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ABSTRACT

Developing effective CIM architectures is hampered by automation
and integration problems. The key to resolving these problems
lies in a better understanding of each manufacturing function and
how it is related to other manufacturing functions. Our view is
that mathematical models can provide this understanding. This
paper presents the results of our initial efforts to develop such
models. They can be used to guide the development of the
technology needed for automation. They also specify the inputs,
outputs, and inter-relations needed for integration, regardless
of the specific CIM architecture used.
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1.0 INTRODUCTION

Throughout history, organization has played a vital role in
the success of large manufacturing companies. It provides the
means for meeting the strategic goals of the company. Designing
an organizational structure to meet those goals involves [18] 1)

defining the major functions, 2) decomposing those functions into
a set of activities to be performed by individual employees, and
3) developing a managerial structure to coordinate both activities
and emp 1 oy e e s .

Traditionally, hierarchical managerial- structures have been
used to ensure this coordination. However, the number of levels
and the responsibilities of the employees at each hierarchical
level vary from one company to another. In some companies, all
decisions are made at the top, and lower level employees simply
implement them. In others, there may be several levels of
decision-making. Employees make decisions based on input from
their superiors and exert the control necessary to have
subordinates execute those decisions. The former strategy is

typical of very small shops, while the latter is imperative in
large shops. Each strategy can be successful [18] in meeting the
company's needs.

Recent attempts to design and build managerial structures for
Computer Integrated Manufacturing (CIM) systems have been based on
similar concepts. CIM functions are defined, decomposed into
smaller s ub func t i ons

,
and "logically" grouped to be performed at

some level within the managerial structure. Almost all existing
CIM structures are hierarchical [26]. A major distinguishing
characteristic of these CIM hierarchies is that they do not
contain people. They are made up of computers and other automated
manufacturing equipment. The goal is to eventually have all
decision-making, control, and information processing functions
performed by these computers.

Currently, these CIM systems are part of an existing factory.
In most instances, all of the decisions related to the jobs they
do are still made by factory systems external to the CIM system.
This includes which jobs will be done, when they will be done, and
the data needed to do them. This implies that CIM hierarchies do
very few of the functions they were designed to do. Although it
is imperative to expand their capabilities to include more of
those functions, it is proving to be far more complex than
originally thought. Although there are many reasons for this, two
stand out: automation and integration.

Most attempts to automate human - in tens ive functions such as
process control, production scheduling, and process planning have
met with little success. Automation has been difficult because we
do not understand enough about the functions themselves or the way
human beings perform those functions. There is no consensus on
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the best computer algorithm or procedure to use in place of a

human being executing a given function. Furthermore, recent
efforts to develop expert systems to address these problems have
also stalled. Until such algorithms, procedures, or expert
systems are developed, human beings will continue to play an
important role in these functions. In fact, Davis [14] has
illustrated that the GIM environment may actually enhance the
human participation in certain manufacturing functions.

Integrating these automated functions into an "effective" CIM
architecture is a multi-faceted problem. First, there is no
agreement on 1) the number of levels, 2) the mapping of functions
onto levels, and 3) whether functions can be distributed across
more than one level [26] . The commonly accepted number of levels
ranges from four to six. In some models material handling is

supervised at the cell level. In others, it is managed at the
shop level. Jackson and Jones [25] have even advocated that
planning and scheduling be done at every level.

Second, although hierarchical approaches are commonly used in
decentralized control theory [28,34], integrating automated
decision-making methodologies into such a structure has been
difficult. The best known paradigm, decomposition of mathematical
programming [19,27], assumes a static, deterministic, single
criterion problem. Manufacturing problems, on the other hand, are
dynamic, stochastic, and mul t i - c r i te r ia . In addition, there are
several different time scales associated with these functions
which impact the way they can be grouped into levels and the way
control feedback information can be used to update decisions at
each level

.

Third, the data needed to carry out these manufacturing
functions must be collected, verified, and disseminated using
advanced database management systems (DBMS) and sophisticated
network communications systems (NCS). There are still many
unresolved design and management problems associated with the NCS
and DBMS. Finally, since data plays such an integral role in this
automated environment, the NCS, and the DBMS must be integrated
with whatever decision-making and control structure is used to
form an "effective" CIM architecture.

1.1 STATEMENT OF THE PROBLEM

As noted above, automation and integration are intrinsically
bound together. Effective methodologies for automation cannot be
developed without realizing that the results must be integrated
into a working system. Effective integration schemes cannot be
developed without realizing what is being integrated together.
The key to resolving these issues lies in a better understanding
of each manufacturing function and how it is related to other
manufacturing functions. Once we have this understanding, we can
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then address the questions involving the best architecture for a

given manufacturing environment.

Our view is that mathematical models are one way to provide
this understanding. Developing detailed mathematical models for
all manufacturing functions is clearly beyond the scope of this
paper. We present the results of our initial efforts to develop
such models for a subset of the functions depicted in Figure 1

which in turn is a subset of the functions that would be
considered within a CIM implementation. We address what each
model does and how it is related to other models, but we impose no
other structure. That is, we have purposely done this work in an
archi tec ture - free environment. In section 2 we describe models
for a single process while section 3 presents models to capture
the interactions among individual processes. Section 4 contains
models of production planning decisions.

Even though we do not know how to solve all of these models,
we feel that their definition is a first step. The models can be
used to guide the development of the technology needed for
automation. They also specify the inputs, outputs, and
interrelations needed for integration, regardless of the specific
decision-making and control architecture used. Finally, we have
attempted to develop generalized formulations for each function
which can be specialized for given applications. Through this
approach, the consequences of each assumption pertaining to a

given application can be mathematically analyzed through its
modification upon the generalized formulation.

2.0 MODELING INDIVIDUAL PROCESSES

We assume that the manufacturing shop floor contains N
processes P n (n-l,...,N). These processes can be machining
centers, inspection centers, material handling devices, etc. We
also assume that these processes are used in the fabrication of M
distinct products pm (m-1, . .

.
,M) . Modeling these processes is

based on the concept of state transition functions.

2.1 State Transition Functions

The behavior of process P n while producing product pm can be
modeled by the state transition function gnm £ xnm

(

c )

»

unm

(

c )

.

c ]

where xnm (t) is the state of the process P n and unm (t) is the
controlling input into the process P n at time t. Using a sequence
of discrete sampling times l c 0

»

c 1

,

c 2 > • • •

)

where

tk - tQ + k At for k - 0,1,2, ... (1)

we can define the evolution of xnm (tj
c ) via the recursive relation

xnm ( tk+l ) “ §nm t
xnm (tk > »

unm (tk ),t k ] (2)
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There are several properties of gnm [
•

]
that ultimately govern

the complexity associated with determining the controls unm (tk)
and predicting the states Xnm^k)' The fitst is the functional
dependence on time, which implies that the functional form of

gnm [
• ]

can vary over time. The second is the fact that this
variability is often stochastic in nature. In metal removal
processes, the amount of input energy needed to maintain a

constant cutting force can change drastically as the tool becomes
worn. Another familiar example is the rolling of hot steel slabs,
where the rolling process produces permanent plastic deformation
upon the rollers. In both of these examples, it is impossible to
predict gnm [

•
3
or the behavior of Pn with certainty. Consequently

this means that the best that one can hope to do is to specify the
prob{gnm [»] € Gnm } where G nm is a known subset of potential
functions for gnm [ • ] .

Another important limitation in modeling manufacturing
processes today is the fact that xnm (t^) is seldom observed
directly. Despite the abundant research in this area, on-line
process monitoring and control techniques are still not available
for many processes. Until this happens, we will continue to
measure the output of the process rather than the process itself.
This output, Ynm^k^* can be defined by

Ynin ( t k'1 “ ^nm C
xnm <tk ) .UnmCtk) .t k ] (3)

Since the calibration of a measuring device may change randomly
over time, the same potential problems arise in estimating hnm [ •

]

as in the estimation of gnm [»] equation (2), including the
determination of the prob(hnm [*j E H nm ). Furthermore, it is

rarely possible to measure all the processing outputs in real-
time. As an example, consider a turning operation. In this case,
measurements such as turning speed and the location of the tool
holder can be made in real-time. However, as the tool wears the
depth of the cut changes. Therefore, measurements such as the
precise depth of the cut or the resulting surface roughness cannot
be made in real-time, and must await for the completion or the
interruption of the process for a precise measurement. Let Tnm
and tQ denote the anticipated duration and initiation time for the
processing task; C nm- tQ + Tnm be the anticipated completion time;
and ynm (Cnm ) the final measured output. Then the modeler may only
have a rough estimate, ynm( t k)» °f the* true value for ynm (tk) or

Ynm ( c k) ^nm^nm^ ) >
unm^ ) r t ^ k ^ ( ^

)

for t < t^ < C nm where t is the last sampling time prior to t^,

ynm ( t *) is che last measured output, and hnm [ • ]
is the estimating

function. Letting Ynm represent a set of acceptable outputs-

-

usually a set of predefined to ler ances - - the best information the
modeler can hope to supply is the prob{ynm E Ynm | ynm (t*) and
unm ( t *)3 where ynm represents the entire output stream arising
from the implementation of the processing task.
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It seems clear that using these functional relationships to
monitor and control manufacturing processes will not be possible
in the near future. The task of estimating prob[gnm [*] e G nm ),

prob {

h

nm [
•

]
€ H^}

,
and prob{ ynm € |

y^t*) and u^t*)} will
also be difficult. In most cases, these estimates must be based
on the experiences gained from past implementations of each
particular process upon a given product. This, of course, leads
to significant problems in estimating gnm [ • ]

and hnm [ • ]
for a

given process upon a new product.

2.2 Process Control

To account for uncertainties in the evolution of a process, a

self-tuning controller can be used [1,2]

.

As depicted in Figure
2, a self-tuning controller has two basic elements: a system
identifier and a controller. The system identifier uses the
recent time history for unm[ c kl and Ynm^kl* to develop
approximations for the gnm [

•
]

and hnm [*], denoted by g^m [
#

]
and

hnml'l, respectively. These approximations are then used by the
controller to generate the next control input. Specifically, the
controller computes the difference between the measured (or
estimated) output ynm (tk) and the desired output y^m ( tk^* This
error is used in conjunction with the optimal control law
U* f Ynra^ c k) » supplied by the Process Coordinator (PC) (discussed
below) to determine the next control input for the process. Thus,
the process controller continuously attempts to minimize
deviations from the desired output trajectory specified by the PC.

For deterministic systems in which gnm [ • ]
is known with

certainty, the system identification element is not needed. For
processes where no formulation of the state transition function
exists, the controller block would not exist. In this case, the
system identification element would attempt to evaluate available
system characteristics and a process coordinator would
subsequently define the initial process settings or control
parameters. After initiation, the process would evolve in open
loop fashion. As an example, consider the Basic Oxygen Furnace
process in s te e 1 - making . Here the charge of molten iron, scrap
steel, and alloy additives are introduced into the process. After
approximately thirty minutes the finished steel is produced with
little or no opportunity to sample the steel's chemistry during
the processing duration. As a consequence, there is only a 70
percent probability that the correct steel chemistry will be
achieved. Post processing techniques can often generate an
acceptable product, but this eventual outcome cannot be
guaranteed

.

Although limitations on process modeling exist, the self-
tuning controller is being adopted in industrial environments.
Astrom e_t a_l.. [2] provide an excellent overview of the topic as
well as several examples. Watanabe [36] recently reported the
development of a similar controller for a milling process.
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Papapanagio tou e_t a_l. [31] have performed work demonstrating the
applicability of self-tuning controllers to controlling the
rollers in a hot strip mill for steel-making. Blattner e_t al_. [9]
have developed a formulation for controlling the blast furnace in
steel-making. Their formulation includes not only parameter
estimation within the system identification element, but also a

simulation to predict the system response under various control
strategies

.

2.3 Process Coordination

Process Coordination (PC) determines the desired output
trajectory y^m (t) for a given process and the optimal control law
U*

£ 7nm

(

c k) »
t k 1

to b® used in achieving that trajectory. Although
this law is written as a function of time, it is typically set at
the beginning of the processing and remains constant until some
major problem arises. The PC detects potential problems by
monitoring feedback from the process and its controller. Whenever
the PC determines that a new control law and/or desired output
trajectory is needed during the implementation of a processing
task, ideally it should also estimate the resulting probability
that the process will be able to implement that law correctly, and
thus, successfully complete the processing task.

To understand the relationship between the PC and the process
controller, consider the tool wear example from * Section 2.1.
First, the PC specifies an initial optimal control law,
U* t ynm ( tfc)

»

ck ] »
which identifies the exact tool, speed, feed,

cutter paths, and cutting time to be used in the process. This
data is then used in negotiation with the Production Scheduler
(PS) to determine start and finish times. But, as the process
evolves in time, unanticipated changes in the feed, speed, or
cutting time may be required to account for unforeseen tool wear
or other changes in the processing environment. These changes,
which are a function of the integrated measurements of ynm (tk),
are dictated by the process controller's success in implementing
the desired trajectory y^m (t) • These changes are typically minor
with respect to their consequences upon processing durations, but
nevertheless, updated completion times are reported to the
production scheduler. If the tool breaks, major modifications
could follow. First, the PC must determine if the job can be
salvaged. If yes, then the PC must specify a new optimal control
law with the associated probabilities for successfully
implementing the task. These decisions would be based on the last
measured value of ynm^k^* the desired output y^m (t)

,
and the

current production schedule. Furthermore, operator intervention
as well as potential additional material handling may be required.
Upon reinitiation, a new completion time must be generated. It
can be concluded that the focus of the PC is the total
implementation of the processing whereas the process controller is

focusing the immediate restoration of the desired output
trajectory. We will now give two potential formulations for the



.
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determination of the optimal control law.

2.3.1 On-line Determination of the Control Law . We will begin
with the on-line generation of the control law U*

[ y^ (

t

k ) ,
t k ]

at
the implementation of process P n upon JOBj. From the process
controller, both gnmt*^ and ^nmt*] have been developed. We next
assume that from process planning an admissible set of control
laws has been specified which we will denote by T{ g^t •

] .h^J • ] ) .

This set is determined off-line and the selected control law
JU

U
[

y

nm (

t

k ) *
ck 1

must be contained within this set. For example,

g^m [ *
]

and h^m [
•

]
could be used to estimate the remaining tool-

life. Given this estimate, acceptable ranges for tool speed,
cutting depth, and metal removal rates could then be specified to
establish T{ g^f • ]

,hnm [ • ] } . The methods through which process
planning would make this specification will be discussed in the
next section. However, in Figure 1, we note that there is

feedback to process planning from the process coordinator who
monitors each implementation of the given process upon each job.

Another input from process planning is the minimum desirable
completion probability pr^n for the implementation of process P n
in the manufacturing of product pm which places a minimum bound
upon the prob{ynm (t k ) e Ynm } . Upon the implementation of the
processing task, the determination of the acceptability of ynm (t k )

is made by the process coordinator. However, the basis for this
determination is specified by the process planner. In most cases,
selecting U*

[ y
d

( t k ) ,
tk ]

from T{g^ • ] ,hnm [ •]) should necessarily
guarantee this probability constraint is met. However, as a

coordinative input to the PC, the PS may increase this probability
on a given JOBj which we will denote as pr^j- 11

. Specifically, only
the PS can determine the consequences upon the near-term
production flow if a given implementation of a process fails. Two
additional inputs to the PC are presented by the PS:

Ej n - the arrival time for JOBj at process P n ,
and

L

j

n - the planned pickup time for JOBj at process Pn.

To assess the consequences upon the planned production flow, it is
assumed that the PS has a collection of L objective functions of
the form f ^ (Ej n ,

Lj n ,
pr“j-n ) for i-l,...,L with an overall utility

function W
[
f 1 (Ej n ,

Lj n ,
pr“j n

) ,
. . . ,

f i (Ej n ,
Lj n ,prgjn ) ] . To permit

the PC to coordinate its decision with that of the PS, we will
assume that there are L' compatible objectives for the PC,

^ j n t
xnm *

unm 1
for with xnm and unm denoting state and

input stream occuring during the processing [tQ,tQ+Tnm ]
with tQ

being the planned initiation time and Tnm being the planned
duration. Note that both tg and Tnm will be variables, not
presepecifed constants, within the proposed optimization. An
utility function, u>j n { 5 j-n [ •] } will quantify the
tradeoffs among those objectives. A formal statement of the real-
time optimal control problem can now be given.
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W
j

^ * * * * » ^jrJ *
3 )

(5)

the following constraints for t^-tQ ,

.

• * *
t 0 +^nm

^ . g I^ C^.) >
t , ]nm k+1 nm nm k nm k k (6)

y ( t. )
“ h '

[
x ( t. ) ,

u ( t. ) ,
t.

]J nm k nm nm k nm k k (7)

U
nm

(t
k } “ U

nm lynm
(t

k ),£ k 3 (8)

U
nm tynm

(t
k
),t

k 1
e T{ SnnJ *

3 H
(9)

prob{y
nm

€ Ynm } £ max{pr^n
,
prgjn )

(10)

+ ^nm - ^ j

n

(11)

c 0 - ^ j

n

(12)

A more detailed discussion of the decomposition procedure is

given by Davis and Jones [15]. Nevertheless, some particular
points merit discussion here. Note that both g^m [*] and h^m [

6
]

are explicit functions of t^ . That is, models for continued
process modification (or degradation) can be included within this
formulation. These models would be supplied from process
planning. However, the stochastic nature of the process evolution
makes a deterministic specification of g^m [«] and h^m [»]

impossible to achieve. To insure the feasibility of the
deterministic solution approach, conservative models for process
evolution might be employed. Stochastic optimization approaches
might also be adopted, but these approaches are complex and
computationally intensive, making them difficult to implement in
real-time. It can be concluded that the PS's decision-making must
always address the uncertainties that remain.

The decision defined in relations (5) through (12) indicate
two types of dynamic coordination that are to be employed within
the planned interaction of the PC with the PS. The decomposition
procedure uses a goal coordinative scheme by having the PS specify
E
j n ,

L
j n »

and pr™j n which serve as the r i gh t - hand - s i de of the
process coordinator's constraint sets. • Also we note that
w in { 0jnM *VnM > is indexed upon both j and n. This implies
that a price directive coordination scheme can also be imposed to
permit the PS to modify the PC's utility function on a given JOBj.
To support this type of coordination, additional pricing
informations would be required as inputs from the PS to the PC.
Using sensitivity analysis approaches from mathematical
programming, the PC can study the effects of varying any cost or
right -hand- s ide coefficient. Similarly the PS, who makes the
specifications, can determine the consequences of its decision as
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particular parameters are varied. These variational procedures
provide the basis of negotiation which can lead to the real-time
modification of E

j n ,
L
j n , P r nj

n or additional vaues specified
within the pricing inforamat ion

.

Finally, the existence of relations (5) through (12)
highlight the shortcomings of assuming an invariant control law
for every implementation of a given process upon a given product.
First, it ignores the true time-varying nature of the process, and
second, it eliminates any potential benefits that can be derived
from the negotiation between the PS and the PC (see Davis [14]).

2.3.2 Off-line Determination of the Control Law. The off-line
determination of the control law represents a subfunction within
the larger function of process planning. Ideally, the entire
function of process planning should also be addressed. However,
space limitations will simply not permit a full discussion.
Rather the focus will be directed toward supporting the on-line
determination of the control law and serve as a transition to the
production flow considerations which will be addressed in the next
section

.

Process planning provides several important inputs toward the
on-line determination of the control law. The first input is the
models for the evolution of the state transition and output
functions, gnm [«] andh^t*], respectively. Certainly, analytical
modeling of the processes provides a useful input for developing
this input. However, the complexity of many manufacturing
processes limits this mathematical definition. Perhaps the
greatest source of information for generating these models would
be gained through prior experience with the processes. As
mentioned earlier, there is the potential for feedback from the PC
to process planning pertaining to each implementation of the
process .

Although a manufacturing system may be faced with a variety
of products, the physical implementations of a given process are
typically composed of machine - leve 1 instructions which are
universal to all products. Hence, the process planning function
is to translate the engineering design for the considered product
into these machine - leve 1 instructions. The first stage of the
planning effort is to determine ordered sequence(s) of the
processes which are to be employed. From this step, the input and
output configuration for the given product at each processing
stage emerges.

Several issues must be considered in generating the
manufacturing sequence. The first consideration is the selected
process's capability in making the desired transformation. To
this end, not only must the physical processing limitations be
considered, but also the process's projected availability. Often
a given process's capability is not unique, and choices must be
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made. In this case, the process's reliability in performing the
desired task and the associated cost are considerations. The
implications for material handling are also major concerns. This
fact leads to production flow consideration.

Given the input and output configuration for a given product
at each processing stage, the next step is to develop the
instruction set that will permit the process to complete the
transformation. Typically certain processing parameters will be
determined during this phase while others can remain undefined.
For example, in milling a flat surface, a choice of the cutting
tool and the number of machining passes could be determined. This
specification would generate the desired output trajectory that
the tool would attempt to follow. One could, however, reserve the
specification of the speed that the tool traverses this trajectory
as a variable. Using historical processing information, process
planning could develop acceptable values to be employed given the
current measurements of g^m [ * ]

and h^m [*], thereby defining
TUW-l.hAmM)-

Process planning should also specify the means by which the
acceptability of a given process's implementation will be
determined. For example, bounds might be defined for the maximum
deviation between the measured and desired output trajectory. In
short, quality assurance is a critical component of process
planning. Ideally, it is desired that the determination of a

successful implementation of a process will insure that the output
of that process will be an acceptable input to the subsequent
processing steps and that ultimately the product will perform as
designed. Two major obstacles remain to this realization: The
inability to accurately model the processes and the inability to
make accurate real-time measurements for the output of the
process. To date, off-line inspection is still a primary
mechanism for determining the acceptability of a process's output.

Using the set Tlg^J •
] .h^J • ] } and the desired output

trajectory y^m (tk) estimates of the processing duration and the
consumption of processing resources can also be made. These data
are essential to the production planning functions above the PC in
Figure 1. In addition, the precedence relations determining the
routing that a product will traverse the processes are also
essential to the production planning functions.

3.0 MODELING INTER- PROCESS INTERACTIONS

3 . 1 Combining Process Models

Thus far, the discussion has focused upon a single process.
The state of the entire shop floor system at time t^ is

represented by the composite state vector

{X
1 ,m(l) (tk) ' * ’ ’

X
N,m(N) (tk))
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where m(n) for n-1
,

. . . ,N is the number of the product being
fabricated at process n and the state transition function for the
process P n is given by g n m ( n )[

# ]- Similarly, the output from this

collection of processes is given by the composite output vector

{y l,m(lS tk) yN,m(N) (tk)

}

*

We note that as soon as process P n completes one product and
begins another, these representations are no longer valid. For
each process we define a universal set of transition functions

S n “ {GniM (13)

where
<f>

is the idle state which could result from planned or
unplanned events (i.e. the process breaks down). Assuming the
next JOBj arriving at process P n will request product pm ,

then
G nm [*] tke collection of potential process transition functions
from which the implemented gnm [

•
3
will be chosen by the PC. If

E

j

n and L
j n

represent the anticipated start and finish times for
process P n to work on JOBj, then they also indicate the times
where the transition function for the manufacturing system may
change. These times can be derived from the current production
schedule (see section 3.3).

3.2 Production Flow

For each product pm ,
process planners must determine

potential routing sequences. A given sequence yields a set of
precedence relationships among processes and operations stating
the order in which processes will be applied in the fabrication of
the product. We can model this production flow using a process
transfer function, T m (n), which determines the successor process
to process P n for product pm . We define n' - T m (n) provided
process n' immediately succeeds process n in the routing for
product pm . The exact form of the transfer function and the
complexity of these process planning activities depend on the type
of manufacturing system.

In a pure flow shop, all jobs proceed through the processes
in exactly the same order. We can number the processes in a

manner such that T m (n) * n+1 and T m (N) -
<f>

for any m - 1, . . . ,M.
Here 4> indicates that there are no remaining processes in the
sequence. In this case, process selection and operation
assignment is trivial.

In the more general flow line, or multiple path flow shop, we
again number the processes such that Tm (n) * (n' u <jJ) for any m -

1, . . . ,M where n'> n. Whenever a process is required, it must
always be used after a fixed subset of the preceding (lower
numbered) processes. But, not all processes are employed in the
manufacture of a given product pm . Once the product is identified,
process selection and operation assignment for JOBj is

straightforward.
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In a job shop, there is usually no preferred path among the
processes. This implies that the range of successors for process
P n is contained within the complimentary set of processes lf

c (n) -

(ji,l,...,N) - (n). Further specification of the successor set to
process P n is often impossible. For the job shop, process
selection and operation assignment can be quite complex. For a

given product pm ,
there will be a feasible set of processes which

tan be employed, each having a capacity constraint, which can be
used in performing a given operation. The collection of feasible
processes could lead to multiple routings which differ both in the
processes that they employ and the order in which the processes
are visited. The lack of ordering among the processes with the
potential for multiple routings for a given product pm
considerably complicates the production scheduling function. The
selection of the routing to be employed in the manufacturing of
JOB-: often depends upon the current state of the manufacturing
system and the queued jobs awaiting production. The lack of an
ordering of processes also complicates the material handling
constraints which again are a major component of the production
scheduling function.

In the "preferred path job shop" or flexible manufacturing
cell the goal is to partition the entire set of processes into
disjoint subsets with little or no interaction. This is done
using group technology [23] and significantly reduces the set of
potential successors to a given process P n . The adoption of this
approach simplifies both the process selection subfunction and the
material handling concerns. Therefore, the production scheduling
problem is also simplified. However, the complexity of scheduling
function for the flexible manufacturing system typically remains
greater than that for the flow line configuration.

Routing information with estimated processing durations is
used by the production scheduling function to determine the start
and finish times for the operations at various processes.

3.3 Production Scheduling

Another important part of the int e r
- p r oc e s s coordination is

production scheduling (PS). A formal statement of the PS problem
is as follows: Assume that a set of jobs JOB.; ( j — 1 ,

. . . ,J) has
been issued to the PS with associated due dates Dj (j— 1, . . .

,J) and
that JOB^ requires the production of a specific product pm . Also,
assume that the processes P n (n*=l,...,N) are on-line. Then, if we
define

E

j

n (j“l,...,J; n-l,...,N) - earliest start (arrival) time
for Pn upon JOBj

»

Lj n (j— n«l,...,N) - latest finish (pick-up) time
for P n upon JOBj

,
and



13

P r j*n
n “ t ^ie m i n i-mum acceptable probability for completing the

processing task upon JOBj by process P n by L

j

n ,

the production scheduling problem is to maximize the utility
func t i on

Max W[f 1 (E 11 , . . . . >Ejn; l11« . . . . .Lj N ;prTt
n ,prg>jn ) , . . . ,

f L (*)]

where f^(») for i-l,...,L are the criteria to be considered in the

optimization. These criteria may include minimizing tardiness,
maximizing production throughput and maximizing process
utilization among others. Several constraints can be considered
including due date, material handling, resource availability,
precedence relations, and alternate routings. The job list and
due dates are supplied by production planning. The remaining data
are derived from off-line production planning and from negotiation
with the PC

.

The presented production scheduling statement has included
the events which will insure the satisfaction of the above cited
constraints. The reader may note a particular focus toward the
events associated with material handling which is a major concern
of the PS. Indeed, it is these constraints that often lead to a

distributed scheduling function throughout the manufacturing
organization. For example, consider a manufacturing shop
consisting of several manufacturing cells. At the shop level,
there could be an automated guided vehicle system to move the
parts from one cell to another. Within a given cell, there could
be a dedicated robot for material handling to move the part among
various processes within the cell. Both material handling systems
would typically possess their own dedicated controllers and
coordinators. In this sense, they are processes. A distributed
scheduling approach would assume that there would be a scheduling
function at both the shop and cell levels. At the shop level, the
cell would be regarded as a process from a material handling point
of view. Through negotiation with the cell level scheduler, the
residence time for the job at the cell would be determined. To
implement this task, the cell level scheduler would consider the
material handling constraints within the cell and the durations
associated with the subprocesses that would occur within the cell.
On. the other hand, a centralized scheduling approach would
schedule all processing tasks considering the constraints imposed
by all material handling systems. The adopted approach will
likely depend upon the size of the manufacturing system and the
resulting number of material handling constraints that must be
cons ider ed

.

An exact mathematical representation of the objectives and
constraints for a given production scheduling problem is quite
complex. For a generic representation of the PS problem, and a
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detailed formulation, the reader should consult [29,33]. For a

survey of mathematical programming approaches to solving the
production scheduling problem, the reader should consult [21,32].
For a summary of some of the recent work in this area the reader
is referred to [24].

Although it is usually assumed in the literature, the
production scheduler rarely knows the durations that will be used
in the various operations. Hence, the stated start and finish
times are only estimates of the true start and finish times. As
discussed earlier, the PC can often change the durations either to
speed up or slow down the process. This implies the potential for
negotiation between the production scheduler and the PC. Davis
and Jones [14,15] have recently developed a scheduling framework
which allows this type of negotiation.

4.0

MODELS FOR PRODUCTION PLANNING

A manufacturing system is driven by two stochastic inputs:
materials from vendors and demands from customers. These inputs
generate a stochastic output, namely finished goods. The overall
objective is to optimally track the input demand with the output
of finished products. In the preceding sections, we have
addressed models of the processing aspects of this problem. We
now discuss issues related to planning. We include planning
strategies, aggregate planning, and detailed planning.

4.1 Production Planning Strategies

Today, two complementary production planning strategies are
often discussed: push and pull.

4.1.1 Push . The push strategy attempts to push each order
through the system just before its due date occurs. The planning
begins with this due date and works backward to schedule the times
at which each required process must begin and end. The planning
also considers the capacity and availability constraints of each
process in the manufacturing system as well as the material
handling requirements. Constraints pertaining to the availability
of input materials must also be considered.

The push strategy is often adopted within the MRP-II
(Manufacturing Resource Planning) strategy of production planning
and scheduling. MRP-II, however, is itself a methodology for CIM.
Typically, an MRP-II implementation would consider business
planning, sales planning, production planning, inventory planning,
resource allocation, master production scheduling, material
requirements planning (MRP), and capacity planning as an ensemble
of planning functions. A detailed discussion of each of these
functions and their associated mathematical relations could easily
constitute another paper. The interested reader is referred to
Orlicky [30] and Fox [17] for an overview of these functions.
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4.1.2 Pull . An alternative approach, which has found more
application in the flow shop environment, is the pull strategy for
which the Kanban approach is one potential implementation [25].
This approach begins by defining an ideal state for the
manufacturing processes and then releases orders to them so that
the ideal state is maintained. For example, one Kanban approach
would be to limit the number of orders that have been processed by
a given process, but have not yet completed processing at the
successor process. In the flow shop environment, this Kanban
implementation is particularly useful since it allows a given
process to function at maximum capacity whenever bottlenecks do
not exist at successor processes, but inhibits processing when
excessive processing output is building up in the system.
Consequently, an inherent benefit of the Kanban approach is to
stabilize the response characteristics of the overall system.

4.1.3 Remarks . The designation of push versus pull strategy is
unfortunate as it appears to imply that one or the other can be
applied. The fact is that both strategies can be implemented
simultaneously. Recently, Just* in-Time (JIT) has become nearly
synonymous with the Kanban approach as an attempt to minimize
Wo rk = in - Pr o gr e s s (WIP) inventory [10,16,22]. Certainly, push
strategies can also address this performance criteria. From a

system's point of view, the Kanban approach is most likely to
improve overall system performance when the probability that a

given process will be critical is nearly constant. In the job
shop environment, this may not be the case. For example, it may
be desirable to increase the WIP for a given process when the
process is likely to become critical for an extended period in the
near future. The Kanban approach can constrain this buildup and
perhaps eventually limit overall throughput. As demonstrated,
minimization of WIP may not be the only performance criteria that
must be considered. Ironically, an often cited feature or the
Kanban approach is its minimization of scrapped production. This
results from the fact that the successor process often serves as a

quality check for its predecessors. When processing faults arise
in the Kanban environment, they can often be recognized and
corrected before excessive WIP is generated. This observation
again confirms the reality that in manufacturing systems, there
are alternative performance criteria which must be considered.

4,2 Aggregate Production Planner

Aggregate Production Planning (APP) attempts to generate
production quotas for individual products or groups of products to
be manufactured over an extended planning horizon. In addition,
the APP must specify target inventory levels for considered
buffers. These decisions are made subject to capacity constraints
and both the real and forecasted demand for finished goods.
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4.2.1 Problem Formulation . As discussed above, the APP's decision
can be based upon individual products or an aggregate product
grouping. To minimize the introduction of additional notation,
the formulation for the APP's decision will be given in terms of
the basic products pm (m-l,...,M). Assuming that T planning
periods will be considered, the primary decision inputs into the
APP are the actual and forecasted demands for each basic product
type in each planning period f, denoted by d^O) for m-l,„..,M and
r-t+1

,

. . . , t+T . Let anm (r) represent the anticiapated production
capacity for process Pn consumed in the production of one unit of
product pm in period r while c n (r) will represent the anticipated
availability of process Pn in period r ( r-t+1 ,..., t+T) . Finally,
letting pm (r) represent the planned production of product pm in
period r, the basic production capacity constraint is given as

M
2 a (r) p (r) < c (r) for n-l,...,N and r-t+1 t+T (14)

m=l n“ m n

Note this formulation assumes that the production quota pm (t) for
the current period t has already been submitted to the Detailed
Production Planner (see below) for implementation. Also in the
more general case, we might desire to differentiate between
regular and overtime production capacity.

We next consider a set of balance constraints for material
inventory. Let I m (r) be the level of planned inventory for
product pm in planning period r while B m (r) represents any
backorder for product pm that results from production planning for
period r. The resulting inventory constraints have the form

Pm (r) + Im (r-1) - Bm (r-1) - Im (r) + Bm (r) - d^r) (15)

for m= 1 , . . . ,
M and r-t+1

, . . . ,
t+T

.

In addition, the production
planner can impose production smoothing limiting the fluctuations
in pm (r) from period to period as well as inventory smoothing
constraints which limit the fluctuations in inventory.- An
additional set of constraints, which must be considered but are
difficult to include due to their product specificity, are the
constraints dealing with the availability of input materials for
each product type. Finally, there may be constraints in addition
(15) relating the production in a given period pm (r) to the demand
in that period dm (r) and the inventory and backorders from the
previous period(s).

The APP will typically have a collection of objective
functions to be optimized. Let

**[ lPm ( r )

»

xm( r )

>

Bm (r)

•

dm ( r ) I r-t+1, . . .
, t+T;m-l, . . .

,M)

]

for i-1 , . .
.
,L"

represent the collection of objectives to be optimized subject to
the above constraints. We also assume that the utility function
0[$x

( •),... (•)] has been defined to represent the comprise
among those objectives. This is a stochastic optimization problem
since the demands dm (r), the process consumptions a.nm (r), and the
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process availabilities c n (r) are never known with certainty.

4.2.2 Potential Problems . The inclusion of these nonde terminis t ic

(or stochastic) elements of this strategic problem- is a major
concern. The resulting decision must be robust in nature,
considering all possible contingencies. As one approach to
develop deterministic approximations to stochastic op timizaions

,

Charnes and Cooper [11,12] introduced chance - cons trained
optimization. Several shortcomings exist in the adoption of this
approach. First, the inclusion of the chance - cons trained elements
significantly complicates the structure of the problem. For
example, linear constraints can become nonlinear when the
probabilistic definition of the constraint is made. To develop an
appreciation for the complexity that results when deterministic
approximations are developed for stochastic formulations of the
APP problem, the reader is referred to Bitran and Yanasse [8] .

Second, the decision optimizes only the expected values, foregoing
an extensive contingency analysis. This fact is particularly
troubling since the APP's decision is often strategic in nature.
Finally, the approach currently considers a single objective only.

Davis and West [13] recently merged the approaches of Monte
Carlo simulation and mathematical programming to develop a method
for strategic project scheduling. Using Monte Carlo simulation,
one thousand potential linear programs were generated and solved.
Subsequently, an empirical probability density function for the
optimal solution was developed which could be employed in
contingency analysis. Although their approach was computationally
expensive, the comparison of the method to other stochastic
decision-making approaches provided potential avenues for
simplifying the approach. The need for a contingency analysis was
clearly defined. To date, the authors are unaware of any reported
investigations of chance - cons trained

,
mul t i - c r i t e r i a optimization

approaches

.

4.2.3 Feedback and Updates . Although the APP plans for the
production periods t+1 through t+T only the product quotas pm (t+l)
for m-1 M are implemented. During the next planning period,
feedback indicating the actual production from the previous period
is considered to update resulting inventory and backorder
information, and a new pm(t+l) will be generated. Thus, the APP
must respond to the deviations between actual and planned
production quotas. Furthermore, the APP must continually update
its planning as forecasted demand becomes realized with actual
booked orders. However, the time scale upon which this updating
must proceed is on the order of a week or more. Finally, the APP
must continually learn processing parameters through the
acquisition of real production data that arises from its previous
p 1 ann ing

.
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4.3 Detailed Production Planner

The Detailed Production Planner (DPP) considers the specified
production quotas over a shorter horizon, and issues a request
that specific products be produced along with their associated due
dates for finished production. Before the request for a given
product is issued, the DPP ensures with some probability that all
essential inputs for the product will be available when required
during production and that the essential processes to manufacture
the product will be available. The DPP also attempts to execute
all the inventory policies established by achieving the preplanned
target inventory levels. A variety of models exist to implement
the detailed planning function, and our discussion will summarize
three which illustrate a dichotomy of approaches.

Bitran e_t a_X,. [6,7] have developed a three-level model to
implement the aggregate/detailed production planning functions.
The basis of their approach is to develop an aggregation of
individual product items into production families and then into
production types. Their aggregate production planning problem
considers the aggregate production cost subjected to a similar set
of constraints as discussed above except the decision is defined
with production types as the decision variables. The second level
of their hierarchy represents a disaggregation of the top level's
decision over a shorter horizon with production families serving
as decision variables. At this level, setups are considered. The
third level disaggregates production families into individual
production items. In their approach, each of the two lower
levels' problems is posed as a knapsack problem within the
constrained specifications arising from the solution of the
problem above it. In this manner, the disaggregation approach
becomes a single pass algorithm with no formal mechanism for
negotiation and feedback among the hierarchical levels.

Axsatter and Jonsson [5] have developed an alternative

disaggregation approach. Axsatter [3,4] first developed a

methology for aggregating both processes and products. In his
aggregation scheme, the errors arising from the aggregation are
quantified and procedures which minimize this error are defined to
generate an optimal approximate aggregation. Axsatter and Jonnson
then developed a detailed recursive relationship relating
production of products and parts in a given period to Inventory
and production in subsequent periods. With this recursive
relationship and the approximate aggregation scheme, aggregate
recursive relationships are then derived. A solution to the
aggregate relationships is then defined to provide an aggregate
control strategy. Using MRP principles, this aggregate production
control strategy is disaggregated into a master production
schedule for the production of individual parts and products.

Gershwin [20] developed his aggregation scheme based upon the
dynamics of the manufacturing system. Specifically, he argued
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that dynamic responses can be decomposed into slowly varying and
rapid components. He then states, as has been demonstrated here,
that the dynamic response arises from activities which are
characterized by their initial and terminal events. By looking at
the frequency at which the initial events for a given type
activity occur, he argues that these frequencies for different
event types will naturally cluster into groups. That is, certain
events will occur at a frequency which is significantly greater
than the characteristic frequency of the next group, which in turn
is significantly greater than that of the next group. The
structure of the disaggregation is to schedule the least frequent
event group first at the highest hierarchical level. The
decisions at this level then specify a constant system response
for the next level which in turn schedules the next most frequent
events. Finally, the most frequent events are scheduled at the
1 owe s t 1 eve 1

.

As demonstrated, there are a variety of disaggregation
schemes for transferring an aggregate production schedule into a

detailed job list for production scheduling. In all cases,
capacity planning was considered. All approaches also assume that
the lower level will consider a time scale that is shorter than
the considered time scale of the decision above it, and therefore,
considered events will occur more frequently. Both B i t r an e t al .

[7] and Axsater and Jonnson [5] have discussed the relationship of
their approach to the MRP functions cited earlier. Still in
viewing this literature, a universal modeling approach and a

functional definition for detailed production planning has not yet
emerged

.

5 . SUMMARY

This paper discusses a collection of mathematical models of
various decisions which impact the design and implementation a CIM
system. We have included objectives, constraints, decisions, and
control strategies inherent in every CIM system. Although this
list is incomplete, hopefully it will provide a contribution to
the automation and integration problems being addressed in CIM.
The models can be used to guide the development of the technology
needed for automation. They also provide the inputs, outputs, and
interrelations needed for integration, regardless of the specific
CIM architecture used.

We plan to continue this modeling work. We are particularly
interested in data management and communications and the impact
they have on the models described above. For example, timing
requirements on data may introduce constraints into the decision-
making similar to the material handling constraints considered in
scheduling. In addition, we plan to investigate CIM architecture
questions in more detail.
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