii. Multiply(ij) sends C(ij) to Csink(ij).

iv. Multiply(i j) incurs at most 2s+2n unit block transfers, where n = maximum column sum of X-

Proof: let f = F(^,y,x ). Then by Lemma 6.1, f e PREMUL(s.m), and Typerange(f) = [3,b) where b > 3 .

Now (i) is direct from Definitions 4.1 - 4.3 and 6.5. In Lemma 4.3 take procarray = Multiply; (ii) is immediate

from Lemma 4.3i. Also, since ( rc,\y,x ) e MUL(s), Lemma 4.3ii shows that after Csink(i j) executes its receive,

*CL = Out(f;P
0

,i j) = C(i j). This proves (iii). Referring to the formats of Definitions 4.6 and 6.5, the call to

g(P
0 ) involves only one send outside the call to f within g, namely
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send(2,cl,0J»0 (ij));

Since the process issuing this send, namely Multiply(ij), is on P
0 (ij), this send involves no unit block

transfers by our definition. Hence the only unit block transfers come from the call to f in g, and (iv) follows

from Lemma 6. liii.
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7. Changing topologies.

In Section 4 we noted that process arrays Asource, Bsource, Multiply and Csink should all be hosted by the

same Nodearray (P
0
,E

0 ). This minimizes communication cost during interface of processes since no intemode

communication is involved in passing blocks of A,B,C. However, it forces Multiply to employ the same topolo-

gy as Asource, Bsource and Csink. A separate topology, represented by an alternative Nodearray (Pj ), may

be desirable for the actual multiplication A*B. We can solve this problem by having each Multiply(ij) include a

copy of Wave which acts as a filtering mechanism; this is illustrated in Fig. 3.

The use of Wave' 1
in Fig. 3 is purely symbolic; i.e. symbolically we have

Multiply = Wave' 1 o F o Wave

Multiply acts as a "block server" for F
,
providing the latter with data configured properly for its topology.

The F which appears above is the kernel of the corresponding process array for (Pj ,Ej ).

DEFINITION 7.1. Suppose F e PREMUL(s,m), Typerange( F ) = [a,b), P is a Nodelabel, and y is a

Permarray[q]. Then define f = R(F;P,y) by

procedure f(al,bl: Blockpointer;

cl: out Blockpointer;

P: Nodelabel);

var nullaccum: Blockpointer;

b: integer;

begin

< define b,P,Y >

Wave(al,al,nullaccum J\Null,b,l,q,Y' 1

J
q

);

Wave(bl,bl,nullaccumJ>
J^ull,b+2q,l,q,Y'

1

J
q

);

F(al,bl,cl,F);

Wave(cl,cl,nullaccumJ),Null,b44q,l,q,Y,J
<j

)

LEMMA 7.1. Suppose F e PREMUL(s,m), Typerange( F ) = [a,b), P is a Nodelabel, and y is a
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Permarray[q]. Let f = R(F;P,y). Then

i. f € PREMUL(s.m).

ii. Typerange(0 = [a,b+6q).

iii. If y is realizable in Nodearray (P,E) and a process on P(ij) makes a call of the form

f(AL,BL,CL,P), then the number of unit block transfers incurred by the process in executing this call is

6q plus the number incurred in the call F (AL,BL,CL, P ).

Proof: all sends by F have a < type < b. In f, referring to the format of Definition 7.1, the first Wave has

smallest type = b for a send or receive; the third Wave has largest type = b+6q-l for a send or receive. Also, all

sends by F or Waves have identifier 1. This proves (i) and (ii). Now trivially y' 1
is realizable in (P,E). Hence

each of the three Waves incurs 2q unit block transfers by Lemma 5.4. This proves (iii).

THEOREM 7.1. Suppose f e PREMUL(sjn), y is a Permarray[q], (P,E) and (P,E) are Nodearrays and (P,

E) is equivalent to (P,E) with transformation matrix (Q(L
q
))* . Then Out(R(F

;

P ,y);P,i J) = Out(F ;P,ij).

*y

Proof: abbreviate o = ( L
q )

-1
. Let f = R( F ; P ,y) and Typerange( F ) = [a,b). By Lemma 7.1 we have f e

PREMUL(s,m) and Typerange(f) = [a,b+6q). Suppose for each ij e S, P(ij) has some process proc(ij) with

identifier 1 which calls f(AL,BL,CL,P). Suppose that at the time of this call *AL = A(ij) and *BL = B(ij). Sup-

pose any send with identifier 1, issued by any process, with the exception of sends by a proc(ij) within its f, has

type < a or > b+6q. Suppose any receive issued by a proc(i j), with the exception of calls within its f, has type <

a or > b+6q.

Now for the call to f on P(i J), referring to the format of Definition 7.1, we have

Claim 1: on exit from the second Wave in f on P(ij), *al = A(a(i),o(j)) and *bl = B(a(i),a(j)).

Claim 2: on exit from the call to F in f on P(ij), *cl = Out(F ; P ,a(i),cr(j)).

Claim 3: on exit from the third Wave in f on P(i j), *cl = Out(F;P,ij).

We note that we have satisfied the hypothesis of Definition 4.5, and hence Out(f;P,i j) is the value of *CL
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on exit from f on P(i j), or equivalently the value of *cl on exit from the third Wave in f. Hence the Theorem

follows from Claim 3.

Proof of Claim 1: on entry to the first Wave in f on P(ij), *al = A(ij). In Definition 5.1 applied to the first

Wave we have h(0;ij) = A(ij). On exit from this call *al = h(q;i,j). By hypothesis, any send outside f with

identifier 1 has type < b or > b+2q. Sends and receives in the second and third Waves in f have type > b+2q,

and sends and receives in F have type < b, since Typerange( F ) = [a,b). Thus no send with identifier 1, outside

the first Wave in f, has b < type < b+2q. By hypothesis no receives issued in proc(i j) outside of f have b < type

< b+2q. The same is true for F and the second and third Waves in f. Hence proc(ij) issues no receives with b <

type < b+2q outside the first Wave in f. Thus the hypothesis of Lemma 5.2 is satisfied for the first Wave with t

and n replaced by q and y 1
. Hence on exit from the first Wave in f on P(ij) we have

*al = h(q;i,j) = h(0; L
q

T ’

(i),L
q

'

(j)) = h(0;o(i),a(j)) = A(a(i),a(j))

Similarly, on exit from the second Wave in f on P(ij) we have *bl = B(a(i),a(j)), proving Claim 1.

Proof of Claim 2: on entry to the call to F on P(i j), we have *al = A(a(i),o(j)) and *bl = B(a(i),a(j)) by

Claim 1. By Corollary 2.1i, P(ij) = P (a(i),a(j)). Hence on entry to F on P(ij) = P(a -1
(i).a'

1

(j)) we have *al =

A(i j) and *bl = B(ij).

Sends and receives in the three waves in f have type > b. By hypothesis, sends with identifier 1 outside f

have type < a or > b. Hence any send with identifier 1 outside F has type < a or > b. Similarly, receives issued

by the proc on P (i j) (as distinguished from proc(ij)) have type < a or > b, except in F . Hence Definition 4.5

applies at this imbedded level with f and P replaced by F and P. Hence the value of *cl on P (i,j) on exit from F

is Out( F ; P ,i j). Equivalently, the value of *cl on P (c(i),c(j)) on exit from F is Out( F ; P ,a(i),a(j)). But by

Corollary 2.1i, P(c(i),a(j)) = P(i,j), proving Claim 2.

Proof of Claim 3: on entry to the third Wave in f on P(i j), by Claim 2 we have *cl = Out( F ; P ,a(i),a(j)).

Invoking Definition 5.1 once again, h(0;ij) = Out( F ; P ,c(i),a(j)). On exit from the third Wave on P(ij), *cl =

h(q;i j). A send outside f with identifier 1 has type < a or > b+6q. Sends and receives in the first two Waves

have b < type < b+4q. Hence no sends with identifier 1 and b+4q < type < b+6q are issued outside the third

Wave. Also, proc(ij) issues no receives with b+4q < type < b+6q outside the third Wave. Thus Lemma 5.2 ap-

plies to the third Wave with t, b and n replaced by q, b+4q and y. Hence on exit from the third Wave on P(i j),
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*cl = h(q;ij) = h(0;L
q

r
(i),L

q

Y
(j)) = Out(f ;F,(c ° L

q

7
)(i),(a o L

q

r
)(j)) = Out(f;P,ij)

This proves Claim 3.

COROLLARY 7.1. Suppose n is a Permarray[t], v is a Permarray[s], x is a Mask[t], (n,\y,x) e MUL(s), y

is a Permarray[q], (P
0 JE0 ) and (P, E, ) are Nodearrays, and (P, ) is equivalent to (P

0
,E

0 ) with transformation

matrix (Q( L
q )) Let f = R(F( n,\\i,x );?i .Y)- Then f e PREMUL(s,m), Typerange(0 = [3,b) where b > 3, and

Out(f;P
0
,ij) = C(ij).

Proof: let F = F(7t,\j/,x). Then by Lemma 6.1, T e PREMUL(s.m) and Typerange( F) = [3,b) where b > 3.

Hence f € PREMUL(s,m) by Lemma 7.1. Since ( 7t,y,x ) e MUL(s), Out( f J*, ,ij) = C(ij). By Theorem 7 . 1 ,

Out(f;P
0

,i,j) = C(i,j).

THEOREM 7.2. Suppose n is a Permarray[t], y is a Permarray[s], x is a Mask[t], (P
0 £0 ) is as in Section

( rc.VOC ) 6 KER(s;P
0
,E

0 ), (Pj ) is a Nodearray, y is a Permarray[q] which is realizable in (P, ), and (Pj

E] ) is equivalent to (P
0 E0 ) with transformation matrix (Q(L

q
))*. Let

Multiply = (PROGLAYER o R)(F(7T,v,x );P, ,y).

Then if Asource, Bsource, Multiply, and Csink are the only processes loaded,

i. Multiply(i,j), Asource(ij), Bsource(ij) and Csink(ij) are all loaded to P
0
(ij).

ii. Multiply(ij) receives A(i j) and B(i,j) from Asource(ij) and Bsource(ij), respectively.

iii. Multiply(ij) sends C(ij) to Csink(i j).

iv. Multiply(ij) incurs at most 2s+2n+6q unit block transfers, where n is the maximum column sum of

X-

Proof: let T = F( rt.y.x ) and f = R( T ;Pj ,y). By Corollary 7.1, f e PREMUL(s,m). Now (i) is direct from

Definitions 4.1 - 4.3 and 6.5. In Lemma 4.3 take procarray = Multiply; (ii) is immediate from Lemma 4.3i.

Also by Corollary 7.1 we have Out(f;P
0

,i,j) = C(i,j). Lemma 4.3ii gives (iii). Referring to the format of
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Definition 6.5, the unit block transfers of Multiply(ij) are incurred by the execution of g(P
0 ) on P

0
(i,j), where g

= NETLAYER(f). As in the proof of Theorem 6.2, the only unit block transfers incurred by the call to g are in-

curred by its call f(al,bl,clj*
0 ) in the format of Definition 4.6. By Lemma 7.1 iii, the number of unit block

transfers incurred by this call is at most 6q plus the number in f (al,bl,cl,P, ). By Lemma 6. liii the latter

number is at most 2s+2n.

We remark that if e is the unique Permarray[0] with no components, then (Q(Lq))‘ = I. In Theorem 7.2 we

may take P, = P
0 ;

these are equivalent with transformation matrix I. Also f and R( T ;P
0 £) are indistinguish-

able. Equating the latter we can view Theorem 6.2 as a special case of Theorem 7.2.

Also, as noted in the Introduction, the machinery of [20] would be useful here. We could then write state-

ments of the form x = p(y), where x is a variable defined on a node and y is a variable defined on another node

p. This concept could be extended to procedure names as well. This would simplify and clarify references such

as "the proc on P(i,j)." We have not used this machinery for two reasons. The compiler generates communica-

tion statements; this would obscure the analysis of communication cost. Also, no existing machine incorporates

this machinery.
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8. Case study: maximal interconnection.

For comparison purposes we examine the Nodearray (P
0 JE 0 ) with E

0 = J
s

- 1; i.e. each pair of nodes in a

row or column is adjacent, the maximal connectivity permitted if we assume that a node is not adjacent to itself.

All Permutations are realizable. Let Pstan(i j) = s*i+j and let P
0 = Pstan. Pstan is illustrated in Fig. 2 for s = 4.

If x = q*y+r and 0 < r < y we define x%y = r, x/y = q. Let X be the cyclic Permutation defined by

X(j) = (j e S)

Let re be the Permarray[s] defined by rr
z
= X 1 and let X = I- Then W

z
= X'z

. Let y be the Permarray[s]

defined by y z
= X, z e S. Then L

z = X'
z

, 0 < z < s. Hence

WZR [zj] = (j+z)%s (zj € S)

[zj] = (j+z)%s (1 < z < s, j e S)

THEOREM 8.1. For a maximally connected s x s Nodearray we can find a process array Multiply meeting

the specifications of Section 1, with each Multiply(ij) incurring 2s+2 unit block transfers.

Proof: without loss of generality take (P
0
,E

0 ) and ( rc.y.x ) as above. Then
n

is symmetric and L
y

is a

Latin square. Also

W * o L^ = L^ o W * = X- k
(i e S; 1 < k < s)

Hence (rr,y,x ) e KER(s), and trivially (rt,y,x ) € KER(s;P
0
,E

0 ). By Theorem 6.2, if each Multiply(ij) =

Mulproc(s,m,sJ>

0 , rt,y,x ). Multiply satisfies the conditions of Section 1. Since all column sums of x = I are 1,

the result follows.

40



9. Case study: toroidal mesh.

Assume s > 2; s = 1 is trivial and s = 2 is covered in the previous section. Let 0 be the Permarray[2] with

0
O = X, 0j = X' 1

, where X is as in Section 8. Let Ecyc = INC(0). Ecyc is illustrated for s = 4 in Fig. 2. Let P
0 =

Pstan as in Section 8, and let E
0 = Ecyc. Then

E
0 fiJ] =

(i = (j-l)%sorj = (i-l)%s)

(otherwise)

Thus each node is adjacent to its four nearest neighbors, with horizontal and vertical connections between

the edges of the array; i.e. (P
0
,E

0 ) is a toroidal mesh. Let 7t be the Permarray[s-1] defined by

^
X (z < s/2 - 1)

^ X'
1

(z > s/2 - 1)

for 0 < z < s-2. Let x be the Mask[s-1] defined by

Xtzjc] = c
((z < k < s/2) or (s/2 < k < 3s/2 - z and z > s/2))

(otherwise)

for 0 < z < s-2 and k e S. Then for ke S,

x.* -X[0J0 -xfs-2Jc]

™ k
~ n

o
o ... o 71

s 2

-XfOJc] -Z[s/2-lj£] -x[s/Zk]

:
s/2-1

° n
t/2

-Xts-2Jc]

s-2

Symbolically

log
x
W

J'*
= - £ XfcM + Z XU.k]

1=0 i=s/2

s/2-1 s-2

{

-k

s-k

(k <= s/2)

(k > s/2)

-k (ke S)
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The last step uses X s = X° . It follows that

W = X'
k (ke S)

We note

I
i=0

XM =

(k <= s/2)

(k>s/2)

Thus the maximum column sum of X is s/2.

THEOREM 9.1. For an s x s toroidal mesh we can find a process array Multiply meeting the specifications

of Section 1, with Multiply(ij) incurring at most 3s unit block transfers.

Proof: using (P
0
,E

0 ), n and x as above and taking y as in Section 8, we note that W
z?c

and L
v

are as in

Section 8. Thus the proof of Theorem 8.1 applies, except that Multiply(ij) = Mulproc(s,m,s-iP
0 , n,y,x ), and

the number of unit block transfers incurred by a Multiply(ij) is at most 2s + 2(s/2) < 3s. This holds for all s > 1.

REMARK 9.1. We have routed data in such a way as to minimize communication cost. However, a

simpler algorithm (e.g. [15] p. 126) is obtained by letting n
z = X for 0 < z < s-2, and xtz.k] = 1 for 0 < z < k

and 0 for k < z < s-2, k e S. Then the maximum column sum of x rises to s-1, and the number of unit block

transfers becomes 4s-2.
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10. Butterflies and Gray codes.

Here we record some facts about some classical families of permutations. Given Boolean x
d_j , ... , x

0
let

(x
d l

. - , x0 )2 = i x
z
* 2 Z

2=0

If x = (x
d ,

, ... , x
0 ) 2

we note x
z = (x/2

z)%2. Given nonnegative integers x (1)
, ... , x

(r)
, suppose

x°° = (x
d\ ... , x^j (1 < k < r)

Then let

EX(x<» x») = (( t x“ ) %2 ( £ x“) %2 ) 2
*=1 *=1

In particular, EX(x,y) is the exclusive-or of the bit strings representing x and y. We note EX(x) = x =

EX(x,0), EX(x,y) = EX(y,x), EX(x,EX(y,z)) = EX(x,y,z), EX(x,x) = 0, and EX(x,y)/2 z = EX(x/2 z
,y/2 *). Also, if

EX(x,y) = EX(x,w) then y = w. Furthermore, if x = (x
d_j , ... , x0 )2

and 0 < z < d, then

EX(x,2 ) — (x
d j

, ... , x^
+ j

»1"^
2

,x
z l

, ... , x 0 ) 2

For a fixed z, EX(x,2 z
) generates the familiar butterfly data flow, illustrated in Fig. 4 for x < 7 and z < 2.

Now EX is not generally additive; however an important exception is

LEMMA 10.1. If a
0 , ... , a

d-1
are Boolean then

EX(a
0
* 2°

, ... , a
d.!

* 2 d l

) = EX( £ a
z
* 2 Z

)
2=0

Proof: trivial.

Define

GC(i) = EX(i,i/2). (i > 0)

It is easily verified that GC is injective. The sequence (GC(0), GC(1),...} is the so-called binary reflected

Gray code (e.g. [17]). Usually it is developed recursively, but here we have given it a direct definition. To ex-
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plore its property of interest, let

Z(i) = EX(GC(i),GC(i-l)) = EX(i,i-l,i/2,(i-l)/2) (i > 1)

Z(0) = 0

Then we have

LEMMA 10.2. For i > 1, Z(i) is the highest power of 2 dividing i.

Proof: let i = (id-i , ... , ip )} •
Suppose i

r
= 0 for r < z. and i

z

i =
(*d-l • 'd-2 ’ ... , i

z+1 ,1 ,0,0,... .0)

i-1 =
(’d-1 ’ *d-2 » ... , i

z+1 ,0 ,1,1,... ,D

i/2 =
* *d-l • » *z+2 ’ i

2+ l
» 1 » ^ ,0)

(i-l)/2 (0 . i
d_i

. •" » *z+2 ’ *z+l » 0 » 1 • " • ,1)

It follows that Z(i) = 2 Z
.

COROLLARY 10.1. For i > 0, the binary representations of GC(i) and GC(i+l) differ in exactly one posi-

tion.

Proof: immediate from Lemma 10.2.

LEMMA 10.3. For i > 0, EX(Z(0),...,Z(i)) = GC(i).

Proof: this is true for i = 0; assume true for some i. Then

EX(Z(0) , ... , Z(i+1)) = EX(EX(Z(0) Z(i)),Z(i+l))

= EX(GC(i),Z(i+l)) = EX(GC(i),EX(GC(i),GC(i+l)))

= EX(GC(i),GC(i),GC(i+l)) = EX(GC(i+l))
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The result follows by induction.

LEMMA 10.4. For i > 0, GC'G) = EX(i,i/2,i/4,i/8,...).

Proof: we note GC(i)/2-> = GC(i/2J ). Hence

EX(GC(i),GC(i)/2,GC(i)/4, ...) = EX(GC(i),GC(i/2),GC(i/4), ...)

= EX(i,i/24/2/i/4,i/4j/8, ...) = EX(i) = i

The result follows.
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11. Case study: hypercube.

In this case we take s = 2 d
. Let P

0 = Pstan as in Section 8. Let it be the discordant Permarray[d] defined by

rt
z
(i) = EX(i,2 z

) (i e S, 0 < z < d)

Let Ehyp = INC(n) and let E
0 = Ehyp. The latter is illustrated in Fig. 2 for s = 4. Let D = {0, ... ,d- 1 } . By

Lemma 3.3, for i j e S the nodes adjacent to P
0
(ij) are

{Po(‘^zO))} ze D u {P
0(Mi)j)}z€D

Now k and n
z
(k) differ only in the z-th digit of their binary representations. Hence the same is true for

P
0
(ij) = s * i + j and P

0
(i,7t

z (j)) = s
*

i + Tt
z (j) for i j e S. Similarly s * i + j and s * 7t

z
(i) + j differ only in

one position. Thus in (P
0
,E

0 ), nodes are adjacent iff their binary representations differ in exactly one position.

Hence (P
0
,E

0 ) is a hypercube of dimension 2d [21].

We note that if a is Boolean, n*(j) = EX(j,a * 2 Z
), where as usual o°(j) = j and a 1

(j) = a(j) for a permu-

tation a. More generally we have:

LEMMA 11.1. If a0 , ... , a
r
are Boolean and r e D,

i=0

Proof: the above is true for r = 0; assume true for r-1, 0 < r < d. Then

( *0 <> - ® 7t*
r

)(j) = ( tto
1 0 - ° 71

r-l X V 0))

The last step follows from Lemma 10.1. The result follows by induction.

We note also n'
z = n

z
. Now let x be the Mask[d] defined by

Xtzjc] = (k/2
z )%2 (z e D; k e S)

LEMMA 11.2. For kj 6 S, wj*(j) = EX(j Jc).
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Proof: we have

W, G) = (*o
«[0Jt] -X[d-ljc]

' d-1
° K * , )(]) = ( « o

Xiojt]
o n

_X[d-U]

d-1 )G)

By Lemma 11.1,

wr = EX(j, X XfeM * 2 Z
)

i=0

The result follows.

Let GC and Z be as in Section 10 and let y be the Permarray[s] defined by

Vq (j)
= EXOZ(q)) (qj e S)

We note that y * = yq
.

LEMMA 1 1.3. For 1 < i < s we have

L
V =W*

,,C

” GC(i-l)

Proof: we claim

(V r
o o V,, )G) = EX02(r), ... Z(i-l)) (0 < r < i)

This is true for r = i-1; suppose true for some r > 0. Then

(Vr.,
° - o Vi.! )G) = EX(EX(jZ(r), ... ,Z(i-l)),Z(r-l)) = EXQZfr-l), ... ,Z(i-l))

Hence the claim follows by induction. Now taking r = 0,

(Vo ° - ° Vi-! )G) = (Vo o ... ° Vi-1 )G)

= L^G) = EX(jZ(0), ... Z(i-D) = EXG,GC(i-l))

The last step uses Lemma 10.3. The result follows from Lemma 11.2.
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LEMMA 11.4. For i,k € S,

W
k

= w x.*

EX(iJ0

Proof: by Lemma 11.2 we have

( Wf* o wj* )(j) = EX( Wr 0)4) = EX(EX(kj),i)

= EX(ij,k) = EX(j£X(i.k)) = W^
(uk)0)

LEMMA 11.5. For i € S and 1 < k < s we have

Proof: immediate from Lemmas 11.3 and 11.4.

LEMMA 11.6. For Tt.y.x as above, (rt.y.X) e MUL(s).

Proof: by Lemma 11.2 we have W
X7t

(zjc) = EX(z,k). Hence W
XJt

is symmetric. Also, by Lemma 11.3,

L
y

[zjc] = EX(GC(z-l)Jc). Now suppose L
y

[z,k] = L
y

[z\k] . Then EX(GC(z-l)Jc) = EX(GC(z'-l)Jc) and

hence GC(z-l) = GC(z'-l). Since GC is injective, z-1 = z'-l and z = z . Thus L
v

is a Latin square. The result

follows from Lemma 11.5.

THEOREM 11.1. For a hypercube with s
2 nodes we can find a Nodearray and a process array Multiply

meeting the specifications of Section 1 with Multiply(ij) incurring at most 2(s + log
2

s) unit block transfers.

Proof: let (P
0
,E

0 ) = (Pstan£hyp). Let n.y.x be as above and let Multiply(ij) = Mulproc(s,m,d,P
0 , rt.V.X )•

Trivially tc is realizable in (P
0 ). Also, \\i

i
= 7t

z
where z = Sog

2
Z(i). Hence \\i is realizable in (P

0 ). By

Lemma 11.6 and Theorem 6.2, Multiply satisfies the conditions of Section 1. Also, the maximum column sum of

X is d = log
2

s. The result follows.

As noted in the Introduction, this adapts the Dekel/Nassimi/Sahni algorithm [1] to a wavefront setting.

48



Furthermore, Theorem 6.1 characterizes the properties of this solution which make it viable; this is somewhat

hidden in [1], as indicated by the proof of Theorem 6.1. Extension to the non-square matrix case may be found

in [6].

: - ..'v r ;
• • >

- -
\ •
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12. Case study: mesh embedded in hypercube.

Here we assume s = 2 d
, d > 1, and that nodes in (Pstan,Ehyp), as in Section 11, are adjacent iff their

binary representations differ in exactly one postion. In other words, we again assume the underlying physical

network of nodes is a hypercube. However, this time we assume that Asource, Bsource and Csink prefer a

different topology than in Section 11. For example they may prefer a subset of a barrel shifter (or PM2I) topolo-

gy. Assume it is required that (P
0
,E

0 ) has an embedded toroidal mesh as a subnetwork; i.e. with Ecyc as in Sec-

tion 9 and with the notation of Definition 2.3, according to Lemma 2.3iii we want (P
0
.Ecyc) c (P

0 £ 0 ).

Equivalently, P
0
(ij) is to be adjacent to P

0
(i,(j+1)%2) and P

0
((i+l)%2j). Let (P ltE,) = (Pstan,Ehyp) and let n

and x be as in Section 11. Now to employ the machinery of Section 7, we want to find Permutation a so that

(Pj ,Ej ) is equivalent to (P
0 £ 0 ) with transformation matrix Q(a). The condition (P

0
,Ecyc) c (P

0 ,E
0 ) is

equivalent to

E
0
(i,(i+l)%s) =1 (i £ S)

By Corollary 2.1ii this is equivalent to

E,(a(i),o((i+l)%s))= 1 (i e S)

Since 7t is a basis for Ej , the above is equivalent to c((i+l)%s) = Jt
2
(cr(i)) for some z = z(i). For example,

if GC and Z are as in Section 10 and

{

log
2
Z(i+1) (0 < i < s-1)

d-1 (i = s-1)

then we find a(s-l) = 2 d_1 and

o(i+l) = EX(o(i),GC(i),GC(i+l)) (0 < i < s-1)

This suggests that we choose a = GC. This is the standard choice; e.g. it is also used in [3]. Let T =

Q(GC), Pgc = T o Pstan o T* and Ecyc = T o Ehyp o T* ; then we may take (P
0
,E

0 ) = (Pgc,Ecyc). The case s

= 4 is illustrated in Fig. 2. Also, GC' 1
is computed in Lemma 10.4. To exploit the machinery of section 7, let y

be the Permarray[d-1] defined by
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Yz (k) = 7rf
+1Jc]

(k) (0 < z < d-1, k e S)

We note

yz (k) = EX(k,x[z+U] * 2 Z
)

Thus Yz (k) and k have binary representations which do not differ except possibly in the coefficients of 2 Z
.

Hence

Xtr.YzOO] = XWtf (0 < r < d-1, r * z)

LEMMA 12.1. For 0 < r < d-1 and k e S we have

( Yd .2 ° - o Yr
)(k) = EX(k, “£ xU+Uc] * 2 Z

)

Z-r

Proof: We claim

( Yd _2
o ». « Yr

)(k) = EX(k, Xtr+l,k] * 2 r xW-UO * 2 d '2
)

This is true by definition for r = d-2; assume true for some r, 0 < r < d-1. Then

( Yd .2
o - ° Y,, )Ck) = EX( YM (k), xfr+1, Yr

.,(k)] * 2 r
, ... , X[d-1, Yr.,

(k)l * 2 d '2
)

= EX(k, x[rW * 2 r_1
Xtd-l,k] * 2

d 2
)

The claim follows by induction. The Lemma follows from Lemma 10.1.

LEMMA 12.2. We have GC = ( lJ.
,

)' 1
.

Proof: by Lemma 12.1 we have

( Lj.j )-> (k) = EX(k, £ x[z+l,k] * 2 Z
) (k € S)

1=0

Now for k e S, we have x[z+l,k] = xt2^] and k/2 < 2 d_1
. Thus

d-2 d-2

£ xtz+l*] * 2 Z = £ xtzJ^/2 ]
* 2 Z = k/2

2=0 2=0
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The result follows.

THEOREM 12.1. For a hypercube with s
2 nodes configured with an embedded toroidal mesh as a subnet-

work, we can find a process array Multiply meeting the specifications of Section 1 with Multiply(ij) incurring at

most 2(s - 3 + 4 * log
2

s) unit block transfers.

Proof: we have (P
0 ,E 0 ) = (Pgc,Egc) as above. Taking (Pj .Ej ) = (Pstan,Ehyp), y as above and 7t,\jr,x as in

Section 11, by Lemma 11.6 we have (rc.y.X) € MUL(s). Now by Lemma 12.2, since (Pj^j) is equivalent to (P

0
,E

0 ) with transformation matrix Q(GC) = (QCGC' 1
))* , Theorem 7.2 applies with q = d-1. The column sums of

X are at most d = log
2

s. The result follows.

We remark that Theorem 12.1 exhibits a communication cost 6 * log
2

s/2 unit block transfers higher than

in Theorem 11.1. This is due to the fact that the blocks of A and B are distributed unfavorably when received

from Asource and Bsource, and must be "descrambled" by filtering. In both theorems the communication cost is

2s + 0(log s), and hence the cost of filtering is asymptotically negligible. This is why we did not bother to con-

cern ourselves directly with the topology of (P
0
,E

0 ). If the latter is of interest, we can use Lemma 3.3ii to find a

basis for E
0 .
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13. Comparisons.

For comparing results we will employ the unit block transfer for measuring communication complexity; as

defined earlier this is the transfer of a block consisting of m 2 matrix elements between neighboring nodes.

Results are recorded in Table 1. In the topology column, mesh refers to an ordinary toroidal mesh as defined in

Section 9. Mesh in cube refers to a toroidal mesh imbedded in a hypercube, as in Section 12 or [3]; in [6] this is

referred to as a Gray code encoding. Cube refers to the arrangement of a hypercube as in Section 11 or [1]; in

[6] this is referred to as a binary encoding. Maximal refers to the maximal-connectivity configuration of Section

8 .

In the algorithm column of Table 1, FOH refers to Fox/Otto/Hey [3]. The basic algorithm there involves s

iterations. Each iteration involves "rolling" blocks of B vertically in parallel at a cost of one unit block transfer,

and then broadcasting blocks of A from one position of each row to all other row positions. Each broadcast is a

de facto synchronization point FOH-chain (listed here for later purposes, but omitted in [3]) is the simplest im-

plementation of broadcast, i.e. passing the block serially through the s row positions; each node incurs a delay

equivalent to s unit block transfers per iteration. This does not use cube connectivity, and hence is equally appli-

cable to a mesh or mesh in cube. FOH-tree performs the broadcast by embedding a tree in each row of a mesh

in cube, requiring at most log
2

s unit block transfers per node per iteration. FOH-ring refers to a modification of

chaining by pipelining packets of a block through a row of a mesh in cube (the split-ring broadcast in [3]). The

communication complexity involves n, the number of packets into which a block decomposes. Again this is ap-

plicable to a mesh or mesh in cube. FOH-hard refers to broadcast implemented by hardware support; arbitrarily

we assume that this involves the same cost as one unit block transfer.

MCBVDV refers to the algorithm in [12], which does not employ block decomposition. If the communica-

tion cost is converted, it is equivalent to about s
2
unit block transfers (cf. [16]).

It may be noted that most results in Table 1, and those developed herein in particular, are independent of

hardware. As we noted in the Introduction, augmenting the hardware of a cube with a facility for broadcasting to

subcubes is strictly a luxury in this context; even if the cost of FOH-hard is less than 2s as listed, it must exceed

s (the cost of rolling the B blocks), and hence cannot be much of an improvement over the 2s + log
2

s complex-

ity of the wave adaptation of Dekel/Nassimi/Sahni for cubes. Asymptotically the same is true for the cost of

wave for mesh in cube. We also note that increasing the connectivity to the maximum gives only a negligible

improvement over the hypercube. In tum, the hypercube does not improve much over the mesh in this context
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(2s + log
2

s, versus 3s).

It should also be noted that the communication complexity of the algorithm in [3] is given as essentially 2s.

This is based on FOH-ring and the assumption that n » s
2

. With the latter inequality, pipelining of the n

packets of a block through the s row positions is very efficient in implementing broadcast. However, the as-

sumption n » s
2

is specific to the Mark II and its 8-byte packets; in attempting to port FOH-ring to the iPSC

and its 1024-byte packets, the inequality n » s
2 may become, e.g., 1 » 64. In general the communication com-

plexity of FOH-ring could range from O(s) to 0(s 2
) depending on m and architecture. In the Introduction we

substituted 0(s * log s) for an upper bound on this work, based on FOH-tree which is independent of architec-

ture or m.

The impact of communication complexity depends on other costs such as computation, overhead and syn-

chronization, as well as the translation of unit block transfers to actual time cost. Computation time cost is

roughly of the form a * M 3
/s

2
for some constant a. Time cost of a unit block transfer might be modeled as L +

b * n, where L is a constant representing latency, b is a constant and n is the number of packets in a block. For

simplicity we will measure packet size in terms of the number p of matrix elements in a packet; then n = [m 2

/pi, where fx"| denotes the least integer > x. For example, if elements occupy 8 bytes, the Mark II has p = 1 and

the iPSC has p = 128. With these assumptions, execution time may be modeled as

time a*s*m 3 + U(s)*L + U (s)*b* + V(mj)

where U(s) is number of unit block transfers and V(m,s) includes overhead and synchronization costs. The latter

includes delays when a node cannot compute because it is waiting for receipt of a block. Presumably V(m,s)

can be controlled by buffering, use of optimal code, etc.; nonetheless it seems difficult to estimate V with any

precision. We will assume V(m,s) = o(s*m 2
); this is probably too high for large m, but suffices for analysis.

In the expression for time we note that any term could dominate. For example, V(m,s) may be predom-

inant for small m; a*s*m 3 dominates if s is small and m is large; U(s)*L may dominate if m is small, s is large

and L » b; and U(s)*b*[m 2
/p] may dominate if, e.g., U(s) = s

2
, m = s

1/2 and s is large. Now if we take U(l)

= V(m,l) = 0, we have also

efficiency

B (s)*L+U (s)*b*

1 +

m

P
+V (m ,s)

a*s*m 3
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In particular we have

efficiency = —-— ( U (s) = 0 (s) )

1 + 0 (—

)

m

We also note

efficiency = — ( U(s) = 0(s 2
) )

1 + 0 (—

)

m

In general, if we define granularity as ratio of computation to communication cost,

efficiency = —
l + °( 7—)granularity

We note the central role played by m in these analyses, as opposed to M. This shows that problem size, per

se, is a secondary parameter in designing and choosing algorithms for applications such as matrix multiplication.

Granularity, e.g. defined by ratio of computation to communication cost, is much more relevant for message-

passing machines. We observe that granularity here depends on m if U(s) = O(s), and on m/s if U(s) = 0(s 2
).

Although some of the algorithms in Table 1 fall in between these extremes, it is instructive to note the conse-

quences of this dichotomy. In particular, an O(s) communication complexity, as represented by U(s), has the

property of guaranteeing that at least minimal efficiency is attained for any architecture and any values of M and

s (of course if s > M only a subset of nodes is used; hence we may restrict s < M in practice). To make this

more concrete, we introduce:

DEFINITION 13.1. We say that an algorithm is uniformly asymptotically stable with respect to a class of

architectures E if for each instance of E there exists a constant e
0
such that efficiency > e

0
for any problem size

and number of nodes.

This definition is more of a working nature than theoretical: in practice the number of nodes permitted and

problem size will be restricted by the communication and memory subsystems, respectively, for a given architec-

ture. Nonetheless, we conclude that the algorithms in Table 1 with U(s) = O(s), and hence granularity m, are un-

iformly asymptotically stable with respect to most existing message-passing machines. In fact, as m -> °°,
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efficiency —> 100%. On the other hand, if U(s) = 0(s 2
), and hence granularity = m/s, we may have efficency —

>

0 for large s. For example, the Connection Machine [23] has s = 256, and if a matrix element occupies 8 bytes

we have m < 8. Hence m/s < 1/32, forcing small granularity if U(s) = 0(s 2
). This is due a priori to memory

limitations on the Connection Machine, but more generally we note that execution time is at least a*M 3
/s

2 =

a*s
4
(m/s)

3
. Thus on any machine m/s cannot be large for large s. If processor power is considered the situa-

tion exacerbates. For example, suppose processors are implemented on single chips whose monetary cost rises

linearly with area, and which obey an area-time 2
tradeoff on computation. The total cost of the s

2 processors is

then 0(s 2
/a

2
), so that a will in general grow as c*s rather than remain constant for large s. In this case it is

more accurate to model execution time as at least c*M 3
/s = c*s 5 (m/s) 3

. Thus if granularity is measured by

m/s, small granularity is virtually forced in this context for massively parallel machines. This suggests that port-

ing algorithms such as MCBVDV, FOH-ring and FOH-chain to massively parallel machines is unwise.

In contrast, if s < 4 the choice of algorithm is probably unimportant. Table 2 gives the results of some runs

on a 16-node iPSC, with execution time in seconds. The algorithms tested are seen to be indistinguishable. The

reason is the last column, which gives the computation time for the matrix multiplication phase, with communi-

cation excised. This shows that high efficiency is attained even for relatively small M, e.g. M > 64. This is

predicted by our model: even if granularity is measured by m/4, for M > 64 we have m/4 > 4, so that high

granularity is attained quickly.

We note also that FOH-chain is easier to implement than the other three algorithms; hence it seems to be a

good choice for this particular machine despite its 0(s 2
) communication cost. On the other hand, we note that

for s = 4, m = 64, communication cost may be as much as one second. Our theory predicts that this cost would

rise to about 64 seconds on a similar (but nonexistent) 1024-node machine, compared to a 50-second computa-

tion time. The wave version should reduce communication cost to about 5 seconds in this case.

56



14. Conclusions.

Using matrix multiplication as an example, we have explored various aspects of computing on distributed-

memory, message-passing machines. The focus has been environmental rather than algorithmic, except for Sec-

tion 6. We have noted the importance of the interface between processes, and its connection with distributed

data structures. We have seen that wavefront computing is an effective means of implementing algorithms; futh-

ermore, we have extended the notion of wavefront computing to include dataflow between nodes of networks of

process arrays. This permits iterative algorithms to be constructed from wavefront-based modules which can be

interfaced so that data flows continuously rather than having the end of an iteration serve as a de facto synchron-

ization point. Furthermore, we have seen that interfaces between process arrays can be constructed so as to per-

mit each process array to execute on its own virtual node array. Thus, iterative algorithms can be constructed

from routines which are heterogeneous with respect to topology.

There are various ways in which the present work needs to be extended. In the future we plan to give ex-

amples of iterative algorithms calling matrix multiplication as a subroutine, thereby giving concrete examples of

the usage of the machinery developed here. Also, here and elsewhere the role of distributed data structures has

been observed; in fact it has been noted that algorithms on distributed-memory machines could be characterized

as mappings between such structures. This notion needs to be developed further, since it is a radical departure

from the classical theory of algorithms which has been based on models such as Turing machines.
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topology algorithm reference unit block transfers

mesh FOH-ring [3] = (s
2 - 2s)/2n + s

mesh FOH-chain [3] s
2

mesh wave-simple Remark 9.1 4s - 2

mesh wave-optimal Theorem 9.1 3s

mesh in cube FOH-chain [3] s
2

mesh in cube FOH-tree [3] s * log
2
s

mesh in cube FOH-ring [3] = (s
2

- 2s)/2n + s

mesh in cube wave Theorem 12.1 2s - 6 + 8 * log
2

s

mesh in cube FOH-hard [3] 2s

cube MCBVDV [12] = s
2

cube wave Theorem 11.1 2s + log
2

s

maximal wave Theorem 8.1 2s + 2

Table 1



CMCNCMCSIOJ

T

"^r

•cj'

^

m wave FOH-tree FOH-ring FOH-chain comp

4 5 5 5 5 5

8 30 35 35 30 30
16 210 225 220 225 210
32 1595 1640 1615 1645 1590
64 12375 12555 12460 12570 12355

4 20 15 20 15 10
8 70 70 70 70 60

16 515 445 445 445 420
32 3310 3250 3250 3260 3165
64 24850 24990 24965 25015 24645

4 65 95 100 40 20
8 260 205 195 145 115

16 1085 940 945 950 830
32 6595 6665 6595 6665 6310
64 49830 50345 49985 50250 49210

Table 2
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