
IMPLEMENTATION OF THE COORDINAll
MEASURING MACHINE CONTROLLERwmmQsmm

NBS

PUBLICATIONS

By:

•*4d^rd :T| Moncarz Theodore H.Hopp

mmmrnfflmm

I
plllllilifl

im&mm





IMPLEMENTATION OF THE COORDINATE
MEASURING MACHINE CONTROLLER

Howard T. Moncar

z

Theodore H . Hopp
Patrick Lezark

October 13, 1988

This publication was prepared by United States Government
employees as part of their official duties and is, therefore, a
work of the U.S. Government and not subject to copyright.

Certain commercial equipment, instruments, or materials are
identified in this paper in order to adequately specify the
experimental procedure. Such identification does not imply
recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the
purpose.





TABLE OF CONTENTS

Page

I. INTRODUCTION 1

1. WHAT THIS DOCUMENT IS ABOUT 1

2 . AUDIENCE 1

3. OVERVIEW 1

II. TOP LEVEL DESCRIPTION OF THE CMM CONTROLLER 3

1. DESCRIPTION OF THE CMM 3

2. LOCATION IN THE WORKSTATION ARCHITECTURE 3

3 . MAIN CONTROLLER FUNCTIONS 3

4. WORK ELEMENTS AND STATUSES 5

III. INSPECTING PART GEOMETRY USING A CMM 7

1. WHAT IS A FEATURE? 7

2. WHAT IS A DIMENSIONAL TOLERANCE? 7

3. TOLERANCES IMPLEMENTED 8
3.1. DiameterTol 8

3.2. FlatnessTol 8

3.3. LengthTol 8

3.4. AnqleTol 9

4. LOCATING THE PART 9

IV. DATA STRUCTURES 11

1. LOCAL DATA 11

2. AMRF DATA 11

t

1



Page

V. TASK DECOMPOSITION 13

1. wsccmin 13

2 . cmm tol 13

3. tolerance 15

4. features 15

5. surfaces 16

6. points 16

7. machine 16

VI. PROCEDURE MODULES 19

1. cmm_lib 19

2. cmm_types “ 19

3 . cm__glob 19

4. cmm__funcs 19

5
.

getdata 19

6. fitmod 19

7. comptrans 2 0

8. fib lib 20
8.1. flb fns 20
8.2. flb_errs 2 0

8.3. tpstuff 20
8.4. flb_talk 20
8.5. flb_init 21
8.6. flb scan 21
8.7. report 21
8.8. fib 21

VII. INTERFACE TO EQUIPMENT 23

1. MODULES THAT INTERFACE TO EQUIPMENT 23

2. DETAILS OF THE CURRENT IMPLEMENTATION 24

3. CHANGES REQUIRED FOR EQUIPMENT SUBSTITUTION 25

ii



Page

VIII. INITIALIZATION AND SHUT DOWN 27

1. START UP 27

2. SHUT DOWN 27

3. ABORT 27

IX. ERROR HANDLING 29

1. MISSED PART 29
1.1. Description 29
1.2. How Handled 29

2. UNEXPECTED TOUCH 29
2.1. Description 29
2.2. How Handled 29

3. PROGRAM HANGS 29
3.1. Description 29
3.2. How Handled 30

X. USER INTERFACE 31

1. STAND-ALONE OPERATION 31

2. USER COMMANDS 31

XI. FUTURE PLANS 33

1. SOFTWARE DEVELOPMENT 3 3

2. NEW HARDWARE 3 3

3. PROBLEM AREAS 34
3.1. Limitations On Parts That Can Be Inspected 34
3.2. Error Handling 34



APPENDICES
Page

A. IWS DOCUMENTATION LIST 35

B. REFERENCES 37

C. GLOSSARY (and abbreviations) 39

D. FLAT FILE SPECIFICATIONS 41

READER COMMENT FORM 53

iv



LIST OF FIGURES

Page

Figure 1. Logical Architecture of the IWS 4

Figure 2. Control Levels for the CMM Controller 14

v



-



IMPLEMENTATION OF THE COORDINATE
MEASURING MACHINE CONTROLLER

I. INTRODUCTION

1. WHAT THIS DOCUMENT IS ABOUT

This document describes the implementation specifics of the
Coordinate Measuring Machine Controller (CMMC) program as of March
26, 1987. This program runs under the control of the ECS program
that is described in the document Implementation of the Execution
Control System of the Inspection Workstation [A. 2]. The
controller program consists of state machine modules that
’’customize" the controller for its particular application—i.e.
supervising the CMM.

2 . AUDIENCE

Anyone who needs to understand the internals of the CMM software
should read this document. This includes anyone who will continue
the development of the CMM software or make modifications to it.

The document Architecture and Principles of the Inspection
Workstation [A.l] describes the principles that the ECS program
and the CMM Controller program utilize. It is recommended that
that document be read first.

3 . OVERVIEW

Chapter II gives a top level description of the CMM Controller.
It describes the equipment, specifies the location of the CMMC
in the IWS control hierarchy, and describes the main functions the
controller performs.

Chapter III discusses some general principles of dimensional
inspection that the CMMC utilizes.

Next, Chapter IV describes the main data structures, both global
to the AMRF as well as local to the IWS, that the controller
program uses. The specific task decomposition that the CMMC
incorporates is explained next in Chapter V. Additionally,
procedure modules used by the main tasks discussed in Chapter V
are described in Chapter VI.

The actual interface to the CMM is specified in Chapter VII.
Specific details used in the start up and shut down procedures are
described in Chapter VIII. Errors that can occur during operation
are listed and explained in Chapter IX. Chapter X describes the
user interface to the CMMC.
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CMMC Implementation

Finally, Chapter XI discusses future development plans for the
CMMC

.

The appendices include further information and implementation
details. Appendix A lists the entire IWS documentation set.
Other references are listed in Appendix B. Appendix C contains a
glossary of terms used in this document. Appendix D specifies the
internal file formats used to contain all the data used for a
specific inspection.

Completing the document is a reader/comment form. You are
encouraged to write down your comments and mail the attached form
to the address specified.

2



CMMC Implementation

II. TOP LEVEL DESCRIPTION OF THE CMM CONTROLLER

The CMM inspects dimensional tolerances of parts, and is
supervised by the CMM Controller (CMMC)

.

1. DESCRIPTION OF THE CMM

The CMM used at the IWS is known as a horizontal arm CMM, since it
consists of a horizontal arm that moves vertically. The part to
be measured is placed on the table of the CMM. This table has
three degrees of freedom in the horizontal plane*—two
translational degrees of freedom perpendicular to each other and
one rotational degree of freedom about an axis through the center
of the table. A probe is mounted on the end of the horizontal
arm. The particular probe used for the IWS is a Renishaw PH9 type
probe [B. 2 ]

.

This probe has an additional two rotational degrees
of freedom about the arm.

The probe is a force-sensitive mechanism that registers a touch if
its synthetic ruby tip encounters a small force. This force is
adjustable and is held at about five grams for normal IWS
operation. At this force level, most parts can be accurately
measured while the part is secured on the table by its weight. If
the part is very light, it can still be measured if it can be
mounted on a fixture, and the combined fixture and part placed on
the table.

2. LOCATION IN THE WORKSTATION ARCHITECTURE

As shown in Figure 1, the CMM Controller is subordinate to the
Workstation Controller (WSC) and is the supervisor to the CMM. In
a future implementation, the CMM Controller will be able to access
the IMDAS (Integrated Manufacturing Data Administration System)

,

the distributed data system which provides common interfaces to
the AMRF's user programs and underlying databases [B.6, B.10].

3. MAIN CONTROLLER FUNCTIONS

The main functions of the CMM Controller are the following:

Respond to WSC commands and return status information.

Retrieve inspection programs from the IMDAS.

Control CMM motion.

Analyze CMM data.

Report inspection results back to the AMRF.

Print local inspection reports.

3
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Figure 1. Logical Architecture of the IWS
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4. WORK ELEMENTS AND STATUSES

The CMM Controller receives commands from the Workstation
Controller. These commands are either transition commands
(involved in the start up/shut down protocol) , or work order
commands (for operating in ready state) which contain the work
elements that command the main functions that the CMM Controller
is responsible for doing.

The work elements executed by the CMM Controller are:

LOAD_PART (loads the data for a part inspection)

INSPECT (directs the part inspection)

Statuses returned by the CMM Controller to the Workstation
Controller are:

WORKING

DONE

ERROR

5
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III. INSPECTING PART GEOMETRY USING A CMM

1. WHAT IS A FEATURE?

A part feature is a collection of part entities that is a useful
grouping to satisfy a particular function. A geometric feature is
a collection of part surfaces that are grouped together as a
single entity. For the purpose of inspection, the entity chosen
is one that can be measured. This is known as an inspectable
feature, as contrasted by a machinable feature (which is a useful
entity for machining) . A feature can be machinable as well as
inspectable, but that does not have to be the case.

In the IWS implementation, a feature is termed either simple or
complex. A simple feature is represented by a single part
surface. An example is that a hole can be represented by a single
surface—a cylinder. A complex feature is a collection of simple
features. An example is a pattern of holes. Each hole is a
simple feature. The collection, taken as a single entity, is a
complex feature.

Because of the categorization just described, measuring a feature
always decomposes finally to measuring a surface. This entails
measuring the location of a number of points on the surface.

The type of surface measured must be specified. In the IWS
implementation the surface type can be any one of the following: a
flat plane, a cylinder, a sphere, or a cone. A best fit of the
points measured is determined for the surface type specified.
This best fit is then used for tolerance determination.

2. WHAT IS A DIMENSIONAL TOLERANCE?

Dimensional tolerances are specified for a part to insure that a
part manufactured to within those tolerances will serve its
intended function.

As mentioned in section 1 above, a tolerance is referenced to a
feature. There are two classifications for tolerances—intrinsic
and extrinsic. An intrinsic tolerance depends only the feature
being toleranced. On the other hand, an extrinsic tolerance is
the measurement of a feature in relation to another feature (or
set of features)

.

For example, to determine whether the diameter of a hole is within
tolerance, only the hole needs to be measured to determine its
diameter. This is a size tolerance and is classified as an
intrinsic tolerance. On the other hand, the position of that same

7
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hole is determined in relation to, for example, two other
features—two sides of the part (each a flat plane) . A position
tolerance is an extrinsic tolerance.

3 . TOLERANCES IMPLEMENTED

The intrinsic tolerances implemented for the IWS are diameter and
flatness. The extrinsic tolerances implemented are length and
angle. These are implemented as separate procedures. They are
discussed below, using the same procedure names as are used in the
program.

3.1. DiameterTol

This procedure determines whether the diameter of a hole or
cylinder is in tolerance. The procedure compares the measured
diameter with the design diameter and checks the difference
against the tolerance specified for the hole or cylinder.

Diameter is an intrinsic tolerance.

3.2. FlatnessTol

This procedure determines whether a plane is within a specified
flatness tolerance. It computes the distance from each measured
point to the computed best fit plane, and it adds the distances of
the two points which are farthest from the plane on each side.
This sum is compared with the specified tolerance to determine if
the plane is in tolerance.

Flatness is an intrinsic tolerance.

3.3. LengthTol

LengthTol checks several kinds of features: the distance from a
feature plane, hole, or cylinder to a datum plane and the distance
from a point (as determined by the intersection of three planes)
to a datum plane.

In finding the distance from a feature plane to a datum plane, it
is assumed that the two planes are parallel. LengthTol finds the
centroid of the measured points of the feature plane and computes
the distance from the centroid to the measured datum plane. This
distance is compared with the specified dimension and tolerance.

For a hole (or cylinder) whose axis is supposed to be parallel to
the datum plane, LengthTol finds the distance from an arbitrary
point on the axis of the hole or cylinder to the measured datum
plane. The coordinates of this arbitrary axis point are computed
by the module "fitmod" as parameters of the surface.

8
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To find the distance ‘from a point (such as a corner) to a datum
plane, LengthTol first finds the coordinates of the point of
intersection of the three planes. LengthTol computes the distance
from this point to the datum plane.

A feature is considered simple if it can be represented by a
single surface. A feature is referred to as a pattern if more
than one surface is needed to represent it. For example, single
planes, holes, and cylinders are simple features, while a point is
a pattern because it is actually represented by more than one
surface.

These tolerances are all extrinsic.

3.4. AnaleTol

AngleTol finds the angle between two planes and compares this to
the toleranced dimension. The angle between two planes is
computed by finding the angle between the normals to the planes.
Since the normals have length 1, the angle is given by the
arccosine of the dot product of the two normal vectors. This
computed angle is compared with the design angle and the specified
tolerance.

Angularity is an extrinsic tolerance. Of the two planes that
determine the given angle, one is treated as a datum plane, the
other as the feature.

4. LOCATING THE PART

The IWS robot places the part on the CMM table at approximately
the location specified by data. However, in order for the CMM to
probe the correct features of the part without getting an
accidental touch at a different feature or missing the feature
altogether, it is necessary that the CMM Controller know the part
location more precisely. To accomplish this, the CMM Controller
directs the CMM to search for the part before inspecting it. Four
points are probed—three on the part and one on the CMM table.
Based on these measurements, a coordinate frame referenced to the
part*s main axes is determined and used throughout the rest of the
inspection.

9
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IV. DATA STRUCTURES

1 . LOCAL DATA

In the March, 1987 implementation, the data required for a
dimensional inspection of a part is stored locally in disk files
on the CMMC itself. The CMMC is sent the command to ' LOAD_PART

'

to tell it what part needs to be inspected. The LOAD_PART command
is packaged with two arguments—the part name and the name of the
inspection plan (the latter is an integer) . Upon receiving this
command the CMMC prepares to access the proper data during the
inspection.

Once the CMMC completes the command to 'LOAD_PART', it waits for
the command to 'INSPECT'. After receiving the INSPECT command, it
directs the inspection of the part. As each state machine module
runs, any data required by that module is retrieved from the local
data as it is required. It is necessary to access the data
locally during the actual inspection to achieve the required
response time.

The local data is stored in a flat file system—each relation is
stored in a separate file. A relation contains key fields that
are used to find the record required. Then, the data fields in
that record are retrieved. The full specification for all the
CMMC flat files is in Appendix D. The description of how the flat
file system is implemented is in the IWS document Implementation
of the Execution Control System of the Inspection Workstation
[A. 2].

2

.

AMRF DATA

In a future implementation the CMM Controller will retrieve the
data it requires to inspect a particular part from the AMRF IMDAS

.

This data will be contained in two separate files. The first file
is the part model file. The format for this file has been
specified [B.8], and part model data for a number of parts already
resides in the AMRF IMDAS. Any process connected to the AMRF
network can retrieve this data. The part model file contains the
geometry, topology, and tolerance data for a part in a neutral
format that can be used by all processes throughout the AMRF.

Supplementary to the part model data, additional data is required
to inspect a part. This data includes sequence information (i.e.
which tolerance to inspect next)

,

probe data for each point to be
inspected (i.e. which PH9 tip orientation to use), etc. All of
this data will be contained in a single file, the inspection data
file, which has a format similar to the part model file. The
current implementation does not use this file, and it has not yet
been specified.

11
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After the two files are retrieved, they will be transferred to
local data files (described in the previous section) that allow
quick retrieval of individual pieces of data as the controller
program needs them. The structure for these local data files will
remain the same, even when the data originates from the IMDAS
rather than from the CMMC itself (as is currently the case)

.

12
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V. TASK DECOMPOSITION

The state machine modules used to implement the CMM Controller are
shown in Figure 2 . Listed in their order of hierarchical task
decomposition (from highest to lowest) , those modules are wsc_cmm,
cmm_tol, tolerance, features, surfaces, and points. The lowest
level module in the CMM Controller task decomposition is the
machine module.

The machine module is implemented as a procedure module rather
than as a state machine module. This has the advantage of
reducing the number of state machine cycles necessary to execute a
command, and therefore increasing the speed. However, the
disadvantage is that the ability to react to feedback from the
equipment at the machine module level is more difficult. That
feedback must be passed from the machine module’s supervisor down
to the machine module by a procedure call.

This section lists each of the state machine modules, including
the machine module, and provides a general description of each.

1 . wsc_cmm

The "wsc_cmm” module implements an AMRF standard control protocol,
called the UVA Protocol, [B.3], in interfacing the CMM Controller
to the Workstation Controller. This module accepts commands from
the WSC and passes those commands down the task decomposition
hierarchy. It receives statuses from its subordinate, the cmm_tol
module, and returns statuses to the WSC.

2 . cmm_tol

In the generic controller model, "cmm_tol" is the main task
module. This module supervises the main functions performed by
the CMM Controller, namely, to retrieve the data to inspect a part
(given the part name and the inspection plan name) and to
supervise the inspection. A separate work order is issued to
cmm_tol for each of these functions— ' LOAD_PART ' and 'INSPECT',
respectively.

Currently, cmm_tol retrieves data from data files residing locally
on the CMM Controller. Eventually, this data will be retrieved
from the IMDAS . Once retrieved, this data will be parsed and
stored in local data files in the same format as the data that is
currently being used.

Included in the data that cmm_tol retrieves is data that specifies
the approximate location of the part on the CMM. The cmm_tol
module uses that data to determine the part coordinate system,
which will be used when the CMM Controller locates the part.

13
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Figure 2. Control Levels for

the CMM Controller
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After cmm_tol retrieves the data and completes the determination
of the part coordinate system, cmm_tol reports a status of 'DONE'
to wsc_cmm, indicating that the order 1 LOAD_PART * is completed.

When cmm_tol gets the order to INSPECT', it first directs the CMM
to go to a safe point, specified by data. Then it directs the CMM
to locate the part, using the coordinate system determined during
the execution of the 'LOAD_PART' command. After locating the
part, the part coordinate system is recalculated to reflect the
improved measurements just made.

Using this new coordinate system, the part is inspected. The CMM
is then directed to return to the safe point and wait for the next
command. The 'INSPECT' command is completed, and cmm_tol reports
a status of 'DONE' back to wsc_cmm.

3 . tolerance

The "tolerance" module takes charge of directing the inspection
for a given tolerance. The main command executed by this module
is ' INSPECT_TOLERANCE

' , issued from cmm_tol. The command includes
the tolerance name, a key into the data.

Upon receiving this command, the tolerance module looks up the
data describing the tolerance required. This data specifies which
feature is being toleranced and whether the tolerance is intrinsic
or extrinsic. If intrinsic, a command is issued to the
subordinate module, features, to measure the feature being
toleranced. If the tolerance is extrinsic, a command is issued to
"features" to measure the feature (or features) that represent the
data reference frame (DRF) . After the DRF is measured (and
recorded) , a command is issued to "features" to measure the
feature being toleranced. Once the feature is measured (whether
the tolerance is intrinsic or extrinsic) , it is recorded and the
tolerance is computed. The command is completed and the module
tolerance reports ' DONE ' back to cmm_tol

.

4 . features

The "features" module measures the features specified by the
tolerance module. If "features" is commanded to measure a data
reference frame, "features" measures all the features that
determine that DRF. Also, "features" must determine whether each
feature it is to measure is simple or complex. If the feature is
simple, then a command is issued to the module, surfaces, to
measure the surface representing that feature. Otherwise, if the
feature is complex, "features" must send individual commands to
the surfaces module to measure each surface that combine to make
up the complex feature. After each surface is measured,

15
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"features" records the results for that surface. When the entire
feature is measured, "features" reports 'DONE' back to the
tolerance module.

5. surfaces

When "surfaces" gets the command 'MEASURE', it looks up the
surface to be measured and gets the information that describes
that surface. That information includes the type of surface (flat
plane, cylinder, etc.), the coefficients that define that surface
analytically, the number of points to be measured on that surface,
the probe tip diameter, etc. The module then issues commands to
the points module to measure the points that are needed to
determine that surface. Each point is recorded as it is measured.
When all points required for the surface are recorded, a best fit
for the surface is computed and also recorded. The command is
completed and 'DONE' is reported to "features".

6. points

The main duty of the "points" module is to direct the CMM to go to
the next point commanded by the surfaces module. That point can
be either an inspection point or a point in space, referred to as
a safe point. It must do this without colliding with the part in
going from the current point to the next one directed. Also, this
module is responsible for directing the approach of the CMM's
probe to an inspection point from the proper offset to that point
and at the correct speed. It then directs the CMM to retract its
probe to the correct offset from the inspection point after
touching the part.

Each inspection point has a collection of data associated with it
that allows the points module to accomplish its task. This data
is divided into data specifying point information and data
describing characteristics of the CMM probe. The point
information includes the coordinates of the point, the orientation
and offset from which to approach that point, and path information
to the approach point. The probe characteristics include the
angle of the tip, the free space speed up to the approach point,
the approach speed, the retract distance, and the overtravel
distance. The overtravel distance specifies the distance the
probe tip should move beyond the specified inspection point before
that point is considered "missed".

7 . machine

This module is the bottom level task in the CMM Controller task
decomposition. It packages up commands (that are independent of a

specific CMM— i.e. logical CMM commands) from other tasks and
interfaces the CMM Controller to the CMM (a specific CMM) by

16
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referencing the fib module. As mentioned above, the machine
module is implemented as a set of procedures rather than as a
state machine.

The CMM at the IWS contains proprietary firmware that interfaces
to the actual servos, encoders, etc. Provided along with this
software is a program, written in BASIC, which runs on an HP 9836
computer that interfaces to the proprietary firmware. The BASIC
program is called fib, which stands for function library. This
program has been translated to a Pascal module, and is considered
part of the CMM, rather than the CMM Controller program.

17
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VI. PROCEDURE MODULES

The modules in the task decomposition (state machine modules plus
the module machine) use procedures that are packaged into separate
modules. These modules are described in this section.

1 . cmm_l ib

This library module contains procedures from the HP library that
are not used by the other controllers. The particular modules
included here are used to interface the HP computer to the CMM
using the HPIB I/O board.

2 . cmm_types

This module includes data structure types that are specific to the
CMM Controller, and are referenced by state machine modules as
well as procedure modules throughout the CMM Controller program.

3. cm_glob

This module is used to communicate a couple of large variables
between the tolerance and features modules, rather than through
common memory. This is done because the current implementation of
common memory transfers all common memory variables every cycle.
The variables included in cm_glob are needed very infrequently,
and since they are so large, it would slow up the whole controller
if these variables are transferred every cycle.

4 . cmm_funcs

This module contains some general functions that are specific to
the CMM Controller and are referenced by modules throughout the
CMM Controller program.

5
.

get_data

This module contains the procedures that search the locally stored
data files to return the data values needed by the state machine
modules as they are running.

6. fitmod

The module fitmod uses least squares models to fit sets of points
to the parameters of several surfaces—plane, sphere, cylinder,
cone, and torus.

19
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7 . comptrans

This module computes a transformation matrix which compensates for
the approximations made in placing a part to be measured on the
CMM.

8. flbJLib

The flb_lib module interfaces the CMM Controller to the CMM. This
module is a rewrite of a BASIC program (supplied by Sheffield
[B. 1] ) to Pascal. In the Pascal version, the program is divided
into separate modules that are linked together into the flb_lib
module. These modules are described in this section. All of the
capabilities provided in flb__lib can be accessed by the CMM
Controller program. However, only a small portion of these are
utilized when operating in the normal IWS configuration. If the
capabilities are not normally specified, it is noted in the
description for that module.

8.1. flb
_
fns

0

This module contains procedures that are used by many of the
flb__lib modules, and are specific to the CMM Controller program.

8.2. flb_errs

This module handles errors detected by the CMM in the manner
specified by the Sheffield protocol. It contains one procedure
that allows the user to substitute the user's own error handling
procedures in place of that protocol. This, in fact, is used in
the CMM Controller program.

8.3. tpstuff

The module tpstuff contains procedures that compute tolerances
based on different material conditions. The current CMM
Controller implementation does not use these.

8.4. flb_talk

The protocol specified by Sheffield that handles the communication
between the HP computer and the CMM is quite complicated, and is
implemented in this module. It is the only module in the CMM
Controller program that interfaces directly to the CMM.

20
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8.5. flb_init

The procedures contained in flb_init are used to cold start or
warm start the CMM. The CMM Controller uses the cold start
procedure.

8.6. flb_scan

This module provides procedures to take multiple probe readings
while the probe touches multiple points on the surface of a part
by issuing one command. This module is not used by the CMM
Controller.

8.7. report

This module allows the user to specify the format for a printout
of the results of an inspection, and to actually perform that
printout. This module is not used by the CMM Controller.

8.8. fib

This module provides the interface between the CMM Controller
program and the flb__lib module.

21
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VII. INTERFACE TO EQUIPMENT

One goal of the IWS project is to design the software so that
higher levels of control are device independent. Then, any piece
of equipment can be interfaced to the system by writing a device
interface.

This is analogous to a graphics system, where higher level modules
in the system refer to logical devices. A logical device is a
module that performs a particular function required by the system.
In its common usage, a logical device is the lowest level module
in the system that is still device independent. By writing a
module that interfaces an actual physical device to the logical
device, that physical device can be interfaced to the system
without changing the system. This design gives the system more
generality and flexibility.

For example, a locator device is a logical graphics input device.
The actual hardware to perform this function can be chosen from a
collection of different types of devices, including digitizing
tablets, light pens, mouses, etc. The light pen would perform
this function most directly, but other types of devices, such as
digitizing tablets, can simulate the function through software.
In other words, the hardware that interfaces to the system cannot
only be from different manufacturers, but it can even be a
different type altogether, as long as it can perform the function
(or functions) specified by the logical device.

This is the perspective from which the IWS controllers were
designed. For the CMM Controller, the "machine” module is the
device interface to the CMM. (Note that the fib module is
considered part of the CMM—see Chapter V, Section 7.) The
module, points, could be considered the logical device. It
defines the lowest level procedures that are still device
independent. Thus, by changing the machine module, a CMM from a
different manufacturer could be interfaced to the CMM Controller.

In the current design, this clear division has not been strictly
upheld. This will be corrected in the future. However, for now
the interface between the CMM Controller and the CMM is more
complicated, and the details of that interface are explained
below.

1. MODULES THAT INTERFACE TO EQUIPMENT

The modules that interface to the CMM are machine, points, and
cmm_tol. The CMM functions accessed by these modules are
described in the next section.

23
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2. DETAILS OF THE CURRENT IMPLEMENTATION

In the machine module, the following CMM functions are performed:

Initialize the CMM from a cold start, and store the initial
machine reference frame for recall upon command.

Move the probe to a specified location in free space.

Move the probe and touch the part at a specified location
on the part, and save the location data for the point
touched

.

In the points module, the following CMM functions are performed:

Set the probe free space speed.

Set the probe touch speed.

Set the probe retract distance (after a touch)

.

Set the probe overtravel distance (before reporting a
miss)

.

Select which PH9 probe tip orientation to use.

In the cmm_tol module, the following CMM functions are performed:

Set the units of measurement (either inches or
millimeters)

.

Set the probe free space speed (also set in module points)

.

Establish the part reference frame given the 4x4
transformation of machine to part coordinates, and store
that reference frame for recall upon command.

Recall the machine reference frame.

Recall the part reference frame.

Set the CMM method of error handling to allow the program
on the HP to handle it, rather than allow the CMM firmware
to handle it in its default specification.

Move the probe to a specified location in free space.
(This is currently implemented by referencing the machine
module function to accomplish this.)
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3. CHANGES REQUIRED FOR EQUIPMENT SUBSTITUTION

To substitute the CMM from a different manufacturer, the functions
specified in section 2 above must be implemented for that CMM.
For the particular CMM currently implemented, some higher level
functions (for example, setting the part reference frame) are
implemented by the CMM itself. If that is not the case with the
new CMM, those functions must be implemented in software.
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VIII. INITIALIZATION AND SHUT DOWN

The top level module of the CMM Controller, wsc_cmm, implements
the UVA initialization and shut down protocol [B.3].

This section discusses what is done in the CMM Controller when it
receives these transition commands. It ignores the interface
between wsc_cmm and the Workstation Controller, since this is
fully covered in the AMRF document mentioned above.

1 . START UP

On cold start up, i.e. when the CMM Controller program is first
started, the CMM is sent a command to initialize the CMM.
Additionally, common memory mailboxes are established. After
these events occur, the CMM Controller is ready to receive
commands. When the ' WARM_STARTU

P

1 command is received, cmm_tol
goes into its 'IDLE' state, reports 'DONE' back to wsc_cmm, and is
then ready to receive order action commands.

2 . SHUT DOWN

On receiving the *WARM_SHUTDOWN 1 command, the CMM is commanded to
return the probe to its initial power up position—at the gage
block. Then cmm_tol reports the status 'DONE' to wsc_cmm.

3 . ABORT

The ABORT command is used for error handling. Currently, this
command is not implemented. When the command is passed down from
wsc_cmm to the next level, cmm__tol, it is ignored.

27



CMMC Implementation

:

-

.

28



CMMC Implementation

IX. ERROR HANDLING

This section discusses the types of errors that can occur during
the CMM Controller operation. Currently, any error crashes the
program. The three main errors that have been observed are
discussed below.

1. MISSED PART

1.1. Description

This error occurs when the CMM probe is directed to touch the part
at a certain location, and it does not contact the part at that
location. Before getting this error, the probe will search a
distance past the specified location equal to the overtravel
distance. This error can occur when the CMM Controller is trying
to locate the part or when it is inspecting the part.

1.2. How Handled

The CMM itself detects this error and kicks over into MANUAL mode.
The CMM Controller currently cannot recover from this error.

2. UNEXPECTED TOUCH

2.1. Description

This error occurs when the CMM probe contacts the part, or
anything else, when it has not expected a touch. This error can
occur when the CMM Controller is trying to locate the part or when
it is inspecting the part.

2.2. How Handled

The CMM itself detects this error and kicks over into MANUAL mode.
The CMM Controller currently cannot recover from this error.

3 . PROGRAM HANGS

3.1. Description

This error has three main sources. First of all, when the
Controller is communicating with the CMM, if the handshaking
between the two does not conform to the proper protocol, the
Controller program can hang. It will continually wait for a
certain response from the CMM that will never occur.

Secondly, it is possible that the surface fit or tolerance
algorithms will not converge. This can cause the program to go
into an infinite loop.
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Finally, any bug in the control structure of the program can force
the Controller to go into an undetermined domain and effectively
crash the program.

3.2. Hov Handled

Currently, the CMM Controller cannot recover from this error.
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X. USER INTERFACE

1 . STAND-ALONE OPERATION

In integrated mode, wsc_cmm is the highest level module in the CMM
Controller. It receives commands, via the local network, from the
Workstation Controller. If the CMM is to be run in stand-alone
mode, the operator needs to enter commands to the controller and
have those commands transferred to the wsc_cmm module. The
interface that provides this connection between the user and the
wsc_cmm module is the cmmtest module. Cmmtest simulates the WSC,
and allows the user to select commands for the CMM Controller.

2 . USER COMMANDS

The commands available to the user are 'ABORT', 'SHUTDOWN',
'STARTUP', and 'EXECUTE'. These are the transition commands.
The first three commands do not have arguments. The arguments for
'EXECUTE' are the work orders and their respective arguments.

The user must first choose 'STARTUP' to transfer the CMM
Controller to the ready state. Next, the user selects 'EXECUTE'
and may select either of the two work orders: 'LOAD PART' or
'INSPECT'. 'LOAD PART' is used to select the data to inspect a
particular part. 'INSPECT' directs the CMM Controller to start
the inspection using the data just loaded by the 'Load Part' work
order.

After a part has been inspected, data for a new part may be loaded
and inspected, or else the CMM Controller may be shut down by
issuing the transition command 'SHUTDOWN'.
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XI. FUTURE PLANS _

1 . SOFTWARE DEVELOPMENT

Software development is continuing in a number of areas. The
primary effort is involved with fully integrating the CMM into the
AMRF. This entails retrieving the data required to inspect a part
from the IMDAS , and translating that data to the internal data
structures required by the CMM Controller.

Another area of work which would be useful to do would be to
extend the types of tolerances that can be measured. In fact, the
entire subject of relating CMM data to functional tolerances needs
detailed research in concert with comprehensive analysis of actual
data.

Currently, the path that the probe tip of the CMM takes to go from
one point to another is specified by data that is determined ahead
of time. Research is proceeding that will consider whether the
CMM Controller can determine the correct path in real time.
Hopefully some method can be implemented that will do automatic
collision avoidance quickly enough to do it on-line, rather than
in an off-line programming system.

Automatic collision avoidance would be necessary to proceed to
another interesting area of research—adaptive CMM inspection.
During an actual part inspection, an analysis of the data as it is
collected might be useful for determining what additional
measurements are necessary for completing the analysis.

2. NEW HARDWARE

No plans for new hardware are immediately eminent. However, two
hardware components have been identified that would be very useful
additions to the CMM. An automatic probe changer would allow the
CMM to inspect a wider variety of parts than it currently is able
to do while integrated into the IWS. Also, more surfaces of
certain parts could be inspected without refixturing.

Secondly, an automatic vise, mounted on the CMM, would allow the
CMM to inspect light parts that cannot be secured by gravity
alone. Additionally, parts that cannot lie in a stable position
on the CMM * s table (i.e. a cylindrical part) could be secured by
the vice as well.
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3. PROBLEM AREAS

3.1. Limitations On Parts That Can Be Inspected

Before inspecting the part, the CMM Controller goes through an
algorithm to locate that part. Currently, the location algorithm
requires that the part have two flat surfaces that are
perpendicular to each other, are perpendicular to the table of the
CMM, and are parallel to two of the CMM's axes. A part that does
not have two such planes (i.e. a cylinder with no flat planes)
cannot be measured.

A part that is so light that it would be disturbed by the force of
the probe touching it cannot be measured, unless it is secured by
a fixture. For the IWS to handle it, the part would have to be
delivered with the fixture already holding it.

Along the same lines, a part that does not have a flat surface to
lie on while it is being probed, cannot be inspected unless it is
delivered to the CMM already secured by a fixture.

3.2. Error Handling

Error handling has not been implemented. Currently, any error,
such as an unexpected probe touch, will crash the system. This is
an area that is under current investigation. For the near term,
error handling procedures—preferably automatic, but including
manual intervention—are being developed for specific types of
errors. In the longer term, we are looking into developing
general error handling procedures that would be suitable for any
controller.

One error that will cause the CMM probe to get an unexpected touch
is not easily resolved. If the robot puts the part on the table
where it can be located by the CMM, but in a rotated position, it
is possible that the CMM probe cannot reach a feature that it
could reach if the part were in the correct position. For
example, probing into a small diameter horizontal hole could cause
the probe to hit the edge of the entrance to the hole rather than
the surface of the hole itself.
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C. GLOSSARY (and abbreviations)

CMM Abbreviation for the Coordinate Measuring Machine.

CMMC Abbreviation for the CMM Controller,

controller
Supervises the operation of a mechanism, another
controller, or both.

coordinate measuring machine
Machine used to measure the dimensions of a part.

ECS Abbreviation for the execution control system.

extrinsic tolerance
Tolerance based on the measurement of a feature in relation
to another feature.

execution control system
Computer program that runs on each controller computer and
implements the AMRF design principles. This program loads
and executes those modules which determine which controller
is actually being run.

inspection workstation
AMRF workstation that inspects parts for dimensional
tolerance and surface finish.

intrinsic tolerance
Tolerance that depends only on the feature being measured.

IWS Abbreviation for the Inspection Workstation,

logical architecture
Specifies the direction of commands and statuses between
controllers and between controllers and equipment.

PH9 probe
A motorized probe used on the CMM. This probe can be
oriented automatically under computer command. This allows
the CMM to measure more part surfaces, without reorienting
the part, than would be normally possible.

physical architecture
Specifies the physical connections among the controllers
and equipment.
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ready state
The state in which a controller is ready to accept work
order commands. This is the normal state of the controller
during its operation.

state machine
Software control unit with outputs dependent on inputs to
it plus its internal state. This is the building block for
the IWS control software.

transition commands
Commands used to transfer the IWS to a new state (specified
by the UVA protocol)

.

UVA Protocol
Model, proposed by research group from the University of
Virginia and adopted by the AMRF, that specifies the start
up and shut down sequence for the AMRF as a whole as well
as every controller within the AMRF.

work element
The part of the work order command that specifies what main
controller function to perform.

work order commands
A command accepted by a controller when it is in ready
state, and used to perform one of its main functions
(specified by the work element)

.

WSC Abbreviation for the Workstation Controller.
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D. FLAT FILE SPECIFICATIONS

This appendix contains the specifications for the flat files used
by the CMM Controller and contained in local disk files. For
details concerning the implementation of the flat file system, see
the IWS document Implementation of the Execution Control System of
the Inspection Workstation [A. 2]. For a general description of
what the flat files are used for, see Chapter IV of this document.

The format for specifying these files (referred to as relations)
is described here. Each file is composed of ASCII characters that
are broken up into records—each record containing one or more
fields. Records are separated by a carriage return and a line
feed. Fields are separated by one or more spaces.

The description for each relation begins with the name of the
relation. The name given here is the same as given in the
computer program, except that in the computer program the name is
prefixed by ' DS_'.

A brief description of the relation is specified next.

This is followed by the name of an example data file that is
actually used. The data files referenced contain data to inspect
the pipe clamp, which is one of the parts commonly manufactured at
the AMRF.

The task module from which this relation is retrieved is specified
next.

This is followed by the names of the key fields. These fields are
used to find the particular record in the relation that is
required. The names of these fields often include the underscore
character, so that a name will clearly specify a single field,
even if it has more than one word. However, these names are not
necessarily the same as they appear in the computer program.

Additionally, the data types for these fields are indicated by
following the data field (or fields) by * : ' and then the
identification of the type. (Many of the fields are of type
integer.) Furthermore, comments are often included that elaborate
on what the fields mean. These are distinguished by enclosing
them between braces, '

{
' and '

}

1
.

Following the names for the key fields are the names for the data
fields. The names are specified in the same manner as those for
the key fields. The remarks above concerning the data type
information and commenting apply here as well.
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PathData

Description:
Specifies the path (integer name for it and the number of
points on it) to follow based on the current location and
the destination location.

Example file name: path _cIp

Retrieved from: points

Key fields:
Current Surface , Current^ Point_Number

,

Destination__Surface, Destination_Point_Number : integer

Data fields:
Pathname, Path_Length : integer

(Note: include the safe point in this file — point
number for the safe point must be specified as 0.

Surface number is whatever it was defined to be in the
relation SafePos.}

2

.

ToolChange

Description:
Specifies the path to follow if the probe or probe tip
needs to be changed plus the method of changing it.
(Currently the tool change method is not implemented.)

Example file name: tpat_clp

Retrieved from: points

Key fields:
Current_Surface, Current_Point_Number , Current_Tip_Index,
Destination_Sur face , Destination_Point_Number

,

Destination_Tip_Xndex : integer

Data fields:
To_Path_Name , To_Path_Length

,

Tool_Change_Method

,

From_Path_Name, From_Path_Length : integer

3

.

PathStep

Description:
Specifies the point name based on the path name and index.
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Example file name: ps_clp

Retrieved from: points

Key fields:
Path_Name, Path_Point_Index : integer

Data field:
Path_Point_Name : integer

4 . PathPoint

Description:
Specifies the three components of the path point based on
the point name.

Example file name: ppts_clp

Retrieved from: points

Key fields:
Path_Point_Name : integer

Data field:
three components of point (x, y, z) : real

{Note: do not include the safe point in this file.}

5. PointData

Description:
Specifies the three components of the point to be probed
plus the three components of the direction from which to
approach the point, based on the surface name and point
number.

Example file name: pts_clp

Retrieved from: points

Key fields:
Surface_Name, Point_Index : integer

Data fields:
three components of point (x, y, z)

,

three components of approach vector : real
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6 . FeatrTyp

Description:
Specifies whether a particular feature is simple (S) or a
pattern (P)

.

If a pattern, the feature is composed of more
than one surface.

Example file name: fdsc_clp

Retrieved from: features

Key field:
Feature_Name : integer

Data field:
Feature_Type : (S, P)

7 . WhatSurf

Description:
Given the name of a simple (S) feature, return the surface
name.

Example file name: simp_clp

Retrieved from: features

Key field:
Feature_Name : integer

Data field:
Surface_Name : integer

8. NoSubs

Description:
Given the feature name, return the number of sub-features
it has. If it is a simple feature, the number returned
will be one; else it is a pattern, and the number will be
greater than one.

Example file name: patr_clp

Retrieved from: features
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Key field:
Feature_Name : integer

Data field:
Number of Subfeatures : integer

9

.

WhatFeatr

Description:
Return the simple feature name given the index to a complex
feature.

Example file name: subf_clp

Retrieved from: features

Key fields:
Complex_Feature_Name : integer {feature is a pattern}
Pattern_Index : integer {order to inspect features}

Data field:
Feature_Name : integer {for simple feature}

10.

ProbeTipData

Description:
Specifies probe name, the tip number, and the tip effective
radius, given the probe tip index.

Example file name: tips_clp

Retrieved from: points

Key fields:
Probe_Tip_Index : string

Data fields:
Probe_Name : identifier
Tip_Number : integer
Tip_Radius : real

11.

NoDatums

Description:
Specify the number of datums (reference surfaces) given the
data reference frame name.
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Example file name: drf^clp

Retrieved from: features

Key fields:
DRF_Name : integer {data reference frame name)

Data field
Number_of_Daturns : integer {for true position in 3-D

space, require 3 datums}

12 . DatumName

Description:
Return the feature name (for now it must be a simple
feature) given the data reference frame name and index.

Example file name: datm_clp

Retrieved from: features

Key fields:
DRF_Name : integer { index — ranges from 1 to

Number_of_Datums

}

DRF__Index : integer {This is actually the precedence —
i.e. specifies the primary, secondary,
or tertiary axis.)

Data field:
Feature_Name : integer {must be a simple feature}

13. InTol

Description:
Assuming the tolerance is intrinsic, return the specific
data required for that tolerance.

Example file name: intol_clp

Retrieved from: tolerance

Key fields:
Tolerance_Name : integer {this is the same Tolerance_Name

as given in TolDescr}
Data field:

ToleranceCharacteristic : string {FLATNESS, DIAMETER,
LOCATE

}
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HiLim : real {tolerance for upper limit, i.e. not the
upper limit itself. If only 1 tolerance
value required, for example, FLATNESS, then
HiLim used for it.}

LowLim : real (tolerance for lower limit}
(Note: this will be blank if only 1 tolerance
value required}

Third : real {leave blank if this is a tolerance — i.e.
FLATNESS or DIAMETER, BUT if this is for
LOCATE (to locate part) , then this real
number is the third component of the origin
translation (the HiLim and LowLim will
become the first 2 components of the origin
translation}

14. ExTol

Description:
Assuming the tolerance is extrinsic (i.e. given as EX in
Tolerance_Type above) , return the specific data required
for that tolerance.

Example file name: xtol_clp

Retrieved from: tolerance

Key fields:
Tolerance_Name : integer {this is the same Tolerance_Name

as given in TolDescr}
Data field:

ToleranceCharacteristic : string {LENGTH, ANGLE}
HiLim : real {tolerance for upper limit, i.e. not the

upper limit itself}
LowLim : real {tolerance for lower limit}

{for ANGLE, give in degrees}
DRF_Name : integer {points to DRF required to measure this

tolerance}

15. TolDescr

Description:
Given the tolerance name, return general information for
that tolerance. Further information on particular
tolerance is given in either ExTol on InTol, depending on
whether tolerance is specified as intrinsic or extrinsic.

Example file name: tol_clp

47



CMMC Implementation

Retrieved from: tolerance

Key fields:
Tolerance_Name : integer

Data fields
Material_Condition : string {MMC, LMC, RFS

}

{Note: if none, hold place with *-'}

Feature_Name : integer (feature you are tolerancing}
Expansion : Don't know — hold place right now with '?'

ToleranceJType : (IN, EX) (intrinsic or extrinsic}

16. ProbeChar

Description:
Given Probe_Characteristics_Name from InspectionPlan,
return the relevant probe data.

Example file name: pbch_clp

Retrieved from: points

Key field:
Probe_Characteristics_Name : integer

Data fields:
Probe_Tip_Index : integer
Free_Space_Speed , Touch_Distance

,

Touch_Speed, Retract_Distance, Over_Travel_Distance : real

17. SafePos

Description:
Specifies surface and point coordinates, given the safe
point name.

Example file name: safe_cip

Retrieved from: cmm_tol

Key field:
Safe_Point_Name : integer

Data fields:
Surface_Name : integer (fake surface — i.e. 99}

(Note: Point number for safe surface is always 0}

three components of point (x, y, z) : real
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18.

OneRowOf4x4

Description:
Returns one row (four components) of the 4x4 transformation
matrix which relates the part coordinates to the machine
coordinates

.

Example file name: xrow_clp

Retrieved from: cmm_tol

Key fields:
Transformation_Name : integer
Row_Number : integer { 1 . . 4

}

Data fields:
four components of one row of transformation : real

(4 real numbers}

19.

Tols

Description:
Given the Tols_Name (from the InspectionPlan)

, get the
tolerance name to do. Use this to retrieve the tolerance
information from TolDescr.

Example file name: tols_clp

Retrieved from: cmm_tol

Key field:
Tols_Name : integer

Data field:
Tolerance_Name : integer

20.

InspectionPlan

Description:
Given the inspection plan, return relevant inspection data
(and pointers)

.

Example file name: plan_clp

Retrieved from: cmm tol
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Key fields:
Inspection_Plan_Name : integer

Data fields:
Units : (I, M) {measurement units for data — inches or mm}
Free_Space_Speed : real
Transformation_Name, Safe_Name,
Tols_Name, {index to Tols relation—specifies tolerance

to do}
Num_Of_Tols : integer

{use Tolerance_Name of 0 to specify intrinsic
tolerance to use to locate part}

21. SurfChars

Description:
specifies the parameters for a particular surface

Example file name: surf_clp

Retrieved from: surfaces

Key fields:
Surface_Name : integer

Data fields:
NumOfPoints : integer
SafeSurface : (0 = non-safe, 1 = safe)
SurfaceType : integer — 1 *— > plane

2 —> inside cylinder
3 —> outside cylinder
4 —> inside sphere
5 —> outside sphere
6 —> inside cone
7 — > outside cone

SurfaceParms (Surface parameters — fields 6 through 13.
Note: data not required for all fields — depends on
surface type.)

Data fields contain:

* For a plane: the X, Y, Z components of the
surface normal for the plane; the
distance from the origin to the plane

Example: 0.0, 0.0, 1.0, 1.87

* For a cylinder: the X, Y, Z coordinates of an arbitrary
point on the cylinder axis; the X, Y,
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Example: 0

* For a sphere:

Example: 1

* For a cone:

Example:

Z components of a unit vector along the
cylinder axis; the cylinder radius

.938, 0.0, 0,938, 0.0, 1.0, 0.0, 0.406

the X, Y, Z coordinates of the sphere
center? the sphere radius

.03, 1.50, 0.938, 0.250

the X, Y, Z coordinates of the cone
vertex? the X, Y, Z components of a
unit vector along the cone axis? the
angle in radians of the cone half —
angle

1.938, 2.25, 0.333, 0.0, 1.0, 0.0, 0.933

51



-

CMMC Implementation

'

52



READER COMMENT FORM

IMPLEMENTATION OF THE COORDINATE MEASURING MACHINE CONTROLLER

This document is one in a series of publications which document
research done at the National Institute of Standards and
Technology's Automated Manufacturing Research Facility from 1981
through March, 1987.

You may use this form to comment on the technical content or
organization of this document or to contribute suggested editorial
changes

.

Comments :

If you wish a reply, give your name, company, and complete mailing

address:

What is your occupation?

NOTE : This form may not be used to order additional copies of
this document or other documents in the series. Copies of AMRF
documents are available from NTIS.

Please mail your comments to: AMRF Program Manager
National Institute of
Standards and Technology
Building 220, Room B-lll
Gaithersburg, MD 20899





NBS-1 T4A (rev. 2-bc)

U.S. DEPT. OF COMM.U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA

1. PUBLICATION OR
REPORT NO.

2. Performing Organ. Report No. 3. Publication Date

SHEET (See instructions) NISTIR 88-3874 OCTOBER 1988
4. TITLE AND SUBTITLE

IMPLEMENTATION OF THE CMM CONTROLLER

5. AUTHOR(S)

Howard M. Moncarz, Theodore H. Hopp, Patrick A. Lezark
6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDS

7. Contract/Grant No.

U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

S. Type of Report & Period Covered

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)

National Institute of Standards and Technology
Gaithersburg, Maryland 20899

10. SUPPLEMENTARY NOTES

| |

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bi bl iography or literature survey, mention it here)

This document describes the theory and implementation of the
Coordinate Measuring Machine Controller (CMMC) program. This
controller is part of the Inspection Workstation (IWS) in the
Automated Manufacturing Research Facility (AMRF) at the National
Institute of Standards and Technology. The CMMC supervises the
coordinate measuring machine to perform a dimensional inspection
of a part. This inspection is completely data-driven. The data
consist of geometry, topology and tolerance information for the
part as well as specific inspection data such as probe point
sequencing information and probe characteristics.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

AMRF; CMM; coordinate measuring machine; data-driven control; dimensional inspection;

inspection workstation; IWS

13. AVAILABILITY 14. NO. OF
PRINTED PAGES

[XI Unlimited

| |

For Official Distribution. Do Not Release to NTIS 61

[]
Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402. 15. Price

rx Order From National Technical Information Service (NTIS), Springfield, VA. 22161 $13.95

USCOMM-DC 6043-P80



-

' .

.






