
NISTIR 88/3828
NBS AMRF PROCESS PLANNING SYSTEM-
SYSTEM ARCHITECTURE

NBS - AMRF

PROCESS PLANNING SYSTEM

SYSTEM ARCHITECTURE

Peter F. Brown
Steven R. Ray

This publication was prepared by United States Government
employees as part of their official duties and is, therefore, a
work of the U.S. Government and not subject to copyright.

Process Planning

Contents

Page

I. INTRODUCTION 1

1. PURPOSE OF THIS DOCUMENT 1

2. AUDIENCE 1

3. CONTENTS FLOW 1

3.1. Casual User 1

3.2. Research User 1

3.3. System Implementor 1

II. OVERVIEW 3

1. WHAT IS PROCESS PLANNING? 3

1.1. The Interpretation of Design 3

1.2. Facility Capability Models 4

2. BACKGROUND SURVEY OF PROCESS PLANNING 4

2.1. Approaches to Process Planning 5

2.1.1. Variant Approaches . . 5

2.1.2. Generative Approaches 6

2.1.3. AMRF Approach 7

3. PROCESS PLANNING IN THE AMRF 7

4. THE INPUTS AND OUTPUTS OF PROCESS PLANNING 8

4.1. Part Model 8

4.2. Process Plans 8

4.3. Inventory and Status 9

III. ARCHITECTURE 11
1. PROCESS PLAN DEFINITION FOR MANUFACTURING SYSTEMS. . .11

1.1. Representation Issues 11
1.1.1. Internal 11
1.1.2. External 12

1.2. Formal Language Definition 12

1.2.1.

Neutral ASCII Format for Process Plans . . .12
2. DATA ENTRY 12

2.1. Factory Configuration 13
2.2. Operation Sequence 13
2.3. Requirements 13
2.4. Header 14
2.5. Parameters 14

3. PROCESS PLAN MANAGEMENT 14
3.1. Local Database 14
3.2. Distributed Database System (IMDAS) 15
3.3. Part Model Access 15

IV. DESIGN CONSTRAINTS 17

1. CURRENT TECHNOLOGY 17

1.1. Design Systems 17

1.2. User Interface 18

1.3. AI Systems 18

1.4. Communications 18

1.5. Database Management 19

i

Process Planning

V. FUNCTIONS OF MAJOR COMPONENTS .21
1. CONFIGURATION TOOLS 21

1.1. Shop Floor Definition 21
1.2. Work Element Definition 2 3

2. PROCESS PLAN MODIFICATION TOOLS 2 6

2.1. Graphic Network Editor 2 6

2.2. Forms Editor 26
2.3. Requirements Editor 3 0

2.4. Header Specification 30
3. PROCESS PLAN STORAGE 3 0

3.1. Local Plan Storage Utilities 30
3.2. Database Access Utilities32

4. PART MODELLING MODULE 3 2

5. PARSERS AND GENERATORS 32
6. EXPERT PROCESS SELECTION MODULE 3 2

VI. IMPLEMENTATION 35
1. OBJECT-ORIENTED PROGRAMMING. 35
2. CAPABILITIES DATABASE 3 6

2.1. Shop Floor Configuration 3 6

2.2. Work Elements 36
3. PROCESS PLAN PRECEDENCE GRAPH .39

3.1. Editing the Precedence Graph .42
4. INTERNAL PART MODEL REPRESENTATION 4 2

5. DATABASE FACILITIES 4 2

5.1. Protocols 44
5.1.1. Nfile .44
5.1.2. Common Memory 44
5.1.3. DML 44

6. USER INTERFACE 4 5

BIBLIOGRAPHY 4 8

Appendix A - Relevant Publications A-l
Appendix B - Backus-Naur Specification B-l
Appendix C - Process Plan Format C-l
Appendix D - Example Process Plan D-l
Appendix E - Hardware and Software Requirements E-l

ii

Process Planning

List of Figures

Page

Figure V-l. The Process Planning Facility Editor 22
Figure V-2(a). The Work Element Editor Tool, Showing the ... 24

Machine Lot Work Element
Figure V-2 (b)

.

The Work Element Editor, Showing the Data ... 25
Types Menu

Figure V-3(a). The Graphic Net Editor, Displaying a Cell ... 27
Level Process Plan. The menu lists available
work elements.

Figure V-3 (b)

.

The Graphic Net Editor. Menu shows network. . . 28
editing operations.

Figure V-4(a). Procedure Specification Editor 29
Figure V-4(b). Procedure Specification Editor. Menu shows. . . 31

available work elements.
Figure VI-1. Facility Editor 37
Figure VI-2. Work Element Editor 38
Figure VI-3. Network of Process Plans and their Elements . . 40
Figure VI-4. Structure of Procedure Specification 41
Figure VI-5. Flavor Inheritance Graph for the Supervisor . .43
Figure VI-6. Process Planning System Operations Menu 46
Figure VI-7. Procedure Specification Editor 47

iii

Chapter I INTRODUCTION Process Planning

I. INTRODUCTION

1. PURPOSE OF THIS DOCUMENT

The purpose of this document is to provide a general description
of design and implementation of the Automated Manufacturing
Research Facility (AMRF) Process Planning System. The document
should provide the reader with an understanding of the concepts
behind the work in the process planning project as well as on the
approach adopted. Details on system implementation are provided.

2 . AUDIENCE

The intended audience for this work is the technical community
already familiar with current process planning issues and
practices, both research and commercial. While this document does
contain a brief review of other planning systems, it is not
intended as a tutorial on process planning. Rather, it discusses a
new approach to process planning in an automated facility.

3 . CONTENTS FLOW

3.1. Casual User

The casual user does not need to read this document if time does
not permit. The User's Manual [1] is the primary document needed
to simply operate the planning system.

3.2. Research User

A user who intends to use the planning system as part of a related
research effort should at least read the sections on architecture,
the functions of major components, and the User's Manual.

3.3. System Implementor

A system implementor should be familiar with this document and
with the User's Manual. It should provide enough insight to enable
the installation and operation of the planning system on a local
machine

.

1

Chapter II OVERVIEW Process Planning

II. OVERVIEW

1. WHAT IS PROCESS PLANNING?

Process planning is the translation of part designs into a
representation of activities that will transform raw materials
into finished products. In traditional manufacturing environments
a part drawing is given to a process engineer, who first
determines coarse requirements. These requirements will include
the tightest tolerance that needs to be produced, rough estimation
of the work volume, fixturing constraints, etc. With this
information the process engineer can then make determinations of
part routings: that is, which machine tools are capable of
producing the part, how the part will be fixtured, what tooling
will be required, and finally the determination of manufacturing
features. This information can then be given to a machinist or
N/C programmer who will do the detailed equipment level
programming.

In a fully automated facility such as the AMRF all of the
manufacturing steps will have to result in the development of
process plans (these can be thought of as a program) for all
relevant control systems.

1.1. The Interpretation of Design

Recognizing form features on a part and mapping those features to
appropriate manufacturing processes is a fundamental step in
process planning. Human process planners have been performing
this mapping for quite some time. Currently, there are many
research efforts underway to automate this process. There is also
great interest in extending it to provide feedback from
manufacturing to design.

On current CAD systems, the designer translates the functionality
of a part, or group of parts, into geometry and tolerance
notations on part drawings. A poorly conceived part geometry can
overly constrain the manufacturing process. A better approach
would be to force the designer to describe a product in terms of
features that completely represent part functionality. These
design features can then be mapped into manufacturing or process-
oriented features. These manufacturing and design features will
then be used to generate the geometry as it is realized by
creating the manufacturing features. The goal is to give the
geometry generation process the flexibility to change geometry to
optimize the manufacturing operations without significantly
changing the original functionality. This approach permits the

3

Chapter II OVERVIEW Process Planning

optimization of the manufacturing operations in order to make best
use of processing equipment, select the lowest cost or simplest
operation to produce the geometry, and modify geometry to ease the
manufacturing or assembly tasks.

A set of tools is being developed to define a part in terms of its
geometrical and topological entities, and functional entities
known as features. These functional features are collections of
geometrical and tolerance attributes on commonly reoccurring
design or manufacturing patterns. Common manufacturing features
include pockets, holes, and slots. This representation scheme
allows computer programs to reason about, query, and interpret
information between one another, without human intervention. A
neutral part model file format has been established within the
AMRF to convey geometry, topology and feature data between
application systems [2].

1.2. Facility Capability Models

One very important aspect of the process planning problem is the
understanding of the capabilities of the manufacturing
environment. Trying to produce a part on the wrong piece of
equipment leads to lost time, wasted raw materials, and in
general, wasted or redundant efforts. Having the wrong mix of
process equipment for the types of part families can lead to low
utilization. In conventional shops this processing model is held
by a number of individuals, who probably have a model of only a
portion of the entire manufacturing operations. This leads to
under/over-utilization of certain pieces of equipment. In future
automated environments we expect much of this will be done away
with.
In the process planning system we have started to develop a set of
tools that provide models of the shop floor capabilities. These
capabilities include the activities (work elements) that all
control systems can perform, the required hardware and software
needed to perform those activities, performance models of the
machine tools and robots, and information about inventories such
as raw materials and tooling.

2. BACKGROUND SURVEY OF PROCESS PLANNING

Process planning systems can play a major role in manufacturing
automation. Numerous industries have developed and used process
planning within their organizations for quite some time. In most
cases this has been to provide the production planner, production
scheduler, and machine operator with the information they need to
do their job. This leads to lower costs, better parts, and a

reduced manufacturing cycle. Process planning systems have been
used to help develop more consistent parts by following standard

4

Chapter II OVERVIEW Process Planning

operations, and part routings. Coupled with group technology,
standard plans can be created for part families, then modified to
represent the unique characteristics of the individual parts. All
of these reasons contribute to more consistent parts, lower costs,
and shorter turn around times. Process planning is the link
between the part drawing and the activities to be performed within
a factory. It is important to identify previous work to show how
our work fits with other process planning systems.

2.1. Approaches to Process Planning

This section describes several approaches to computer aided
process planning. Primarily they can be divided into two separate
classes: those requiring human intelligence to make decisions
and those that do not. Variant systems and their derivatives
require human input and decision making. Generative systems start
with some form of part description and can automatically generate
a process plan. All commercial systems today are variant systems
or derivatives, some generative systems do exist and are being
used within companies and universities for restrictive part
families. Much research needs to be done before fully generative
systems will be developed. For a more detailed discussion of the
state of the art of computer-aided process planning systems, see
Chang and Wysk [3]

.

2.1.1. Variant Approaches

Variant planning systems are based on a library of standard plans
for different part families that a process engineer retrieves and
edits, creating "variants" of basic plans. Variant systems
typically rely on group technology classification and database
management systems for their implementation. Standard process
plans are developed for each family of parts produced and are
stored in the database. When a new part enters the system, it is
first classified by part family. The part classification code is
used as a key to select a copy of the appropriate default plan
from the database. This copy is then modified to reflect the
specific processing required due to the unique characteristics of
the new part. If a plan does not exist for the part’s family, then
a new default plan is created by an experienced process engineer
and stored in the database system.

The technology that is required to implement this type of process
planning system is readily available on main frame as well as
personal computer systems. Indeed, almost all of today's
commercial process planning systems employ variant techniques.
With this approach most knowledge resides in the mind of the
process engineer, the computer serves mainly as an organizing

5

Chapter II OVERVIEW Process Planning

tool. Although intelligent generative systems are often more
desirable because of much less human involvement, there are
significant benefits that can be obtained from the variant
approach. The development of a variant system forces an
organization to study and classify the activities that it can
perform in order to understand the part families it can produce in
its shop. This exercise, in turn, reveals the kinds of equipment
and labor skills that the shop really has and needs. But, there
are some limitations in the variant approach. It can often be
impractical if the shop produces small batches of widely varying
parts. More time has to be spent defining new part families and
modifying default plans. Furthermore, it does not capture the real
knowledge or expertise of process engineers. The generative
approach to process planning does address these issues. The
capture of this information can be of critical importance to
industry which is facing large numbers of process engineers
retiring, and new engineers not being trained to fill those
positions. Secondly, the hope with generative systems is to
develop much more consistent process plans, this is important in
the competitive marketplace of today's industry.

2.1.2. Generative Approaches

The main thrust in process planning research today is in the area
of generative systems, for some examples see [2,3]. In these
systems, techniques from the field of artificial intelligence are
used to automatically create a plan for a new part. An expert
problem solving system uses an internal process knowledge base and
part specific data to generate new plans. This approach requires
that a full product definition or part model exists in a form that
is accessible by the expert system software. This model should
include geometry and topology, a tolerance model, and information
about the functionality of a part. The knowledge base contains
information gathered from process engineers on the how and why of
making process decisions for various types of parts. Decisions are
often keyed to the different types of features that are typically
produced on parts. With this approach, the knowledge base becomes
a repository of knowledge gained from the many years of experience
of many process engineers. It also permits the separation of the
process knowledge from the part data, which facilitates data
driven automation. This is important because it separates the
tolerance or functionality of the part in question from the
techniques that will be used to produce it. This will allow new
or different processing techniques to be substituted without major
changes to the part representation.

To date, fully generative process planning has proved to be an
elusive goal, but there are some signs of progress. The biggest
problems have included the representation of features (pockets,

6

Chapter II OVERVIEW Process Planning

slots, holes) ,
processes (drill hole versus bore hole) , and

precedence information (make pocket before hole) . Furthermore, the
outputs produced by process planning systems are non-standard.
That is, the organization of data into forms or structures such as
routing and operations sheets differs from system to system. As a
general rule, plans are meant to be interpreted by human readers,
rather than by a computer system. In the future, it will be
essential that process planning interact more closely with
automated control systems. Major questions with respect to the
inputs and outputs of process planning systems must be resolved
before fully computer-integrated intelligent manufacturing systems
become a reality.

2.1.3. AMRF Approach

The AMRF process planning project is tackling questions regarding
the fundamental role of process planning in automated
manufacturing facilities where all operations are under seme form
of direct computer control. Our research focuses on the
identification of basic concepts and principles that support the
integration of process planning with manufacturing process control
systems, scheduling, inspection, and all facets of the
manufacturing life-cycle. Important steps leading to
plug-compatibility between these systems include:

*the establishment of a system architecture for
factories and their planning systems which accounts for
both current and future expected capabilities,

*the definition and modeling of manufacturing activities
or processes,

*the specification of a data representation scheme that
can be used to organize and exchange information among
planning, control, and other factory systems,

*the development of generic product descriptions in
terms of both design and manufacturing feature
geometries, and

*the verification of these potential interface
specifications and protocols under realistic test
conditions

.

3. PROCESS PLANNING IN THE AMRF

Process planning in the AMRF currently exists in the reactive
level of planning and control. Control systems are driven by

7

Chapter II OVERVIEW Process Planning

predetermined state tables. The planning system requires
significant human input and is not based on state space and
heuristic search. Models of work elements and requirements exist
for major control systems. These are used when defining the
process plans for those control systems. The sequences for the
process plans are determined by the user and input into the
process plan editor (described in chapter V) . This set of editors
is used to create, edit, and browse through process plans. These
plans are communicated to the AMRF through the Integrated
Manufacturing Data Adminstration System (IMDAS) [6]. These
process plans are interpreted by control systems to sequence
through their assigned activities. There exists no direct
feedback to the process planning system about the performance of
the process plans or for checking on the condition of the shop
floor. Process planning data structures have been developed for
all the current levels of the AMRF hierarchy. The representation
of these plans is done with the process plan file format (see
Appendices B and C) . This format is used by all control systems
that retrieve and execute process plans. Within the process
planning project some work has been done on generative planning.
Starting with a set of features defined in the part model, SIPS
(Semi-Intelligent Process Selection) determines the process or set
of processes required to produce the feature (see Appendix A)

.

The system reasons about the tolerance constraints on the features
using a set of process models about the capabilities of various
machining operations. For more information about the AMRF process
planning system see the papers in Appendix A.

4. THE INPUTS AND OUTPUTS OF PROCESS PLANNING

4.1. Part Model

The input to the process planning system is the AMRF part model
for the part to be produced. This model contains the geometry,
tolerances, and user definable ’'features” . These features are
items of particular technological significance (reoccurring
patterns) . These features are used by control systems to
represent important information about the part, such as edge loops
of a deburring operation, or machine features like pockets for the
Vertical Workstation. The part model format can also be used to
define intermediate part geometries. The process planning system
will use the part model format to specify intermediate part
geometries

.

4.2. Process Plans

Process plans are the output of the planning system. These are
the steps necessary to transform the part geometry into an actual

8

Chapter II OVERVIEW Process Planning

part. The process plans are stored in the AMRF process plan
format. This storage is on the local Lisp machine file system or
on the AMRF database system on the VAX.

4.3. Inventory and Status

Currently, inventory and status information resides only on the
local planning system. An interface to the IMDAS has been
developed, currently we do not get inventory and status
information through IMDAS.

9

Chapter III ARCHITECTURE Process Planning

III. ARCHITECTURE

1. PROCESS PLAN DEFINITION FOR MANUFACTURING SYSTEMS

1.1. Representation Issues

Before a process planning system can be implemented in a general
way, the fundamental issues of how to represent a process plan
must be addressed. By adopting a general and flexible
representation scheme, the planning system can evolve while still
using the same data structures. This problem can be broken down
into two categories, internal representation, and external
representation.

1.1.1. Internal

The first problem to tackle is the representation of an individual
activity or process step for an entity within a factory. In the
AMRF , these process steps are described in terms of "work
elements". Work elements can be thought of as operators within a
state space. Whenever a work element is invoked, a state
transition takes place. A process plan corresponds to a sequence
of operators applied to an initial state, resulting in a goal
state. The challenge is to represent the manufacturing task in the
framework of artificial intelligence concepts such as the ones
described here, so that the problems can be handled using current
and future AI techniques.

The concept of frames was used to represent work elements. While
the current implementation is not a frame-based system yet, the
design is such that it will naturally fit into a frame
implementation when one becomes available. Basically, each work
element consists of a name and a set of attribute-value pairs,
like a frame with slots. The name identifies the work element,
while the attributes and values serve to completely specify the
details of a particular work element instance. Such specifications
could include necessary serial numbers of parts and trays,
coordinate information for feature creation, target workstations
for a particular task, etc.

With a robust representation for individual activities in place,
the next problem was to develop a representation for an entire
process plan. As will be discussed more fully in the
implementation section of this document, the core part of a plan
consists of a precedence graph of connected work elements, where
the precedence relationships imply sequencing in time. This
precedence graph is actually part of a larger structure (the
process plan itself)

,

which contains pointers to the various parts

11

Chapter III ARCHITECTURE Process Planning

of the plan. These are: a header section, which contains various
bookkeeping information? a parameters section which identifies
variables used within the plan which cannot be bound before
execution time; the procedure specification, discussed above; and
the requirements section, which lists all the hardware and
software necessary for the execution of the plan. Internally, the
entire structure is represented as a network of connected objects
(see Chapter VI) which can send and receive messages.

1.1.2. External

In keeping with the need for simplicity and universality, the
external representation of a process plan and of work elements
does not take advantage of any advanced programming concepts, such
as object-oriented programming. This representation is used for
storage and communication of process plans throughout the factory.
As shown in the example of Appendix D, it is in human readable,
ASCII text form, called the neutral data exchange format [7]. The
structure of the exchange format process plan is outlined in
Appendix C, showing the four major sections identified above.

1.2. Formal Language Definition

1.2.1. Neutral ASCII Format for Process Plans

A brief overview of Backus-Naur form can be found in Appendix B.
This notation is useful for the unambiguous specification of a
formal syntax, such as the process plan neutral format. The
process plan format specification can be found in Appendix C. This
format is used by all controllers on the AMRF shop floor for the
interpretation of process plans. Parsers have been implemented in
a number of computer languages, including C and Lisp.

2. DATA ENTRY

When generating process plans to support the AMRF, several
different types of information are necessary. First, there must be
a context within which the plan has meaning. This means that the
configuration of the factory must be known, including what
equipment exists and what its capabilities are. Only then can the
plan be evaluated as to its feasibility or optimality. Second, the
operation sequence itself must be provided, (this is really the
core part of a process plan) . This information currently is
provided by a human process engineer, with one exception at the
equipment level, where an expert system, (SIPS), can provide
process sequencing suggestions. The third piece of information is
the list of requirements needed to perform the steps specified.
Most of this is automatically provided by the planning system,
which scans the procedure specification section. Finally, higher
level information such as the part material, process engineer,

12

Chapter III ARCHITECTURE Process Planning

Group Technology (GT) code and so forth must be specified. One
important piece of data which falls into this category is the name
of the part model which may be referenced in the process plan. The
part model contains all the topological, geometric, and tolerance
information needed to fully describe the part. Work elements can
refer to features defined in the part model to specify coordinate
and tolerance information. Details on how data is actually entered
into the system can be found in the User's Guide.

2.1. Factory Configuration

The representation of the factory configuration is accomplished by
maintaining a tree of all the entities capable of handling process
plans. Each entity has an associated collection of work elements
which it can understand. Each time a process plan is read, edited
or created, the configuration model is consulted to determine the
validity of the work element or requirement being added. The
configuration model can be altered at any time, and alternative
models can be loaded, which could represent different facilities.
Changes to the configuration model should only be made by the
manager of the planning system, since a single change in the model
can make large numbers of existing process plans unreadable.
Changes which the manager can make include the addition or
deletion of entities on the shop floor (cell, workstation or
equipment) , and addition of, deletion of, or changes to existing
work element definitions. Thus, the configuration model maintains
the "language" in which all process plans are expressed.

2.2. Operation Sequence

The task of generating a process plan consists mainly of
constructing a precedence graph of the work elements to be invoked
upon execution. The work elements maintain pointers to "parents"
and children within the graph. Editing the sequence of operations
is carried out by adding, deleting, or modifying work elements in
the graph. The modularity of the work elements making up the
operation sequence lends great flexibility to a process plan. The
precedence graph, which is actually the internal representation of
the procedure specification, is one slot in the data structure
known internally as the plan. Other slots include the requirements
and the header.

2.3. Requirements

The requirements section of the process plan structure is actually
represented in a similar manner as the procedure specification.
This is most clearly seen by the inheritance structure discussed
in the implementation section of this document. Again, the
requirement entities are represented as nodes in a graph. This
time, the relationship between nodes does not imply any ordering.

13

Chapter III ARCHITECTURE Process Planning

There is the capability, however, to establish an explicit
relationship for identifying sets of requirements. This capability
might be needed, for example, to describe a kit of tools. Any
individual tool may be referenced, or the entire kit may be named.
The individual tools can be defined as components of the kit.

Requirements for a process plan can be either pieces of hardware
or software needed for the execution of the plan. The software
includes other process plans referenced in a given plan as well as
N/C programs. Hardware includes the necessary workstations, tools,
trays, parts, etc. These are all represented within structures
analogous to work elements for the procedure specification.

2.4. Header

The header is the third major part of a process plan. It contains
generic information pertaining to the plan. Entries include the
process engineer, the part material, the lot quantity, etc. A
particularly important entry is that of the part model which
accompanies the plan. The part model is used to fully describe the
part topology, geometry, tolerances, and functionality. Work
elements within a process plan may refer to features appearing in
the part model as a pointer to more detailed information on
dimensions and tolerances.

2.5. Parameters

The parameters section is simply a collection of all attribute
values occurring in the procedure specification section beginning
with the "$$" prefix, which denotes a parameter. These are really
just "dummy'' variables, which will be replaced with actual values
at execution time. Examples include serial numbers for trays and
tools. The parameters section is useful at execution time to
identify what information must be bound before execution can
begin.

3. PROCESS PLAN MANAGEMENT

There are two locations where process plans can be stored:
locally, and in the AMRF distributed database system. The two
alternatives are provided to allow continued operation of the
planning system even if the AMRF network system should fail.

3.1. Local Database

The local storage of process plans is carried out by converting
the internal representation of a plan, (a structure referencing
the three sections described above) ,

into the ASCII format
described in paragraph 1.2.1 of this section. This text is then
stored as a simple file on the local file system, with a name

14

Chapter III ARCHITECTURE Process Planning

stored as a simple file on the local file system, with a name
specified by the process plan naming convention. Retrievals are
carried out by file name alone, rather than through database key
field queries.

3.2. Distributed Database System (IMDAS)

Process plans can also be stored and retrieved via the Integrated
Manufacturing Data Administration System (IMDAS) . Here, the plans
are again converted to the neutral ASCII format before storage,
but key fields are also assigned to the plan. These fields include
the plan name, the executing system and the version number. The
storage is requested using a generic query language (DML) and
supplying the file name where the process plan is stored. The
IMDAS copies the file into an internal database, along with the
key fields. Plan retrieval is done by key fields. This can be
simply the specification of the plan name, but may include
combinations of the other fields as well. Once a plan has been
retrieved, the planning system converts the neutral format back
into the internal graph representation. At this point, there is no
difference between a plan retrieved locally and one retrieved from
the IMDAS.

3.3. Part Model Access

The AMRF part model is used in conjunction with a process plan,
both when creating and editing a plan, and when executing the
plan. In the planning system, the part model is parsed into an
internal representation of connected programming objects (see the
next section) . This internal representation can be used as an aid
to the process engineer, or to the expert process selection module
(SIPS) in use at the equipment level of planning. It is the part
model that gives the feature characteristics to the SIPS module
when it is reasoning about the optimum process for the creation of
a feature. Currently, the part model is provided to the planning
system by simple file transfer from the Geometry Modelling System
(GMS) . In the future, this will be handled through the IMDAS.

15

Chapter IV DESIGN CONSTRAINTS Process Planning

IV. DESIGN CONSTRAINTS

This section outlines a number of the original system design
constraints placed upon the design team.

1. CURRENT TECHNOLOGY

The original intent of the process planning system is to develop a
tool that could support the process planning requirements of the
AMRF, as well as to serve as a tool for testing advanced concepts
in process planning research. A number of general goals are
outlined, such as friendly, easy-to-use systems and advanced
concepts from computer science such as artificial intelligence.
This system is to incorporate the latest user interface
techniques, mouse pointing devices, pull down menus, integration
of text and graphics, and new representation techniques such as
frame systems and object oriented programming. Most of this led
to the choice of a specialized computer environment provided by a
Lisp machine. A Lisp machine provides an interpreted software
environment, which leads to improved programmer productivity. In
addition this environment provides the best tools for the
development of expert systems which will play a critical role in
the automation of process plan generation. One of the most
important benefits from this environment is the capability to do
rapid prototyping of system components.

1.1. Design Systems

The process planning project has the function of deciding what
shape the original stock should take, specifying what processing
should be done to the part leaving it in various intermediate
geometries. In addition the process engineers also specify the
fixtures for the part. All of these items call for the use of
some kind of design tool. Early in the AMRF project it was
decided that the resource did not exist to do research in the area
of computer aided design systems; consequently, the project has
never had a good design tool available. Most of the work was to
be done with commercially available CAD systems. As individual
systems (such as inspection, cleaning and deburring, and process
planning) matured they outgrew the capabilities of the CAD tool.
This led to the development of the AMRF part model format, which
contains many of the aspects required for advanced manufacturing
systems

.

17

Chapter IV

1 . 2 .

DESIGN CONSTRAINTS Process Planning

User Interface

The long term goal of the planning project is to provide tools
which can automatically develop a complete process plan from some
description of the part. This goal is many years away and many
issues need to be resolved. The original design called for a very
easy-to-use tool for developing process plans that required
minimal user typing and bookkeeping. In addition, there was a
desire to build a system which provides a means for integrating
expert planning modules as they were developed. The overall goal
was to make the process engineers as productive as possible, and
in complete control of plan development. Any portion of the plan
generated automatically would still be available to the process
engineer for review and modification. As confidence grew in the
expert modules, less review would be required, and efforts could
be spent on the further development of these expert planning
modules

.

This has lead to the development of a friendly easy to use system
for the creation of process plans. As much error checking as
possible is done during plan development to prevent plans from
being distributed with wrong information.

1.3. AI Systems

While the original planning system was to be interactive, the
design called for the integration of expert planning systems as
soon as was possible. This called for the development of the
planning system in a computer language and environment that
allowed for the development of such AI systems. The Symbolics 1

Lisp machine environment provides a wide array of artificial
intelligence tools. These tools are available from both
universities and commercial organizations. They provide a wide
variety of techniques to model the reasoning mechanism used by
humans

.

1.4. Communications

The AMRF process planning system is integrated with the AMRF
network. The Lisp machine provides support for the Transmission
Control Protocol / Internet Protocol (TCP/IP) network protocol.

1 Certain commercial equipment, instruments, or materials are
identified in this paper in order to adequately specify the
experimental procedure. Such identification does not imply
recommendation or endorsement by the National Bureau of Standards,
nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.

18

Chapter IV DESIGN CONSTRAINTS Process Planning

Common memory which is used by most AMRF systems has not been
implemented on the Symbolics. To date we have a protocol called
Nfile running between the Symbolics and the Sun computers. The
Nfile process on the Sun communicates with the common memory. In
the future, if sufficient resource are available, we would like to
have some form of common memory running on the Lisp machine.

1.5. Database Management

The original system design called for integration of the planning
system with the AMRF database systems. This integration was
originally envisioned to cover the complete storage of process
plans and their associated elements in relational tables. This
would allow for a wide variety of searching capabilities. As the
system is currently implemented, process plans are only stored as
files. A mechanism has been implemented to interface to IMDAS to
make it possible to store and retrieve a wide variety of
information required by the process planning system.

19

Chapter V FUNCTIONS OF MAJOR COMPONENTS Process Planning

V. FUNCTIONS OF MAJOR COMPONENTS

This section outlines the functions of the major process planning
system components. It includes a description of the configuration
tools, editing tools, plan storage and retrieval tools, part
modeling, parsers, and the expert system tools.

1. CONFIGURATION TOOLS

The configuration tools of the planning system are meant to be
used by the planning system personnel alone or with workstation or
system implementors who are very familiar with the process
planning system. The tools allow the development of alternate
factory floor configurations, as well as other manufacturing
facilities. These tools are used to define work elements and
requirements to be used by equipment within these factories.

1.1. Shop Floor Definition

This is the first tool one would use in creating an entirely new
planning system for a facility. This tool allows the creation of
models of the factory floor systems and other control systems. It
only maintains a logical view of the relationships between
systems. Figure V-l contains a screen-dump of the actual tool.
There are several major sections to this tool. The window for
this tool consists of four panes, the largest pane in the upper
left, contains the actual view of the factory hierarchy. In the
referenced figure, the cell, workstation and equipment levels of
the AMRF are shown. The second pane in the upper right quadrant
gives an overview of the entire hierarchy, showing where the
current viewport is located. This is often necessary because of
limited space available on the screen. The third pane, in the
lower right quadrant, contains an object description pane. The
fourth pane, lower left quadrant, is a text-interaction pane for
responding to questions from the planning system. This tool is
used to describe the logical relationships between equipment on
the shop floor. Its second major function is to keep track of the
available work element definitions for all of the cell,
workstation and equipment identified. These work element
definitions are used when a user creates a process plan for a
particular system. In the referenced figure we are showing the
AMRF configuration of the cell, the Inspection Workstation, the
Horizontal Workstation, the Cleaning and Deburring Workstation,
the Vertical Workstation, and all of the associated pieces of
equipment. The cell and workstations are abbreviated CELL, IWS,
HWS , CWS

,
and VWS respectively. Displayed in the object

description window is a description of the Vertical Workstation,

21

Chapter V FUNCTIONS OF MAJOR COMPONENTS Process Planning

Figure V-l The Process Planning Facility Editor

Chapter V FUNCTIONS OF MAJOR COMPONENTS Process Planning

which is called VWS . The menu in pane one is currently showing
the defined work elements that can be used in a process plan for
the milling machine of the vertical workstation. This tool can be
used to edit the definition of the work elements which will be
described in the next section.

1.2. Work Element Definition

Figure V-2 (a) shows a screen dump of the work element editing
tool. It consists of five panes. The first pane is the title pane
which tells the users which work element is currently being
edited. The second pane, to the left, immediately below the title
shows all of the work elements defined for the portion of that
hierarchy. The third pane, to the right, immediately below the
title is the work element template to be filled in by the user.
The fourth pane is the menu pane, below panes two and three. It
describes major functions for the window such as editing, viewing,
saving, etc. The fifth pane is a text-interaction pane for
displaying instructions to the user, and for the user to answer
questions. The figure shows the machine lot work element of the
cell being edited. All of the other cell level work elements are
displayed in pane number 2. The system allows a user to copy a
previously defined work element and make changes to it or to
create a new work element from scratch. The user fills in a
template in the third pane where, currently, the major fields are
"Autogen *"

, "time", and "User Property". The autogen nodes are
used to automatically add items to a process plan. The "Autogen
Rqmts" slot allows a user to define what items from this work
element need to be added to the requirements list section of a
process plan. The other autogen slots are currently not used but
are kept for backward compatibility with a pre-release version of
the software. The time field allows the user to specify a default
time for the action to take. This field is in all work elements,
it can be changed when editing a process plan. The "User
Property" is where the attributes and their data-types are defined
for the work element. The attributes can be any set of characters
up to 16 in length. The data types are chosen from the menu
displayed in Figure V-2 (b)

.

In this figure, the current work
element, machine-lot, shown has the attributes system, type,
plan_id, lot_id, and lot_size. Their associated data types are
symbol, symbol, symbol, symbol, and a number, respectively. When
the user has finished editing a work element, it is saved in the
current factory database and available for use in new and existing
process plans. The internal Lisp flavor objects are also created
for the system.
One of the major reasons for creating this tool is to allow for
quick and easy modification of work element definitions without
having to write or edit a single line of Lisp source code.

23

Chapter V FUNCTIONS OF MAJOR COMPONENTS Process Planning

Editing: Rs-work-element machine_lot
Top Top

al locate.tray Rutogen Modes* : Set: MIL Global-name
dea 1 1 ocate tray Rutogen Header* : MIL
deburr _ 1 ot Rutogen Rants*: Set: PLRM ID LOT ID US ID TRAY ID KIT ID Attribute -name

de 1 i ver_tray Tine*: 0000:08:01:00
fetch.tray User Property: Triple: US ID UORKSTPTIOM-ID Set: Token
f oobar— 1 ot User Property: Triple: PL RN IE PLRN-ID Set: Token

inspect.! ot User Property: Triple: LOT ID LOT-ID Set: Token
1 oad_t ray User Property: Triple: L0T_QTY NUMBER Set: Token
nachi ne_ 1 ot User Froperty: Triple: FLAM UERSIOM IMTEGER Set: Token
prep_ 1 ot User Property: Triple: LOT TYPE SYMBOL Set: Token
process.batch User Property: Triple: TRAY ID TRRY-ID Set: Token
rece i ve_tray Use*- Property: Triple: TRRY_TYPE TRRY-TYPE Set: Token
setup_area Use*- Property: Triple: TRRY_SER NR SYMBOL Set: Token
setup_tools User Property: Triple: KIT_ID KIT-ID Set: Token
shi p_t ray User Property: Triple: Attribute-name Date-type Set: Token
stor e_tr ay
takedoun_area
takedown tools
uni oad_tray

Bottom* Bottom

He:p Edit- Save Create View Copy Flavor Delete List Quit

Click on an attribut e entry to replace (L), delete (M) or edit (R) it.

1

1

'

"

'

Figure V-2 (a)

.

The Work Element Editor Tool, Showing the Machine
Lot Work Element

24

Chapter V FUNCTIONS OF MAJOR COMPONENTS Process Planning

Editing: Rs-work-element machinejot"
Top

al locate_tray
deal locate_tray
deburr_ lot

del i ver_tray
f etch_tray
f oobar— lot
inspect_lot
1 oad_tray
nachi ne_ 1 ot

pp ep_ lot
process_batch
recei ve_tray
setup_area
setup_tool

s

shi p_tray
store.tray
takedoun_area
takedoun_tools
uni oad_tray

He p Ecnt

Top

Autogen Modes* : Set: NIL Globe l-name

Rutooen Header*: MIL
Autogen Rants*: Set: PLfiM_ID L0T_ID US_ID TRfly_ID KIT_ID
Tine*: 0000:00:01:00
User Property: Triple: US_ID UORKSTATION-ID Set: Token

User Property: Triple: PLAM_ID PLAN-ID Set: Token

User Property: Triple: L0T_ID LOT-ID Set: Token

User Property: Triple: L0T_0TY NUMBER Set: Token

User Property: Triple: PLAN_VERSION IMTEGER Set: Token

User Property: Triple: LOT^TYPE SYMBOL Set: Token

User Property: Triple: TRAY_ID TRAY-ID Set: Token

User Property: Triple: TRAY_TYPE TRRY-TYPE Set: Token

User Property: Triple: TRflY_SER_MR SYMBOL Set: Token

User Property: Triple: KIT_ID KIT-ID Set: Token

User Property: Triple: Attribute -name Lara-type Set: Token

Save Create T7" Copy Flavor Delete

Ltiaoie s oet s type
BOOLEAN
SYMBOL
STRING
NUMBER
INTEGER

PLAN-TYPE
WORKSTATION-ID
EQUIPMENT-ID

PLAN-ID
TRAY-ID
CART-ID
KIT-ID
LOT-ID
PART-ID
TOOl-ID
FINGER-ID
COLLET-ID
LOCATION

FEATURE-TYPE
GRIPPER-TYPE
TRAY-TYPE
NUMEER-LIST
SYMBOL-LIST

Attribute: User Property
Description: An attribute nane type field plus user-defined fields.
Type a Date-type.
(Type RETURN to end the entry, ABORT to leave it as it is.)

L

Figure V-2 (b) The Work Element Editor, Showing the Data Types Menu

25

Chapter V FUNCTIONS OF MAJOR COMPONENTS Process Planning

2. PROCESS PLAN MODIFICATION TOOLS

The second major set of process planning tools are those to be
used by individuals wishing to edit, modify, or create process
plans. There are two such tools: the Forms Editor and the Graphic
Network Editor.

2.1. Graphic Network Editor

The internal representation of a process plan is a precedence
graph. This representation allows the specification of parallel
activities for those workstations that can handle them. Figure
V— 3 (a) shows a screen image of the Graphic-net editor. The
Graphic-net editor consists of 5 major panes. The first, in the
upper left quadrant, is a viewport showing a portion of the
current procedure specification being edited. The second pane, in
the upper right quadrant, shows the entire procedure specification
that is being edited. The third pane, below the overview, shows
the object description pane. Below this is the fourth pane
displaying various editing functions. The fifth pane, in the
bottom left quadrant, is a text interaction pane where the user
responds to system queries.

The figure shows a precedence graph representing a procedure
specification for the cell level. This tool allows one to
describe activities that can be done in parallel as well as strict
linear sequences. In the current graph are two parallel paths of
delivering items to a workstation followed by a machining
operation then shipment of finished parts and tools to the
appropriate workstations. The choice of the actual sequence can
then be made by the local control system. In future work, we
envision the planning system being able to sort the graph based on
some criterion such as minimizing tool changes or tolerance
stackup. The menu shows the work elements that can be added to a
process plan. Figure V-3 (b) shows a menu of available options
for modifying the precedence graph and selecting other windows.
The items include cutting links, adding links, editing a node in
the graph, etc.

2.2. Forms Editor

A second tool, the Forms editor, exists for viewing and editing
the procedure specification. The information in this window is
exactly the same as that in the previous section; it is simply
presented to the user in a different format. Both tools use the
same underlying precedence graph representation. Figure V-4 (a)

shows a screen image of the forms editor. The forms editor
consists of 4 panes. The first pane, in the upper left, shows the
procedure specification being edited; it has a title section
giving the name of the work element, and a body showing the

26

Chapter V FUNCTIONS OF MAJOR COMPONENTS Process Planning

Graphics netuo^K Oufrutru

I

+ z:

1

Ob iect description
top

Bottom

Erase screen

Scroll screen
Editor

Group

Refresh
Sort

Read
Procs

Create node
Delete node
Edit node
Link Define

Add node
Copy node

Describe node
Link Nodes

(FETCH_TRfiY) (FETCH_TRflY)

i T
(DELI VER_T RAY) (DELI VER.TRRY)

f
\ E

(RECEI VE_TRRY) (RECEI VE_TR AY)

(mrchTn^lot)

(SHIP TRAY)T
,

(DELI VER_TRAY)

E
(RECEIVE_TRRY)

r
(I NSPECT_LOT)

i
1

'

(SHI P_TRRY)

l
(DEL I VER_TRRY)

(SHI P_TRRY)

i

(DELI VER_TRAY)

PF-CFLL-16
DEBURR_LOT
DELIUER.TRAY
FETCH TRAY
INSPECT LOT
MACHINE LOT
RECEIVE "TRAY
SETUP AREA
SETUP 'TOOLS
SHIP TRAY
STORE TRAY

TAKEDOWN.AREA
TAKEDOWN TOOLS

Figure V-3(a). The Graphic Net Editor, Displaying a Cell Level
Process Plan
The menu lists available work elements.

27

Chapter V FUNCTIONS OF MAJOR COMPONENTS Process Planning

Graphics netuor

(FETCH TRRY)

~T
(FETCH TRAY)

£ , v

(DELI VER_TRRY (DELIVER TR^P)
’— 1-1

Obi ect Operations’

3 W

(SHIP..TRRY)

!

DEL I VER_TRRY)

(RECEIVE TRAY) (RECEIV E

(hbchiwT LOT)

(SHIP TRAY)

f
(DELIVER.TRRY)

" E
(RECE I VE_TRRV)

(INSPECT_LOT)

l
(SHIP_TRRY)

i

(DEL I VER_TRRY)

L i nk
Cut
Edit

Delete
copy

Descr i be

Ovary 1 eu

obiect description
top

I an

:

RfiCHIME LOT

Uho precedes ne:
RECE I UE_T RRY
receiveItrry

Uho f ol 1 ows fie :

SHIP TRRY
SHI P~T RRY

Real object that I represent:
I < RS-UORK -ELEMENT -NRCHIHE.LOT

real parents:
KRS-UORK-ELEHENT-RECEIUE TRRY
« <RS-UORK -ELEMENT -RECE I UE_TRRY

Kcrt btie-*

Erase screen
Scroll screen

Editor

Group

Refresh
Sort

Read
Procs

Create node
Delete node
Edit node
Link Define

Add node
Copy node

Describe node
Link Nodes

Figure V-3 (b)

.

The Graphic Net Editor
Menu shows network editing operations.

28

Chapter V FUNCTIONS OF MAJOR COMPONENTS Process Planning

Procedure Specification
f or

PP-CELL-10

Autogen Step Uork-ETenent Prec-Steps Tine

w0 r ne ncnt rt:Ln ,rr-

fkito&en Step Uork-ETenent

4 FETCH TRAY

Prec Tine Done

MIL 0000:00:01:00 MIL
Done

fop Attribute Value
< < < PROCEDURE SPECIFICATION > > >

-
1 FETCH TRAY MIL 0000:00:01:00 MIL US ID MHS

- 2 DELIVER TRAY (1) 0000:00:01:00 MIL TRAY ID ITRAY-002
- 3 RECEIVE TRAY (2) 0000:00:01:00 NIL TRAY TYPE 4-SECTOR
- A FETCH TRAY MIL 0000:00:01 : 00 MIL TRAY SER NR XYZ002
- 5 DELIVER TRAY (4) 0000:00:01:00 NIL
- & RECEIVE TRAY (5) 0000:00:01:00 NIL
- 7 MACHINE LOT (3 6) 0000:00:01 : 00 NIL
- 8 SHIP IPfsY (7) 0000:00:01:00 NIL
- 9 DELIVER TRAY (8! 0000:00:01:00 NIL
- 10 SHIP TRAY (?) 0000:00:01:00 NIL
- 11 DELIVER TRRY (10) 0000:00:01:00 NIL
- 12 RECEIVE TRRY (11) 8000:00:01 : 00 NIL
- 13 INSPECT LOT (12) 0000:00:01:00 NIL
- 14 SHIP TRAY (13) 0000:00:81 : 00 NIL
- 15 DELIVER TRRY (14) 0000:00:01:00 MIL

AutoGen

H5I w
Step Uork-ETenent Prec Tine

9 DELIVER. TRAY (6) 0000:00:01:00

Attribute Value

US ID MHS
plan id PP-MHS-4
TRAY ID MTRAY-002
plan version 1

TRAY TYPE 4-SECTOR
TRAY SER NR KYE001
LOT ID t i LOT 001
LOT TYPE TOOLS
LOT OTY 1

FROM VUS
TO MHS

Plan Rea. List Header
Graphics Autopen Requirements Redisplay
Clear All Network Pop

Figure V-4(a). Procedure Specification Editor

29

Chapter V FUNCTIONS OF MAJOR COMPONENTS Process Planning

procedure specification. Panes two and three are on the right
upper and lower portion of the screen respectively. They are
examiner panes for the procedure specification. The fourth pane,
lower left, is a menu bar showing other process planning tools
available to the user.

A procedure specification is displayed in pane 1; it shows the
current step number, the name of the work element, the precedence
steps for the work element (those steps that must be done before
this step) , and an estimate of the time it will take for this work
element to complete, followed by two entries labeled done and
autogen. These last two are used to tell the user if all of the
attributes have been given values and whether the node was
automatically generated. The examiner panes are used by the user
to view the details of an individual work element (to look at all
of the current value bindings for a work element's attributes),
and for editing those values. In the examiner pane the user can
also edit the time and precedence steps of a work element. Figure
V-4 (b) shows the available work elements that can be added to the
system.

2.3. Requirements Editor

The requirements editor has exactly the same functionality as the
forms editor but is used for the requirements list section of the
process plan. The look and use of the requirements editor is the
same as the procedure specification editor.

2.4. Header Specification
The header editor is a simple menu containing the current fields
of the header and their current variable bindings. The values can
be edited by selecting the value with the pointing device.
Clicking on the element will allow the user to edit the field.

3. PROCESS PLAN STORAGE

Process plans can be stored in two ways: first, as ASCII text
files on the Lisp machine file system, second, as process plans in
the AMRF database system.

3.1. Local Plan Storage Utilities

The local storage exists on the local file system on the Symbolics
Lisp machine.

30

Chapter V FUNCTIONS OF MAJOR COMPONENTS Process Planning

Procedure Specification
f or

PP-CELL-10

flutogen Step Work-El enent Prec-Steps Tine Done

top

<<< PROCEDURE SPECIFICATION >>>

1

2

3
4

5

6
7

e

9

le
n
12
13
14
15

FETCH TRRY
DELIVER TRRY
RECEIVE TRRY
FETCH TRRY
DELIVER.TRRY
RECEIVE TRRY
HRCHI NE.LOT
SHI P.TRRY
DELIVER.TRRY
SHIP TRRY
DELIVER TRRY
RECEIVE TRRY
INSPECT LOT
SHIP TRRY
DELIVER TRRY

NIL
(1)

(2 !

NIL

ease : aa : ei
6000:00:01
0000 : 00:01
0000 : 00:01

DEBURR LOT
DELIVER TRRY
FETCH_TRAY
INSPECT LOT
HRCHINE_LOT
RECEIVE TRRY
SETUP_RRER
SETUP_T00LS
SHIP_TRRY
STORE_TRRY

TRKEDOUN AREA
TRKEDOUN TOOLS

••60 NIL
: 00 NIL
: 00 NIL
: 00 NIL
00 NIL
00 NIL
00 NIL
00 NIL
00 NIL
00 NIL
00 NIL
00 NIL
00 NIL
00 NIL
00 NIL

Plan Req. List. Header
Graphics Autcqen Requirements Redisplay
Clear All Network Pop

Step 4 UprK Element FE’CH 1
F-

fiutoGen Step Uork-ETenent Prec Tine Done

4 FETCH. TRRY NIL 0000:00:01:00 NIL

Rttr i bute Value

MS II)

TSRY IE
TRRY TYPE
TRfvTSER NR

NHS
IITRAY-002
4-SECT OR
KfZfc82

5t?r~>5 LorTT'iet^nt LCLTUK TPflV

fiutoGer: Step Uork-El enent Prec Tine Gene.

9 DELIVER. TRRY (6) 0000 : 00 : 01 : 00 NIL

Attribute Vel ue

US ID nhs
PLAN ID pp-hhs-4
TRRY ID JITRRY-002
PLAN VERSION 1

TRRY TYPE 4-SECTOR
TRRY SER NR KYZ0E1
LOT ID MLOT001
LOT TYPE TOOLS
LOT QTY 1

FROM vus
TO NHS

Figure V-4 (b)

.

Procedure
Menu shows

Specification Editor
available work elements.

31

Chapter V FUNCTIONS OF MAJOR COMPONENTS Process Planning

3.2. Database Access Utilities

Currently, the database access facilities are only used by the
planning system for storage and retrieval of process plans in the
ASCII file format.

4.

PART MODELLING MODULE

The process planning system has the capability to read and create
an internal representation of a part from the AMRF part model
format. This representation is used by the process planning
system to determine the machining sequence and requirements of the
part to be fabricated within the AMRF.

5.

PARSERS AND GENERATORS

Parsers have been developed to create internal representations of
both process plans and part models. Care was taken when
developing the parsers to separate the low level character reading
and manipulation functions from the larger language specific
elements. The same code is used as much as possible by both the
process plan and part model parsers. Similarly, a set of tools
has been developed for writing the internal representation of both
the process plan and part model out to ASCII files.

6.

EXPERT PROCESS SELECTION MODULE

The final tool to be described in the process planning system is
an expert process selection that has been developed in
collaboration with Texas Instruments and University of Maryland.
The system is known as SIPS for Semi Intelligent Process
Selection. Using features obtained from the AMRF part model or
defined within SIPS the system will reason about the process or
set of processes that will be best suited to fabricate the
feature. Figure V-5 shows a screen image of the graphics
interface of the SIPS system.

32

Chapter V FUNCTIONS OF MAJOR COMPONENTS Process Planning

Figure V-5. SIPS (Semi Intelligent Process Selector) Showing
Successful Machining Sequence for Creation of a
Hole

33

Chapter VI IMPLEMENTATION Process Planning

VI. IMPLEMENTATION

1. OBJECT-ORIENTED PROGRAMMING

From the beginning of the process planning project within the
AMRF , it had been known that a large portion of the development
would ultimately be implemented using expert systems or other
artificial intelligence approaches. This approach is necessary
because of the large number of decisions which must be made, often
from incomplete information. For this reason, the computer chosen
as the main development station was a Lisp machine. The environ-
ment provided by a Lisp workstation provides useful tools which
dramatically increase the productivity of a programmer. These
tools include the ability to examine, in detail, every data
structure used by the system. Another important feature offered by
the environment is object oriented programming. An object oriented
approach to programming allows a great deal of flexibility and
modularity in tackling a problem. By virtue of the inheritance
mechanism of objects, computer code can be re-used many times by
different modules. Further, it becomes possible to rapidly
generate extremely powerful capabilities by inheriting behavior
from other objects. On the Lisp machine, an object oriented
approach is used to control the window environment, menus, mouse
interaction, as well as any application models written by the
user. All of these features and the interpretive nature of Lisp
create a development environment which allows rapid development of
prototype systems.

The terminology for objects in the Zetalisp dialect used in the
process planning system is as follows. The specification of the
behavior of a set of objects is known as a flavor. A flavor
definition identifies which other flavors are inherited, what
local variables exist, (called instance variables) , and what
initialization actions should occur. In addition, the behavior of
a given flavor can be specified in terms of methods. Once a flavor
and its methods are defined, an instance of the flavor can be
created. This is called instantiation. An instance corresponds to
a member of the set defined by the flavor. Thus, a single flavor
can have any number of instances. All instances of a given flavor
have the same instance variables and methods, but the variables
can have different values. Finally, any flavor may inherit the
instance variables and methods of any other combination of
flavors. Further information on flavors can be found in [5]. In
the remainder of this text, it is assumed that the reader has some
familiarity with the concepts of object oriented programming.

35

Chapter VI IMPLEMENTATION Process Planning

2. CAPABILITIES DATABASE

Before a process plan can be created, there must be a
specification of the factory capabilities and of the shop floor
configuration. The planning task consists essentially of
programming in terms of work elements for the equipment present in
a factory. Thus, there was a need to create tools to allow the
specification of a factory in terms of its components and their
capabilities. It was felt that these tools should allow the
reconfiguration of a factory and specification of new equipment,
(or workstations or cells) , and new capabilities, all without
having to write any code. Thus, much attention was given to having
a convenient, intuitive user interface to allow the entry of this
data

.

2.1. Shop Floor Configuration

Figure VI-1 shows a view of the screen presented when using the
configuration tool. In the early phases of development, this tool
was called the Choice Tree tool, since it presented the list of
work element choices available for each piece of equipment. While
this name is no longer particularly valid, many references to it
can be found within the code. The configuration tool can be
considered a graphical interface to a database. The database
contains a description of every entity on the shop floor which is
capable of interpreting process plans in the standard AMRF format.
It identifies the control links between these entities, classifies
them according to the AMRF hierarchy, and, most importantly,
identifies the work elements understood by each of the
controllers. This tool serves as the dictionary for plan creation
and editing. The configuration tool has the capacity to store any
number of alternative shop floor configurations, which are called
worlds by the system. Thus, before beginning a planning task, the
appropriate world is loaded into the configuration tool to
identify the factory being programmed.

2.2. Work Elements

When specifying a new work element or editing an existing one, the
configuration tool will invoke a secondary tool called the work
element editor, shown in Figure VI-2. This tool displays the
current definition of the work element being edited or created.
Each field is mouse-sensitive and can be altered at will. In
particular, the fields labelled "User Property" identify the
parameters necessary for the successful execution of a work
element. These are specified in terms of attribute-datatype pairs.
The attribute name can be anything. The datatype field must be a

member of the defined datatypes provided by the work element
editor. The valid types are presented in a menu. The fields
"Autogen Nodes" and "Autogen Header" are no longer used but are

36

Chapter VI IMPLEMENTATION Process Planning

Figure VI-1. Facility Editor

37

Chapter VI IMPLEMENTATION Process Planning

Editing: Rs-work-element machme_lot
Top Top

al locate.tray Rutogen Modes*: Set: MIL Global^tame
deallocate tray Rutogen Header*: MIL
debui-r lot fiutogen Ronts* : Sot: PLRN ID LOT ID US ID TRflV.ID KIT_ID Atnlbttt-fxrm*

del iver,tray T1ne«: 0000:00:01:00
f etch_tray User Property: Trip!*: US ID WORKSTRTIOM-ID Set: Token
f ooba«— lot User Property: Triple: PLRM ID PLRM-ID Set: Token

Inspect, lot User Property: Trip to: LOT ID LOT-ID Sot: Toktn

1 oad_tray User Property: Triple: L0T_QTY MUMBER Set: Token

nach i ne_ 1 ot User Property: Triplo: PLflM UERSIOh IMTEGER Sot: ToKon
prep_ 1 ot User Property: Triple: LOT TYPE SYMBOL Set: Token

process batch User Property: Triple: TRPY ID TRRY-ID Set: Token

rece i ve_tray User Property: Triplo TRPY TYPE TRRY-TYPE Sot:Tokox
setup_area User Property: Triplo: TRfiY_S£B MR SYMBOL Sot: ToKtn
setup_tool

s

User Property: Triple: KIT_ID KIT-ID Set: Token
shi p_tray User Property: Triplo: Attributo-hamo Dctv-typ* Sot: ToPtn
store_tray
takedoun_area
takedoun_too 1

s

unload.tray

Bottom Bottom

Help Edit Save Create View Copy Flavor Delete List Quit

Rttrlbute: User Property
Description: On attribute nsre field plus user-defined fields.
Type a Rt tr i bute-nane

.

(Type PE TURN to end the entry, RBQVT to leave it as it is.)

ptiect descr iot >or,

top

Bct:o-n

Figure VI-2. Work Element Editor

38

Chapter VI IMPLEMENTATION Process Planning

maintained for backward compatibility with a pre-release version
of the software. The "Autogen Rqmts" field is used to identify
those attributes whose values correspond to hardware or software
which should appear in the requirements list. It should be noted
that only attributes with a datatype ending in "-ID" are eligible
to be automatically included in a requirements list. This is
because the "-ID" suffix is used by convention to identify
entities which have a corresponding requirement flavor definition.
The "Time" field should contain an estimate of execution time for
a work element.

When a work element has been defined, a flavor is automatically
created with the appropriate instance variables and methods.
During process plan creation, these work element flavors are
instantiated to form the nodes in the process plan precedence
graph.

3. PROCESS PLAN PRECEDENCE GRAPH

To manufacture a part using the AMRF hierarchical approach, a tree
of individual process plans must exist. This tree consists of
plans for each level in the AMRF hierarchy; i.e. Routing Slips for
cell control, Operation Sheets for workstation control, and
Instruction Sets for equipment control. This collection of plans
(a "meta-plan") is represented within the planning system as a
network of linked flavor instances, as shown in Figure VI-3. Each
meta-plan contains an instance of the flavor "Plan" , which the
system uses to reference the meta-plan. The plan instance has
pointers (implemented as instance variables) to other objects,
notably one or more "Routing Slips". Each routing slip refers to
zero or more "Operation Sheets", and each operation sheet refers
to zero or more "Instruction Sets". In addition, each routing
slip, operation sheet or instruction set points to a "Header"
object, a "Procedure Specification" object and a "Requirements
List" object. The instruction set objects also point to an "End
Node" which is also pointed to by the original plan object.

The procedure specification object is itself the head of a
precedence graph which describes the sequence of operations to be
performed in a given process plan. A diagram of the structure of
the procedure specification graph is given in Figure VI-4. As can
be seen in the figure, each procedure specification begins with an
object called Proc-Specs, and ends with one called End-node. The
distinct beginning and end to the graph allow unambiguous
traversal of the graph during an editing operation. Between the
beginning and end nodes, any number of work element nodes can
exist. A similar structure exists for the requirements list,
where a work element node is replaced by a requirement object.

39

Chapter VI IMPLEMENTATION Process Planning

Proc-Specs

Rqmts-List

Proc-Specs

4

1 f

Operation-Sheet

i t

Instruction-Set
*

4

End Node^j

Is-Header

Instruction-Set . • •

Figure VI-3. Network of Process Plans and Their Elements

40

Chapter VI IMPLEMENTATION Process Planning

Figure VI-4. Structure of Procedure Specification

41

Chapter VI IMPLEMENTATION Process Planning

3.1. Editing the Precedence Graph

In order to maintain some modularity within the planning system,
attempts were made to separate the internal modeling of a process
plan from the user interface functions needed to allow human
editing of the plan. To accomplish this, a supervisor object was
created to control the flow of editing commands to a plan network.
The flavor inheritance graph for the supervisor is shown in Figure
VI-5. The flavor which is instantiated to perform the duties of a
supervisor is "Plan-Sup". It maintains a record of the current
plan being edited, the level within the AMRF hierarchy of the plan
and other bookkeeping information. These capabilities are
inherited from "Bookkeeping-Mixin" . When a user wishes to alter a
plan, a request is sent from the user interface code to the
supervisor to perform the necessary alteration. It is the job of
the supervisor alone to maintain consistency of a plan and to
perform the actual alterations to the internal model. In this way,
the user interface system has a set of specific messages it can
use to accomplish changes, leading to a well-defined, controlled
environment. This approach proved to be particularly important in
a team programming environment, where one team member is usually
unaware of the details of implementation of another member's code.

4. INTERNAL PART MODEL REPRESENTATION

The planning system has the capability of maintaining an internal
representation of a part, as represented in the AMRF part model
format. This internal representation is not a full solid model of
the part, but it does contain all pointers between connected
faces, edges, vertices, tolerances and features. This information
is accessible to the planning system by querying the object which
is the value of the variable "plan: *part*" . It is this
representation which allows an expert system such as SIPS to
automatically generate process steps when given a feature
description. The feature is identified by the feature-id from the
part model file. The planning system parses the part model file if
necessary, prepares the description of the needed feature from the
internal model, and hands it to SIPS.

5. DATABASE FACILITIES

A major function of the process planning system is to store and
retrieve process plans from a database of plans. In the current
system, plans can be stored and retrieved from either a local file
system, or via the network from the IMDAS . To accomplish the
latter, several protocol layers are needed. The plans and the
database requests are handled using the TCP-IP medium over the
ethernet, with the Nfile protocol developed by Symbolics, Inc. On
top of this layer, the system uses common memory, described in
section 5.1.2. The Symbolics machine itself does not directly

42

Chapter VI IMPLEMENTATION Process Planning

Figure VI-5. Flavor Inheritance Graph for the Supervisor

43

Chapter VI IMPLEMENTATION Process Planning

support the AMRF common memory implementation. Rather, it
communicates with a Sun-3 workstation using Nfile, and the Sun
handles all the common memory manipulations, reporting back to the
Lisp machine. This approach was adopted for ease of
implementation, rather than elegance. Layered over common memory
is the mailbox protocol, which is simply a formatted common memory
variable. Finally, Data Manipulation Language (DML) requests are
placed in mailboxes to communicate with the distributed database
system.

5.1.

Protocols

5.1.1. Nfile

Nfile is a file transfer protocol developed at Symbolics, Inc. as
an alternative to TCP-FTP (Transmission Control Protocol-File
Transfer Protocol) . It is a token-based protocol which works with
TCP-IP as well as other media. For the implementation within the
AMRF, an Nfile server implementation was installed on a Sun
workstation to allow for transactions between the Sun and the
Symbolics. This was done to enable process-to-process
communication between the two machines. Such communication was not
possible using the TCP support normally sold for use on the
Symbolics machine. New services defined between the machines
include Mdb_initialize_or_startup" , "db_access" and "db_status n

.

The first performs the University of Virginia startup calls for
configuration management [9], the second handles the actual
database calls, and the third is used to query common memory for
the status of any previous database transaction.

5.1.2. Common Memory

The common memory system currently runs on a Sun workstation to
support the planning system running on the Symbolics machine. The
implementation is such that the requests come from the Symbolics
via Nfile as mentioned above. The Sun server performs the
necessary common memory mailbox declarations (declaring mailboxes
named "DS_PP_CMD H and "DS_PP_STS") and reads and writes to these
mailboxes. The common memory implementation looks identical to
other Sun implementations of common memory elsewhere in the AMRF.
The entire Sun server process is started by running the executable
/usr2/nfile/nfiled as super-user. This must be done before
invoking any database queries from the Symbolics. The file
"db_access .

h" contains the name of the common memory manager host
which will be supporting the common memory. If this is changed, a

new executable must be linked.

5.1.3. DML

44

Chapter VI IMPLEMENTATION Process Planning

The DML transactions used by the planning system are in accordance
with the DML specifications described elsewhere in the AMRF
documentation set. The queries used are SELECT and INSERT although
nothing should prevent other queries being used in the future.
Because of the large size of process plans, the plan text is
communicated to the database via files, rather than putting it in
a mailbox. Thus, the DML queries are stored in mailboxes but refer
to normal files where the plans themselves are stored. These files
reside on the Vax 11/780 system. The two files of particular
importance to the planning system are "/user1/ray/db_buffer" and
"/userl/ray/db_out" . The former is used for storing plans into the
database, while the latter is used for plan retrieval. Thus, to
store a process plan in the database, the planning system first
transfers the text of the plan to the file "db__buffer" . Then it
places a DML request in the mailbox DS_PP_CMD requesting an INSERT
operation, referring to the file "db_buffer" . The database status
is read from the mailbox DS_PP_STS. Conversely, when retrieving
plans, a DML SELECT message is placed in the command mailbox, then
upon successful completion, the plan is read from file "db_out".

6 . USER INTERFACE

A significant amount of work went into the development of an
intuitive user interface design to support the planning system.
This was deemed important since ultimate users may not have much
computer experience. Thus, at all times, the user is shielded from
actually editing Lisp code. Indeed, the actual language used for
the implementation is not readily identifiable from the users
point of view. Examples of the screens presented to the operator
are shown in Figures VI-1, VI-2, VI-6 and VI-7. Details of the use
of all of these screens are given in the Users Guide [1]. The
general philosophy was to rely heavily on mouse interaction and
graphical displays to represent plans, work elements, workstations
and equipment.

45

Chapter VI IMPLEMENTATION Process Planning

N B S D A P P
RriRF PROCESS PLANNING SVSIEn

top

RENU
CREATE NEU PART
READ IN PART

READ IN PLAN LOCALLY
READ IN PLAN FROfl DB
DB DIRECTORY LIST

ERASE DISPLAY
RESET NETWORK

HELP

Bottom

STFiIliS HI h!‘Qh

Figure VI-6 Process Planning System Operations Menu

Chapter VI IMPLEMENTATION Process Planning

Step 7 Upn k E'erent HRCHINE LOT

for
-

flutoGen Step Uork-Elenent Prec Tine Done -

PP-CELL-10
- 7 HRCHINE.LOT (3 6) 0000:00:01:00 NIL

Rutogen Step Uork-E 1 enent Prec-Steps T ine Done : ;

'

top Attribute Value
<<< PROCEDURE SPECIFICS! I ON > > >

• *
• •

-
1 FETCH TRAY NIL 0000:00:01:00 NIL US ID VUS

- 2 DELIVER TRRY (1) 0000:00:01:00 NIL PLAN ID PF-VUS-9 -

- 3 RECEIVE TRAY (2) 0000:00:01:00 NIL LOT ID l*LOT001 ; ;

- A FETCH TRfiY NIL 0000:00:01 : 00 NIL LOT OTY 1
' r -

.

*

- 5 DELIVER TRAY (4) 0000:00:01:00 NIL PLAN VERSION 1

- 6 RECEIVE TRRY (5) 0000:00:01:00 NIL LOT TYPE CRH-CLEVIS
- 7 HRCHINE LOT (3 6) 0000:00:01 :00 NIL TRfiY ID HTRRY-001 ;

- 8 SHIP TRRY (7) 0000:00:01:00 NIL TRFIY TYPE 4-SECTOR
- 9 DELIVER TRRY (8) 0000:00:01:00 NIL TRRY SER NR XYZ001 r - •

- 10 SHIP TRRY (7) 0000:00:01:00 NIL KIT ID MKIT001 . . : . .

- 11 DELIVER TRRY (10) 0000:00:01:00 NIL
r
;'

2

• :

- 12 RECEIVE TRfiY (11) 0000:00:01:00 NIL
- 13 INSPECT LOT (12) 0000:00:01:00 NIL
- 14 SHIP TRfiY (13) 0000:00:01:00 NIL - •- -

15 DELI VER.TRflY (14) 0000:00:01 : 00 NIL '

Step 5 Uork Elenent DELIVER TRRY

RutoGen Step Uork-El enent Prec Tine Done

- 5 DELIVER. TRfiY (4) 0000:00:01:00 NIL
: :• ii

fit tr i but

e

UaT ue .

US ID HHS
plrn ID PP-HHS-3
TRRY ID JJTRRY-022
PLRN version 1

TRRY TYPE 4-SECTOR
TRRY SER NR XYE202
LOT ID J*uOT0e2
LOT TYPE TOOLS
LOT OTY 1

FROM HHS

Bottorr,
TO VUS

Pier Req. Lis t Header ;
:•

Gras-i cs Autogen Requirs-risTts Redisplay
Clear £11 Network Pop

Figure VI-7. Procedure Specification Editor

47

Bibliography Process Planning

[1] Ray, S., "NIST - AMRF Process Planning System - User's Guide 11
.

NIST internal report, 1989.

[2] Hopp, T.H., "AMRF Database Report Format: Part Model", NBSIR

87-

3672, National Bureau of Standards, Gaithersburg, MD, September
1987.

[3] Chang, T. and Wysk, R. "An Introduction to Automated Process
Planning Systems ." Prentice-Hall, Englewood Cliffs, New Jersey,
1985.

[4] Hummel, K. , Brooks, S., "A Structure for the Representation of
Manufacturing Features in the XCUT Process Planning System "

,

Proceeding of the 1986 Winter ASME Conference, Anahiem, Califor-
nia, December 1986.

[5] Nau, D.S. and Chang, T.C., "Hierarchical Representation of
Problem-Solving Knowledge in a Frame-Based Process Planning
System " , Journal of Intelligent Systems, Vol. 1 (1986).

[6] Libes, D. and Barkmeyer, E., "The Integrated Manufacturing
Data Administration System (IMDAS) - An Overview". International
Journal of Computer Integrated Manufacturing, Vol. 1, No. 1,
January 1988.

[7] McLean, C.R.

,

AMRF Systems Architecture Document, Draft
Technical Report, National Bureau of Standards, (1986)

.

[8] Symbolics Reference Manual Volume 2a, Symbolics Inc. (1986)

.

[9] O'Halloran, D.R. and Reynolds, P.F., "A Model for AMRF
Initialization. Restart, Reconfiguration, and Shutdown." NBS/GCR

88-

546, May 23, 1986

48

Appendix A RELEVANT PUBLICATIONS Process Planning

This Appendix lists a selection of relevant published papers
supporting the process planning project in the AMRF. The titles
are:

"Interactive Process Planning in the AMRF" by Brown and McLean.

"A Knowledge Representation Scheme for Processes in an Automated
Manufacturing Environment" by Ray.

"Research Issues in Process Planning at the National Bureau of
Standards" by Brown and Ray.

"Hierarchical Abstraction of Problem-Solving Knowledge" by Nau.

A-

1

Interactive Process Planning in the AMRF

Peter F. Brown
Charles R. McLean

Factory Automated Systems Division
Center for Manufacturing Engineering

National Bureau of Standards
Gaithersburg, MD 20899

Presented By:

Peter F. Brown
Charles R. McLean
ASME Winter Annual Meeting, Anaheim, California
December, 1986

Bibliographic Reference:

Brown, P. F. , McLean, C. R. , "Interactive Process Planning in
the AMRF", Bound volume of the 1986 ASME Winter Annual Meeting ,

Anaheim, CA, December 1986

A-2

INTERACTIVE PROCESS PLANNING IN THE AMRF

Peter F. Brown
Charles R. McLean

Factory Automation Systems Division

Center for Manufacturing Engineering

National Bureau of Standards

Gaithersburg, MD 20899

ABSTRACT

As more intelligent automated control systems are introduced into discrete parts

manufacturing facilities, it will become increasingly difficult to maintain the centralized

process planning systems in use today. A new approach is required that will permit

distributed manufacturing operations planning via a network of cooperating, intelligent,

process engineering systems. There are a number of reasons why manufacturing process

decisions should be made locally by planning modules that are fully aware of a controller’s

current or expected capabilities. Expert planning modules should be developed for each

controller or class of controllers that are or will be used in manufacturing installations.

To accomplish this goal of distributed, intelligent planning modules, work has started

with the development of a semi-automatic interactive process planning system. This system

has several unique features. First, a hierarchical planning system has been developed for

multi-level factory architecture. Second, all activities within the factory are described by

work elements. A work element is an activity at some level of the factory for which there are

well- defmed constraints. Third, standard interfaces have been defined to allow the passing

of information between planning modules and controllers. These interfaces are used for the

organization of the data and not for the data itself. Fourth, a semi-intelligent editor for the

manipulation of these process planning data structures. These tools include editors for

defining work elements and manipulating the process planning data structures. A graphic

network editor is used for defining the "Precedence Graph" of a process plan. All system

editors are based on windows and menu selections.

Interfaces to factory-wide databases for retrieval of information, such as raw stock

and tooling, and CAD/Solid Modeling databases are under development. This last interface

will serve three purposes: 1) the input of the initial part geometry to be manufactured, 2) the

verification of changes to pan geometry by the process engineer, and 3) the storage of

intermediate geometries to be passed to other factory systems (inspection, machine tools,

robots, vision systems, etc.). This paper describes research efforts at the National Bureau of

Standards (NBS) by the staff of the Distributed Automated Process Planning System

(DAPP) project to define and test this information processing architecture in the machine

shop environment of the Automated Manufacturing Research Facility (AMRF).

A-3

1. INTRODUCTION

In designing a process planning system for the AMRF, the primary issue was not

whether the system should employ variant or generative techniques. The most important

concern was to identify the fundamental architectural concepts that would best support

process planning in a small batch manufacturing facility where all production operations are

under direct computer control. Important research questions deal with the functional

relationships and the data interfaces between manufacturing control and planning systems:

1) How should planned tasks be specified to controllers? 2) How should alternatives be

described? and 3) What formats should be used to pass data between the planning system

and the controllers? The AMRF project involves developing a testbed for factory automation

research to define and test the system interfaces between modules like process planning,

geometric modeling, manufacturing control, data administration, network communications,

and other factory subsystems. Within the AMRF, process planning is designed to be one of

the primary programming tools of the factory. This paper describes the efforts of the AMRF
process planning project to define robust interfaces to support both the future development of

interactive process engineering tools and automated intelligent process planning systems.

Current Philosophies in Process Planning

There are two basic types of process planning systems in use today: variant and

generative. Variant planning systems are based on a library of standard plans for different

part families that a process engineer retrieves and edits, creating "variants" of basic plans.

Generative planning systems employ expert system concepts, they reason using embedded

knowledge and problem solving techniques to develop new plans. For a more detailed

discussion of the state of the art of computer-aided process planning systems, see Chang

and Wysk [1].

Variant systems typically rely on group technology classification and database

management systems for their implementation. Standard process plans are developed for

each family of parts produced and are stored in the database. When a new part enters the

system, it is first classified by part family. The part classification code is used as a key to

select a copy of the appropriate default plan from the database. This copy is then modified to

reflect the specific processing required due to the unique characteristics of the new part. If a

plan does not exist for the part’s family, then a new default plan is created by an experienced

process engineer and stored in the database system.

The technology that is required to implement this type of process planning system is

readily available on main frame as well as personal computer systems. Indeed, almost all of

today’s commercial process planning systems employ variant techniques. With this approach

most knowledge resides in the mind of the process engineer, the computer serves mainly as

an organizing tool. Although intelligent generative systems are often more desirable, there

are significant benefits that can be obtained from the variant approach. The development of a

variant system forces an organization to study and classify the activities that it can perform

in order to understand the part families it can produce in its shop. This exercise, in turn,

reveals the kinds of equipment and labor skills that the shop really needs. But, there are

some limitations in the variant approach. It can often be impractical if the shop produces

small batches of widely varying parts. More time has to be spent defining new part families

A-4

and modifying default plans. Furthermore, it does not capture the real knowledge or expertise

of process engineers. The generative approach to process planning does address these

issues.

The main thrust in process planning research today is in the area of generative

systems, for some examples see [15,17]. In these systems, artificial intelligence is used to

automatically create a plan for a new part An expert problem solving system uses an

internal process knowledge base and part specific data to generate new plans. This approach

requires that a full product definition or part model is encoded in the system in a form that is

accessible by the expert system software. This model should include geometry and topology,

a tolerance model, and information about the functionality of a part. The knowledge base

contains information gathered from process engineers on the how and why of making process

decisions for various types of parts. Decisions are often keyed to the different types of

features that are typically produced on parts. With this approach, the knowledge base

becomes a repository of knowledge gained from the many years of experience of many

process engineers. It also permits the separation of the process knowledge from the part

data, facilitating data driven automation.

To date, fully generative process planning has proved to be an elusive goal, but there

are some signs of progress. The biggest problems have included the representation of

features (pocket, slots, holes), processes (drill hole versus bore hole), and sequencing

information (make pocket before hole). Furthermore, the outputs produced by process

planning systems are non-standard. That is, the organization of data into forms or structures

such as routing and operations sheets differs from system to system. As a general rule,

plans are meant to be interpreted by human readers, rather than by automated control

systems. In the future, it will be essential that process planning interact more closely with

automated control systems. Major questions with respect to the inputs and outputs of

process planning systems must be resolved before fully computer-integrated intelligent

manufacturing systems become a reality.

The AMRF process planning project is tackling questions that concern the

fundamental role of process planning in automated manufacturing facilities. Important areas

to be addressed include: 1) the definition and parameterization of activities or processes, 2)

the development of standard definitions for both design and manufacturing features, and 3)

the establishment of a data representation scheme that can be used to organize and

exchange information between planning, control and other factory systems. The AMRF
process planning project has developed a number of workable solutions in these areas.

AMRF Process Planning Concepts

A primary goal of Automated Manufacturing Research Facility (AMRF) which has

been established at the National Bureau of Standards (NBS) is to develop a small batch

manufacturing system to support research and experimentation in automated metrology and

interface standards for the factory of the future [2,3,4,5, 6]. Since process planning is

expected to become one of the primary tools for programming automated factories, its system

interfaces are of great interest. Unfortunately, the conventional views and implementations

of process planning systems are inadequate to support such a factory. The research

approach at NBS focuses on identifying basic concepts that would support the integration of

A-5

process planning directly with the software and hardware of manufacturing process control

systems.

Presently, the AMRF is comprised of six manufacturing workstations which perform

both production and support functions. Each of the three machining workstations has a

numerically controlled machine tool, a robot manipulator, flexible part fixturing systems and

local storage for tools and materials [7,8]. Another station, cleaning and deburring, has two

robots, cleaning equipment, and buffing wheels. The inspection workstation contains a robot,

a coordinate measuring machine, and surface roughness characterization device. The last

workstation level system, the material handling system [9], consists of two automatically

guided vehicles (AGV), trays for parts and tooling, a storage and retrieval system, tray

roller tables in the workstations, and a tender area for manual support activities. Finally, all

workstations have a controller consisting of one or more small computer systems and

associated software.

Other major factory systems found within the AMRF include: a cell control system,

user interfaces for design and modeling, process planning and off-line programming systems,

a data administration system and a communications network. The major difference between

the systems found in the AMRF and in conventional advanced manufacturing systems, is the

number of different systems vendors involved. Manufacturing subsystems were consciously

chosen from many different vendors to shed light on the "plug compatibility" problems that

would be faced by industrial system integrators.

A major effort is underway within the AMRF to integrate the factory systems,

identified above, into a single automated manufacturing environment. This integration will be

accomplished using some of the hierarchical task decomposition techniques and real-time

sensory interactive control concepts originally outlined by the robotics project at NBS [5,18].

With this approach, all control modules are arranged in a hierarchy. Each controller takes

commands from only one higher level system, but it may direct several others at the next

lower level. Long range goals enter the system at the highest level and are decomposed into

subgoals to be executed at that level or passed down as commands to the next lower level.

Status information, based on real-time sensory data collection, is generated at each level

and is passed up as feedback to the next higher level. The preparation of planning data, that

will enable these hierarchical control systems to achieve their goals, is the primary role of

process planning.

The AMRF process plan data structures are intended to be generic so that they can

be used in a variety of manufacturing organizations from small shops to large factories.

Process plan data structures have been defined, using formal language specification

techniques, that can be transmitted electronically between planning and control computers.

Although the formats are quite readable, they could easily be enhanced by print formatting

routines to be made more suitable for human interpretation and execution.

By defining standard process planning data structures, an organization will be able to

develop planning systems in a modular fashion. An interactive plan editing system can be

developed initially. Later expert planning modules can be added without a change to basic

data formats or execution system architectures. Another important benefit of standard data

structures is that it permits the implementation of planning systems by multiple independent

A-

6

developers. It will also allow for the design of intelligent control systems that will be able to

accept these standard process plans. By taking this approach, many organizations may be

able to participate in the development of planning and control systems. Each developer could

focus his efforts on developing specialized intelligent planning capabilities, building upon the

programming work of others.

Our approach has focused on first defining process planning data structures that could

eventually be used to construct a distributed generative process planning system. Such a

system would involve the dynamic interaction between intelligent planning and control

systems at each level within the AMRF. A number of interface issues between the planning

and control systems must be resolved. Some of the interface issues that fall within the realm

of the process planning project include: 1) the development of a feature-based representation

of part geometry to be used as an input to process planning, 2) the specification of a plan

syntax to be used as a neutral file format for transferring plans out to target control systems,

and 3) the definition of basic work elements, i.e. generic or specific manufacturing activities

that each control system is capable of executing.

The work element is the basic procedural entity in the AMRF planning and control

system. The work element is a function or activity which is carried out by a manufacturing

control system at a particular level in the factory hierarchy. A work element has a name, a

set of parameters, a duration, and a list of precedent steps numbers. The numbers identify

the steps in the plan that must be performed prior to this one. Work elements are

parameterized and organized into procedure specifications within process plans. The
parameters of complex work elements, usually performed by higher level systems, refer to

lower level process plans. These process plans specify the decomposition of the complex

activity into simpler work elements supported at the next lower level in the hierarchy. Within

controllers, work elements are implemented as subroutines that carry out error checking,

database transactions, as well as physical changes to the manufacturing environment.

Generic Data Interfaces

A major goal of the AMRF project is the identification of generic functions and data

structures for advanced manufacturing systems that could be used as a basis for the

development of industry-wide interface standards. Generic interfaces, which are relevant to

process planning, have already been defined and implemented within the AMRF to support

interaction between a diverse set of applications processes. A communications mailbox

protocol has gives AMRF applications processes access to each other over the

communications network [10]. A control command-status protocol [10] has been developed

which provides a means by which supervisory controllers can assign production work orders

to subordinates and receive feedback status. A work order management system, described in

[10], has been implemented in which process plans are used to specify the decomposition of

complex jobs into simpler tasks [10]. A level independent neutral process plan file format

has been developed for transferring this data between planning and control systems [12].

Process plans are deposited in a common database for later retrieval and execution by

automated manufacturing control systems. A generic interface to the common database [13]

has been created to give control systems ready access to required data, such as: command
and status messages, work orders, process plans, control programs, geometry descriptions

and other reference data.

Although there are many differences between the automated control systems found at

each major level in the AMRF hierarchy, they all seem to have some functions and

responsibilities that are characteristic of project managers. Hence, project management

concepts have provided a foundation for defining the behavior of planning and control systems

within the AMRF. Project managers, regardless of their level within an organization, tend to

perform some generic planning and execution functions. Typical functions include: 1) work

decomposition or problem reduction -the breakdown of complex activities into a

interdependent network of simpler ones that can be routinely carried out by subordinates, 2)

resource management - the identification, acquisition and allocation of required resources,

and 3) estimation or prediction - the analysis necessary determine project cost, time and

quality trade-offs.

Project managers often use network scheduling tools such as critical path method

(CPM) or program evaluation and review technique (PERT) to define, sequence and monitor

project activities. A detailed discussion of PERT, CPM, and other project management

methodologies can be found in [11]. The data that is typically required by these systems

includes: activity specifications and precedence relationships, resource requirements, time

and cost estimates. With the exception of cost estimates, the process plan file structure is

designed to convey this information to control systems.

A process plan is comprised of four major sections: 1) Descriptive Header - contains

static index and summary data, 2) Parameters - lists all variables for which real values must

be substituted at execution time, 3) Requirements List - identifies all resources to be used

during the execution of the plan, and 4) Procedure Specification - describes all work

elements, their precedence relationships, and their attributes and specific value bindings. The

next sections are devoted to a discussion of the process plan format.

Procedure Specification

The Procedure Specification is probably the most important section of the process

plan, it describes not only all of the activities or work elements to be performed, but gives

information about their order of execution. This information can be represented as a

precedence graph. Figure 1 shows the precedence graph for the machining operation to be

performed on a part. This graph allows the process engineer to explicitly state that some

steps may be done in any particular order, allowing for parallel activities, while other have a

strict sequence or precedence relationships. The nodes of a precedence graph are the work

elements. The graph structure used to represent process plans permits the specification of

alternate activity sequences. Intelligent control systems can use this information to continue

the manufacture of a part when some forms of error conditions arise. The control system can

search through the precedence graph to see what other nodes or step can be performed while

notifying a supervisor of any unresolvable problems, a major step in integrating sensory

feedback with intelligent manufacturing planning and control systems.

The precedence graph in figure 1 represents the process plan for the part shown in

figure 2. Figure 2a shows a pan for which a process plan is to be written; the pan is broken

down into a feature graph [14,15], which defines features (such as pockets, grooves, holes)

and the access. The access defines which features block or cover other features. Once the

features are determined one can define the procedure specification as to how to produce the

A-8

part. Figure 1 shows the order in which we wish to produce the work elements (nodes of the

graph): ESTT, CHAMFER_OUT, POCKET, GROOVE, CHAMFER_IN, HOLE, and CLOSE.
These work elements correspond to the features defined in the feature graph. The precedence

relations, as drawn in the precedence graph, can be inteipreted to mean that after initializing

the machine (TNTT), the next step could be either CHAMFER_OUT, POCKET or

GROOVE, in any order (in the feature graph these features do not interact, so they could be

produced in any sequence). But before either the CHAMFER_IN, or the HOLES, can be

produced, the POCKET operation had to be performed. It is important to point out here that

the holes could have been produced before the pocket, but the process engineer decided that

it would be best to produce the holes after the pocket. Thus the precedence concept is used

to limi t or structure the machining sequence. This graph can now be linearized by various

constraints, such as minimizing tool changes, tolerance stack-up, etc.

This is the highest level that the process engineer will deal with a single part, in

terms of the manufacturing features. These features will then be decomposed into a set of

machining activities that are best suited for the constraints on a feature (such as its

tolerance attributes). Using the previous example the hole feature may be produced by a

simple twist-drilling operation. If the hole feature required tight positional and roundness

tolerances, several machining steps might be needed, such as: center-drill, twist- drill, and

reaming. Using the process planning editor, the process engineer will first define the part

features. Then using an expert process selection module, the features will be decomposed

into a set of machining process steps. The output of the expert system is in the process plan

format [12]. This will allow the process engineer to modify the individual processes, as well

as to monitor the specified processes.

The procedure specification contains the information about the sequence of the

operations to be performed. Work element parameters reference hardware systems and

software data objects used in the performance of a particular process. This information is

consolidated into the Requirements List section of the process plan.

Requirements Lists

The requirements list section contains a list of all the hardware and software needed

to execute the procedure specification we have just described. This structure has a similar

function to that of a bill of materials. When a plan is executed in the AMRF, a controller can

check to see that all items listed in the requirements list are available before executing the

procedural steps of a process plan. This section of a process plan could also be used by the

scheduler to determine that all items are available before the plan is even released for

production. The requirements lists also identifies all other process plans referenced in the

procedure specification.

In an effort to make the process engineers job easier, the generation of the

requirements list can be done automatically. When the process engineer defines a work-

element, there is a procedure for identifying items that will be added to the requirements list.

Upon completion of the procedure specification, the system supervisor will query each node

to ascertain what items it requires to perform its task, and these items are then added to the

requirements list. Currently, there is only minimal checking for duplication of items. After the

system has generated the requirements list, it is available for editing or viewing by the

process engineer.

In the example given in Figure 1, the requirements lists would contain a list of tools,

process plans, control programs (N/C, robot, or inspection), fixtures, robot grippers, etc.

Figure 3 shows the major fields of each entity in the requirements list. The fields are a label,

a descriptive name, a set of attribute-value pairs, and pointers to any sub-elements of an

item. This pointer item is used to describe assemblies or complex items.

Parameters Section

The current implementation of the process planning system is an interactive system,

process plans are prepared off-line. The parameters section allows the engineer to specify in

a symbolic way that a particular item is to be used, but does not actually specify a serial

number (i.e. specify plan variables). In a simple example, the process engineer wishes to

specify that a 1/2" 2 fluted endmill should be used for a milling operation. At the time of plan

creation the process engineer could identify this tool as $$tool- 001 (the syntax of a process

plan has all parameters preceded by $$), and when the plan is being executed $$tool-001

will be replaced by the actual serial number of the physical tool. In this way the process

planner can specify completely how a job should be done without overly constraining the

execution. It permits the passing of information that is useful to the work-element software,

but is not known at planning time, rather only at run-time.

Header Section

The header section contains certain bookkeeping information used to index or catalog

the plan. As the planning system discussed in this paper is dynamic, not all of the entities

listed here are fixed. Several of the fields in the header are used by the data administration

system as keys for retrieval of plans. These fields are PLAN-ID, PLAN-VERSION, PLAN-
TYPE, and PLAN-NAME. In addition there are other header fields that will be used to keep

track of important information such as PROCESS-ENGINEER, PART- NUMBER, GT-
CODE, ENGINEERING-DRAWING-#, etc (See figure 3).

In order to be consistent and save on the duplication of work needed to read process

plans, all levels of process plans use the same internal format. It is important to reiterate

here that these planning structures are used to organize the data, not to limit the specific

data that appears in the process plan. As long as one accepts the process planning data

structures and their associated formats, the user can define or associate any kind of

functionality to work elements that he/she wishes. The next section will discuss the file

format developed to exchange information between planning systems and other systems

(controllers, databases, etc.).

2. FILE FORMAT

As part of interface standards work, a method has been developed for exchanging

process plans between various systems. Using formal language specification techniques

(Backus-Naur), a grammar has been defined for the process plan data structures. Using this

grammar, an ASCII file containing the process plan can be generated (for an example see

figure 3). This file can be passed between various computer systems, translated back into a

control systems internal representation of activities to be performed. It is then used to

A- 10

sequence the part through manufacturing. To test our specifications we have developed and

written parsers in several languages to construct the appropriate data structures. The file

exchange format is quite human readable as we make liberal use of formatting when writing

the ASCII file.

3. PROCESS PLAN HIERARCHY

The same basic structure is used for process plans at all levels of the factory. In the

AMRF, currently only the lowest three levels of control are operational: Cell, Workstation

and Equipment. The names that have been given to the classes of plans at these levels are,

respectively: Routing Slips, Operation Sheets, and Instructions Sets (see Figure 4). The role

of the plans at each level is described in subsequent sections.

Cell Routing Slips

Cell routing slips are used to coordinate the movement and processing of materials,

parts, tools, and other needed items between and at workstations. A brief example will best

illustrate this idea, (see figure 5). In the example the cell control system is told to deliver a

tray of parts and one of tooling to the vertical workstation; the vertical workstation is told to

receive the two trays, then to setup the tooling area, machine the lot of parts, takedown the

tooling area, ship out the trays and, then to finally have the material handling system deliver

the trays to some other AMRF system. Each one of the nodes in the graph represent a work

element. The node MACHINE_LOT will decompose into an activity at the next level in the

AMRF, which is the workstation level. The process planning data package at this level is

known as the Operation Sheet.

Workstation Operation Sheets

The next lower level of factory control is the workstation level. Process plans at this

level are used to coordinate equipment level activities. The MACHINE_LOT work element,

from the previous example, can be decomposed into an entire operation sheet. Figure 6

shows a simple sequence of MOVE_PART, MACHINE_PART, and MOVE_PART, which

would be repeated for the number of parts that are in the lot. MOVE_PART, which is used

for loading a part into a fixture, involves the coordination of the robot, machine tool, and

fixturing system. Finally, this level of the process plan is decomposed into a sequence of

tasks for the equipment to perform. The decomposition of the MACHINE_PART work

element provides a good example of the next lower level, the Instruction Set.

Equipment Instruction Sets

The bottom level of the process planning hierarchy is the Instruction Set. This is a

detailed sequence of operation for an equipment level to perform. The example given here is

the MACHINE_PART work element that is carried out by the vertical milling machine.

Primitive work elements appearing in the Instruction Set describes features such as pocket

and holes that are to be produced. Figure 1 shows the machinable features and machine tool

work elements that make up the part. The example has shown how high level tasks can be

broken down into sucessfully smaller and smaller tasks using the process planning data

structures.

A- 11

4. THE AMRF PLANNING SYSTEM

The specification of a data flow model and neutral data interchange formats was a major step

in the development of the AMRF interactive process planning system. The model of data

flow between planning and control assumes that each controller in the hierarchy retrieves

plans that have been placed in the common database by the process planning system (see

Figure 3). The primary role of the process planning system, in this model, is to provide

interactive tools for generating and storing process plans for new production parts which are

later executed by the control systems. Specified inputs to the planning system include:

process planning work orders assigned by facility control, initial and final part geometry

specifications, definitions of controller work element capabilities, various kinds of reference

data, and the plan editing decisions of a skilled process engineer. Outputs from the planning

system include: work order status information for facility control, graphics displays for the

engineering user, process plans which define manufacturing sequences for each control

system involved in production operations, and part model specifications for each new
intermediate geometry. This section describes the architecture and operation of the current

implementation of the AMRF process planning system.

Lisp. Flavors, and the Lisp Machine

The process planning system was written entirely in Lisp using an object-oriented

programming environment. The development plan called for first building an interactive

process planning system around the work elements and the interfaces to computer control

systems previously described. The more long range goals call for the development of expert

planning modules. A decision was made to develop the system using a Lisp machine so that

it would be easy to upgrade to more expert planning modules. Lisp, the primary language of

the AI community for the development of such systems, has a number of advantages. It is an

interactive language so changes can be tested almost immediately, instead of the edit-

compile-debug cycle of more conventional languages. Tools for constructing friendly user

interfaces, are provided that are mouse and menu- driven. To aid in software development,

there are window and menu- based debugger and inspection tools. A language sensitive

editor and an object oriented programming environment are also provided. As discussed

earlier in the paper, the planning system’s most fundamental concept is the work element,

which is analogous to the operator concept from artificial intelligence problem solving

systems. Each work element has a set of constraints, and when evaluated, makes a

specified state change in the system. For a more detailed discussion of the subject see [16].

These work elements, when linked together, form a process plan which describes how to

make a part. This representation can be supported in a robust way by the use of an object-

oriented environment known as Flavors. In this environment one defines objects, giving

them certain behavior. To activate an object a message is sent to that object asking it to

invoke a method, (a procedure which changes the object data and/or initiates other

messages).

Flavors. Object-Oriented Programming and the Planning System

Earlier we described how a precedence graph is used by the planning system to

represent how manufacturing operations are to be performed. Internally, a directed graph is

used to represent the precedence relationships. Each node in the graph represents a work-

A-12

element, whose precedence relationship is defined between a node’s parents and its

children. In object-oriented programming, each node can be given a behavior, such as how to

act as a node in the network. The current implementation of object nodes includes how to add

or delete oneself within a network, display oneself, modify ones attributes and values, etc.

In the requirements lists section of the paper, the automatic generation of the requirements

was described. This serves as a good way to illustrate the benefits of object oriented

programming. In the methods of a work element is a list of requirements that must be

specified to complete this task. When the process engineer asks the system to automatically

generate the requirements list, an internal supervisor sends the requirements message to

each work- element. They, in turn, respond by sending there requirements to the

requirements-list supervisor. This supervisor then sorts the requirements list checking for

duplicates, etc. In this way we were able to develop software that closely matches the way

people conceptually handle such problems.

The implementation scheme employed also allows for modular system design in the

construction of the user interface. Within the planning editors there are three major modules:

1) the internal data representation (a precedence graph), 2) a supervisor, and a 3) user

interface manager. The process engineer interacts with the interface manager. The IM is a

set of windows that display the current process plan. Items are mouse sensitive (when the

mouse is moved around the screen these items are (highlighted). The user points at an

item, clicks a mouse button, and a message is sent to the active window highlighting the

chosen item. The addition of a new node to the precedence graph is a good example. The

interface manager displays a list of all the valid work elements that the user can choose from.

One of these items is then selected. A message is then sent to a supervisor describing the

transaction to take place (i.e. add a new work element named "Do it" after the fourth step in

the process plan). The supervisor then sends the appropriate messages to the internal data

structures. Each process plan is an individual entity in the Lisp machine, so the supervisor

keeps track of what is the active plan (the one actually being edited) and then it knows

where the update message is to be sent. There is no limit on the total number of process

plans that can be in the Lisp machine, but currently only one is active for editing. When the

user wishes to change to a different plan, the user interface sends a message to the

supervisor asking for the plan. The supervisor then gets from the planning system internals

the list of applicable work elements on this level and the actual plan.

Through a series of transactions, the window is updated with this new plan, and the

work-element that can be added to the plan are then displayed. This scheme was

modularized in order that various modules could be distributed to different computers to

implement a more distributed planning system.

5. SUMMARY

A process planning system has been implemented to demonstrate the concepts

described in this paper. This system is currently being tested and evaluated within the

AMRF. This last section of the paper will describe some of the major tools we have

implemented, current work in progress, and finally the future direction we will be taking.

A- 1

3

Current Implementation

The current implementation of the process planning system has several unique tools

for the development of process plans. As described earlier, the work element is the

fundamental object within the process planning system. The dynamic nature of the AMRF
require an easy to use, flexible tool for creating, editing and viewing the work elements. This

is the work element and requirements database. This data base allows AMRF projects to

defme the work elements and requirements for their workstations and equipment. The tool is

graphically oriented, showing the hierarchy of the facility. Figure 7 illustrates the tool. The

three levels of the AMRF are shown including the equipment associated with each

workstation. The work element choices for the vertical mill are displayed in the menu. The
last tool is a work element template editor. This tool is provided for control system

implementors to defme the work elements their systems can execute.

The output of this system is to generate lisp code to be used by the planning system.

The second major set of tools is for the editing of actual process plans. These tools take

shape in three areas; a top level for storage and retrieval of process plans for particular parts,

a graphical editor for the development of the precedence graph, and a more text oriented tool

for editing the individual values of a work elements attributes. The top level tool for keeping

track of process plans allows the user to read plans in from files, define new process plans,

edit existing plans or browse through all existing process plans. The structure of the system

currently uses part names as the highest level. Each part can be opened to see its routing

slips, operation sheets, and instruction sets. Each item is indented a certain amount to

signify its level within the AMRF hierarchy. This tools resembles a hierarchical file system

in a computer. Once the process engineer selects the plan to be edited there are two tools

that can be used to develop plans. Figure 1 shows the tool referred to as a graphic-net

editor. This tool is used at the more conceptual level of planning to lay out the high level of

tasks to be performed. Another tool is used to fill in all of the attributes of a work element.

This tool has a different set of windows for each of the major process planning internal data

structures, procedure specification, requirements lists, and header section. When the

process engineer is finished editing the process plan, it is written to a file using the file

specification discussed earlier in the paper.

System Interfaces Under Development

There are currently three major subsystems under development, the interface to a

CAD/Solid modeling system, the data administration system (DAS) and the work order

management system. All of these interfaces will be used to obtain information about the

parts to be produced. The solid modeling interface will serve as a tool to get information

about the part geometries to be produced including the dimensional and tolerancing

information. It will also be useful for the process engineer to verify the changes to the part

geometry, and to do high level interference checking against fixture, and other forbidden

volumes. The interface to the DAS will be used to store process plans and to search for

process plans within the DAS. It will also be used by the planning system to obtain

information about the production capacity of the entire facility (obtain tooling reports, etc.).

The interface to the work order management system will provide a tool by the facility level

system to give planning jobs to the process planning system and for the planning system to

report back on the status of process plans.

A- 14

Future Work and Conclusions

This first implementation of the planning system has provided quite a learning

experience for the staff of the process planning project. The use of Flavors, the lisp machine,

development of a file exchange specification, and prototype expert planning systems has

given insight into a number of strengths and weaknesses of our current approach. These

lessons have pointed out a number of areas that need work in future implementations. A
more robust internal representation is needed to allow multiple relationships to exists

between work elements in the precedence graph. We have been exploring using

commercially available expert system shells such as Knowledge Craft, or KEE. These tools

would provide some form of portability across a variety of computer systems. A second

major thrust is to design the planning system to be more closely tied in with control

systems, so that the planning module gives tasks to a controller while exploring possible

alternative paths. A final area of major interest is the development of expert planning

modules. Currently we are testing a interface to SEPS [17] for the work of transforming

features to process steps. We have been enhancing the knowledge base to reflect the

process capabilities of the AMRF, and are using the system as a learning tool for the

development of future expert planning modules.

In closing, we have developed a scheme for implementing an intelligent process

planning system, and for interface this system to control system within the AMRF. With this

information processing architecture, we will be laying the ground work for the next generation

of manufacturing facilities.

Acknowledgment

The author acknowledges the efforts of the following people who contributed to the

design and implementation of the AMRF process planning system: Steve Ray, Diana

Gordon, Brian Drummond, and Mark Unger.

REFERENCES

(1) Chang, T. and Wysk, R.,
"An Introduction to Automated Process Planning Systems ."

Prentice-Hall, Englewood Cliffs, New Jersey, 1985.

(2) Simpson, J.A., Hocken, RJ. and Albus, J.S., 'The Automated Manufacturing Research

Facility of the National Bureau of Standards", Journal of Manufacturing Engineering . 1, Vol.

#1,(1982).

(3) Hocken, R. and Nanzetta, P., "Research in Automated Manufacturing at NBS",

Manufacturing Engineering . 91, Vol. #4, (1983).

(4) Nanzetta, P., "Update: NBS Research Facility Addresses Problems in Setups for Small

Batch Manufacturing", Industrial Engineering . June (1984).

(5) Furlani, C. et al., "The Automated Manufacturing Research Facility of the National

Bureau of Standards", Proc. of the Summer Simulation Conference . Vancouver, BC, Canada,

July 11-13, 1983.

(6) McLean, C., Mitchell, M. and Barkemeyer, E., "A Computing Architecture for Small

Batch Manufacturing". IEEE Spectrum . May 1983.

A- 15

(7) McLean, C.R., "The Vertical Machining Workstation of the AMRF: Software

Integration”, Proceedings of the 1986 Winter ASME Conference . Anahiem, California

December 1986 (Submitted).

(8) Magrab, E., "The Vertical Machining Workstation of the AMRF: Equipment Integration",

Proceedings of the 1986 Winter ASME Conference . Anahiem, California December 1986

(Submitted).

(9) McLean, Charles R., and Wenger, Carl E., "The AMRF Material Handling System

Architecture," Proceedings of the Fifth Annual Control Engineering Conference . Rosemont,

IL, May 1986.

(10) McLean, C.R., "AMRF System Architecture Document", Draft Technical Report,

National Bureau of Standards, January 1986. (11) West, J.D., Levy, F.K., Management
Guide to PERT/CPM,Prentice Hall, Englewood Cliffs, New Jersey, 1977.

(11) West, J.D., Levy, F.K., Management Guide to PERT/CPM . Prentice Hall, Englewood

Cliffs, New Jersey, 1977.

(12) Brown, P., Gordon, D., "Process Plan Data Exchange Format", Draft Technical

Document, July 1986.

(13) Barkemeyer, E., Mitchell, M. (NBS), Mikkilineni, K., Su, S., Lam, H. (Univ of Florida),

"An Architecture for Disributed Data Management in Computer Integrated Manufacturing",

NBSIR86-3312, January 1986.

(14) Henderson, M.R., "Extraction of Feature Information from Three Dimensional CAD
Data", PhD. Thesis, Department of Mechanical Engineering, Purdue University.

(15) Hummel, K., Brooks, S.,"A Structure for the Representation of Manufacturing Features

in the XCUT Process Planning System", Proceedings of th 1986 Winter ASME Conference.

Anahiem, California, December 1986 (Submitted).

(16) Ray, S. "A Knowledge Representation Scheme for Processes in an Automated

Manufacturing Environment", Man and Cybernetics Conference, October 1986 (submitted).

(17) Nau, D.S. and Chang, T.C., "Hierarchical Representation of Problem-Solving

Knowledge in a Frame-Based Process Planning System", Journal of Intelligent Systems ,

Vol. 1, (1986).

(18) Haynes, L., Wavering, A., "Real-Time Control System Software", Proceedings of IEEE

International Conference on Robotics and Automation , Vol 3, 1896.

The NBS Automated Manufacturing Research Facility is partially supported by the Navy

Manufacturing Technology Program.

This is to certify that the article written above was prepared by United States Government

employees as part of their official duties and is therefore a work of the U.S. Government and

not subject to copyright.

A- 16

A- 1

7

Figure

1.

The

Graphic

Network

editor

showing

an

Instruction

Set

for

the

Vertical

milling

machine.

cn

H B S
Feature Graph

A- 18

--PROC ESS_PLAN--~HEADER_SECTION—

PLAN-ID
PLAN-VERSION
PLAN-TYPE
PLAN-NAME
PART-NUMBER

—END_HEADER_SECTION
—PARAMETERS SECTION

: PP-VMILL-1

;

t B ^ J

: * INSTRUCTION-SET;
:» "FILTER-HOUSING"

;

:« 31;

*$TOOL-SET001 : TOOL-SET;
*$TOOLOO! : TOOL;

—END_PARAMETERS_SECTION—
—REQUIREMENTS.SECTION—

<<1>> TOOL-SET
(TOOL-SET-ID
COMPONENTS

*> $ $TOOL-SETOd

,

»> (2,3,4))

;

« 2 >> TOOL
(CHANGER-SLOT
TOOL-TYPE
TOOL- ID
DIAMETER
COMPONENT-OF

«> 2 ,

«> END-MILL,—-
«> 4$TOOLOQX^
«> 0.5
«> (1))?

—END_REQUIREMENTS_SECTION—
—PROCEDURE_SECTION—

<<1>> INIT
(PROG-ID
PROG -NAME
BLOCK -NAME
SYSTEM
TYPE
PREC-STEPS
TIME

«> NC-1,
«> "filter-housing",
-> BLOCK 1

,

«=> VMILL

,

«> PRIMITIVE,
*> () ,

«> 0000:00:00:56)

;

<<2>> CHAMFER-OUT
(CHANGER-SLOT
FEATURE
Z-SURF
BLOCK-NAME
SYSTEM
TYPE
PREC-STEPS
TIME

> 6 ,

«> BLOCK,
*> 0 ,

«> BLOCK1

,

> VMILL,
«> PRIMITIVE,
«> (1),
«> 0000:00:01:24)

;

< <3>> HOLE
(CHANGER-SLOT
CENTER-X
CENTER-Y
DEPTH
Z-SURF
BLOCK-NAME
SYSTEM
TYPE
PREC-STEPS
TIME

> 7,
=> 0.725,
«> 0.725,
«> 0.25,
-> -0.625,
«> BLOCK1,
«> VMILL,
«> PRIMITIVE,
«=> (4),
«> 0000:00:00:50)

;

—END_PROCEDURE-SECTION~
—END_PROCESS_PLAN

—

Figure 3. Sample of process plan file format (representative data
is shown, some data has been omitted due to space limitations).

A- 19

Process

Planning

Data

Package

Flow

A- 20

Figure

4.

Illustration

of

data

flow

from

process

planning

data

bases

to

control

systems.

A- 21

Figure

5.

Cell

Routing

Slip

precedence

graph

displayed

on

the

Interactive

process

planning

system.

A- 2 2

Figure

6.

Abbreviated

workstation

Operation

Sheet,

further

decomposition

of

machine_part

is

shown

in

figure

1.

A- 2 3

Figure

7.

The

work

element

data

base,

shown

are

the

work

elements

for

the

vertical

milling

machine.

A Knowledge Representation Scheme for Processes in an Automated
Manufacturing Environment

Steven R. Ray

Factory Automation Systems Division
Center for Manufacturing Engineering

National Bureau of Standards
Gaithersburg, MD 20899

Presented By:

Steven R. Ray
International Conference on Systems, Manufacturing, and

Cybernetics
Pierremont Plaza Hotel
Atlanta, Georgia

Bibliographic Reference:

Ray, S. R. , "A Knowledge Representaion Scheme for Processes in
an Automated Manufacturing Environment", 1986 IEEE International
Conference on Systems, Manufacturing , and Cybernetics " , October
14-17, 1986, Atlanta, Georgia.

A- 2 4

Reprinted from PROCEEDINGS OF THE IEEE INTERNATIONAL
CONFERENCE ON SYSTEMS. MAN. AND CYBERNETICS,

Atlanta. Georgia. October 14-17. 1986

A Knowledge Representation Scheme for Processes

in an Automated Manufacturing Environment

Steven R. Ray

Factory Automation Systems Division

Center for Manufacturing Engineering

National Bureau of Standards

Gaithersburg, MD 20899

Abstract

A key factor in applying advanced programming concepts to

an industrial manufacturing environment is the establishment of a

language to specify the process steps involved. In the Automated

Manufacturing Research Facility at NBS, these process steps are

described in terms of "work elements." Work elements are

specified in process plans which are passed to controllers

throughout the facility. This paper describes the properties which

were considered in the definition of work elements from the per-

spective of automated process planning and the control system

implementation at NBS.

The control system is based upon a philosophy of hierarchical

control, where high level goals are decomposed through a succes-

sion of levels, each producing sequences of simpler goals to the

next lower level, with the lowest level generating drive signals to

robots, grippers and other actuators. To support this scheme, the

work elements define the activities that can be carried out at each

level of the hierarchy.

The work elements are implemented with different software at

each stage in the manufacturing sequence: process planning, com-

munication, and execution. Work elements have been implemented

within process planning as programming objects which have slots

to describe their function. The information also exists in ASCII

"flat file" format, which can be communicated through a common
database. Finally, work elements are subroutines which are exe-

cuted on shop floor controllers. The w'ork elements are instantiated

in one form or another as a production job goes from planning to

the database, and subsequently executes at a controller. By antici-

pating the use of the work elements in expen systems and

advanced programs, the introduction of intelligence into the

manufactunng environment is greatly simplified.

1.

Introduction

The Automated Manufacturing Research Facility (AMRF)

w'as designed as a test bed to develop, test and evaluate potential

standards in the automated manufactunng industry, (1,2, 3,4, 5).

Since components of manufactunng shops are generally purchased

from different vendors, the required compatibility among machines

in fully automated shops will depend heavily on interface stan-

dards. At the AMRF, a wide variety 1 of "off the shelf components

have been integrated into a single coordinated system, using well-

defined communication protocols.

In order to easily introduce advanced programming tech-

niques on the shop floor, automated control standards must also be

defined. These control standards should draw upon concepts from

A- 2 5

artificial intelligence (AI) research, (6). This is particularly impor-

tant in the area of process planning, which concerns the

specification of operations to be performed in order to produce a

desired part. Process planning involves much abstract reasoning,

and therefore can use many of the approaches adopted in expert

systems and other artificial intelligence applications. A standard

process representation must incorporate AI concepts to allow these

approaches to be easily implemented. An important pan of the

AMRF representation scheme has been designed with this in mind,

and is called a "work element". An interactive process planning

system currently uses the w-ork element scheme to generate plans

w'hich are executed to produce real pans, (7).

2.

Overview

This paper descnbes the design considerations for a work ele-

ment, and its use in an operational manufacturing facility . Section 3

introduces some concepts commonly used in anificial intelligence

research. Section 4 discusses the definition and charactenstics of a

work element. Section 5 presents the implementation of a work

element for a machine tool in the AMRF. Section 6 extends the

work element definition to the hierarchical control system used in

the AMRF. Section 7 identifies future directions of research for

process representation. Section 8 presents a summary of the paper.

3.

Artificial Intelligence Concepts

State Space

A useful concept in artificial intelligence research is the state

space, or search space representation, (6,8). The state of the world

as known by a computer program is one state in the defined state

space. Each change in the program’s perception of the world is

represented as a transition from one state to another in the state

space. The state transitions can thus be considered as links between

states, and the state space can be represented as a network.

Operators

Work elements can be thought of as operators in a state

space. Whenever a work element is invoked, a state transinon takes

place. A process plan corresponds to a sequence of operators

applied to an initial state, resulting in a goal state. Thus, automated

process planning corresponds to a search of state space for the goal

state; from the search procedure the state transition operators can

be found. The challenge in applying AI to automated manufactur-

ing is to represent the manufacturing task in the framework of AI

concepts such as the ones described here, so that the problem can

be handled using current AI techniques.

U S Government work not protected by U S. copyright

4. Work Element Characteristics

A manufacturing sequence can be conveniently expressed in terms

of results-oriented processes, (9,10). These processes can be

thought of as transitions in state space. A process plan would thus

be a collection of state transitions, from a state containing the part

blank, to a state containing the finished part

A work element is the representation of a state transition, and

serves as the language for manufacturing sequences. Process plan-

ning consists of selecting and parameterizing the appropriate work

elements to traverse the state space from the initial to the goal

state, (7). While process planning is widely practiced, it has not

been standardized. Robots, machine tools and other controllers all

use different control schemes and programming languages. For

maximum efficiency, a uniform control structure should exist

throughout a facility, using process plans based upon work ele-

ments. It is within the work elements that information specific to

one controller should be stored.

There are several roles for a work element in the manufactur-

ing environment, corresponding to planning, communication, and

execution. In the AMRF, a work element is translated from one

form to another to meet the needs of each role.

Planning

In the planning role, a work element exists as part of the pro-

cedure specification of a process plan. A process plan represents a

set of state transitions and can be represented as a precedence

graph. The implementation of a planning work element includes

knowledge of any manufacturing steps (work elements) which must

precede it. For example, a machining operation must always be

preceded by a fixturing operation to hold the pan in place. This

knowledge can be contained within a work element such as

"Dnll_hole" which will verify the existence of a fixturing work ele-

ment each time it is invoked. In addition, a work element must

contain all the parameters to completely and unambiguously specify

the manufacturing step. It is also useful to maintain a list of all

hardware and software requirements needed to accomplish the step.

Finally, the work element should have information needed for

optimization calculations such as expected duration and cost.

Communication

A work element must also be able to transfer instructions

from the planning environment to the execution environment. The

overriding requirement for this is compatibility among systems;

therefore the work element should exist in as simple and universal

a form as possible. Some neutral, machine independent format

must be used which can be understood by all controllers in a facil-

ity and which contains the essential information from the work ele-

ment in the process planning role.

Execution

Work elements are executed by calls to subroutines resident

within the factory controllers and are invoked with parameters to

suit the particular application. Some of these parameters are bound

in the planning stage; others by the controllers themselves. In gen-

eral, the subroutines include verification and error handling rou-

tines. A more detailed discussion of the execution of work ele-

ments is outside the scope of this paper, the reader is referred to

(11 ,
12).

5. Work Element Implementation

Planning

In the AMRF, the planning work elements have been imple-

mented using a frame-based or object-oriented approach. The major

benefits of object-oriented programming are:

1) Local variables (slots) can be assigned to each object. In

the case of process planning, each object represents a work

element

2) Distinct behavior can be defined for each object (methods).

3) The behavior and slots can be inherited from classes of

objects.

The slots are used to store information pertaining to a particu-

lar frame in the form of attribute-value pairs. Table 1 shows some

of the slots used in the process planning system for the work ele-

ments. The slot "Autogen-nodes" is used to identify any work ele-

ments which must precede the one being defined. Thus, the plan-

ning system can automatically insert planning steps which may be

missing by referring to this slot value. These automatically gen-

erated steps will be work elements as well, with the "Gen" slot set

to "T", indicating that it was inserted automatically. "Autogen-

rqmts" meets a related need by specifying any pieces of equipment

or computer code which will be needed to execute the work ele-

ment being defined. The specified requirements can also be

automatically added to a running list of requirements which accom-

panies each procedure specification. Both of these slot values help

to make the job 'f process planning more convenient for the pro-

cess engineer and to avoid careless oversights. The slots "Parents"

and "Children" are used to construct a precedence graph for the

process plan. These are simply the pointers to the previous and

subsequent steps in the plan, respectively. "Complete" is used to

signal when a particular work element has been fully defined. The

process plan is not complete until all the component work elements

have this flag set to "T".

Attribute Value Comment

System Set to the cell, workstation or

equipment meant to execute the

step

Time “ Set to the estimated execution

time for this step

Autogen-nodes - A list of prerequisite work ele-

ments

Autogen-rqmts A list of hardware and software

requirements necessary for suc-

cessful execution of this work ele-

ment

Parents Pointers to previous step(s) in the

plan

Children - Pointers to subsequent step(s) in

the plan

Complete T or F Flag denoting work element is

completely specified

Gen T or F Flag denoting whether work ele-

ment was automatically generated

Type Complex

Primitive

Macro

Defines the type of work element

Plan_id References the plan used to

expand this step at a lower level
|

Table 1. Minimal set of attributes in a frame-based work element

A- 2 6

User-defined slots

SYSTEM
PLAN ID

CENTER X
DEPTH
BLOCK NAME

TYPE
CHANGERSLOT
CENTERY
Z_SURF

~

Type-checking slots

SYSTEM-DATATYPE TYPE-DATATYPE

PLAN ID-DATATYPE CHANGER SLOT-DATATYPE

CENTER X-DATATYPE CENTER Y-DATATYPE
DEPTH-DATATYPE Z SURF-DATATYPE

BLOCK NAME-DATATYPE
Valid choice slots

SYSTEM-CHOICES TYPE-CHOICES

PLAN ID-CHOICES CHANGER SLOT-CHOICES

CENTER X-CHOICES CENTER Y-CHOICES

DEPTH-CHOICES Z SURF-CHOICES

BLOCK NAME-CHOICES

Others

ATTRIBUTES
AUTOGEN-HEADER
TIME
GEN
PRINT-NAME
CHILDREN
VISITED

AUTOGEN-NODES
AUTOGEN-RQMTS
COMPLETE
COMMENT
PRINTPARENTS
VALUE
PARENTS

Table 2. Slots in the frame-based version of "Drill hole”

Table 2 shows the slots in an example planning work element

which is used to drill a hole at a machine tool. In addition to the

slots identified in Table 1, there are attributes necessary for the

execution of the hole-drilling process, including hole depth, diame-

ter (using ’'Changer_slot"), and location. In constructing the inter-

nal implementation of this and other work elements, the planning

system automatically included some supplemental slot definitions.

For example, "Changer_slot-datatype" and "Changer_slot-choices"

were also defined. The "Changer_slot-datatype" slot provides for

type-checking, which is the simplest form of verification of user

input. The "Changer slot-choices" slot, if set to something other

than "nil", provides the process engineer with a set of valid choices

when specifying the "Changer_slot” slot value. The choices are

derived from contextual information, thus presenting the process

engineer with whatever choices are reasonable at that particular

time. This again reduces the possibility of operator error when

using the planning system.

The second major performance enhancement when using

object oriented programming techniques is that of message passing.

Each programming object is defined as having slots, described

above, plus specific functionality, defined using "methods". A
method is a function definition for a particular programming object.

It is these methods which give the objects their different behavioral

characteristics. Thus, an object can be instructed how to insert

itself into a process plan, or how to find out all the previous steps

in a plan. By defining a set of methods, process planning becomes

a matter of sending messages to the appropriate work element

objects to insert themselves into a plan and to communicate with

the other objects in the plaD. Rather than trying to explicitly keep

track of all the steps required, the objects update themselves about

the planning hierarchy and their relationships. This makes the

maintenance of a valid plan much easier, since the objects can have

methods defined to check for prerequisite work elements, hardware

and software requirements, as well as contextual information deter-

mining their behavior. By delegating the responsibility of main-

taining a plan to the work elements themselves (plus some other

programming objects) it is no longer necessary to have a single

master program which anticipates all possible errors.

Perhaps the most significant improvement offered by frame

based systems is the concept of inheritance. A given frame can be

defined as inheriting all the attributes and behavior of one or more

"parent" frames. This can be easily applied to the implementation

of work elements by first defining the taxonomy of process steps.

The simplest way is to design a process tree, with the root being

"all process steps". Beneath this could be classifications such as

"hole processes", "surface processes", etc. At yet lower levels, one

could have sub-categories such as "hole creation processes" and

"hole improvement processes". Finally, the leaves of the process

tree would be the individual work elements, such as

"twist_drill_hole", "center_drill_hole” or "ream hole". By con-

structing such a process taxonomy, one can take advantage of the

concepts of inheritance. The class of "hole creation processes"

inherits all the slots and methods of "hole processes", and adds to

them, slots and methods specific to hole creation operations. The

class of "drilling processes" inherits the slots and methods of "hole

creation processes", plus whatever is important to drilling opera-

tions. In this way, a new process can be defined, inserted into the

process taxonomy, and it immediately acquires a set of relevant

behavioral characteristics. Further, by classifying work elements in

this way, automatic process selection becomes easier to implement,

by traversing the tree, making a decision at each branch. An imple-

mentation of this concept is currently being integrated into the

AMRF process planning system, based upon a previously

developed tool called SIPS (Semi Intelligent Process Selection),

(13).

Communication

In keeping with the need for simplicity, the work element in

its communication role does not take advantage of any advanced

programming concepts. As shown in the example of Table 3, it is

in human readable, ASCII text form, called a "flat-file" or neutral

data exchange format, (14). It consists of nothing more than a

work element name and a collection of attribute-value pairs, which

correspond to some of the slots of the planning work element. This

stripped-down version of work element appears in all communica-

tions of process plans between the process planning system, the

AMRF databases, and the various controllers, (14).

T

« 1 » DRILL HOLE
(SYSTEM => VWS ,

TYPE => PRIMITIVE ,

PLAN ID => PP-VWS-72 ,

CHANGER SLOT => 6 ,

CENTER X => 4.50 ,

CENTER Y => 2.25 ,

(

DEPTH => 0.5 ,

Z SURF => 0.0 ,

BLOCK NAME => BLOCK 1 ,

PREC STEPS => () ,

TIME => 0000:00:01:00) ;

Table 3. Communication version of work element "Dnll_hole’

A- 2 7

6. Hierarchical Systems

To support the hierarchical control scheme being used in the

AMRF, work elements have been defined for each level. Process

planning is also carried out in a hierarchical fashion, representing

the first step toward truly distributed, automated process planning.

This is a distinct change of approach from process planning

methods traditionally used, (15). The lowest level in the hierarchy,

called the Equipment level consists of industrial devices, such as

robots, automatic carts, and milling machines. The second level is

called the Workstation level and consists of a physical grouping of

equipment level devices. For example, a milling machine, a lathe

and the robot used to service them might make up a workstatioa

Each workstation has a controller which is implemented on a

microcomputer. The third level in the hierarchy is called the Cell

level. Essentially, a cell is the collection of workstations needed to

accomplish some production job. Activities within the cell are

coordinated by a cell controller. Levels still to be added include a

shop level which will coordinate and optimize the activities of the

cells, and a facility level which would be used to supervise several

shops, such as an assembly shop and a manufacturing shop. In

addinon, the facility level coordinates various "front office" support

functions. Current plans for the AMRF are for a manufacturing

shop, using metal removal for pan production.

Task decomposition is fundamental to hierarchical control. A
high level goal is decomposed into sets of simpler goals for the

next lower level. To maintain flexibility in a programmable factory,

the method of decomposition should be defined by the data and not

built into the facility itself. To perform new production jobs, i.e.

producing new parts, one needs only to provide new process plans,

without any further programming, assuming the existing work ele-

ment definitions are sufficient.

To provide the capability for flexible task decomposition,

each work element has an attribute called "Type" which determines

how it is handled by a controller, (see Table 1). "Type" can have

one of three values:

1)

Primitive

This is the simplest case, where a work element corresponds

directly to an executable subroutine, as in the ”drill_hole"

example.

2) Complex

This instructs the controller to decompose the given command
into simpler commands to be executed at the next lower level

in the control hierarchy. It does this by retrieving the process

plan identified by the attribute "Planjd", which contains the

decomposition of the given command. For a detailed discus-

sion of the decomposition and execution process, see (12).

3) Macro

Here the controller expands the given command into a set of

commands to be executed at the same level in the hierarchy.

Again, this is done by retrieving another process plan from

the distributed database.

As an example of how task decomposition would work, sup-

pose the Cell level of control received a "Process Batch" com-

mand, (see Figure 1). This is a complex work element, with a

pointer to a process plan defining its decomposition. The Cell con-

troller would retrieve the referenced plan, which would contain a

set of work elements to be executed by workstation level controll-

ers. Examples would include commands for a milling workstation

to receive a lot of parts, receive some tools, and machine the lot of

parts. "Machinejot" is also a complex work element, and upon

receiving the Machinejot command, the milling workstation would

retrieve the referenced plan containing work elements to be exe-

cuted by equipment level controllers. These would include work

elements such as "drilljiole" which was discussed earlier, which is

a primitive work element.

One of the main advantages of this form of hierarchical con-

trol is that it allows a truly modular, distributed implementation.

The parallelism which results greatly increases the execution speed

of a complex control system. This approach also supports distribut-

ing the process planning function. When a command is received, a

controller could either retrieve a previously generated plan stored in

a database, or it could call a local planning function, using the

current control state data to generate a new plan to be executed at

that particular level in the hierarchy. Ultimately, every controller in

the hierarchy could have a resident planning module which would

perform local task planning in real rime, as commands are received.

Finally, a hierarchical control implementation allows error handling

to be treated hierarchically also. An error detected at some low'

Figure 1. Example of command decomposition using hierarchical process plans

A- 2 8

level need not be reported to the highest level of control if a local

recovery technique is available. This avoids the situation of an

entire factor)’ shutting down whenever the slightest problem occurs

anywhere in the control system. Rather, the error is reported only

to the first level of control able to handle the situation, allowing

other processes to continue uninterrupted.

7.

Future Implementations of Work Elements

It seems inevitable that future automated process planning

systems will rely heavily on ideas from artificial intelligence

research. With the exception of the SIPS system, the current

implementation of process planning in the AMRF uses traditional

Lisp and object-oriented programming techniques. Features such

as "autogen nodes" and "autogen rqmts" which automatically insert

process steps and requirements into process plans are the first steps

toward the development of intelligent planning modules which

would function automatically. The next version of work elements

may be implemented as intelligent modules with their own sets of

rules to determine how they will be decomposed into simpler com-

mands, (16). Thus, when a work element is considered for inclu-

sion in a process plan, it would be told to plan its own parameteri-

zation, using the current planning context. This scenario leads to

the possibility of truly distributed, real-time process planning,

rather than offline development and storage of plans for later exe-

cution. The separation between planning and execution will become

blurred as the modules acquire more local intelligence and real-

time interactive capability.

8. Conclusions

A scheme for representing process steps in an automated

manufacturing environment has been described. Called a work ele-

ment, this representation plays distinct roles in process planning,

plan communication and control system execution. By defining all

task decomposition in terms of work elements, programming new

production and support operations becomes simply a matter of

supplying new process plans, or adding new work elements to the

library. The structure of the work elements allows intelligent prob-

lem solving techniques to be easily implemented, such as "smart"

work elements: self-contained rule-based systems which dynami-

cally change their behavior depending on context By designing the

fundamental knowledge representation scheme in such a generic

and flexible way, and by adopting standards based upon such

designs, it should be easier to maintain compatibility in the future

with existing systems of today.

9. References

(1) Simpson, J.A., Hocken, R.J. and Albus, J.S., "The Automated

Manufacturing Research Facility of the National Bureau of

Standards”, Journal of Manufacturing Engineering, J, #1, 18,

(1982).

(2) Hocken, R. and Nanzetta, P., "Research in Automated

Manufacturing at NBS", Manufacturing Engineering, 91, #4,

68, (1983).

(3) Nanzetta, P., "Update: NBS Research Facility Addresses Prob-

lems in Setups for Small Batch Manufacturing", Industrial

Engineering, 68, June (1984).

(4) Furlani, C. et al.. "The Automated Manufacturing Research

Facility' of the National Bureau of Standards", Proc of the

Summer Simulation Conference, Vancouver, BC, Canada,

July 1 1-13, 1983.

(5) McLean, C., Mitchell, M. and Barkemeyer, E., "A Computing
Architecture for Small Batch Manufacturing", IEEE Spec-

trum, 59, May 1983.

(6) McLean, C.R., "An Architecture for Intelligent Manufacturing

Control", Proc. of Summer 1985 ASME Conference, Boston,

Massachusetts, August 1985.

(7) Brown, P.F. and McLean, C.R., "Interactive Process Planning

in the AMRF', submitted for ASME Symposium, December
1986.

(8) Winston, P., Artificial Intelligence, Addison-Wesley, Reading,

Massachusetts, 1984.

(9) Jones, A.T. and McLean, C.R., "A Production Control Module
for the AMRF', Proc of Summer 1985 ASME Conference,

Boston, Massachusetts, August 1985.

(10) Hummel, K., "An Expert Machine Tool Planner", presented at

the International Computers in Engineering Conference and

Exhibition, Boston, Massachusetts, August, 1985.

(11) Kramer, T. and Jun, J., "Software for an Automated Machin-

ing Workstation", Proc of Third Biennial Inti. Machine Tool

Technical Conf, Chicago, Illinois, September 1986.

(12) McLean, C. and Wenger, C.E., "The AMRF Material Han-

dling System Architecture”, Proc of Fifth Annual Control

Engineering Conference, Rosemont, Illinois, May 1986.

(13) Nau, D.S. and Chang, T.C., "Hierarchical Representation of

Problem-Solving Knowledge in a Frame-Based Process Plan-

ning System", Journal of Intelligent Systems, Vol. 1, (1986).

(14) McLean, C.R., AMRF System Architecture Document, Draft

Technical Report, National Bureau of Standards, (1986).

(15) Chang, T. and Wysk, R., An Introduction to Automated Pro-

cess Planning Systems, Prentice-Hall, Englewood Cliffs, New
Jersey, 1985.

(16) Drummond, B.S., "An Intelligent Notification System for

Complex Physical Processes", Masters Thesis, Computer Sci-

ence Department, George Washington University, (1986).

The NBS Automated Manufacturing Research Facility is partially

supported by the Navy Manufacturing Technology Program.

This is to certify that the article written above was prepared by

United States Government employees as pan of their official duties

and is therefore a work of the U.S. Government and not subject to

copyright.

A- 2 9

Research Issues In Process Planning at The National
Bureau of Standards

Peter F. Brown
Steven R. Ray

Factory Automation Systems Division
Center for Manufacturing Engineering

National Bureau of Standards
Gaithersburg, MD 20899

Presented By:

Peter F. Brown
The 19th CIRP International Seminar on Manufacturing Systems
Pennsylvania State University, University Park, Pennsylvania
May 31-June 1, 1987

Bibliographic Reference:

Brown, P. F., Ray, S. R. ,
’’Research Issues in Process Planning

at the National Bureau of Standards 7

/ Proceedings of the 19th CIRP
International Seminar on Manufacturing Systems . University Park,
Pennsylvania, May/June, 1987.

A- 30

Research Issues in Process Planning
at the National Bureau of Standards

by

Peter F. Brown
Steven R. Ray

Factory Autonation Systems Division
Center for Manufacturing Engineering

National Bureau of Standards

abstract. Several years ago, the Automated Manufacturing Research Facility

(AMRF) project was established at the Gaithersburg site of the National

Bureau of Standards (NBS) . This facility is unique in several ways: first,

all manufacturing activities are under direct computer control; second, all

manufacturing data preparation systems and control systems are linked

through a complex data administration and communication system; third, all

manufacturing operations are carried out by robots and machine tools with a

minimum of human intervention. This last constraint requires that all

manufacturing data be complete and unambiguous. It was necessary to develop

a process planning system which was capable of supporting the particular
requirements and manufacturing capabilities of the AMRF. This paper

describes the research agenda of NBS and its cooperative efforts over the

past few years in the area of Automated Process Planning. Results include:

the development of a neutral representation for process plans and a part

model; the development of an interactive planning system which supports all

controllers in the AMRF hierarchy; the use of expert systems for process

and tool selection; automatic speed and feed calculation; and development

of a system for automatic part fixturing. The next phase of development

involves the introduction of distributed intelligent planning modules. By

following a systematic procedure of defining clear interface specifications

and establishing a framework for modular software development, progress is

being made on the complex problem of process planning in an automated

manufacturing environment.

INTRODUCTION . With the rising importance of
national industrial competitiveness, the need
for technological improvements in the
manufacturing arena is becoming acute. It is
clear that the source of many of these
improvements will be the field of automation.
Manufacturing automation can speed product
turnaround, reduce the need for retooling, and
lead to a more efficient allocation of
resources. Automation can be effective for
small batch manufacturing and in spare parts
production. While this is a desirable goal,
many small shops cannot afford to fully
automate. By using clearly defined interfaces,
a shop can support both manual and automated
operations. Pursuing a research agenda for
fully automating a factory should yield useful
results for manual, semi-automated and fully
automated facilities.

There are a number of obstacles to the
implementation of a fully integrated automated
manufacturing facility. One major gap is the
lack of smooth information flow between
Computer Aided Design (CAD) systems and
Computer Aided Manufacturing (CAM) systems.
Traditionally, these two functions have been
treated as completely separate activities.
There is no feedback from CAM to CAD to
reflect the manufacturability of a particular
design. There are very few
commercial/production systems which actually
integrate CAD with CAM. An example of one
which does accomplish this for a limited part
family is the General Dynamics Advanced
Manufacturing System [McMahon87]. After the
design of a wing-spar, the design is checked
for manufacturability. Potential problem areas
are identified to the designer who can then
make the appropriate modifications to improve
the manufacturing process. The implementation

of this system required major modifications to
their existing CAD and CAM facilities, and a
significant outlay of human and financial
resources

.

Extending these ideas to general part
families is a much more difficult task. A
brief example of the information flow
illustrates a number of problem areas. A
client requests some product to be
manufactured and provides a loose 6et of
requirements. This request is translated into
a local representation, usually a part
drawing. This local representation includes
some simple translation of functional
attributes into specific tolerance
information. The information is loosely
organized as notes or text on the part
drawing. This step can be done manually or
with the current technology of Computer Aided
Drafting. The step is complete when the client
and designer agree that the drawing adequately
represents the client's needs. The problem
with this approach is that the information is
not represented in a computer database form.
This implies that a human will have to
interpret the notes sometime later in the
process, leading to ambiguities. More
importantly, this approach does not allow any
feedback to the designer as to the
manufacturability of the design.

The next step in the process is to bridge
the link to the CAM systems. This is called
process planning. Process planning transforms
the design information into some local process
specification structure used by the
manufacturing organization. This step
includes defining a group of machinable
features and their associated processing
steps, selecting target machine tools to be

A-3 1

used to process the part, generating tool and
fixturing orders, and any other information
needed to actually produce the part. The CAM
system then expands each process step into
more detailed instructions including robot or
machine tool N/C programs, tool offsets, etc.
It is at this point that important information
is generated which should be communicated back
to the designer. The important point is to
produce a product at minimum cost while
retaining the desired quality and
functionality.

Thus, the step called process planning is
the transformation of information from the CAD
representation to the CAM representation. The
transformation rules that humans apply are not
well understood even by those who use them.
Clearly this makes it difficult to encode
those rules in process planning systems. It is
only when these rules can be represented in
automatic systems that any feedback can be
given during the design process. To accomplish
this, a more powerful product representation
is needed. This representation must serve the
needs of the designer who is striving for
functionality, as well as the manufacturing
engineer who wants high quality at low cost.

Key research issues are the development
of a complete product definition that captures
the design and functional aspects of the part,
the understanding and development of the
transformation rules discussed above, and
finally the development of models of the
constraining mechanisms that affect those
transformation rules. The key standards issue
is the development of a standard process plan
representation. A standard representation
permits the independent development of
planning modules and reduces the integration
problem. The process planning project has
addressed a number of these issues internally
and in collaboration with other organizations.
Process planning is one part of the larger
AMRF project whose goal is to study the
problem of information flow in an automated
facility, and to develop and test system
interfaces for this information flow.

OVERVIEW . This paper addresses the key
research efforts and issues supporting the
integration of automated process planning in
the Automated Manufacturing Research Facility
(AMRF) at the National Bureau of Standards.
Section 3 describes the AMRF facility in terms
of its goals, architecture and implementation.
Section 4 discusses the role of process
planning within the AMRF, and identifies some
of the underlying issues which must be
addressed before integrating a planning
system. Section 5 details the research
activities supporting process planning
conducted at, or in collaboration with, NBS.
Section 6 outlines a strategy for future work,
and Section 7 summarizes the paper.

THE AMRF . The AMRF was established in 1961 to
serve as a testbed facility to support
research in measurement techniques and
computer interface standards that are required
for automated machining of parts in small lot
sizes. One of the primary thrusts of the
project was to establish clear interface
specifications and modular structures to allow
plug-compatibility between systems. This
allows both a flexible manufacturing
environment and offers the capability of
incremental automation in existing facilities.
Results of this work are already contributing
to the formulation of standards for a generic

factory model, low level robot interfaces,
process plan file structures, N/C machine tool
interfaces, communication standards, IGES
(Initial Graphical Exchange Specification) and
PDES (Product Definition Exchange
Specification). Currently, a PDES-like format
is used to communicate the part geometry and
functionality. As the formal definition of
PDES is developed, we intend to maintain
compatibility.

(1) The Role of NBS . The National Bureau of
Standards plays a unique role in manufacturing
automation. It serves as a common ground
where both academic and industrial research
issues can be explored. Industrial research
efforts often suffer from the constraints
imposed upon them by a plant in full
production. The cost of taking down a
production line to experiment with new
automation concepts is prohibitive. This
results in a conservative approach to
implementing new technologies in a plant.
Universities, while free to take great risks
with new ideas, rarely have the resources to
carry out large scale experiments involving
many industrial robots and controllers. This
is primarily due to the large investment in
capital equipment that is required.
Furthermore, it is difficult to remain aware
of the problems currently facing production
facilities without either working at such a
facility, or working with personnel from the
facility. The AMRF addresses many of these
problems. Experiments can be carried out on a
realistic scale without the loss of
production. The AMRF provides a forum where
industrial and academic researchers can work
and discuss their various perspectives.
Finally, by keeping information in the public
domain, results of work performed at NBS can

be made available to the entire manufacturing
community.

(2) AMRF Architecure . The AMRF is built around
the concept of hierarchical control, where
high level commands are decomposed into
sequences of simpler commands at the next
lower level in the hierarchy, which in turn
are decomposed at yet lower levels (Figure 1)

.

Well-defined protocols have been established
to allow command and status information to
flow up and down the hierarchy. The bulk of
data transfer (such as process plans and part
models) occurs laterally with a distributed
data administration system. A mechanism has
been implemented to allow any controller in
the AMRF to request or store information in a
generic way, regardless of which database is
being used to hold that information. The
adoption of such an architecture avoids many
potential information bottlenecks. Further, by
adopting a hierarchical approach, the
complexity of a task is reduced to a
manageable level for any node in the
hierarchy. More details on the AMRF can be
found in [Simpson82, Furlani83, Hocken83,
McLean83, McLean85, Nanzetta84].

PROCESS PLANNING IN THE AMRF . The process
planning system in the AMRF was designed to
accomplish many goals. One major goal of the
planning effort was to establish a neutral
format for a process plan at any level in the
control hierarchy. This format had to be
simple enough to be easily parsed by the least
capable computers in the facility, yet
flexible enough to convey complex process
plans containing multiple branches. A second
goal of the planning system was to serve as a

general programming tool for the facility.
Since all workstation controllers in the

A- 3 2

Facility

Transport
Storage

Figure 1. The AMRF control Hierarchy.

facility are designed to interpret and execute
process plans in the same format, the process
planning system can generate command sequences
for activities involving any combination of
devices on the factory floor. The planning
system supports all three levels of the
hierarchy currently implemented: the cell,
workstation, and equipment level (Figure 2)

.

Before these goals could be tackled in a
systematic way, a number of issues had to be
addressed, for example: What representation
scheme should be used for a process plan, both
within the planning system computer, and at
execution time on the factory floor? How
should an individual step within a process
plan be represented? How should the hardware
and software requirements for a process plan
be stored? How is system integration and
interface specification to be accomplished?
How should the system handle command, status
and database transactions , which are common to
all systems in the facility? The research
program in process planning was formulated
with the above questions in mind. The approach
used to address these issues, detailed in the
following section, was to work on many of the
immediate problems within NBS, while
supporting and working in collaboration with
others on some of the more long term
questions. In-house work therefore focussed on
representation and interface issues, with
outside projects addressing expert system
approaches, geometric feature manipulation,
automatic fixturing, and other topics.

RESEARCH TOPICS SUPPORTING PROCESS PLANNING IN
THE AMRP . A technology evaluation was carried
out early in the project to determine the
current state of the art of both production
and research process planning systems. The

goal was to determine if the technology used
in these systems could be used in a facility
such as the AMRF, i.e. one with direct
computer control of all factory operations. It
was found that variant planning systems
suffered from severe drawbacks in generality
and extendability , and no system addressed all
the necessary issues. It was further decided
that a number of central items had to be
developed which simply did not yet exist.
These included:

- A standard representation of process plans
based on programming language theory from
computer science.

- A standard representation of activities on
the shop floor. A representation was derived
based on knowledge representation techniques
from artificial intelligence.

- A product representation (rather than just
a part drawing) as output from a design
system. This representation is used to drive
the planning system.

- A methodology to allow the generation of
alternate functional views of the product
data as needed by various factory systems.

- A methodology relating these features to
the automatic generation of machine specific
code.

This section describes the research
performed at NBS and elsewhere in
collaboration with the AMRF, dealing with
issues such as those outlined above. The
interactive planning framework built to
support the AMRF is also reported.

A- 3 3

ROUTING SUP

Figure 2. Process planning data packets and corresponding control levels.

(1) Assessment of Computer-Aided Process
Planning . Two key collaborators working with
NBS on the early phase of research into
computer aided process planning were Dr. Ted
Chang and Dr. Dana Nau. An NBS grant to Dr.
Richard Wysk at Virginia Polytechnic Institute
entitled "Advances in Computer-Aided Process
Planning", [Chang83] provided a useful survey
of existing planning systems and current
concepts. The outcome of this work served as
the basis of the book "An Introduction to
Automated Process Planning Systems" [Chang85].
At the same time, Dr. Nau was at NBS as a
guest researcher who became interested in the
applicability of artificial intelligence to
process planning. The result of his work was
"Expert Computer Systems and Their
Applicability to Automated Manufacturing"
[Nau82]. Many of our current concepts on
process planning came out of this early
collaboration.

(2) A Machine Tool Planner for Automated
Process Planning . A core task in the
transformation of design data into a process
plan is the task of process selection,
followed by machine code generation.
Typically, this means starting with the
specification of a design and determining the
processing step or steps needed to produce it.
In collaboration with the University of
Kansas, a graduate research project began at
NBS [Hummel85] to investigate possible means
of performing such a task automatically. One
of the outcomes of the investigation was the
decomposition of the task into three parts.
The three parts or phases are called: feature
planning, operation planning and machine
planning. During each of these phases
"constraint posting" is used, constraint
posting consists of the formulation,
propagation and satisfaction of constraints
which describe the interactions between
various sub-problems. The constraints can, for
example, include causal relationships between
machining operations, or restrictions on
resources. The first step (feature planning)
takes a list of manufacturing features as

input. If no processing knowledge exists for a
given feature it is decomposed into a list of
simpler features, by means of pointers
embedded in the feature definition. This could
lead to the generation of precedence
constraints based on the sub-features
produced. The next step, operation planning,
involves the selection of machining operations
to produce each of the "elemental" features
identified in the previous phase. The
machining operation specifies various
parameters, 6uch as feed rate and cutter
speed. Finally, ' the machine planning step
turns these operations into groups of APT-
like program segments.

The Kansas implementation uses a
production rule approach, modeled after
conventions of YAPS [Allen83], to represent
the rules needed in each of the planning sub-
tasks. The system is written in Franz Lisp
(tm) on a Sun Microsystems workstation,
specifically for a Bridgeport CNC vertical
milling machine. It has successfully produced
plans for a limited set of pocket and hole
making operations. Mr. Hummel has continued
this work at the Bendix Corporation. Concepts
such as meta-rules to control the search, and
an optimum search tree generator have been
implemented. A simple geometric reasoning
capability was also added to aid in the
feature decomposition problem. Much was
learned about the representation of machinable
features and the need for better geometric
reasoning capabilities and constraint
propagation methods.

(3

)

Automated Process and Tool Selection .

Several years ago, an independent effort was
initiated at the University of Maryland by Dr.

Dana Nau to investigate novel approaches to
the application of artificial intelligence to
process planning. This work was funded in part
by NBS. Dr. Nau developed a prototype
reasoning system in Prolog called SIPP (Semi

Intelligent Process Planner) . This was soon
followed by a version implemented in Franz

Lisp ,
then re-coded in Zetalisp on a

A- 3 4

Symbolics Lisp machine. Dr. Nau realized that
a core task in the planning problem was that
of selecting a process, given an isolated
manufacturing feature. The latest version
focused on this problem, and was named SIPS
(Semi Intelligent Process Selector) . SIPS is a

frame-based reasoning system which was
designed around the concept of "hierarchical
knowledge clustering", [Nau87].

There are several advantages to the SIPS
approach as compared to traditional production
rule systems. First, conditions which are
common to several processes can be evaluated
in a parent node. Thus, only the conditions
which distinguish one process from another
"sibling" process need be evaluated by any of
the child nodes. The second major difference
is the concept of the cost of a process.
Ideally, one would like a process selector to
generate a plan with the lowest cost. In
production rule systems, priorities can be
assigned to rules which rank them by cost, but
generally the priorities must be assigned
beforehand. In SIPS, the order of the search
is determined by the cost estimate for each
process, which is calculated during the
reasoning process. Thus, in situations where
the cost is feature dependent, SIPS offers a
convenient way to rank the candidate
processes. Finally, SIPS provides a
representation of both procedural and
declarative knowledge in a conceptual frame.

The SIPS system is currently integrated
into the interactive process planning
framework of the AMRF. It can be invoked when
editing process plans at the equipment level
of the hierarchy. In operation, the process
engineer specifies the part to be machined in
terms of design or manufacturing features
meaningful to SIPS, ordered in a feature
graph. Each feature can then be passed to
SIPS, which will replace that feature in the
graph with the process, or sequence of
processes recommended to produce it. It is
then the task of the engineer to consolidate
the collection of processes needed for all the
features into an optimized segaence of
operations. The optimization of this last step
is currently being investigated. Enhancements
to SIPS are currently being supported, through
cooperative research efforts between KBS, Dr.
Kau and researchers from Texas Instruments.
These efforts involve the enhancement of: 1)
the overall problem solving paradigm, 2) the
inferencing strategies used, 3) the knowledge
representations employed, and 4) the domain
specific knowledge bases.

(4) Automated Fixturino - ’University of
Kansas . The Department of Mechanical
Engineering at Kansas University has been
working with NBS under a grant for several
years on computer integrated manufacturing.
One research issue has been in the area of
automated part fixturing, [Carlyle86]. This
process is almost always performed by a
machinist because of the complex nature of the
problem. Researchers at Kansas believed a
properly designed modular fixturing system
could be assembled by a robot. By constraining
the range of solutions using modular fixtures,
progress could be made in developing an
automated approach to part fixturing.

Work proceeded along three main branches:
to develop fixturing hardware to be controlled
by computer, a fixture planner, and a robot
planner. The fixturing hardware was designed
to be a baseplate type of assembly, with a
matrix of conical holes. Each hole accepts an

endstop or a clamp. Further, the clamp can
then be driven hydraulically under computer
control to open or close. To support the
hardware, a fixture planner was also
developed, called "Baseplatetool", [Unger86].
This system graphically displays the baseplate
on a computer screen, and allows a process
engineer to specify the arrangement of stops
and clamps needed for a fixturing operation.
The system uses a two dimensional modeler for
the purposes of speed, unlike an earlier
version which used a solid modeler. An
important feature of the system is the use of
a separate database to store all facility-
dependent information. This includes the
layout of the baseplate itself, the clamp
designs, the parts to be fixtured, the
locators used, the size of the locator holes,
etc. In this way, Baseplatetool can be quickly
adapted for use with any hole-based fixturing
system. The interface uses mouse input. Great
efforts were made to allow the engineer to
remain at the conceptual level when designing
a fixture. The third development was a robot
planner to allow robotic assembly of fixtures.
This system takes the fixture design generated
using Baseplatetool, and produces a process
plan to be used by a robot in the assembly of
the fixture components.

To integrate the work on automated
fixturing with the ongoing research at NBS, a
postprocessor was written for the robot
planner. This produces a process plan in the
neutral AMRJ format for the robotic assembly
of a fixture designed with the tool. The fact
that the fixturing hardware and software was
fully integrated with the AMRF within a week
of its arrival at KBS serves as a testament to
the power of machine independent interfaces.

(5) AMRF Process Flannino System . The process
planning system consists of two primary
sections: a configuration tool and editing
tools, (Figure 3). The configuration tool is
used to specify the organization of the
equipment on the factory floor. Thus, it
allows a user of the planning system to
construct a representation of the facility.
This representation contains the cells, the
machining and support workstations, and all of
the associated processing equipment.

An internal database is used to keep
track of the activities or functions that each
factory floor system can perform. The
database maintains the specification of an
activity, its associated constraints and other
information. These activities are called work
elements, [Ray86]. The work element concept is
derived from the idea of an operator in state
space. Thus, the application of a work element
results in a transition within a control
system from one state to another. From the
perspective of the planning system, every
control module in the factory is treated the
same way, whether it controls equipment (such
as a machine tool controller) or directs other
control modules (such as the cell or
workstation controllers)

.

The second tool is the one used to
actually create, edit, or view process plans.
The plans created with this tool are in terms
of the entities and work elements defined in
the configuration tool. There is a network
interface to external databases where process
plans can be stored, and other information
such as part models and inventory data can be
accessed. Once the user has selected a
process plan for editing, the information can
be displayed in two alternate forms. One

A- 3 5

Figure 3. The AMRF Process Planning System.

display uses a text or form layout, while the
second uses a graphical representation based
on the precedence information within the plan.
Both tools show the same information, but the
graphical tool provides easier viewing of the
overall plan while the textual display gives
the user more detailed information.

A major effort supporting the integration
of the planning system within the AMRF was the
development of a neutral process plan format.
This format is an ASCII based language
specification that is used throughout the
AMRF. A process plan is comprised of four
major sections:

1) Descriptive Header - contains static
index and summary data.
2) Parameters - lists all variables for
which real values must be substituted at
execution time.
3) Requirements List - identifies all
resources to be used during the execution of
the plan.
4) Procedure Specification - describes all
work elements, their precedence
relationships, their attributes and specific
value bindings.

Further details of the interactive process
planning system can be found in [Brown86].

Another critical interface developed
within the AMRF is a part model or product
specification format. This part model consists
of the part geometry and topology (based on a
boundary representation) and part
functionality, [Hopp87, Tu87]. The
functionality section allows the specification
of datums, datum reference frames and
tolerance information. In addition to this
information, a mechanism has been developed
for the specification of features. These
features can refer to any information within
the part model, including other features.
This format provides a mechanism which allows
multiple uses of the part model (such as
design, process planning, vision, and
inspection) . An application system use the

same underlying part specification, but
develops different views of this information.

In summary, the current planning system
supports the neutral process plan format and
the part model format. Process plan procedures
are described in terms of work elements. The
system also has the capability to invoke an
external expert module to perform automated
process selection. The neutral process plans
are readable by all controllers within the
AMRF. Some of the equipment controllers then
execute predefined N/C programs. The vertical
machining workstation can dynamically generate
N/C code from a process plan and feature
description, [Kramer86].

STRATEGY POR FUTURE WORK . The major goal
during the first several years of the AMRF was
the design, construction and integration of
the present facility. That goal has been
reached and the system was demonstrated during
the public test run in December of 1986. The
next phase of research is to conduct
experiments using the current facility. One
important research area is the development of
distributed planning and control systems.

(1) Perspective of Current Work . The current
implementation of the process planning system
supports the architecture of the AMRF. This
system is interactive, i.e. it requires human
decision making throughout the development of
a process plan. The system was designed to
allow modular extensions for intelligent
problem solving. The SIPS system has been
integrated and other expert modules can be
added in a straightforward manner. This is
possible because of the fundamental work
already done in designing the interfaces to
the AMRF.

One of the key outcomes of the work done
to date has been the rethinking of the role of
process planning in an automated factory.
Also, the importance of clear, well defined
interfaces cannot be over-emphasized. The
development of standard interfaces has been of
great help in speeding the software

A- 3 6

development. A great deal of vork still needs
to be done to define interactions between
control systems and planning systems and
refine the features used in the product
specification.

With a framework in place which supports
process planning in a fully automated
environment, work can now proceed on the
integration of artificial intelligence
technology into the system. By proceeding in
this way, we hope to keep our efforts focused
on those areas most needing attention.

(2) Role of expert systems and artificial
intelligence . It is clear that expert systems
have a vital role to play in the manufacturing
environment. Many portions of the
manufacturing decision making process are
based on heuristic rather than algorithmic
knowledge. Some key areas are ripe for
consideration for future expert systems, such
as resource allocation, machine selection,
tool selection, etc. Tying all of these
systems together into a series of cooperative
expert systems still remains one of the most
important challenges. At the same time,
however, the need to better integrate
conventional programming tools with the
current system has become apparent. Many
relatively straightforward tasks still need to
be performed, such as data base interfaces and
speed/feed calculations. Tasks which do land
themselves to expert system solutions may
still be best accomplished with computer-
assisted tools which interact with a human
engineer. The computer-assisted tools will
probably have the largest immediate impact in
the manufacturing arena.

(3) Distributed. Real-Time Planning . A
distributed architecture offers the greatest
chance of success for the implementation of a
flexible planning system which can react in
real time to unforseen situations. The AMRF
hierarchical control architecture is a
convenient testbed in which to develop these
planning concepts. The hierarchical approach
means that a complex problem can be broken
down into a number of solvable sub-problems
[Sacerdoti77] . By distributing the problem
among a number of processors, more
computational resources can be applied to the
problem in parallel. Further, the modular
construction allows the system to be easily
modified to reflect changing factory
configurations. Figure 4 shows the allocation

Planning Levels

Level 1

Level 2

Level 3

of planning responsibility among a level
hierarchy. Figure 5 represents a hypothetical
scenario for information flow between two
levels within the hierarchy. Each node has
both a planning and control module. What
follows is one example of how a distributed
planning and control system could function.

- The control level Z passes down a command
for a job to be performed.

- The A planner might already have a stored
template describing the appropriate course
of action, or it could develop a set of
tasks necessary to execute the command.

- Planner A asks the subordinate level
planners about the feasibility of sub-tasks
X, Y,Z. .

.

- Planner B responds with a "YES" and
returns a process plan that includes an
estimate of the time, cost and resources
required.

- Planner C supports a similar piece of
equipment and also returns "YES" with a
lower cost, but a much longer time estimate.

- This information is then used by the
planner or controller at level A to decide
which plan would be best to use, and to
combine and optimize the various sub-tasks.

At a given time, module C could be a
better choice, but some time later, if
delivery time became critical, module B would
be a better choice. Further, if module C
should break down during execution, the
planner could simply recommend module B as an
alternative. It is important that a planning
module first produce a rough estimate as to
whether it can handle a job, and then during
execution help provide error recovery. This
second step could be performed by continually
generating contingency plans, whenever the
module is otherwise idle.

There are of course numerous ways that a

cooperative planning and control architecture
could be designed, this represents just one
approach. It i6 our belief that the
architecture of the AMRF, and the interfaces
that have been defined will allow the
implementation and testing of these ideas in a

convenient and robust fashion.

Planning Functions

GT-Cell Classification

Machinable Feature Classification

Plan Optimization

Process Selection

Tool Selection

Figure 4. The decomposition of planning functions within a hierarchical
planning system.

A- 3 7

Figure 5. Flow of planning information within a distributed hierarchical

planning system.

(4) Portability . The current process planning
system was written in Zetalisp running on a
Symbolics computer "system . We still feel Lisp
is the best environment for this type of
software because it is widely Available, it
supports object oriented programming,
windowing facilities, flexible data typing and
an interactive programming environment. All of
these features greatly enhance the
productivity and flexibility of a software
developer. But issues have emerged concerning
the differing needs of software development
environments and application delivery systems.
Since we started the process planning system,
general interest in artificial intelligence
environments has greatly increased. The Lisp
environment on conventional computers has
improved significantly. Personal computers
have now become serious Lisp programming
tools

.

We are beginning to define the
environment for the distributed planning
system. We are looking into a Lisp
environment which contains portable, public-
domain software. This software should include
object-oriented and windowing facilities. Our
goal is to be able to implement a system which
will run on a variety of host machines.

(5) Design by Features .

In traditional design, the functionality of a
part is never explicitly stated. The designer
transforms the functionality into geometry and
tolerance specifications. Subsequently , there
is no good way to provide feedback to the
designer on issues such as cost,
manufacturability and performance. An
important development which should radically
change this situation is the concept of design
by features. Since both designers and process
engineers conceptualize in terms of features,
a feature representation is a natural vehicle
for part description, [Dixon86, Hummel 8 6] . We
believe that a relationship can be established
between design and manufacturing features.
Once this relationship is known, a mechanism
can be developed to provide the feedback to
the designer. Default parameters can also be
attached to these features, making the design

and manufacturing tasks more consistent. In
this way, the risk of over or under-
constraining a design is reduced. Finally,
these features can be related directly to
geometry to aid in the analysis of the
functionality of a part, such as strength,
heat transfer characteristics, etc. This
approach underscores the fact that
manufacturing concerns are as important as
functionality in order to produce economical,
high quality products. All aspects of a part,
including design, analysis, manufacturing and
inspection should be weighed against one
another.

CONCLUSIONS . The Automated Manufacturing
Research Facility at the National Bureau of
Standards is pursuing a systematic approach to
the development of process planning systems
for future automated factories. Early work
focused on representation issues. Results
include a neutral process plan format, a part
model format, and the concept of a work
element. Building on this framework, an
interactive planning system was designed and
implemented. The system provides planning
service for all AMRF control systems. As work
progressed, we learned more about how an
intelligent planning system should interact
with intelligent control systems. With the
integration of expert planning modules, we are
now ready to proceed toward the design of a

distributed, hierarchical planning system.

The NBS Automated Manufacturing Research
Facility is partially supported by the Navy
Manufacturing Technology Program.

This iB to certify that the article written
above was prepared by United States Government
employees as part of their official duties and
is therefore a work of the U.S. Government and
not subject to copyright.

References

Allen, E.M., "YAPS: Yet Another Production
System", University of Maryland TR-1146,
(1983).

A- 3 8

Brown, P. and McLean, C. ,
"Interactive Process

Planning in the AMRF", Proceedings of Winter
1986 ASME Conference, Anaheim, California,
December 1986.

Chang, T-C., "Advances in Computer-Aided
Process Planning", NBS Report KBS—GCR 83—441,
Gaithersburg, MD, (1983).

Chang, T-C. and Wysk, R.A., "An Introduction
to Automated Process Planning Systems",
Prentice-Hall, Englewood Cliffs, NJ , (1985).

Carlyle, S.M., Barr, B.G., Faddis, T.K . and
Umholtz , R. ,

"Automated Fixturing System",
Internal Report, Computer Integrated
Manufacturing Laboratory, University of
Kansas, (1986).

Dixon, J.R. ,
"Artificial Intelligence and

Design: A Mechanical Engineering View",
Proceedings of AAAI-86, Vol. 2, Philadelphia,
PA, 1986.

Furlani ,
C. et al., "The Automated

Manufacturing Research Facility of the
National Bureau of Standards", Proc. of the
Summer Simulation Conference, Vancouver, BC,

Canada, (1983).

Hocken, R. and Nanzetta, P. ,
"Research in

Automated Manufacturing at KBS", Manufacturing
Engineering, 91, #4, 68, (1983).

Hopp, T., "AMRF Database Report Format: Part
Model", NBS Internal Report, (in preparation),
(1987) .

Hummel, K. ,
"An Expert Systems Based Machine

Tool Planner for a Distributed Automated

Process Planning System", Masters Thesis,
University of Kansas, 1985.

Hummel , K. and Brooks, S., "Symbolic
Representation of Manufacturing Features for
an Automated Process Planning System",
Proceedings of Winter 1986 ASME Conference,
Anaheim, California, December 1986.

Kramer, T. and Jun, J., "Software for An
Automated Machining Workstation", Proceedings
of the 3rd Biennial International Machine Tool
Technical Conference, September 1986.

McMahon, R.L. et al., "Manufacturing
Technology for an Advanced Machining System,
Sixth Semiannual Report", General Dynamics
Report MT-87-004, Fort Worth, TX, (1987).

McLean, C. , Mitchell, M. and Barkemeyer, E. ,

"A Computing Architecture for Small Batch
Manufacturing", IEEE Spectrum, 59, May 1983.

McLean, C. , "An Architecture for Intelligent
Manufacturing Control", Proceedings of Summer
1985 ASME Conference, Boston, Massachusetts,
August 1985.

Nanzetta, P. , "Update: NBS Research Facility
Addresses Problems in Setups for Small Batch
Manufacturing", Industrial Engineering, 68,
June (1984)

.

Nau, D.S., "Expert Computer Systems and Their
Applicability to Automated Manufacturing", NBS
Report NBSIR 81-2466, Gaithersburg, MD,
(1982) .

Nau, D.S. and Luce, M. , "Knowledge
Representation and Reasoning Techniques for
Process Planning: Extending SIPS to do Tool

Selection", CIRP International Seminar on
Manufacturing Systems, University Park, PA,
1987.

Nau, D.S. "Hierarchical Abstraction for
Process Planning", to appear in Second Inti.
Conference on Applications of Artificial
Intelligence in Engineering, Boston, MA, 1987.

Ray, S., "A Knowledge Representation Scheme
for Processes in an Automated Manufacturing
Environment", Proceedings of the IEEE
International Conference on Systems, Man and
Cybernetics, Atlanta, Georgia, October 1986.

Sacerdoti, E.D., "A Structure for Plans and
Behavior", Elsevier North-Holi and. New York,
NY (1977)

Simpson, J.A., Hocken, R.J. and Albus, J.S.,
"The Automated Manufacturing Research Facility
of the National Bureau of Standards", Journal
of Manufacturing Engineering, 1, #1, 18,
(1982)

.

Tu, J. and Hopp, T. , "Part Geometry Data in
the AMRF", NBS Internal Report (in
preparation), (1987).

Unger, M. ,
"BaseplateTool"

,
private

communication, (1987).

A- 3 9

Hierarchical Abstraction of Problem-Solving Knowledge

Dana S. Nau

Computer Science Department and
Institute for Advanced Computer Studies

University of Maryland

and

Factory Automated Systems Division
Center for Manufacturing Engineering

National Bureau of Standards
Gaithersburg, MD 20899

Presented by:

Dana S. Nau
ASME Winter Annual Meeting, Anaheim, California
December, 1986

Bibliographic Reference: r

Nau, D. S., "Hierarchical Abstraction of Problem-Solving
Knowledge", Bound volume of the 1986 ASME Winter Annual Meeting ,

Anaheim, CA, December 1986

A- 40

Hierarchical Abstraction of Problem-Solving Knowledge

Dana S. Nau*

Computer Science Dept., and Institute for Advanced Computer Studies

University of Maryland

February 3, 1987

Abstract

In most frame-based reasoning systems, the data manipulated by the system is represented

using frames, and the problem-solving knowledge used to manipulate this data consists of rules.

However, rules are not always the best way to represent problem-solving knowledge.

This paper describes an alternative way to represent problem-solving knowledge called hi-

erarchical knowledge clustering. Hierarchical knowledge clustering has been implemented in a

system called SIPS (Semi-Intelligent Process Selector), which plans what machining processes

to use in manufacturing metal parts. The paper describes the approach to knowledge represen-

tation and problem solving used in SIPS, and compares and contrasts this approach to other

work.

Primary topic: Knowledge Representation.

Other related topics: Engineering Problem Solving, Expert Systems.

Author’s address:

Dana S. Nau
Computer Science Dept.

University of Maryland

College Park, MD 20742

(301) 454-7932

dsn@mimsy.umd.edu

1 Introduction

In most frame-based reasoning systems, the information being manipulated is represented using

frames, and the problem-solving knowledge that manipulates the frames consists of rules. But for

some problem domains, rules may not be the most natural way to represent knowledge—and in

addition, rule-based systems can require large amounts of computation during problem solving if

the rule base is large.

This paper describes a way to address these problems using hierarchical knowledge clustering
,
a

technique for hierarchical abstraction of problem-solving information. For some problem domains,

this approach can be more natural and more efficient than rule-based problem solving.

‘This work has been supported in part by the following sources: an NSF Presidential Young Investigator Award to

Dana Nau, NSF Grant NSFD CDR-85-00108 to the University of Maryland Systems Research Center, IBM Research,

General Motors Research Laboratories, Martin Marietta Laboratories, and the National Bureau of Standards.

A- 41

Rn IF goal C/i) k A(h) k B(h
)

THEN assert twist-drilling(ft)

R 2 : IF goal (ft) k A(h) k C{h
) k D(h

)

THEN remove goal(ft); assert rough-boring (ft); g = /i(ft); assert goal(y)

R3 : IF goal(ft) & A(ft) & C(ft) & £(ft)

THEN remove goal (ft); assert f inish-boring(ft); <7 = /2(ft); assert goal(^)

Figure 1: A simple set of rules. A, B, C, D
,
and £ are different sets of restrictions.

Hierarchical knowledge clustering has been implemented in a system called SIPS (Semi-Intelligent

Process Selector) [18]. SIPS was developed to produce plans of action for the creation of metal parts

using metal removal operations such as milling, drilling, reaming, etc. Each of these operations or

machining processes creates a feature on the metal part, such as a hole, slot, pocket, etc. Given

the specification for the final part, the task of deciding what sequence or sequences of machining

processes to use in creating the part is known as process selection. To do process selection, SIPS

starts with the specification of the part to be produced, and reasons about the intrinsic capabilities

of each machining process.

SIPS has recently been interfaced to a solid modeling system at General Motors Research

Laboratories. This interface allows the user to create part descriptions graphically, and have SIPS

select suitable machining processes to create these parts. Also, SIPS has recently been extended to

do not just process selection, but also tool selection and the determination of process parameters.

The latest version of SIPS is being integrated into the Automated Manufacturing Research Facility

(AMRF) project [2] at the National Bureau of Standards.

This paper gives an overview of SIPS. Section 2 explains the motivation for the hierarchical

knowledge clustering technique, and Section 3 explains how this technique has been implemented

in SIPS. Section 4 discusses the relationships between SIPS and work by others, and Section 5

contains concluding remarks.

2 Motivation 7

In most knowledge-based problem-solving systems, problem-solving knowledge consists of rules of

the form “IF conditions THEN action^ . Even in frame systems, where the data (and possibly the

knowledge base) are represented using frames, the knowledge base still usually consists of rules.

However, there are severed problems with using this approach for process selection.

Consider the problem of creating a hole ft. There are many machining processes capable of

creating holes, but to keep the example simple, suppose we consider only three processes: twist

drilling, rough boring, and finish boring. Each of these processes has different restrictions how

good a hole it can produce. If the restrictions for twist drilling are satisfied, twist drilling can

produce ft without requiring that anything else be done. However, rough boring (if its restrictions

are satisfied) produces ft by modifying a hole g which must already be present. Finish boring is

similar to rough boring, except that it can satisfy stricter machining tolerances for ft. One way to

describe these processes would be rules similar to those shown in Figure 1.

One problem with these rules is the repititiousness of their preconditions: each rule tells what

A-42

A,: IF goal (/j) & A(ft)

THEN remove goal(ft); assert hole-process (ft)

A5 : IF hole-process (/i) & B(h

)

THEN remove goal(ft); assert twist-drilling (ft)

R$: IF hole-process (ft) &: C(ft)

THEN remove goal(ft); assert hole-improve-process(ft)

R7 : IF hole-improve-process(ft) & D(ft)

THEN remove goal(ft); assert rough-boring(ft); g = /i(ft); assert goal(y)

Ag: IF hole-improve-process(/i) L E(h

)

THEN remove goal(ft); assert t inish-boring(ft); g = /2(ft); assert goal(y)

Figure 2: A better set of rules.

distinguishes some machining process from every other machining process in the entire knowledge

base. It would be more natural and (depending on the control strategy) probably more efficient to

set up context in which hole processes are the only processes being considered, and then describe

each hole process only in terms of what distinguishes it from the other hole processes. This approach

would lead to rules such as those shown in Figure 2.

Another problem is howT to select the appropriate rule when more than one rule is applicable.

For example, suppose both twist-drilling and hole-improve-process are capable of creating

h. Since twist-drilling is less costly, one wrould want to use A5 instead of Rq, but the rules

include no way to assure that this will happen.

This problem could be handled if one could attach priorities to the rules corresponding to the

costs of the machining processes—and rule-based systems sometimes include ways to do this. But

in this case, it is not so easy: the priorities are not available beforehand to put into the rules,

but instead are functions of the various machining processes. For example, the cost of a hole

improvement process should be computed as the minimum of the cost of rough boring and finish

boring.

One way to handle this is to notice that the rules in Figure 2 correspond to the tree shown

in Figure 3. By representing each node in the tree as a frame, one could represent the process

costs as slots whose values could be computed as functions of other frames. Additional slots could

represent various other relevant properties of the processes—feed rates, cutting speeds, location of

the machine in the factory, etc.

If we represent the machining processes in this fashion, the next question is how to represent

and invoke the IF and THEN parts of the rules. Although message passing is often used in frame

systems, it would not work well here, because it would still a process even if a less costly process

were applicable. In order to make sure that only the least-cost frames get activated, a global control

strategy is needed to supervise the activation of the frames. The combination of the hierarchical

representation with such a control strategy is called hierarchical knowledge clustering.

A-43

hole-process
A(h)

twist-drilling

B{h)

rough-boring finish-boring

D(h) E(h)

subgoal: fi(h) subgoal: /2(h)

hole-improve-process

Figure 3: A tree corresponding to the rules in Figure 2.

3 Implementation

Hierarchical knowledge clustering has been implemented in a system called SIPS. SIPS includes

a frame system which can be used to represent both static knowledge (e.g., representations of

three-dimensional objects) and problem-solving knowledge (as discussed in Section 2).

Figure 4 shows a frame structure corresponding to the tree shown in Figure 3. This frame

structure is much simpler than the knowledge base actually used in SIPS, but it illustrates how
SIPS represents problem-solving knowledge.

The relevant slot in the hole-process frame specifies that a hole process is relevant for making

a hole. This information is used to start SIPS’s search when SIPS is told to find plan the creation

of a hole.

The cost slot is intended to be a lower bound on the cost of performing a process. In the

case of hole-process, this lower bound is computed by an attached procedure which takes the

minimum of the cost slots of the child frames, hole-improve-process inherits this procedure

from hole-process, so its cost will also be computed 21s the minimum of the costs of its children.

Since the twist-drilling, rough-boring, and finish-boring frames represent single kinds of

machining processes rather than classes of machining processes, the relative costs of these processes

are put into their cost slots.

Similarly, precost is intended to be a lower bound on the cost of any other processes which

might be required before doing the hole process. For hole-process, this bound is computed by

an attached procedure wrhich computes the minimum of the precost slots of the children. Since

twist-drilling does not need to have any other processes occur before it, its precost slot contains

the value 0. But a hole improvement process takes an existing hole g and transforms it into the

desired hole—and since g must be created by some kind of hole process, the cost of creating g will be

at least the minimum cost for a hole process. Thus, the precost slot for hole-improve-process is

the value of hole-process’s cost slot. Both rough-boring and finish-boring inherit this value

from hole-improve-process.

A process’s restrictions slot tells what restrictions must be satisfied in order for that process

to be a feasible way to achieve the desired goal. For hole-process, the restrictions are mainly

geometric ones—for example, restrictions on the angle between the hole and the surface in which

it is to be created. For the other processes in Figure 4, the restrictions are mainly restrictions on

the hole dimensions and on the best machining tolerances achievable by the process (parallelism,

roundness, true position, etc.).

A- 4 4

Figure 4: A frame structure corresponding to the tree shown in Figure 3. Parentheses around a

slot name indicate that the slot is inherited from the parent frame.

A- 4 5

The cannot-precode slots for hole-improve-process and finish-boring state that in no
sensible process plan will these processes be followed by certain other machining processes. This

slot is not really necessary for correct operation of SIPS, but it makes SIPS more efficient by

decreasing the size of the search space.

SIPS does problem solving by searching backwards from the ultimate goal to be achieved.

Therefore, the actions slot for a machining process must specify what SIPS needs to do before it

can perform the machining process. For twist-drilling, nothing need be done beforehand—so

twist-drilling’s actions slot states that twist drilling succeeds immediately. However, rough

boring and finish boring produce a better hole from an existing hole—and SIPS needs to figure out

how to make this hole. The actions statements for rough-boring and finish-boring set up the

creation of this hole as a subgoal for SIPS.

Figure 5 shows part of the state space which can be generated from the set of frames shown in

Figure 4. Each state in the state space is a (partial) plan for creating a hole hi. Whether or not

this plan is feasible will depend on the nature of hi—except that the plans marked “infeasible” in

Figure 5 can never be feasible, because of the cannot-precede slots in the knowledge base. When
a plan is infeasible, its children will never be generated.

SIPS searches the state space using an adaptation of Branch and Bound. The lower bound

function LB which guides this search is computed from the cost and precost slots of the machining

processes. For example, for the plan labeled P in Figure 4,

LP(P) = precost (hole-process) + cost (hole-process) + cost (finish-boring).

So that SIPS will avoid generating expensive plans when cheaper ones can be used, SIPS’s search

strategy is best-first .

1 Thus, the first solution found by SIPS is guaranteed to be the least costly

one.

4 Relation to Other Work

This section discusses the relationships between SIPS and other work in three areas: automated

process planning, planning with abstraction, and computational approaches for knowledge-based

systems.

4.1 Process Planning

A number of computer systems exist which provide partial automation of process planning. In

most existing systems, process planning is done by retrieving from a data base a process plan for

another part similar to the desired part, and modifying this plan by hand to produce a process

plan for the desired part. Examples of such systems are CAPP [12] and MIPLAN [24]. For more

detailed descriptions of such systems, the reader is referred to [4] and [19].

Devising a complete process plan automatically using a part’s specifications (e.g., a full tech-

nical drawing) is a very difficult problem. There are several systems which attempt to produce a

process plan for the exact part desired—but most such systems are experimental and have limited

capabilities. A few of the better-known systems include CPPP [8], APPAS [26], CADCAM [3,6],

TIPPS [6], GARI [7] and TOM [13], and SIPP [16,17] (a predecessor to SIPS, implemented in Pro-

log). Except for SIPP, these systems use problem-solving approaches rather different from what is

used in SIPS.

1 Thus, SIPS’s search procedure may also be thought of as an adaptation of A* [20], with LB as the heuristic

function.

A-46

Figure 5: Part of a search space for creating a hole hi. Plan P is labeled for reference in the text.

A- 4 7

4.2 Planning with Abstraction

Hierarchical knowledge clustering can be viewed as a way to do planning based on abstraction. For

example, the hole-process frame in Figure 4 represents an abstract machining process which has

two possible instantiations: twist-drilling and hole-improve-process.

Several types of abstraction have been explored in the literature on planning. One type of

abstraction is that used in NOAH [23], in which an action A is an abstraction of actions A\ and A 2

if A\ and A 2 are each steps in the performance of A. This is rather different from the abstraction

used in SIPS: in SIPS, A is an abstraction of actions A\ and A 2 if A\ and A 2 are alternate

instantiations of A.

Another type of abstraction is that used in ABSTRIPS [20], in which a complete plan is con-

structed ignoring some of the preconditions of each action and the plan is then modified to meet

the preconditions which were ignored. This type of abstraction is related to that used in SIPS in

the following sense: an instantiation of an action A is an action A\ which must satisfy the pre-

conditions of A and also some additional preconditions, and both SIPS and ABSTRIPS refine a

plan containing A by checking those preconditions of A\ which differ from the preconditions of A.

However, there are several important differences:

1. SIPS completely instantiates the last action in a plan before considering what actions should

precede this action, whereas ABSTRIPS generates a complete (but possibly incorrect) plan

and then tries to fix it up.

2. In SIPS, an abstract action has several possible alternate instantiations, but in ABSTRIPS,
only one instantiation is possible. Thus in ABSTRIPS, the notion of considering alternate

instantiations of an action and choosing the one of least estimated cost does not make sense.

Another type of abstraction which is quite close to that used in SIPS is proposed by Tenenberg

[22]. This approach is similar to SIPS in the sense that each abstract action may have more than

one possible instantiation. It is potentially more general than that used in SIPS, in the sense

that the effects of actions are represented hierarchically, as well as their preconditions—but so far,

Tenenberg’s approach approach has not yet been implemented.

Several systems for diagnostic problem-solving make use of certain kinds of taxonomic hierar-

chies. Both MDX [14] and Centaur [10] use taxonomies of various diagnostic problems, in which

knowledge about each class of problems is located at the node in the hierarchy which represents thst

class. These approaches yield some of the same benefits as SIPS in terms of representational clarity

and efficiency of problem-solving. However, the details of how they represent and manipulate their

knowledge are rather different from what SIPS does.

4.3 Computational Approaches

It is well known that rule-based systems having large rule bases can require substantial computa-

tional overhead. Suppose a rule-based system is trying to solve a problem in some problem domain

D. Each time the system applies a rule, this changes the system’s current state S—and in order

to decide what rule to apply next, the system must determine which rules match 5. If the system

searched through its entire set of rules to find the ones matching 5, the computational overhead

would be tremendous.

Several approaches have been tried for alleviating this problem. One approach, which is used

in KEE [9], is to provide facilities whereby the user can divide a set of rules R into smaller subsets

J?i, i? 2 ,
• • •, Rn ,

such that each subset is relevant for a different problem domain. Given a problem

A- 4 8

to solve, the system starts out by determining which problem domain the problem is in. It then

selects the rule set R{ for that domain, and then uses R, exclusively from that point on, ignoring

all the other rules. Since R{ is smaller than R, the problems with efficiency are lessened.

Hierarchical knowledge clustering can be thought of as as an extension of the above approach.

It provides a way to tell, directly from the current state 5, that only some subset Rs of the rules

in R is relevant to 5. 2 Thus, all rules not in Rs can temporarily be ignored. Since Rs is normally

quite small, this provides improved efficiency.

Another approach to reducing the computational overhead of computing rule matches is the

rete match algorithm used in OPS5 [11] and YAPS [1]. This algorithm provides a way to store

partial rule matches in a network so that the system can determine whether a rule matches the

current state without having to re-evaluate all of the rule’s preconditions each time the current

state changes. This makes the complexity of computing rule matches depend not on the size of i?,

but instead on the size of the set Ps of rules whose preconditions partially match S. If Ps is small,

then the rete match procedure is efficient, but if Ps is large, the elaboration of partial matches may

incur significant overhead.

Hierarchical knowledge clustering can be thought of as a way to control the elaboration of

partial matches, by distributing the preconditions of a rule throughout the levels of a hierarchical

structure and elaborating a partial match only if it looks promising. Thus, the approach used in

SIPS may have potential for increasing the efficiency of the rete match procedure.

5 Concluding Remarks

SIPS currently runs in Franz Lisp on a Sun, and in Zeta Lisp on a Symbolics Lisp Machine and

a TI Explorer. It can either read prepared data from a file, or (if some of this data is omitted)

run interactively, asking the user for any needed information. Various user features have been

implemented in SIPS. For example, if SIPS produces a plan for producing some feature, the user

can later tell SIPS to go back and find other alternative plans for producing this feature.

For the process planning problem domain, hierarchical knowledge clustering appears to be more

natural to use than a “flat” set of production rules. In the experience of a manufacturing engineer

who has worked on SIPS’s knowledge base, SIPS’s style of knowledge representation has been easy

to understand and use. Trying to represent SIPS’s knowledge base as a rule-based system would

make the rules very cumbersome.

A more sophisticated interface for SIPS is currently being developed. SIPS has been interfaced

to a solid modeling system at General Motors Research Laboratories, so that the user can build

up an object to be created by giving graphical specifications of its machinable features, and have

SIPS select sequences of machining processes capable of creating those features. Further work on

solid modeling for SIPS is currently underway [25].

More recently, SIPS has been extended to do not just process selection, but also tool selection

and the determination of process parameters. This has been done by giving SIPS a knowledge base

for tooling in addition to its knowledge base for process selection. Thus, the current knowledge

base for SIPS consists of three hierarchies: a taxonomy of machinable features, a taxonomy of

machining processes, and a taxonomy of cutting tools. Once SIPS finds a successful sequence of

machining processes for a given machinable surface, it uses its knowledge about the characteristics

of each cutting tool to decide, for each machining process, what cutting tool to use and what

2
In particular, finding Rs corresponds either to retrieving the children of some frame or (when SIPS creates a

subgoal) retrieving all frames relevant to the creation of a feature. In each case, only a few of SIPS’s process frames

are relevant—and which frames are relevant is determined easily from the frame system.

A- 4 9

process parameters to use. The latest version of SIPS is being integrated into the Automated
Manufacturing Research Facility (AMRF) project [2] at the National Bureau of Standards.

References

[1] E. M. Allen, “Yaps: Yet Another Production System,” Tech. Report TR-1146, Computer
Science Dept., Univ. of Maryland, College Park, MD, Feb. 1982.

[2] P. F. Brown and C. R. McLean, “Interactive Process Planning in the AMRF,” Symposium

on Knowledge-Based Expert Systems for Manufacturing at ASME Winter Annual Meeting
,

Anaheim, CA, Dec. 1986, pp. 245-262.

[3] T. C. Chang, “Interfacing CAD and CAM - A Study of Hole Design,” M.S. Thesis, Virginia

Polytechnic Institute, 1980.

[4] T. C. Chang and R. A. Wysk, An Introduction to Automated Process Planning Systems
,

Prentice-Hall, Englewood Cliffs, NJ, 1985.

[5] T.C. Chang and R. A. Wysk, “Integrating CAD and CAM through Automated Process Plan-

ning,” International Journal of Production Research 22:5, 1985.

[6] T. C. Chang and R. A. Wysk, “An Integrated CAD/Automated Process Planning System,”

AIIE Transactions 13:3, Sept. 1981.

[7] Y. Descotte and J. C. Latombe, “GARI: A Problem Solver that Plans How to Machine Me-

chanical Parts,” Proc. Seventh International Joint Conf. Artif. Intel., Aug. 1981, pp. 766-772.

[8] M. S. Dunn, Jr., J. D. Bertelsen, C. H. Rothauser, W. S. Strickland, and A. C. Milsop, “Im-

plementation of Computerized Production Process Planning,” Report ^81-945220-14, United

Technologies Research Center, East Hartford, CT, June 1981.

[9] R. Fikes and T. Kehler, “The Role of Frame-Based Representation in Reasoning,” Communi-
cations of the ACM 28:9, Sept. 1985, pp. 904-920.

[10] P. Jackson, “Introduction to Expert Systems,” Addison-Wesley, Wokingham, England, 198£>,

pp. 142-157.

[11] C. L. Forgy, “The OPS5 User’s Manual,” Tech. Report CMU-CS-81-135, Computer Sci. Dept.,

Carnegie-Mellon University, 1980.

[12] C. H. Link, “CAPP—CAM-I Automated Process Planning System,” Proc. 13th Numerical

Control Society Annual Meeting and Technical Conference
,
Cincinnati, March 1976.

[13] K. Matsushima, N. Okada, and T. Sata, “The Integration of CAD and CAM by Application

of Artificial-Intelligence,” CIRP, 1982, pp. 329-332.

[14] S. Mittal, B. Chandrasekaran, and J. Smith, “Overview ofMDX-A System for Medical Diagno-

sis,” Proc. Third Annual Symposium on Computer Applications in Medical Care
,
Washington,

DC, Oct. 1979.

[15] D. S. Nau and T. C. Chang, “Prospects for Process Selection Using Artificial Intelligence,”

Computers in Industry 4, 1983, pp. 253-263.

A- 50

[16] D. S. Nail and T. C. Chang, WA Knowledge-Based Approach to Generative Process Planning,”

Production Engineering Conference at ASME Winter Annual Meeting, Miami Beach, Nov.

1985, pp. 65-71.

[17] D. S. Nau and T. C. Chang, “Hierarchical Representation of Problem-Solving Knowledge in a

Frame-Based Process Planning System,” Jour. Intelligent Systems 1:1, 1986, pp. 29-44.

[18] D.S. Nau and M. Gray, “SIPS: An Application of Hierarchical Knowledge Clustering to Process

Planning,” Symposium on Integrated and Intelligent Manufacturing at ASME Winter Annual

Meeting
,
Anaheim, CA, Dec. 1986, pp. 219-225.

[19] D. S. Nau, J. A. Reggia, M. W. Blanks, Y. Peng, and D. Sutton, “Prospects for Knowledge-

Based Computing in Automated Process Planning and Shop Control,” Tech. Report, Computer

Science Dept., University of Maryland, College Park, Feb. 1984.

[20] N. J. Nilsson, Principles of Artificial Intelligence
,
Tioga Press, Palo Alto, 1980, pp. 350-354.

[21] C. Ramsey, J. A. Reggia, D. S. Nau, and A. Ferrentino, “A Comparative Analysis of Methods

for Expert Systems,” Intemat. Jour. Man-Machine Studies
,
1986.

[22] J. Tenenberg, “Planning with Abstraction,” Proc. AAAI-86, Philadelphia, 1986, pp. 76-80.

[23] E. Sacerdoti, A Structure for Plans and Behavior

,

American Elsevier, New York, 1977.

[24] TNO, “Introduction to MIPLAN,” Organization for Industrial Research, Inc., Waltham, MA,
1981.

[25] G. Vanecek and D. Nau, “Computing Geometric Boolean Operations by Input Directed De-

composition,” in preparation, 1987.

[26] R. A. Wysk, “An Automated Process Planning and Selection Program: APPAS,” Ph.D. The-

sis, Purdue University, 1977.

A-5

1

.

Appendix B BACKUS-NAUR SPECIFICATION Process Planning

BRIEF INTRODUCTION TO BACKUS-NAUR (BNF) NOTATION:

The following are symbols of BNF, and not of the language itself:

1. <xx> Denotes a non-terminal symbol whose name is "xx" . A
Hnon-terminal" is a symbol of the BNF notation which can be
further decomposed into a set of non-terminals and/or terminals.
Eventually, all symbols decompose into terminals. A "terminal" is
a symbol or character of the object language. The "object
language" consists of all symbols and characters that will appear
in the actual file.

2. ::= The non-terminal to the left of this symbol is composed
of all those elements that are to the right of this symbol
(expresses decomposition)

.

3. <xx> <yy> This expresses concatenation of two non-terminals
("and") . The concatenation applies to whatever these
non-terminals decompose to as well.

4.
|

This means "or" (any one of the specified elements may be
chosen to place in this position)

.

5. { } Means zero or more occurrences of. For example,
{<header_line>} means the same as <header_line_l> . .

<header_line_n> .

6. [] Means optional.

7 . xx . . yy This notation is for numeric or alphabetic ranges.

8. <???> Means as yet undefined.

Simple example of BNF:

<a> :
: = <c> !

 : := hi
<c> : := there

becomes
hi there !

B-l

Appendix B BACKUS-NAUR SPECIFICATION Process Planning

Comments

:

1. Keywords, values, and parameters are to be 19 characters or
less

.

2. All letters are uppercase.

3. Any terminal (i.e. punctuation_mark, integer) may be preceded
and followed by whitespace (defined below in BNF) unless otherwise
specified.

4 . The notation "xxH" in the following BNF represents the
hexadecimal number specifying an ascii character. For instance,
2H means SPACE.

5. Any element may be omitted by delineating with the proper
punctuation. For instance, in order to specify no precedence
steps, two consecutive semi-colons may be used.

B- 2

Appendix C PROCESS PLAN FORMAT Process Planning

THE PROCESS PLAN SPECIFICATION IN BNF

<pp_file> ::= —PROCESS_PLAN--
<parameters_section>
<header_section>
<rgmts_list>
<procedure_specification>

--END PROCESS PLAN--

<header_section> ::= —HEADER_SECTION

—

{ <header_line>

}

--END_HEADER_SECTION

<header_line> ::= <header_elem_naine> = <value> .

<header_elem_name> <keyword>

<parameters_section> ::= --PARAMETERS_SECTION--
{ <parm_line>

}

--END_PARAMETERS_SECTION--

<parm_line> ::= <parm_naitie> ? <parm_type> ;

<parm_range> ; <parm_default> .

<parm_name> : := $$<keyword>

<parm_type> ::= <???>

<parm_range> ::= <value>
,
<value>

<parm_default> ::= <???>

c-l

Appendix C PROCESS PLAN FORMAT Process Planning

<rqmts_list> —REQUIREMENTSJSECTION

—

{<rqmt_line>}
—END_REQUIREMENTS_SECTION

<rqmt_line> : := <rqmt_number> ; <rqmt_identifier> ;

<rqmt_type> ; <rqmt_description> ;

<rqmt_quantity> ; <parent_rqmts> .

<rqmt_number> : <integer>

<rqmt_identifier> ::= <keyword>

<rqmt_type> <keyword>

<rqmt_description> : := <???>

<rqmt_quantity> : := <integer>

<parent_rqmts> ::= <rqmt_line_num_list>

<rqmt_line_nuin_list> ::= (<keyword> ,} <keyword>

<procedure_specification> —PROCEDURE_SECTION
{ <procs_line>

}

—END_PROCEDURE_SECTION-“

<procs_line> ::= <step_number> ; <work_descr> ;

<prec_steps> ; <duration> .

<step_number> ::= <integer>

<work_descr> : := <work_element_name>
{, <keyword> = <value>}

<work_element_name> ::= <keyword>

<prec_steps> {<integer> ,} <integer>

<duration> " <days> : <hrs> : <min> : <sec> "

(No whitespace allowed between characters)

<days> : := <digit> <digit> <digit> <digit>
(No whitespace allowed between digits)

<hrs> : := 00 . . 23

<min> :
: = 00 . . 59

C-2

Appendix C PROCESS PLAN FORMAT Process Planning

<sec> : := 00 . . 59

<keyword> ::= <keyword_prefix> {<uppercase_letter>
|

<digit>
|

$ I # I _ I

“
I

%
I

&
I
+

I
i

I § I

*}
(No whitespace allowed between characters)

<keyword_prefix> <uppercase_letter>
| $ | # |

@

<value> ::= <number>
|

<keyword>
|
<string>

<string> " {<ascii_printable_char>} "

<whitespace> ::= { CR
|
LF

|

SPACE
|

TAB
|

FORMFEED }

<upper__case_letter> ::= A . . Z (41H . . 5AH)

<digit> ::= 0 . . 9 (30H . . 39H)

<integer> <digit>
|

<digit> <digit>
(No whitespace allowed between digits)

<ascii_printable_char> :: = SPACE . .
~

|

TAB
|

FORM-FEED |CR
|

VT
|

LINE-FEED (20H . . 7EH
|
12H

|

10H
|

9H
|

OBH
|

OAH
)

(Note: "
, or 22H, must be preceded by \ , or 5CH and also

\, or 5CH, must be preceded by \ , or 5CH)

<file_keyword> :
:= —PROCESS_PLAN— |

—END_PROCESS_PLAN

—

<section_keyword> :
: = --PARAMETERS_SECTION— |—END_PARAMETERS_SECTION— |

--HEADER_SECTION--
|—END_HEADER_SECT ION— |—REQUIREMENTS_SECTION--

|—END_REQUIREMENTS_SECTION— |

--PROCEDURE_SECTION--
|—END_PROCEDURE_SECTION

—

<punctuation_mark> ; |

=
|

.
|

:
| ,

(3BH
|

3DH
|

2 EH
|

3AH
|

2CH
)

<number> <integer>
|

<integer> . <integer>
|

<integer> [. <integer>] E<exponent>
(No whitespace allowed between characters)

C- 3

Appendix C

<exponent>

PROCESS PLAN FORMAT Process Planning

: := [+]<integer>
|
-<integer>

(No whitespace allowed between characters)

C-4

Appendix D EXAMPLE PROCESS PLAN Process Planning

—PROCESS PLAN

—

—HEADER_SECTION

—

PLAN-ID
PLAN-VERSION
PLAN-TYPE
PLAN-NAME

PROCESS-ENGINEER
PART-NUMBER
GT-CODE
ENG-DRAW-#
ENG-REVISION

= PP-CELL-1

;

= l;
= ROUTING-SLIP?
= “FILTER-HOUSING' 1

;

= "Peter Brown"?
= 31 ?

= 0134673689?
= 123987?
= 2 ?

—END HEADER SECTION

—

—PARAMETERS SECTION

—

$$TRAY001
$$TRAY002
$$LOT001
$$TOOL-SET001

PART-TRAY?
TOOL-TRAY ?

LOT?
TOOL-SET;

—END PARAMETERS SECTION—

—REQUIREMENTS_SECTION

—

<<1» PROCESS-PLAN
(PLAN-ID
PLAN-VERSION
PLAN-TYPE
PLAN-NAME

«2» PROCESS-PLAN
(PLAN-ID
PLAN-VERSION
PLAN-TYPE
PLAN-NAME

=> PP-MHS-1

,

=> 1 ,

=> OPERATION-SHEET,
=> "FILTER-HOUSING")

?

=> PP-MHS-2

,

=> 1 ,

=> OPERATION-SHEET,
=> "FILTER-HOUSING")

?

<<3 >> PROCESS-PLAN
(PLAN-ID => PP-MHS-3

,

D-l

Appendix D EXAMPLE PROCESS PLAN Process Planning

PLAN-VERSION
PLAN-TYPE
PLAN-NAME

«4» PROCESS-PLAN
(PLAN-ID
PLAN-VERSION
PLAN-TYPE
PLAN-NAME

«5» PROCESS-PLAN
(PLAN-ID
PLAN-VERSION
PLAN-TYPE
PLAN-NAME

«6» PROCESS-PLAN
(PLAN-ID
PLAN-VERSION
PLAN-TYPE
PLAN-NAME

«7» PROCESS-PLAN
(PLAN-ID
PLAN-VERSION
PLAN-TYPE
PLAN-NAME

«8» WORKSTATION
(WORSTATION-ID

«9» WORKSTATION
(WORKSTATION-ID

«10» TRAY
(TRAY-TYPE
TRAY-ID

«11» TRAY
(TRAY-TYPE
TRAY-ID

—END REQUIREMENTS SECTION

—

--PROCEDURE SECTION

—

<<1» DELIVER-TRAY
(ORIGIN
DESTINATION

=> 1 ,

=> OPERATION-SHEET,
=> "FILTER-HOUSING")

?

=> PP-MHS-4

,

=> 1 /

=> OPERATION-SHEET,
=> "FILTER-HOUSING")

;

=> PP-VWS-1,
=> 1 ,

=> OPERATION-SHEET,
=> "FILTER-HOUSING")

?

=> PP-VWS-2

,

=> 1 /

=> OPERATION-SHEET,
=> "FILTER-HOUSING")

;

=> PP-VWS-3

,

=> 1 ,

=> OPERATION-SHEET,
=> "FILTER-HOUSING")

;

=> VWS)

?

=> MHS)

;

=> SECTOR-4,
=> $$TRAY001)

;

=> SECTOR-4,
=> $$TRAY002)

;

=> MHS,
=> VWS,

D-2

Appendix D EXAMPLE PROCESS PLAN Process Planning

« 2»

<<3»

<<4 >>

<<5>>

<< 6 >>

TRAY-TYPE => SECTOR-4

,

TRAY-ID => $$TRAY001,
SYSTEM => MHS

,

TYPE => COMPLEX,
PLAN-ID => PP-MHS-1

,

PREC-STEPS => Or
TIME => 0000:00:00:30)

;

DELIVER-TRAY
(ORIGIN MHS,
DESTINATION => vws,
TRAY-TYPE => SECTOR-4,
TRAY-ID => $$TRAY002

,

SYSTEM -> MHS,
TYPE => COMPLEX,
PLAN-ID => PP-MHS-2

,

PREC-STEPS => Or
TIME => 0000:00:00:30) ?

RECEIVE-TRAY
(TRAY-TYPE => SECTOR-4

,

TRAY-ID => $$TRAY001

,

SYSTEM => VWS,
TYPE => PRIMITIVE,
PREC-STEPS => (1) ,

TIME => 0000:00:00:30) ?

RECEIVE-TRAY
(TRAY-TYPE => SECTOR-4

,

TRAY-ID => $$TRAY002

,

SYSTEM => VWS,
TYPE => PRIMITIVE,
PREC-STEPS => (2) ,

TIME => 0000:00:00:30) ?

SETUP-AREA
(AREA-ID => TOOL-CHANGER,
ITEMS => $$TOOL-SET001,
SYSTEM => VWS,
TYPE => COMPLEX,
PLAN-ID => PP-VWS-1,
PREC-STEPS => (4) ,

TIME => 0000:00:02:45) 7

MACHINE-LOT
(LOT-ID => $$LOT001

,

LOT-TYPE => FILTER-HOUSING,

D-3

Appendix D EXAMPLE PROCESS PLAN

QUANTITY
TRAY-ID
TOOL-SET
SYSTEM
TYPE
PLAN-ID
PREC-STEPS
TIME

«7» TAKEDOWN-AREA
(AREA-ID
ITEMS
SYSTEM
TYPE
PLAN-ID
PREC-STEPS
TIME

«8» SHIP-TRAY
(TRAY-TYPE
TRAY-ID
SYSTEM
TYPE
PREC-STEPS
TIME

«9» SHIP-TRAY
(TRAY-TYPE
TRAY-ID
SYSTEM
TYPE
PREC-STEPS
TIME

«10» DELIVER-TRAY
(ORIGIN

DESTINATION
TRAY-TYPE
TRAY-ID
SYSTEM
TYPE
PLAN-ID
PREC-STEPS
TIME

«11» DELIVER-TRAY
(ORIGIN
DESTINATION
TRAY-TYPE

Process Planning

=> 4,
=> $$TRAY0Q1

,

=> $$TOOL-SET001 /

=> VWS,
=> COMPLEX,
=> PP-VWS-2

,

=> (3,5)

,

=> 0000:00:28:15)

;

=> TOOL-CHANGER,
=> $$TOOL-SET-l
=> vws,
=> COMPLEX,
=> PP-VWS-3

,

=> (6),
=> 0000:00:02:30)

?

=> SECTOR-4,
=> $$TRAY0Q1

,

-> VWS,
=> PRIMITIVE,
“> (6),
=> 0000:00:00:30)

?

=> SECTOR-4,
=> $$TRAY002

,

=> VWS,
PRIMITIVE,

=> (7),
=> 0000:00:00:30)

?

=> VWS,
=> MHS

,

=> SECTOR-4,
-> $$TRAY001,
=> MHS,
=> COMPLEX,
=> PP-MHS-3

,

=> (8),
=> 0000:00:00:30) ;

=> VWS,
=> MHS,
=> SECTOR-4,

D- 4

Appendix D EXAMPLE PROCESS PLAN Process Planning

TRAY-ID
SYSTEM
TYPE
PLAN-ID
PREC-STEPS
TIME

=> $$TRAY002

,

=> MHS

,

=> COMPLEX,
=> PP-MHS-4

,

-> (9),
=> 0000 : 00 : 00:30)

;

—END PROCEDURE SECTION—

—END PROCESS PLAN—

Appendix E HARDWARE AND SOFTWARE REQUIREMENTS Process Planning

The process planning system operates on Symbolics 3600 series
computers running the 6.1 version of the operating system. It is
written in Zetalisp, and uses Symbolics Flavors. Future work will
upgrade the entire system to run under Genera 7 on the Symbolics
machines. To operate effectively, the host computer should have at
least 4 Mbytes of memory running under Release 6.1, or 8 Mbytes
running under Genera 7

.

E- 1

READER COMMENT FORM

Document Title Process Planning System Architecture

This document is one in a series of publications which document
research done at the National Bureau of Standards* Automated
Manufacturing Research Facility from 1981 through March, 1987.

You may use this form to comment on the technical content or
organization of this document or to contribute suggested
editorial changes.

Comments

:

If you wish a reply, give your name, company, and complete
mailing
Address

:

What is your occupation ?

NOTE : This form may not be used to order additional copies of
this document or other documents in the series. Copies of AMRF
documents are available from NTIS.

Please mail your comments to: AMRF Program Manager
National Bureau of Standards
Building 220, Room B-lll
Gaithersburg, MD 20899

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NISTTR 88/3828

2. Performing Organ. Report No.

4. TITLE AND SUBTITLE

NBS AMRF Process Planning System - System Architecture

3. Publ ication Date

MARCH 1989

5. AUTHOR(S)

Peter F. Brown & Steven R. Ray

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

national bureau of standards
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)

10.

SUPPLEMENTARY NOTES

Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significan t information. If document includes a significant
bi bl iography or literature survey, mention it here)

The purpose of this document is to provide a general description of design and
implementation of the AMRF Process Planning System. The document should provide the
reader with an understanding of the concepts behind the work in the process planning
project as well as on the approach adopted. Details on system implementation are
provided

.

12.

KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

automation, expert, hierarchical, manufacturing, planning, process planning, standards

13. availability 14. NO. OF
PRINTED PAGES

Jj/j U n I i mi ted

;

For Official Distribution. Do Not Release to NTIS

H Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

113

15. Price

[X^ Order From National Technical Information Service (NTIS), Springfield, VA. 22161 $13.95

uscomm-dc eC43-pgo

