

Narrow-Angle Laser Scanning Microscope System for Linewidth Measurements on Wafers

D. Nyyssonen

CD Metrology, Inc.
Germantown, MD 20874

June 1988
Issued April 1989

Prepared for:
U.S. DEPARTMENT OF COMMERCE

National Institute of Standards and Technology
(Formerly Nationai Bureau of Standards)
National Engineering Laboratory
Center for Manufacturing Engineering
Precision Engineering Division
Gaithersburg, MD 20899

Narrow-Angle Laser
 Scanning Microscope System for Linewidth Measurements on Wafers

D. Nyyssonen

CD Metrology, Inc.
Germantown, MD 20874

June 1988
Issued April 1989

National Bureau of Standards became the National Institute of Standards and Technology on August 23, 1988, when the Omnibus Trade and Competitiveness Act was signed. NIST retains all NBS functions. Its new programs will encourage improved use of technology by U.S. industry.

Prepared for:
U.S. DEPARTMENT OF COMMERCE

National Institute of Standards and Technology
(Formerly National Bureau of Standards)
National Engineering Laboratory
Center for Manufacturing Engineering
Precision Engineering Division
Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE
 Robert Mosbacher, Secretary
 NATIONAL INSTITUTE OF STANDARDS
 AND TECHNOLOGY
 Raymond G. Kammer, Acting Director

Abstract 1
Introduction 1
Characteristics of Patterned Thin Films 2
Optical Design of a Metrological Microscope 6
Spatial Coherence and Angle of Incidence 7
Aberrations 11
Alignment 11
Alignment Procedure 13
Measurement of Linewidth 15
Radiometric Signal/Noise Ratio 17
Scalar Theory for Thin-Layer Imaging 17
Vector Theory for Thick-Layer Imaging 20
Accuracy and Precision 24
Design of Linewidth Calibration Standards 26
Summary 27
Acknowledgments 28
References 28
Figures 31
Appendix I 46
Appendix II 55

Diana NyYssonen**
CD Metrology, Inc.
Germantown, MD 20874

Abstract

The integrated-circuit industry in its push to finer and finer line geometries approaching submicrometer dimensions has created a need for ever more accurate and precise featuresize measurements to establish tighter control of fabrication processes. Under the auspices of the NBS Semiconductor Linewidth Metrology Program, a unique narrow-angle laser measurement system was developed. This report describes the theory, optical design, and operation of this system and includes computer software useful for characterizing the pertinent optical parameters and images for patterned thin layers. For thick layers, the physics is more complex, and only elements of the theory are included here. However, for more detail the reader is referred to several related reports listed in the references.

KEY WORDS: metrology, coherence, critical dimensions, linewidth measurements, micrometrology, scanning microscopy

INTRODUCTION

The push to submicrometer feature sizes on integrated-circuit (IC) wafers has resulted in a need for more accurate and precise dimensional measurements in order to establish tighter control of fabrication processes, improve yield, and ensure that lithographic

* Contribution of the National Bureau of Standards; not subject to copyright.
** Formerly with the National Bureau of Standards; collaboration continues under a Guest Worker Agreement.
and linewidth measurement systems meet specifications. Measurement systems used in the fabrication process must have accuracy and precision much better than the variation in the parts being measured and, in turn, the accuracy and precision of calibration standards must be still better than the instruments being calibrated.

Under the Semiconductor Metrology Program within the Center for Electronics and Electrical Engineering at NBS a project was initiated to develop improved instrumentation, calibration procedures and standard reference materials for linewidth measurement on IC wafers. The result was the development of the NBS narrow-angle laser linewidth measurement system. This system was first described in 1978 [1] and discussions of various aspects of this system have appeared in the literature since then [2-7]. However, there is no single report which adequately describes the details of its theory, design and operation. This report attempts to rectify this situation. In order to understand the motivation behind the development of this system, it is necessary to understand the optical characteristics of the patterned features on integrated circuits which this system was designed to measure.

CHARACTERISTICS OF PATTERNED THIN FILMS

The optical properties of patterned integrated circuit wafers are best described using the language of ellipsometry. Wafers are typically made up of layers of insulators and conductors with one or more of these layers patterned. These layers may vary in thickness from approximately $0.1 \mu \mathrm{~m}$ to $0.5 \mu \mathrm{~m}$ or more. In this report discussion is limited to thin layers, those less than onequarter of the illuminating wavelength. Thicker layers cannot be described by scalar theory and a vector treatment must be used. See ref. 19. For the moment consider a region on the wafer where only the top layer is patterned as shown in Fig. 1. A single
plane wave of wavelength λ is incident at an angle θ. This plane wave is refracted and reflected at each interface. To determine the complex reflectance, that is, both the amplitude and phase of the reflected wave, the Fresnel equations [8] are used. In matrix form [9], each layer is characterized by a matrix of the form
$M_{j}=\left(\begin{array}{ll}\cos v_{j} & \frac{-i}{u_{j}} \sin v_{j} \\ -i u_{j} \sin v_{j} & \cos v_{j}\end{array}\right)$
where $u_{j}= \begin{cases}\frac{\hat{\eta}_{j}}{\cos \theta_{j}} & \text { parallel polarization } \\ \hat{\eta}_{j} \cos \theta_{j} & \text { perpendicular polarization }\end{cases}$
and $\hat{n}=n_{j}+i K_{j}$ is the complex index of refraction of the $j t h$ layer. θ_{j} is found from snell's law:
$\hat{n}_{0} \sin \theta_{0}=\hat{\eta}_{j} \sin \theta_{j}=a$ constant for all j
and v_{j}, the effective optical thickness, is given by
$v_{j}=\frac{2 \pi}{\lambda}\left(\hat{n}_{j} t_{j} \cos \theta_{j}\right)$
A. UNPATTERNED LAYERS

The characteristic matrix for the composite of N unpatterned layers is then given by the product of the characteristic matrices of the individual layers
$M_{1, N}=M_{1} \cdot M_{2} \cdot \cdot \cdot \cdot M_{j} \cdot \cdot \cdot M_{N}$
with
$M_{1, N}=\left(\begin{array}{cc}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right)$

The amplitude and phase of the reflected and transmitted waves are found from the characteristic matrix M. Let
$x=m_{11}+\hat{n}_{s} m_{12}$
$Y=m_{21}+\hat{n}_{s} m_{22}$
then the complex reflectance is given by
$r=\frac{X-Y}{X+Y}$

If $r=x+i y$, then the phase of the reflected wave is given by
$\psi=\tan ^{-1}\left(\frac{y}{x}\right)$
and
$R=|r|^{2}$
B. PATTERNED LAYERS

For the case of a patterned wafer (Fig. 1) where the relative reflectance and phase difference at an edge are needed, first the characteristic matrix $M_{1, N}$ for layers 1 through N is calculated and then the matrix $\mathrm{M}_{2, \mathrm{~N}}$ for layers 2 through N . A relative reflectance, R, to be used later, is then defined by
$R=\begin{aligned} & \frac{R_{1, N}}{R_{2, N}} \\ & \frac{R_{2, N}}{R_{1, N}}\end{aligned}\left\{\begin{array}{l}R_{1, N}<R_{2, N} \\ R_{2, N}<R_{1, N}\end{array}\right.$
where the convention is chosen so that $R \leq 1$. The corresponding relative phase difference is defined by
$\emptyset=\psi_{2, N}-\psi_{1, N}+2 k_{0} t_{1} \cos \theta$
where $k_{0}=\frac{2 \pi}{\lambda}$ and t_{1} is the thickness of the top layer. At normal incidence, there is no difference between incident waves with parallel or perpendicular polarization and these equations simplify. Appendix I includes a short computer program written in FORTRAN 77 which calculates R and \varnothing at normal incidence. The calculation of R and \varnothing represents the first step in modeling the image of a patterned wafer.
C. BEHAVIOR OF R AND \varnothing
R and \varnothing vary with index and thickness of the layers, angle of incidence, polarization and wavelength. In addition, dielectrics behave differently from metals. Figures 2-5 illustrate variations of R and \varnothing as a function of these parameters. In Figs. $2(a)$ and (b), the curves for R and \varnothing as a function of t_{1} are relatively simple for a single patterned layer on a silicon substrate. These same curves may also be plotted parametrically as $R\left(t_{1}\right)$ vs $\varnothing\left(t_{1}\right)$ as shown in Figs. $2(c)$ and $2(d)$.

In Fig. 3, the situation is more complex. With an oxide layer under the metal, one has the option of varying either the thickness of the metal layer or the thickness of the oxide layer
underneath. If the metal layer is held constant and the oxide is varied, the resulting curve is an ellipse.

Figures 2 and 3 are for the case of normal incidence and a single wavelength. Figures 4 and 5 illustrate the variations with wavelength and angle of incidence for a silicon dioxide layer on silicon. In real cases, the index of refraction also varies with wavelength, changing the behavior of the curves for silicon dioxide shown in Fig. 4.

For accurate linewidth measurements, R and \varnothing must be constant over the solid angle of illumination. It is possible to determine the maximum allowable angle for a given material (or combination of materials) using eqs. (1)-(6). For example, for SiO_{2} on Si , if a 2% variation in R with θ is allowed, $\theta_{\max }$ can be determined as a function of thickness of the oxide. See Fig. 5. $\Theta_{\max }$ is then the maximum allowable illumination angle for the measurement system. For thick layers, this requirement rather than the coherence requirement will determine the illumination cone angle for the system.

OPTICAL DESIGN OF A METROLOGICAL MICROSCOPE

The variations in R and \varnothing with wavelength and angle of incidence are the driving force behind the design of the narrow-angle, laser linewidth microscope. As in ellipsometry, accurate dimensional measurements become exceedingly difficult and the data analysis time consuming if all of the experimental parameters are allowed to vary. Ideally then, the optimal solution to dimensional metrology would be a single wavelength, single-angle-of-incidence system analogous to that used in ellipsometry [10]. Single wavelength is readily achieved using a laser source. However, in optical microscopy, it is neither desirable nor necessary to use a single angle of incidence; a narrow illuminating cone angle over which the resulting R and \varnothing of the specimen are essentially
constant is sufficient. The cone angle numerical aperture (N.A.), however, must be chosen with care for the particular index of refraction and thickness of the material to be measured.

A schematic of the layout of such a system built at NBS is shown in Fig. 6. The combination of the rotating ground glass disc and the illumination optics is used to control the illumination cone angle and the coherence at the back focal plane of the objective. With these parameters very tightly prescribed the microscope behaves like a modified bright-field microscope, that is, it operates as an effectively coherent imaging system. Although the system uses a one-dimensional piezo electric scanning stage [11] with interferometric readout of distance and a stationary slit in the image plane, it is also possible to scan the image plane with a moving slit arrangement. However, the system requirements for these two modes of operation are different.

The chief disadvantage of the single wavelength, narrow angle system is the low throughput. A 1-W laser is used on the NBS system and approximately 1 nW reaches the detector. The principal losses come from use of the rotating ground glass disc, overfilling of apertures to get uniform illumination, the small aperture limiting the illumination cone angle, the oversize illuminated area at the wafer, and the small slit in the image plane. The requirement on this slit width is that it be $1 / 6$ or less of the Airy disc diameter of the objective when projected back to the wafer in order not to degrade the image waveform [12].

Spatial coherence and angle of incidence

In order to discuss the coherence aspects of the system, it is necessary to introduce some concepts related to coherence. It is conventional in microscopy to describe spatial coherence in a bright-field microscope in terms of a coherence parameter defined by the ratio of the numerical aperture of the condenser with respect to the N.A. of the imaging objective:
$S_{B}=\frac{\text { N.A. condenser }}{\text { N.A. objective }}$

The limit $\mathrm{S} \longrightarrow \mathrm{O}$ is associated with coherent illumination as in the case of a collimated ?.aser beam and the limit $s \rightarrow \infty$ with incoherent illumination. In conventional imaging in a microscope, neither of these limits is ever realized. However, it is useful to introduce the ideas of effective coherence and incoherence here. Effective coherence or incoherence means that the images of lines on wafers would be essentially the same as that seen in a fully coherent or a fully incoherent system.

For effective coherence:
$S_{B}<2 / 3$, for thin, high contrast objects such as opaque photomasks, and
$S_{B}<1 / 5$, for thick, low contrast objects with phase variations such as most wafer features.

For effective incoherence:
S_{B} may have any value for thin low contrast objects with no phase variations present (rare), and
$S_{B}>2, \quad$ for all other cases.
For practical purposes, the images formed for these values of S_{B} would be indistinguishable from those corresponding to completely coherent or incoherent images as illustrated in Fig. 7. One consequence of these considerations is that a high numerical aperture conventional bright-field imaging system with 0.9-N.A. dry microscope objective can never be effectively incoherent since S_{B} can never exceed 2; one must therefore deal with partially coherent or effectively coherent imaging with such a microscope.

For focused-beam scanning systems with the roles of the illumination and detection systems interchanged, the coherence parameter is defined analogously as the inverse of that given above, i.e.,
$S_{F}=\frac{\text { N.A. }{ }_{\text {collector }}}{\text { N.A. }{ }_{\text {focused beam }}}$
(See Ref. 13). For such systems, effective coherence and incoherence are similarly defined for this S_{F}. Therefore, it is possible to produce a system with an effectively coherent or incoherent response using either a laser or thermal source such as a tungsten-halogen lamp. By analogy, the narrow-angle, effectivelycoherent NBS system could have been configured with a focused laser beam and narrow angle collector. However, because of the response of thin films to angle of incidence, these two configurations would not have produced the same response.

One major difference between coherent and incoherent imaging is sensitivity to phase changes in the object or feature being measured. This aspect will be discussed further with respect to the imaging characteristics of the system. The concepts of effective coherence and incoherence discussed here refer to the plane of the wafer and assume that the back focal plane of the objective is incoherently illuminated (which is not fully realizable in practice).

It is useful, therefore to discuss here the reciprocal relationship between coherence and size of the illuminated area at the back focal plane with respect to the same parameters at the wafer. This relationship has not yet made its way into textbooks but was introduced by wolf [14]. As applied to the microscope, it states that the coherence at the back focal plane of the objective determines the illuminated area (and intensity distribution) at the wafer, while the size and distribution of the illuminated area at the back focal plane determines the coherence at the wafer, providing that: 1) the illuminated area is large
compared to the coherence area, 2) the intensity is constant or slowly varying across the back focal plane, and 3) the region near the edges of the illuminated area is not being considered.

Because of throughput it is not desirable to require a high degree of incoherence at the back focal plane of the objective. In fact, if only small line objects are viewed a relativel: small circular field of view is required and the diameter $D_{C}^{B F}$ of the coherence area at the back focal plane can be found from
$D_{C}^{B F} \leq \frac{0.6 \lambda f}{D_{I}^{W}}$
where D_{I}^{W} is the desired diameter of the illuminated area on the wafer, λ the wavelength, and f the focal length of the objective. It is also required that
$D_{C}^{B F} \ll D_{I}^{B F}$
where $D_{I}^{B F}=2(N . A$. condenser $)$ f. Therefore, for a 4 mm focal length objective at a wavelength of $0.5 \mu \mathrm{~m}$ and $D_{I}^{W}=50 \mu \mathrm{~m}$ these parameters would be $D_{I}^{B F} \simeq 1 \mathrm{~mm}$ and $D_{C}^{B F}>25 \mu \mathrm{~m}$ for an effectively coherent system. If the coherence area at the back focal plane is reduced, a larger area on the sample will be illuminated and lower through-. put will result. On the other hand, if the coherence area is increased, a smaller area will be illuminated at the sample making it difficult to find the patterns which need to be measured and possibly violating the requirement that $D_{C}^{W} \gg D_{I}^{W}$.

Only spatial coherence, that is, coherence in the plane of the wafer or lens aperture, has been discussed. The concept of
coherence volume (coherence area times coherence length) is useful here as well. Because there are no differences in optical path length in an ideal imaging system, coherence length is not usually of concern. However, in coherent imaging systems, coherent noise or speckle becomes a problem due to the extremely long coherence length of the laser source. Normally, dust particles and scratches on optical surfaces produce diffraction patterns which may be observed in the image plane due to the long coherence length. As shown in Fig. $8(a)$, a system using unfiltered tungsten illumination (white light) has a very short coherence length and small volume compared to a laser source (Fig. 8(b)) and therefore will not exhibit these effects. The present narrow-angle laser system has a peculiar pencil-shaped coherence volume as shown in Fig. 8(c), which eliminates most of the coherence effects normally associated with coherent imaging.

ABERRATIONS

In a system with a stationary slit and moving wafer where only the axial image is used, only spherical aberration is of concern. When the image is scanned with a moving slit, the off-axis aberrations are also of concern. Because it is desirable to eliminate as many variables which effect the measurement as possible, diffraction-limited performance and aberration tolerances of $\lambda / 4$ or less are desirable. The ultimate test, however, is whether the system produces a diffraction-limited image waveform. Although aberrations may be taken into account in edge detection formulas [4], this approach is not recommended.

ALIGNMENT

A bright-field microscope operating in an effectively coherent mode has much more severe requirements on alignment than a conventional microscope. Because of sensitivity to phase variation, the illumination must be not only uniform in intensity across the line pattern but also uniform in phase across the illuminated
area. If this requirement is not met, the resulting nonsymmetric images invalidate the algorithms used for accurate edge detection. Because poor quality lines will also produce nonsymmetric images, it is necessary to distinguish between these two sources of nonsymmetry. One method is to rotate the specimen 180° and compare image waveforms. System asymmetry will stay the same while line irregularity will rotate. However, this test is difficult to interpret when both sources of nonsymmetry are present.

A special test wafer is therefore used for testing system performance. The ideal wafer is a patterned layer with $R=1, \varnothing \simeq \pi$. The waveform for a 180 nm thick layer of $\mathrm{SiO}_{2}(\mathrm{R}=1, \varnothing=0.6 \pi)$ is shown in Fig. 9. This line pattern is ideal because of the symmetric waveform produced at each edge. Three sources of error readily show up in the image waveform: 1) misalignment of the illumination system including decentering of the aperture stop and tilt errors in the optical elements, 2) tilt of the wafer with respect to the focal plane of the objective and 3) tilt of the scanning plane with respect to the image plane when a moving slit is used.

In order to interpret the waveforms, it is necessary to understand the diffraction-limited behavior of this waveform with defocus. Figure $10(a)$ illustrates the nonsymmetry produced with defocus. On one side of focus, one of the maxima at the image edge is enhanced while the other is reduced. On the other side of focus, the opposite occurs. In addition, as defocus increases, the distance between these peaks increases as shown in Fig. 10(b).

When the only error is the tilt of the wafer with respect to the focal plane, one edge of the line will lead (or lag) the changing image waveform as a series of scans are made through focus. A similar effect occurs when the image plane is tilted with respect to the scanning plane. This effect is illustrated in Fig. 11.

Misalignment can produce a large variation in waveforms. An example is illustrated in Fig. 12(a). In general, nonsymmetry is present as focus is varied but is different from that shown in Fig. 10(a). There is also a loss in resolution, so that the distance between peaks is larger than that shown in Fig. 10(b). With both wafer tilt and misalignment present, it is possible to get waveforms like that shown in Fig. 13 where there is symmetry, but of the wrong kind.

Given the difficulty of determining and correcting these errors when all of these effects (misalignment, wafer tilt, poor line edge quality) are present, a procedure which will now be discussed has been worked out for laser alignment of the microscope.

ALIGNMENT PROCEDURE

We have found that in a high quality microscope the individual microscope optics are usually aligned adequately in their own mounts. However, these components when assembled to form the microscope are generally improperly aligned. This is probably because manufacturing tolerances of conventional microscopes are not adequate for this highly demanding mode of operation. It is common practice, for example, to correct errors in one component by an offsetting adjustment in another. One can expect, therefore, to have to shim and in some cases redesign mounts and adjustments to achieve the desired alignment accuracy.

The required tools for this job are a small HeNe laser (1 mW or less), neutral density filters to reduce the power to a comfortable level for visual viewing through the microscope, a laser beam steerer or other method for controlling the position and tilt of the laser beam, a polished silicon wafer or other highly reflective, flat surface, and a wafer holder with tilt adjustment.

The first step is to disassemble the microscope. If possible, remove all optics except the beam splitter in the head and the wafer on the stage. Then select a small aperture on the illumination side and one on the viewing side for reference. The center of these apertures together with the requirement that the return beam fall on the exit aperture of the laser determines the optical axis of the system. All components will be aligned to this axis as illustrated in Fig. 14.

The principle of this procedure is to add components one at a time and make sure that each is aligned to this axis. This is achieved by making sure that the return beam goes back to the laser aperture and the forward beam remains centered on the chosen reference aperture for each added optical element. In general, centering is done first and if the forward and return beams cannot both be returned to their reference points, then tilt must be adjusted by shimming or other means. In general, the tilt must be under- or over-corrected and the element recentered and these steps repeated until the desired alignment accuracy is achieved.

One difficulty with this method is that the laser beam changes diameter at the reference aperture as elements are added. In some cases, it may be necessary to temporarily remove an element already aligned if it can be replaced exactly in order to keep the beam size small and maintain the desired accuracy. No rule of thumb can be given for "tolerable errors." Because of the large number of components (9 lenses, a beam splitter and 2 apertures in the NBS system) and the variations in microscope design, it is best to align every element as accurately as pcssible, that is, within a small fraction of the laser beam diameter. Because of its high magnification, the microscope objective is left for last. The aperture pinhole, which determines the illumination cone angle, will be next to last. The ultimate test of the accuracy achieved is the symmetry of the resulting waveform in a series of profiles with increasing amounts of defocus.

When all of the microscope optics have been aligned adequately, the argon or other high-power laser source is brought into coincidence with the alignment laser as shown in Fig. 15 and the beam expander and ground glass are aligned. Through these last steps, the aperture pinhole as viewed through the microscope with an auxiliary alignment telescope (such as used for centering the disc in phase contrast microscopy) or other device must remain stationary and uniformly illuminated.

One element that needs special attention is the rotating ground glass disc. If the normal to the surface precesses about the optical axis, fluctuations in intensity in the image plane will be observed. For this reason, a flexible coupling and a precision bearing at the drive motor are recommended.

After the alignment is completed, the alignment wafer is replaced with the SiO_{2} test wafer. A scan of a line is made and the tilt of the wafer adjusted if indicated. If nonsymmetry due to misalignment is detectable, the alignment procedure was not performed accurately enough. Once alignment is deemed satisfactory, other adjustments of optical elements should be required or made thereafter. With each new wafer, only wafer tilt and focus are adjusted.

MEASUREMENT OF LINEWIDTH

The system must produce and maintain an ideal image waveform for the test line object because of the demands of accurate edge detection. An equally important requirement is the accurate measurement of distance (i.e. linewidth). To scan the image, the NBS laser system moves the wafer and measures the motion with a laser interferometer, thus providing traceability to fundamental standards of length. Aside from the usual demands of accurate laser interferometry, this system has some unique aspects principally involving alignment of the elements of the scanning system including scanning slit, line object, axis of stage motion and interferometer axis. The principal difficulty stems from the
extremely short distance of motion of the piezo electric stage, typically less than $50 \mu \mathrm{~m}$.

The easiest method of alignment is to use the crosshair in the viewing eyepiece as a fiducial mark. The slit and line object can be centered and aligned to the vertical axis visually. In addition, the axis of stage motion can be aligned to the horizontal axis visually by inspecting the motion of a horizontal line object as it traverses the field of view. In order to align the interferometer axis parallel to the piezo electric stage axis, an auxiliary mirror has been used. This mirror has a mount that fits into the holes at the pivot points on the stage (See Ref. 11.) and is constructed so that the mirror face is accurately perpendicular to the direction of motion. Without this auxiliary mirror, the method is one of trial and error; minimizing a measured linespacing to eliminate the possible cosine error. Fortunately, because of the short distances scanned, the angle accuracy required for a given tolerance on a one micrometer linewidth is not very demanding. The final check, however, is measurement of a known linespacing traceable to national standards of length.

The major sources of distance measurement errors are vibration (the system should be mounted on a massive vibration isolation system), the least count of the interferometer, and temperature effects on the system. Because of the short distances, temperature effects on the wafers being measured are negligible.

In the NBS system, the precision of the interferometry is a fundamental limit on the precision of linewidth measurements. One cannot measure the size of an object to better precision than that of the distance measurement. This limitation is to some extent due to the basic design of the microscope, which is sensitive to both acoustic and mechanical sources of vibration and temperature.

In most microscope linewidth measurement systems employing tungsten sources, the radiometric precision is limited by photon noise. Here the laser power has been increased in order to maintain the single wavelength, narrow angle mode of operation. Thus photon noise has been traded for laser output fluctuations. However, the specifications on the laser ($<0.5 \%$ variation) are adequate in this case. In addition to increasing the power, the system uses a variable speed chopper and lock-in amplifier operating at approximately 350 Hz with high and low-pass filters. The resulting signal/noise ratio is better than 200/1.

SCALAR THEORY FOR THIN-LAYER IMAGING

Scalar theory of partially coherent imaging has been developed using several different approaches including convolution integrals and Fourier analysis. The most efficient approach for computer calculations is the use of the transmission crosscoefficient of the optical system [15] as applied to the imaging of line objects by Kintner [16]. Based on the methods of Fourier analysis, the complex amplitude transmittance of the patterned line object is described by
$t(x)= \begin{cases}1 & 0<x<W / 2 \\ \sqrt{\operatorname{Rexp}}(i \varnothing) & W / 2<x<P\end{cases}$
which is expanded in the Fourier series
$t(x)=\sum_{m} A_{m} \cos \left(\frac{2 \pi m x}{P}\right)$
where the line object is repeated at a period P which may be chosen arbitrarily large to describe isolated line objects. R and \varnothing are the relative reflectance and phase difference at the line edge as introduced earlier. (See Eqs. 5 and 6.) The image is calculated from the Fourier series equation

$$
\begin{equation*}
I(y)=\sum_{n=-\infty}^{\infty} b_{n} \cos \left(\frac{2 \pi n y}{P}\right) \tag{13}
\end{equation*}
$$

where, for a symmetric line object,

$$
\begin{aligned}
& b_{n}=\left\{A_{n} A_{0}{ }^{*} \Psi\left(\frac{n}{P} ; 0\right)+\sum_{n^{\prime}=1}^{\infty}\left[A_{n+n^{\prime}} A_{n^{\prime}}{ }^{*} \Psi\left(\frac{n+n^{\prime}}{P} ; \frac{n^{\prime}}{P}\right)\right.\right. \\
& \left.\left.\quad+A_{n-n^{\prime}} A_{n^{\prime}}{ }^{*} \Psi\left(\frac{n-n^{\prime}}{P} ; \frac{-n^{\prime}}{P}\right)\right]\right\}
\end{aligned}
$$

and
$b_{n}=b_{-n}$
where A_{n} are the Fourier coefficients for the line object as given in Eq. 12.

The function is called the transmission crosscoefficient [14] and characterizes the optical system including the state of partial coherence of the illumination. For a one-dimensional line object, following Ref. 15, the transmission crosscoefficient is given by

$$
\begin{aligned}
\Psi\left(\xi_{1}, \xi_{2}\right)= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathcal{f}\left(\xi^{\prime \prime}, \eta^{\prime \prime}\right) \\
& \cdot F\left(\xi_{1}+\xi^{\prime \prime}, \eta^{\prime \prime}\right) F^{*}\left(\xi_{2}+\xi^{\prime \prime}, \eta^{\prime \prime}\right) d \eta^{\prime \prime} d \xi^{\prime \prime}
\end{aligned}
$$

where $\mathcal{f}\left(\xi ", \eta^{\prime}\right)$ is the two-dimensional intensity
distribution in the condenser aperture, F is the two-dimensional equivalent of the pupil function, and * denotes the complex conjugate (wide-field Kohler or critical illuminatior assumed). The function \mathcal{A} is sometimes called the effective source function [17] (assumed to be incoherent, i.e., the coherence interval is small compared with the effective source size).

Because of the dependence of R and \varnothing on angle of incidence the image structure will also vary with angle of incidence. This
formulation assumes that R and \varnothing are constant over the illuminating solid angle. If they are not, it is still possible to calculate the image from these equations. However, R and \varnothing become functions of and η and the integrals can no longer be separated as shown in Eqs. 14 and 15.

In this scalar theory approach, the line object is described by the planar function $t(x)$. Hence, there is no ambiguity about focus; the object thickness is much thinner than the depth of field of the optics. If the plane of the object is not coincident with the focal plane of the lens, the defocus aberration term is included in the pupil function,
$F_{\text {defocus }}(\mu)=\exp \left(\right.$ ika $\left._{2} \mu^{2}\right) \operatorname{Rec} \mu \left\lvert\, \frac{M}{P}\right.$
where a_{2} is the constant that indicates the amount of defocus in number of waves (units of λ), k is the wave number, and Rec is the rectangular function of width M / P, which defines the aperture diameter.

With lines patterned in thin layers (less than approximately $\lambda / 4$ thick) and vertical edges, the images can be accurately described by these scalar equations and the coherent optical edge detection threshold T_{c} can be used for linewidth measurement [4].
$T_{C}=0.25(1+R+2 \sqrt{R} \cos \phi)$,
However, in order to use T_{C}, R and \varnothing must be known. R (the ratio of reflectances on either side of the edge) is best determined from the image waveform. If \varnothing (the phase change at the edge from Eq. 6) is unknown, the dual threshold method [6] illustrated in Fig. 16(a) may be used to determine linewidth.

Because of the complex waveforms which result from the coherent imaging of line features of varying contrast with phase discont-
inuities present, best focus is difficult to determine. One objective criterion currently in use is minimization of as defined in Fig. 16(b). This distance can also be toleranced to ensure that measurements made with inaccurate focus are rejected. That is, at best focus is a minimum but by plotting versus the change in linewidth with defocus, an acceptable range for may be specified for a desired measurement accuracy.

In Fig. 17, calculated image waveforms are given for lines patterned in silicon dioxide on silicon and for chromium on glass. The computer software used to calculate the theoretical images is given in Appendix II. The reproducibility of these waveforms for linewidth measurement is determined principally by the accuracy of alignment of the line to be measured to the reference crosshair, accuracy of leveling of the wafer, and accuracy of focus. All of these operations should be automated so that they become operator independent and the required accuracy can be specified and maintained.

VECTOR THEORY FOR THICK-LAYER IMAGING

Scalar theory is unable to accurately predict the image profiles for line objects which violate the initial assumptions of infinitesimally thin (planar) objects and vertical edges characterized by abrupt discontinuities in R and \varnothing. For patterned layers thicker than approximately one-quarter of the illumination wavelength, the multiple reflections which occur within semi-transparent layers result in constructive and destructive interference, which affects R and \varnothing and the scattering patterns as well. In addition, both metals and dielectrics exhibit waveguide effects near edges which also influence the nature of the image waveforms. (See Fig. 18.) The major differences for thick layers as compared to thin layers are (1) the broadening of the minimum at the line edge, (2) enhanced maxima on either side of the edge particularly with sloping edge geometry, and (3) edge ringing which extends farther from the line edge in some cases.

Imaging of lines patterned in thick layers may be modeled using vector theory. For lines patterned in a thick layer with vertical edges, the complex dielectric constant of the material rather than the complex reflectance function is expanded in a Fourier series
$\hat{\varepsilon}(x)=\hat{n}_{c}^{2}=\sum_{m} \varepsilon_{m} \cos \left(\frac{2 \pi m x}{P}\right)$

The appropriate wave equation
$\nabla^{2} E_{Y}+k_{0}^{2} \hat{\varepsilon} E_{Y}=0 \quad(T E-$ mode $) *$
and
$\nabla^{2} H_{Y}-\frac{1}{\varepsilon} \frac{\partial \varepsilon}{\partial x} \frac{\partial H_{Y}}{\partial x}+k_{0}^{2} \hat{\varepsilon} H_{Y}=0 \quad$ (TM-mode)
where $k_{0}=2 \pi / \lambda$ is solved for the $E-$ and $H-f i e l d s$ within the layer. In this case, when the Fourier series expansion for $\hat{\varepsilon}(x)$ is substituted into Eq. (19), the resulting equation is Hill's equation [18], which has solutions of the form

$$
\begin{aligned}
E_{y}(x, z) & =\sum_{m} A_{m} \exp \left(\alpha_{m} z\right)+A_{m}^{\prime} \exp \left(-a_{m} z\right) \\
& \sum_{j}^{m} B_{j, m} \exp (2 \pi i j x / P)
\end{aligned}
$$

where the a_{m} 's are the eigenvalues and the $B_{j, m}$'s are the eigen vector solutions to Hill's equation. The A_{m} and A_{m}^{\prime} are weighting constants which must be determined from the boundary conditions. Each of these terms represents an inhomogeneous eigenfunction or waveguide mode which is supported by the line structure.

[^0]With a single plane wave incident, the boundary condition equations allow for solution for the Fourier series coefficients in the plane wave expansion for the reflected (scattered) field
$E^{R}(x, z)=\sum_{j} E_{j}^{R} \exp \left\{-i k_{\circ}\left[\left(\frac{\lambda i}{F}\right) x+k_{j}^{R} z\right]\right\}$
For normal or nearly normal incidence, the magnitudes of the $E-$ and $H-$ fields are equal and no polarization effects are present. Therefore, the E_{j}^{R} coefficients in Eq. (22) can be substituted for the A_{n} 's in the scalar imaging equation (Eq. (14)). In this case, Eq. (22) may be regarded as representing the equivalent planar object which would produce the same image as the thick object of Eq. (18). The equivalent planar object is taken as located in the plane of the top surface of the thick layer. This concept is important to understanding the problem of focusing for thick layers.

For nonvertical edges, the single thick layer may be subdivided into a set of sublayers each of which may vary in linewidth, complex index of refraction and offset (to allow for asymmetric line objects). Such a representation is shown in Fig. 19. When boundary conditions are applied at each sublayer interface, the solution of the resulting equations yields the scattered field in the same form as Eq. (22). Thus any nonplanar structure can be represented by an equivalent planar structure and its image determined. For details of the method, see Refs. 5 and 19.

This method of computing both the reflected field and the corresponding microscope image requires no approximations of the type usually found in calculations of the scattered field, such as limits on the conductivity or slope of the surface. Limitations may be imposed, however, by the computation capability available. First, increasing the number of layers used to approximate the structure increases the computing time linearly. In most cases
of interest seven to nine layers were sufficient to produce significant results.

The second limitation is in the truncation of the series, i.e., the matrix sizes used in the computations. In this case, as for a single layer [4], all of the reflected plane waves which have diffraction angles less than $\pm \pi 2$ in the air are included. With $P=12 \mu \mathrm{~m}$ and $\lambda=0.53 \mu \mathrm{~m}, 22$ diffracted orders are included. This requires a 45×45 complex eigenvalue matrix and a 90×90 complex matrix for solution of the boundary condition equations. This choice necessarily truncates the series which represents the E. .-. in the layers with higher refractive index. This truncation does not appear to significantly affect the results except for very small linewidths and near resonances, that is, either where the thickness of the layer or the linewidth is approximately equal to the wavelength of the illumination.

Also, for grating objects with $P \leq 12 \mu \mathrm{~m}$, the assumed periodicity is true. However, for isolated line objects near resonances, $P=$ $12 \mu \mathrm{~m}$ is not large enough to eliminate the effect of the assumed adjacent lines on the calculated image. In order to calculate images of isolated lines, a larger period and, therefore, larger matrix sizes would have to be used.

As discussed earlier, this approach to the imaging of lines patterned in thick layers involves replacement of the thick line object by its equivalent planar object located in the plane coinciding with the top surface of the patterned layer. It can also be shown that displacement of the top surface of the thick layer (or equivalent planar object) along the optical axis of the imaging system introduces a focus error as in conventional scalar imaging equations with the accompanying loss of resolution and distortion of the image profiles.

At this time, no universal, simple, and accurate edge detection methods have been found for thick layer imaging. The complex
image structure in the vicinity of the line edge depends upon thickness and edge geometry as well as wavelength and other parameters of the imaging system. It is difficult to see how, in such a complex relationship of these parameters, a single number will be adequate to characterize line geometry.

Calculated images have been compared with experimentally measured images from the narrow-angle laser linewidth system. Some results are shown in Figs. 20 and 21 . One of the major difficulties in getting agreement between theory and experiment is finding line objects with well characterized edge geometries.

ACCURACY AND PRECISION

Both the accuracy and precision of any metrology system needs to be established. Precision can be determined by repeated measurements on a control specimen. In the present case, the quality of the line specimens may limit precision. That is, specimens with rough edges cannot be placed in exactly the same position each time, and, therefore, the precision of the measurements is a function of edge roughness as well as system parameters. Unfortunately, the quality of most available processed wafers is not suitable for standard reference materials. Indications are that for the best thin layer materials available, the precision of the measurements when the coherent edge detection threshold is used is comparable to that of the photomask system used for calibration of SRM 475, which is approximately $\pm 0.05 \mu \mathrm{~m}$ (three standard deviations). The narrow-angle laser system at NBS has not yet reached the operational level of the photomask system. Until such time, there will be operator dependence due to focus, alignment and leveling errors. The difference here is that at the operational level all image scans which do not meet specified tolerance criteria are rejected automatically with an accompanying improvement in the long term precision of the system. The laser system has not been in routine use at this level long enough to get an accurate number for measurement precision.

Accuracy is customarily assessed based on fundamental physics considerations and/or comparison with other measurement techniques. In this case, at the level of accuracy being considered, comparison with other techniques cannot provide comparison numbers. There are no other fundamentally accurate optical techniques for dimensional measurements on thick objects with accuracies at the $0.05 \mu \mathrm{~m}$ ($\lambda / 10$) level available at this time. A common recourse is to compare optical with scanning electron microscope (SEM) measurements. However, it has been shown that at this level SEM measurements are suspect [20] due to both electron beam interactions with the specimen and instrument errors. Therefore, comparison with SEM can only be expected to indicate gross errors at best. Even edge slope (or geometry) for thin layers (< 200 nm) can only be determined crudely in the SEM. (Magnifications of more than $100,000 \mathrm{X}$ are required.)

Therefore, accuracy needs to be assessed in terms of fundamental physics of the measurement process. For the photomask calibration system, edge slopes greater than approximately 70° produce images which are indistinguishable from vertical $\left(90^{\circ}\right)$ edges. This is supported by the fact that structure or variations which occur within a distance less than approximately $1 / 6$ the Airy disc diameter of the imaging objective do not affect the image. Hence, for lines with edge slopes greater than approximately 70°, there is an uncertainty in the measurement (for lines patterned in a 150 nm thick layer and $0.9 \mathrm{~N} . \mathrm{A}$.) of approximately $\pm 0.05 \mathrm{~mm}$ (worst case) if the measurement is taken to be the mean width. See Fig. 22. For the photomask case, SEM measurements on Cr-CrO masks corroborated this value.

For thin layers on wafers, the same argument may be applied with similar results. However, the agreement between theoretical and experimental image profiles must also be considered. In the wafer case, there is much more variation in materials and image profiles as well as greater system sensitivity to optical alignment, leveling, and focus errors. Therefore, while the narrow-angle laser
system has the capacity for accuracies on thin layers comparable to that of the photomask system, the accuracy should be assessed on a case-by-case basis with the above considerations taken into account.

For thick layers, assessment of accuracy is more complex. First, theory is based on a model which has yet to be fully evaluated. There are inappropriate assumptions in the modeling near resonances. Although the calculations are known to be in agreement for thin layers, the accuracy of the calculations for other cases has not been established. When discrepancies occur between calculated and experimentally measured image profiles, it is not known whether these differences are due to inaccuracies in the calculations, deviations of the system response from the ideal, poorly characterized line geometry, poorly known optical constants, or all of these. More work needs to be done on comparisons with line objects of known geometry, perhaps preferentially etched silicon samples, and on testing the accuracy of the calculated image profiles.

DESIGN OF LINEWIDTH CALIBRATION STANDARDS

Photomask materials have relatively little variation in optical constants. Hence, choice of a standard reference material was simplified. The most commonly used mask materials were chosen, Cro on $C r$ on glass, and an appropriate warning given about calibration of systems used to measure other materials was also given [21]. For wafers, there is an enormous variation in index of refraction and thickness of the layers found on wafers and, therefore, in R and \varnothing values as well. In fact, different combinations of materials may produce the same R, \varnothing values as well. Rather than sample all variables (R, \varnothing, and linewidth w) over the ranges of interest $(0<R \leq 1,0 \leq \varnothing \leq \pi, 0.5 \mu \mathrm{~m}<\mathrm{w}<5 \mu \mathrm{~m}$) which is impractical, it is possible to determine the nature of the expected errors, that is, their dependence on the variables R, \varnothing, and w and apply experimental design methodology to the design of a
standard. For linewidth measurements on wafers, the expected errors are known to be of low order [6]. Work by Dr. James Lechner, Carol Croarkin, and Ruth N. Varner at NBS resulted in the proposed optimal six-point design illustrated in Fig. 23. The expected error surface shown in Fig. 7(a) of Ref. 6 was found to fit a polynomial of the form
$E(R, \varnothing)=(1-R)\left(A+B R+C R^{2}+E \cos \varnothing+F \cos ^{2} \varnothing\right)$

A search for a D-optimal design [22] was made, based on the polynomial model of the expected error surface. In combination with other factors such as ease of fabrication, the six-point design of Fig. 23 was selected as optimal. It is also a good design for polynomial surfaces of lower order such as those of Fig. $7(b)$ and (c) of Ref. 6. The design points ($R_{i}, \cos \emptyset_{i}$) can be fabricated from two materials with a silicon substrate using the combinations shown in Table 2. In each case, only the top layer is patterned. This design is also relatively insensitive to small changes in R and \varnothing such as would occur in normal fabrication of the standard. Thin-layer standards could thus be provided and calibrated with the present narrow-angle laser microscope. However, these standards would not be directly applicable for applications involving thick layers on silicon.

SUMMARY

This report has described the development of the narrow-angle laser linewidth measurement system at NBS and its application to calibration of linewidth measurement standard reference materials for the IC industry. This system represents a major move toward optical systems with well characterized waveforms suitable for accurate linewidth measurements at dimensions on the order of the illumination wavelength. In the course of its development, major theoretical advances have also been made in the theory of optical scattering from and imaging of objects with dimensions on the order of a micrometer.

ACKNOWLEDGMENTS

A number of people have contributed at various times to the developments described here. The original computer software for partially coherent imaging of line objects patterned in thin layers was written by Dr. Eric Kintner and later expanded and documented by Clinton R. Gable. Thanks are given to Ruth N. Varner for help in preparing the software for publication. Credit for the application of experimental design methodology to the design of a reference standard goes principally to Dr. James Lechner, Carol C. Croarkin, and Ruth N. Varner.

REFERENCES

1. Nyyssonen, D., "Optical linewidth measurements on wafers," Proc. SPIE Vol. 135, Developments in Semiconductor Microlithography III, 115-119 (1978).
2. Nyyssonen, D., "Calibration of optical systems for linewidth measurements on wafers," Proc. SPIE Vol. 221, Semiconductor Microlithography V, 119-126 (1980).
3. Nyyssonen, D., "Design of an optical linewidth standard reference material for wafers," Proc. SPIE Vol. 342, Integrated Circuit Metrology, 27-34 (1982).
4. Nyyssonen, D., "Theory of optical edge detection and imaging of thick layers," J. Opt. Soc. Am. 72, 1425-1436 (1982).
5. Nyyssonen, D., and Kirk, C., "Modeling the optical microscope images of thick layers for the purpose of linewidth measurement," Proc. SPIE Vol. 538, Optical Microlithography IV, 179187 (1985).
6. Nyyssonen, D., "A practical method for edge detection and focusing for linewidth measurements on wafers," Opt. Eng. 26, 81-85 (1987).
7. Nyyssonen, D., "Focused-beam vs. conventional bright-field scanning microscopy for integrated circuit metrology," Proc. SPIE Vol. 565, Micron and Submicron Integrated Circuit Metrology, 180-186 (1985).
8. Stone, J. M., Radiation and Optics, (McGraw-Hill, New York, 1963) Chapter 16.
9. Driscoll, W. G., ed., Handbook of Optics, (McGraw-Hill, New York, 1578) pp. 8-42 to 8-43.
10. Chandler-Horowitz, D., "Ellipsometric accuracy and the principal angle of incidence," Proc. SPIE Vol. 342, Integrated Circuit Metrology, 121-130 (1982).
11. Scire, F. E. and E. C. Teague, "Piezodriven 50- $\mu \mathrm{m}$ range state with subnanometer resolution", Rev. Sci. Instrum. 49, 17351740 (1978).
12. Kinzly, R. E. "Partially coherent imaging in a microdensitometer," J. Opt. Soc. Am. 62, 386-394 (1972).
13. Sheppard, C. J. R. and T. Wilson, "Image formation in scanning microscopes with partially coherent source and detector," Optica Acta 25, 315-325 (1978).
14. Wolf, E., "The radiant intensity from planar sources of any state of coherence," J. Opt. Soc. Am. 68, 1597-1605 (1978).
15. Born, M. And E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975) pp. 530-532.
16. Kintner, E. C., "Method for the calculation of partially coherent imagery," Appl. Opt. 17, 2747-2753 (1978).
17. Hopkins, H. H., "Applications of coherence theory in microscopy and interferometry," J. Opt. Soc. Am. 47, 508-526 (1957).
18. Magnus, W. and S. Winkler, Hill's Equation (John Wiley and Sons, New York, 1966 and Dover, New York, 1979).
19. Nyyssonen, D., "Computer software for the computation of the scattered field and the optical microscope images of line objects patterned in thick layers," NBSIR 87-3618 (December 1987).
20. Postek, M. T. and D. C. Joy, "Microelectronics dimensional metrology in the scanning electron microscope," Solid State Tech. Part I 29, 145-150 (Nov. 1986) and Part II 29, 77-85 (Dec. 1986).
21. Nyyssonen, "Linewidth calibration for bright-chromium photomasks," NBSIR 86-3357 (May 1986).
22. Raghavarao, D., Construction and Combinatorial Problems in Design of Experiments (John Wiley and Sons, New York, 1971).

Fig. 1 Schematic of multi-layer structure on a wafer with definition of parameters used for calculation of R and \varnothing.

Fig. 2(b) Same as Figure 2(a), except for
chromium on silicon.

Fig. 2(d) Same as Figure $2(b)$, except for
chromium and aluminum on silicon.

Fig. 2(c) Relative reflectance vs. the cosine
of the phase difference for silicon dioxide and
silicon nitride on silicon. Some of the corres-
ponding thicknesses are indicated along each of
the curves.

Fig. 3 Same as Fig. 2(b) for chromium with the addition of a silicon-dioxide layer of varying thickness between the chromium and silicon. The tangent point of each ellipse indicates the thickness of the chromium patterned layer. Varying the silicon dioxide between zero and 180 nm produces the ellipse.

Fig. 4 Variation of R and \varnothing with λ for a 600 nm thick layer of SiO_{2} on Si .

Fig. 5 Variation of R and \varnothing with angle of incidence θ for thicknesses of SiO_{2} on Si shown.

Fig. 6 Ray path for reflected-light laser-scanning microscope system.

Fig. 7 Comparison of edge profiles calculated for fully conerer. imaging (dashed curve) and for a coherence parameter of 0.2 (solid curve). Edge is located at $5 \mathrm{\mu m}$.

Fig. 8 Relative sizes of coherence volumes for microscopes using the sources indicated: (a) white light thermal source, (b) laser source, (c) narrow-angie laser system with rotating ground glass and laser source.

DISTANCE IN MICROMETERS

Fig. 11 Image waveform with tilt present in wafer. Note nonsymmetry.

Fig. 12 Image waveform with misaslignment present.
(a)

DISTANCE IN MICROMETERS

Fig. 13 Image waveform with slight misalignment and
tilt (b) with correct alignment (a) shown for comparison.

Fig. 14(a) Defining the optical axis of the system.

Fig. 14(b) flignment errors with addition of lens.

Fig. 15 Alignment laser beam and high power laser beam must be brought into coincidence at both A and B.

Fig. le : Proposed dual-threshold edge detection criteria where $T_{2}=R T$. In this paper, T_{1} is taken to be 0.95 times the reflectance of either the line material or surround, whicrever is higher.

Fig. 16(b) Dual-threshold focus criterion for wafers. The edge width δ is a minimum at focus. For wafers, the threshold I_{i} and T_{2} are taken the same as in Fig. 16(a).

Fig. 17(a) Comparison of experimental (一) and theoretical (e) image profiles for a window etched in a 150 -nm-thick layer of silicon dioxide on silicon (0.85 objective N.A., 0.2 condenser N.A., and 530-nm wavelength).

Fig. $17(b)$ Calculated image profiles from thick (vector, solià Iine) and thin (scalar, dotted line) models for a chromium on glass line.

Fig. 18 Calculated image waveforms at edges of a single, vertical edge patterned layer for (a) Cr on SiO_{2} on Si and (b) SiO_{2} on Si .

(a)

(b)

Fig. 19 Cross section of a typical thick line object (a) and the corresponding multilayer representation (b).

Fig. 20 (a) Comparison of experimental (solid curve) and theoretical () (based on waveguide model) image profiles for a window etched in a 616-nm-thick layer of silicon dioxide in silicon. The calculated curve is based on $\eta_{0}=1.46, \eta_{8}=4.1+$ i(0.06), 0.85 objective N.A. 0.14 condenser A.A., a wavelength of 514 nm , and a linewidth of $4.85 \mu \mathrm{~m}(\mathrm{~b})$ SEM image of oxide line for wafer samples used in (a).

Eig. 21 Comparison of theoretical and experimental image profiles for $1 \mu \mathrm{~m}$ thick resist on $S i$ for (a) vertical and (b) non-vertical.

Fig. 22 Schematic of the profile for an opaque line on SRM 474 showing uncertainty U.

Fig. 23 Values of R and $\cos \varnothing(0)$ for six-point design super imposed on error surface. Corresponding to using the minima at the line edge as the edge detection threshold.

Appendix I - Software for Calculation of R and \varnothing from the Fresnel Equations

```
PROGRAM TH2LR
THIS PROGRAM COMPUTES THE RELATIVE REFLECTANCE AND PHASE
DIFFERENCE FOR A PATTERNED LAYER WITH A SUBLAYER AND
SUBSTRATE BOTH OF WHICH MAY HAVE COMPLEX INDICES.
THIS PROGRAM WAS WRITTEN BY D. NYYSSONEN, CD METROLOGY, INC.
INTERMEDIATE LAYER THICKNESS IS HELD CONSTANT, WHILE THE
PATTERNED LAYER THICKNESS VARIES FROM O TO A MAXIMUM VALUE
(TO BE INPUT). THE PATTERNED LAYER THICKNESSES ARE
INCREMENTED IN STEPS OF 0.002 MICROMETERS (20 ANGSTROMS).
OUTPUT IS ON LOGICAL UNIT IOUT
DIMENSION T(2)
COMPLEX CM(2,2,2),DEL(2),CN(2),CBASE,CML(2,2),WAVEL,
* X,Y,R
    DATA IOUT/10/
    OPEN(UNIT=IOUT,FILE='TAPE10')
    WAVELENGTH OF LIGHT USED=0.53 MICROMETERS.
    WAVEL=0.53
    THICKNESS ENTERED FOR PATTERNED LAYER, T(1), IS MAXIMUM
    FOR WHICH CAICULATIONS ARE MADE, INCREMENT IS 0.002 UM
    PRINT*, 'INPUT THICKNESS AND COMPLEX INDICES OF LAYERS WITH',
* ' PATTERNED LAYER FIRST'
    ENTER MAX. THICKNESS OF PATTERNED LAYER IN MICROMETERS
    FOLLOWED BY THE COMPLEX INDEX OF THE PATTERNED LAYER
    READ*, T(1), CN(1)
    PRINT*, 'INPUT THICKNESS AND COMPIEX INDEX OE',
* ' INTERMEDIATE LAYER'
ENTER THICKNESS OF INTERMEDIATE LAYER IN MICROMETERS
FOLLOWED BY THE COMPIEX INDEX OF THE INTERMEDIATE LAYER,
    READ*, T(2), CN(2)
    PRINT*, 'INPUT COMPIEX INDEX OF SUBSTRATE'
    ENTER COMPIEX INDEX OF SUBSTRATE (CBASE)
    READ*, CBASE
    WRITE(IOUT,*) 'FOR PATTERNED LAYER, MAX THICKNESS IS ', T(1),
* ' AND INDEX IS ', CN(1)
WRITE(IOUT,*) 'EOR INTERNEDIATE LAYER, THICKNESS IS ', T(2),
* ' AND INDEX IS ', CN(2)
```

```
    WRITE(IOUT,*) 'INDEX OF SUBSTRATE IS ', CBASE
    WRITE(IOUT,*)
    WRITE(IOUT,*) 'THIS PROGRAM VARIES THICKNESS OF PATTERNED LAYER'
    WRITE(IOUT,*)
    WRITE(IOUT,*) ' THICK R-PAT R-INT P-PAT P-INT DELAY',
    * 'RNO RM PNORM COS-P'
    WRITE(IOUT,*)
    TMAX=T(1)
    T(1)=0.0
    20 IF(T(1).GE.(TMAX-0.001)) GO TO 60
    DO 40 J=1,2
    DEL(J)=6.28318*CN(J)*T(J)/WAVEL
        CM(J,1,1)=CCOS (DEL (J))
        CM(J,1,2)=CSIN(DEL(J))/CN(J)* CMPLX(0.0, -1.0)
        CM(J, 2,1)=CSIN(DEL(J))*CN(J)* CMPLX(0.0,-1.0)
        CM(J,2,2)=CM(J,1,1)
    40 CONTINUE
    CML}(1,1)=\operatorname{CM}(1,1,1)* CM(2,1,1)+CM(1,1,2)* CM(2, 2,1
    CML}(1,2)=\operatorname{CM}(1,1,1)*CM(2,1,2)+CM(1,1,2)*CM(2,2,2
    CML}(2,1)=\operatorname{CM}(1,2,1)*\operatorname{CM}(2,1,1)+\operatorname{CM}(1,2,2)*CM(2,2,1
    CML}(2,2)=\operatorname{CM}(1,2,1)*CM(2,1,2)+CM(1,2,2)*CM(2,2,2
    X=CML (1,1)+CML (1,2)*CBASE
    Y=CML}(2,1)+CML (2,2)*CBASE
    R=(X-Y)/(X+Y)
    S=CABS (R)
    RI=S**2
    EL=ATAN2(AIMAG(R),REAL(R))
    EL=EL/3.14159
    X=CM}(2,1,1)+CM(2,1,2)*CBASE
    Y=CM(2,2,1)+CM(2,2,2)*CBASE
    R=(X-Y)/(X+Y)
    S=CABS(R)
    RS=S**2
    ES=ATAN2(AIMAG(R),REAL(R))
    ES=ES/3.14159
    C=4.0*T(1)/WAVEL
    IF(RS.LT.RL) THEN
        RO=RS/RL
    ELSE
        RO=RL/RS
    END IF
    EO=ES-EL+C
    CSE=COS(3.14159*EO)
    WRITE(IOUT, 80)T(1),RL,RS,EL,ES,C,RO,EO,CSE
    INCREMENT THE PATTERNED LAYER THICKNESS BY 0.002 UM
    T(1)=T(1)+0.002
    GO TO 20
6 0 ~ C O N T I N U E ~
    CLOSE(UNIT=IOUT)
    STOP
    80 FORMAT(9F8.3)
    END
```

(EOF)

FOR PATTERNED LAYER, MAX THICKNESS IS . 2 AND INDEX IS (1.46,0.) FOR INTERMEDIATE LAYER, THICKNESS IS 0. AND INDEX IS (1.46,0.) INDEX OF SUBSTRATE IS (4.1,.1)

THIS PROGRAM VARIES THICKNESS OF PATTERNED LAYER

THICK	R-PAT	R-INT	P-PAT	P-INT	DELAY	RNORM	PNORM	$\cos -\mathrm{P}$
. 000	. 370	. 370	-. 996	-. 996	. 000	1.000	. 000	1.000
. 002	. 369	. 370	-. 982	-. 996	. 015	. 999	. 001	1.000
. 004	. 369	. 370	-. 968	-. 996	. 030	. 997	. 002	1.000
. 006	. 367	. 370	-. 954	-. 996	. 045	. 993	. 003	1.000
. 008	. 366	. 370	-. 940	-. 996	. 060	. 989	. 004	1.000
. 010	. 363	. 370	-. 926	. .996	. 075	. 983	. 005	1.000
. 012	. 361	. 370	-. 911	-. 996	. 091	. 976	. 006	1.000
. 014	. 358	. 370	-. 897	-. 996	.106	. 968	. 007	1.000
. 016	. 354	. 370	-. 882	-. 996	. 121	. 958	. 007	1.000
. 018	. 350	. 370	-. 868	-. 996	. 136	. 947	. 008	1.000
. 020	. 346	. 370	-. 853	-. 996	. 151	. 936	. 008	1.000
. 022	. 341	. 370	-. 838	-. 996	. 166	. 923	. 008	1.000
. 024	. 336	. 370	-. 823	-. 996	. 181	. 908	. 008	1.000
. 026	. 330	. 370	-. 807	-. 996	. 196	. 893	. 008	1.000
. 028	. 324	. 370	-. 792	-. 996	. 211	. 877	. 007	1.000
. 030	. 318	. 370	-. 776	-. 996	. 226	. 859	. 006	1.000
. 032	. 311	. 370	-. 760	-. 996	. 242	. 840	. 005	1.000
. 034	. 303	. 370	-. 743	-. 996	. 257	. 821	. 004	1.000
. 036	. 296	. 370	-. 726	-. 996	. 272	. 800	. 002	1.000
. 038	. 288	. 370	-. 709	-. 996	. 287	. 779	. 000	1.000
. 040	. 280	. 370	-. 692	-. 996	. 302	. 756	-. 003	1.000
. 042	. 271	. 370	-. 674	-. 996	. 317	. 733	-. 0005	1.000
. 044	. 252	. 370	-. 655	-. 996	. 332	. 709	-. 0009	1.000
. 046	. 253	. 370	-. 636	-. 996	. 347	. 685	-. 013	. 999
. 048	. 244	. 370	-. 617	-. 996	. 362	. 660	-. 017	. 999
. 050	. 234	. 370	-. 597	-. -996	. 377	. 634	-. 022	. 998
. 052	. 225	. 370	-. 576	-. 996	. 392	. 608	-. 028	. 996
. 054	. 215	. 370	-. 554	-. 996	. 408	. 582	-. 034	. 994
. 056	.206	. 370	-. 532	-. 996	. 423	. 556	-. 041	. 992
. 058	.196	. 370	-. 510	-. 996	. 438	. 530	-. 049	. 988
. 060	. 187	. 370	-. 486	-. 996	. 453	. 505	-. 057	. 984
. 062	. 177	. 370	$-.461$	-. 996	. 468	. 480	-. 067	. 978
. 064	. 168	. 370	-. 436	-. 996	. 483	. 455	-. 077	. 971
. 066	. 159	. 270	-. 409	-. 996	. 498	. 431	-. 089	. 961
. 068	. 151	. 370	-. 381	-. 996	. 513	. 408	-. 101	. 950
. 070	. 143	. 370	-. 352	-. 996	. 528	. 387	-. 115	. 935
. 072	.135	. 370	-. 322	-. 996	. 543	. 366	-. 130	. 918
. 074	. 128	. 370	-. 291	-. 996	. 558	. 347	-. 146	. 896
. 076	. 122	. 370	-. 259	-. 996	. 574	. 330	-. 164	. 871
. 078	. 117	. 370	-. 225	-. 996	. 589	. 315	-. 182	. 841
. 080	. 112	. 370	-. 190	-. 996	. 604	. 302	-. 202	. 806
. 082	.108	. 370	-. 154	-. 996	. 619	. 291	-. 223	. 765
. 084	.104	. 370	-. 118	-. 996	. 634	. 282	-. 244	. 719
. 086	. 102	. 370	-. 080	-. 996	. 649	. 276	-. 267	. 669
. 088	. 101	. 370	-. 042	-. 996	. 664	. 272	-. 290	. 613
. 090	.100	. 370	-. 003	-. 996	. 679	. 270	-. 313	. 554

55	. 092	. 100	. 370	. 035	-. 996	. 694	. 271	-. 337	491
56	. 094	. 102	. 370	. 073	-. 996	. 709	. 275	-. 360	. 426
57	. 096	. 104	. 370	. 111	-. 996	. 725	. 281	-. 382	. 361
58	. 098	. 107	. 370	. 148	-. 996	. 740	. 289	-. 404	. 296
59	. 100	. 111	. 370	. 184	-. 996	. 755	. 300	-. 425	. 233
60	. 102	. 116	. 370	. 219	-. 996	. 770	. 313	-. 445	. 171
61	. 104	. 121	. 370	. 253	-. 996	. 785	. 328	-. 464	. 113
62	. 106	. 127	. 370	. 286	-. 996	. 800	. 344	-. 482	. 058
63	. 108	.134	. 370	. 317	-. 996	. 815	. 363	-. 498	. 007
64	. 110	. 142	. 370	. 347	-. 996	. 830	. 383	-. 513	-. 041
65	. 112	. 149	. 370	. 376	-. 996	. 845	. 404	-. 527	-. 084
66	.114	. 158	. 370	. 404	-. 996	. 860	. 427	-. 540	-. 124
67	. 116	.167	. 370	. 431	-. 996	. 875	. 451	-. 551	-. 161
68	. 118	.176	. 370	. 457	-. 996	. 891	. 475	-. 562	-. 194
69	. 120	. 185	. 370	. 481	-. 996	. 906	. 500	-. 572	-. 224
70	. 122	. 194	. 370	. 505	-. 996	. 921	. 526	-. 581	-. 250
71	. 124	. 204	. 370	. 528	-. 996	. 936	. 552	-. 588	-. 274
72	. 126	. 214	. 370	. 551	-. 996	. 951	. 578	-. 596	-. 296
73	. 128	. 223	. 370	. 572	-. 996	. 966	. 604	-. 602	-. 315
74	.130	. 233	. 370	. 593	-. 996	. 981	. 630	-. 608	-. 332
75	. 132	. 242	. 370	. 613	-. 996	. 996	. 655	-. 613	-. 347
76	. 134	. 252	. 370	. 633	-. 996	1.011	. 680	-. 617	-. 360
77	. 136	. 261	. 370	. 652	-. 996	1.026	. 705	-. 621	-. 372
78	.138	. 270	. 370	. 670	-. 996	1.042	. 729	-. 625	-. 382
79	. 140	. 278	. 370	. 688	-. 996	1.057	. 752	-. 628	-. 391
80	.142	. 286	. 370	. 706	-. 996	1.072	. 775	-. 630	-. 398
81	.144	. 294	. 370	. 723	-. 996	1.087	. 796	-. 632	-. 404
82	. 146	. 302	. 370	. 740	-. 996	1.102	. 817	-. 634	-. 409
83	. 148	. 309	. 370	. 757	-. 996	1.117	. 837	-. 636	-. 414
84	.150	. 316	. 370	. 773	-. 996	1.132	. 856	-. 637	-. 417
85	. 152	. 323	. 370	. 789	-. 996	1.147	. 874	-. 638	-. 419
86	. 154	. 329	. 370	. 805	-. 996	1.162	. 890	-. 638	-. 421
87	.156	. 335	. 370	. 820	-. 996	1.177	. 906	-. 639	-. 422
88	.158	. 340	. 370	. 835	-. 996	1.192	. 920	-. 639	-. 422
89	.160	. 345	. 370	. 850	-. 996	1.208	. 933	-. 639	-. 422
90	.162	. 350	. 370	. 865	-. 996	1.223	. 945	-. 638	-. 421
91	.164	. 354	. 370	. 880	-. 996	1.238	. 956	-. 638	-. 420
92	.166	. 357	. 370	. 894	-. 996	1.253	. 966	-. 637	-. 418
93	. 168	. 360	. 370	. 909	-. 996	1.268	. 974	-. 637	-. 416
94	.170	. 363	. 370	. 923	-. 996	1.283	. 982	-. 636	-. 414
95	. 172	. 365	. 370	. 937	-. 996	1.298	. 988	-. 635	-. 412
96	. 174	. 367	. 370	. 951	-. 996	1.313	. 993	-. 634	-. 409
97	. 176	. 368	. 370	. 965	-. 996	1.328	. 996	-. 633	-. 406
98	.178	. 369	. 370	. 979	-. 996	1.343	. 999	-. 632	-. 403
99	. 180	. 370	. 370	. 993	-. 996	1.358	1.000	-. 631	-. 400
100	. 182	. 370	. 370	-. 993	-. 996	1.374	1.000	1.370	-. 397
101	. 184	. 369	. 370	-. 978	-. 996	1.389	. 999	1.371	-. 394
102	. 186	. 368	. 370	-. 964	-. 996	1.404	. 996	1.372	-. 391
103	. 188	. 367	. 370	-. 950	-. 996	1.419	. 992	1.373	-. 388
104	. 190	. 365	. 370	-. 936	-. 996	1.434	. 987	1.374	-. 385
105	. 192	. 363	. 370	-. 922	-. 996	1.449	. 981	1.375	-. 382
106	. 194	. 360	. 370	-. 908	-. 996	1.464	. 974	1.376	-. 380
107	. 196	. 357	. 370	-. 893	-. 996	1.479	. 965	1.377	-. 378
108	. 198	. 353	. 370	-. 879	-. 996	1.494	. 956	1.377	-. 377

```
PROGRAM TH2SV
THIS PROGRAM COMPUTES THE RELATIVE REELECTANCE AND PHASE DIFFERENCE FOR A PATTERNED LAYER WITH A SUBLAYER AND SUBSTRATE BOTH OF WHICH MAY HAVE COMPLEX INDICES.
THIS PROGRAM WAS WRITTEN BY D. NYYSSONEN, CD METROLOGY, INC.
PATTERNED LAYER THICKNESS IS HELD CONSTANT, WHILE THE INTERMEDIATE LAYER THICKNESS VARIES FROM O TO A MAXIMUM VALUE (TO BE INPUT). THE INTERMEDIATE LAYER THICKNESSES ARE INCREMENTED IN STEPS OF 0.002 MICROMETERS 20 ANGSTROMS).
OUTPUT IS ON LOGICAL UNIT IOUT
DIMENSION T(2)
COMPLEX CM \((2,2,2), \operatorname{DEL}(2), \operatorname{CN}(2), \operatorname{CBASE}, \operatorname{CML}(2,2), W A V E L\),
* \(X, Y, R\)
DATA IOUT/10/
OPEN(IOUT,FILE='TAPE10')
WAVELENGTH OF LIGHT USED=0.53 MICROMETERS.
WAVEL \(=0.53\)
THICKNESS ENTERED FOR INTERMEDIATE LAYER IS MAXIMUM THICKNESS FOR WHICH CALCULATIONS ARE MADE, INCREMENT IS 0.002 UM
PRINT*, 'ENTER THE NUMBER OF DIFEERENT PATTERN LAYER'
PRINT*, 'THICRNESSES TO BE EXPLORED'
READ*, K
DO 60 L=1,K
PRINT*, 'INPUT THICKNESS AND COMPLEX INDICES OF LAYERS WITH',
* ' PATTERNED LAYER FIRST'
```

```
READ *, T(1), CN(1)
```

READ *, T(1), CN(1)
PRINT*, ' INPUT MAX. THICKNESS AND COMPLEX INDICES OF',

* ' INTERMEDIATE LAYER'
READ*, T(2), CN(2)
PRINT*, 'INPUT COMPLEX INDEX OF SUSSTRATE'
READ*, CBASE
WRITE(IOUT,*) 'EOR PATTERNED LAYER, TGICKNESS IS ', T(1),
* ' AND INDEX IS ', CN(1)
WRITE(IOUT,*) 'FOR INTERMEDIATE LAYER, THICKNESS IS ', T(2),
* ' AND INDEX OF ', CN(2)
WRITE(IOUT,*) 'INDEX OE SUBSTRA.TE IS ', CBASE

```
```

 WRITE(IOUT,*)
 WRITE(IOUT,*) 'THIS PROGRAM VARIES THICKNESS OF INTERMEDIATE',
 * ' LAYER'
 WRITE(IOUT,*)' THICK R-PAT R-INT P-PAT P-INT DELAY',
 TMAX=T(2)
 T(2)=0.0
 20 DO 40 J=1,2
 DEL(J)=6.28318*CN(J)*T(J)/WAVEL
 CM(J,1,1)=\operatorname{Cos(DEL(J))}
 CM(J,1,2)=SIN(DEL(J))/CN(J)*CMPLX(0.0,-1.0)
 CM(J,2,1)=SIN(DEL(J))*CN(J)*CMPLX(0.0,-1.0)
 CM(J,2,2)=CM(J,1,1)
 40 Continue
 CML}(1,1)=\operatorname{CM}(1,1,1)*CM(2,1,1)+CM(1,1,2)*CM(2,2,1
 CML}(1,2)=\operatorname{CM}(1,1,1)*CM(2,1,2)+CM(1,1,2)*CM(2,2,2
 CML}(2,1)=\operatorname{CM}(1,2,1)*\operatorname{CM}(2,1,1)+\operatorname{CM}(1,2,2)*\operatorname{CM}(2,2,1
 CML}(2,2)=\operatorname{CM}(1,2,1)*\operatorname{CM}(2,1,2)+\operatorname{CM}(1,2,2)*\operatorname{CM}(2,2,2
 X=CML}(1,1)+CML(1,2)*CBASE
 Y=CML}(2,1)+CML (2,2)*CBASE
 R=(X-Y)/(X+Y)
 S=CABS(R)
 RL=S**2
 EL=ATAN2(AIMAG(R),REAL(R))
 EL=EL/3.14159
 X=CM}(2,1,1)+CM(2,1,2)*CBASE
 Y=CM (2,2,1)+CM(2,2,2)*CBASE
 R=(X-Y)/(X+Y)
 S=CABS(R)
 RS=S**2
 ES=ATAN2(AIMAG(R),REAL(R))
 ES=ES/3.14159
 C=4.0*T(1)/WAVEL
 IF(RS.LT.RL)THEN
 RO=RS/RL
 ELSE
 RO=RL/RS
 END IF
 EO=ES-EL+C
 CSE=COS(3.14159*EO)
 WRITE(IOUT,80)T(2),RL,RS,EL,ES,C,RO,EO,CSE
 IF(T(2).GE.TMAX)THEN
 GO TO 60
 ENDIF
 T(2)=T(2)+0.002
 GO TO 20
 6 0 CONTINUE
CLOSE(UNIT=IOUT)
STOP
80 FORMAT(9F8.3)
END

```
(EOR)

FOR PATTERNED LAYER, THICKNESS IS . 08 AND INDEX IS (2.9.4.2) FOR INTERMEDIATE LAYER, THICKNESS IS . 2 AND INDEX OF (1.46.0.) INDEX OF SÜBSTRATE IS (4.1,.1)

THIS PROGRAM VARIES THICKNESS OF INTERMEDIATE LAYER
THICK R-PAT R-INT P-PAT
.000
.002
.004
.

P-PAT
-.897
P-INT
DELAY
RNORM
\begin{tabular}{rr} 
PNORM & COS-P \\
.505 & -.015 \\
.519 & -.059 \\
.533 & -.103 \\
.547 & -.147 \\
.561 & -.191 \\
.575 & -.234 \\
.590 & -.278 \\
.604 & -.321 \\
.618 & -.364 \\
.633 & -.406 \\
.648 & -.448 \\
.6633 & -.490 \\
.678 & -.531 \\
.693 & -.571 \\
.709 & -.611 \\
.725 & -.649 \\
.741 & -.687 \\
.778 & -.724 \\
.794 & -.759 \\
.809 & -.793 \\
.827 & -.8266 \\
.846 & -.885 \\
.865 & -.911 \\
.884 & -.934 \\
.904 & -.955 \\
.925 & -.972 \\
.946 & -.986 \\
.968 & -.995 \\
.991 & -1.000 \\
1.015 & -.999 \\
1.040 & -.992 \\
1.065 & -.979 \\
1.092 & -.959 \\
1.119 & -.930 \\
1.148 & -.894 \\
1.178 & -.847 \\
1.209 & -.791 \\
1.242 & -.725 \\
1.276 & -.648 \\
1.310 & -.561 \\
1.346 & -.464 \\
1.383 & -.359 \\
1.421 & -.247 \\
1.459 & -.129 \\
1.497 & -.009 \\
1.536 & .112 \\
1.574 & .230 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 55 & . 096 & . 647 & . 104 & -. 897 & . 111 & . 604 & . 161 & 1.612 & . 344 \\
\hline 56 & . 098 & . 647 & . 107 & -. 897 & . 148 & . 604 & . 165 & 1.649 & 450 \\
\hline 57 & . 100 & . 647 & . 111 & -. 897 & . 184 & . 604 & . 171 & 1.685 & . 548 \\
\hline 58 & . 102 & . 647 & . 116 & -. 897 & . 219 & . 604 & . 179 & 1.720 & . 637 \\
\hline 59 & . 104 & . 647 & . 121 & -. 897 & . 253 & . 604 & . 187 & 1.754 & . 715 \\
\hline 60 & . 106 & . 647 & . 127 & -. 897 & . 286 & . 604 & . 197 & 1.786 & . 783 \\
\hline 61 & . 108 & . 647 & . 134 & -. 897 & . 317 & . 604 & . 207 & 1.818 & . 840 \\
\hline 62 & . 110 & . 647 & . 142 & -. 897 & . 347 & . 604 & . 219 & 1.848 & . 888 \\
\hline 63 & . 112 & . 647 & . 149 & -. 897 & . 376 & . 604 & . 231 & 1.877 & . 926 \\
\hline 64 & . 114 & . 647 & . 158 & -. 897 & . 404 & . 604 & . 244 & 1.905 & . 956 \\
\hline 65 & . 116 & . 647 & . 167 & -. 897 & . 431 & . 604 & . 258 & 1.932 & . 977 \\
\hline 66 & . 118 & . 647 & . 176 & -. 897 & . 457 & . 604 & . 272 & 1.957 & . 991 \\
\hline 67 & . 120 & . 647 & . 185 & -. 897 & . 481 & . 604 & . 286 & 1.982 & . 998 \\
\hline 68 & . 122 & . 647 & . 194 & -. 897 & . 505 & . 604 & . 301 & 2.006 & 1.000 \\
\hline 69 & . 124 & . 647 & . 204 & -. 897 & . 528 & . 604 & . 315 & 2.029 & . 996 \\
\hline 70 & . 126 & . 647 & . 214 & -. 897 & . 551 & . 604 & . 330 & 2.051 & . 987 \\
\hline 71 & . 128 & . 647 & . 223 & -. 897 & . 572 & . 604 & . 345 & 2.073 & . 974 \\
\hline 72 & . 130 & . 647 & . 233 & -. 897 & . 593 & . 604 & . 360 & 2.094 & . 957 \\
\hline 73 & . 132 & . 647 & . 242 & -. 897 & . 613 & . 604 & . 375 & 2.114 & . 937 \\
\hline 74 & . 134 & . 647 & . 252 & -. 897 & . 633 & . 604 & . 389 & 2.133 & . 913 \\
\hline 75 & . 136 & . 647 & . 261 & -. 897 & . 652 & . 604 & . 403 & 2.152 & . 888 \\
\hline 76 & . 138 & . 647 & . 270 & -. 897 & . 670 & . 604 & . 417 & 2.171 & . 859 \\
\hline 77 & . 140 & . 647 & . 278 & -. 897 & . 688 & . 604 & . 430 & 2.189 & . 829 \\
\hline 78 & . 142 & . 647 & . 286 & -. 897 & . 706 & . 604 & . 443 & 2.207 & . 796 \\
\hline 79 & . 144 & . 647 & . 294 & -. 897 & . 723 & . 604 & . 455 & 2.224 & . 762 \\
\hline 80 & . 146 & . 647 & . 302 & -. 897 & . 740 & . 604 & . 467 & 2.241 & . 727 \\
\hline 81 & . 148 & . 647 & . 309 & -. 897 & . 757 & . 604 & . 479 & 2.257 & . 690 \\
\hline 82 & . 150 & . 647 & . 316 & -. 897 & . 773 & . 604 & . 489 & 2.274 & . 653 \\
\hline 83 & . 152 & . 647 & . 323 & -. 897 & . 789 & . 604 & . 499 & 2.290 & . 614 \\
\hline 84 & . 154 & . 647 & . 329 & -. 897 & . 805 & . 604 & . 509 & 2.305 & . 574 \\
\hline 85 & . 156 & . 647 & . 335 & -. 897 & . 820 & . 604 & . 518 & 2.321 & . 534 \\
\hline 86 & . 158 & . 647 & . 340 & -. 897 & . 835 & . 604 & . 526 & 2.336 & . 493 \\
\hline 87 & . 160 & . 647 & . 345 & -. 897 & . 850 & . 604 & . 534 & 2.351 & . 451 \\
\hline 88 & . 162 & . 647 & . 350 & -. 897 & . 865 & . 604 & . 541 & 2.366 & . 409 \\
\hline 89 & . 164 & . 647 & . 354 & -. 897 & . 880 & . 604 & . 547 & 2.380 & . 367 \\
\hline 90 & . 166 & . 647 & . 357 & -. 897 & . 894 & . 604 & . 552 & 2.395 & . 324 \\
\hline 91 & . 168 & . 647 & . 360 & -. 897 & . 909 & . 604 & . 557 & 2.409 & . 281 \\
\hline 92 & . 170 & . 647 & . 363 & -. 897 & . 923 & . 604 & . 561 & 2.424 & . 237 \\
\hline 93 & . 172 & . 647 & . 365 & -. 897 & . 937 & . 604 & . 565 & 2.438 & . 194 \\
\hline 94 & . 174 & . 647 & . 367 & -. 897 & . 951 & . 604 & . 568 & 2.452 & . 150 \\
\hline 95 & . 176 & . 647 & . 368 & -. 897 & . 965 & . 604 & . 570 & 2.466 & . 106 \\
\hline 96 & . 178 & . 647 & . 369 & -. 897 & . 979 & . 604 & . 571 & 2.480 & . 062 \\
\hline 97 & . 180 & . 647 & . 370 & -. 897 & . 993 & . 604 & . 572 & 2.494 & . 018 \\
\hline 98 & . 182 & . 647 & . 370 & -. 897 & -. 993 & . 604 & . 572 & . 508 & -. 026 \\
\hline 99 & . 184 & . 647 & . 369 & -. 897 & -. 978 & . 604 & . 571 & . 522 & -. 070 \\
\hline 100 & . 186 & . 647 & . 368 & -. 897 & -. 964 & . 604 & . 569 & . 536 & -. 114 \\
\hline 101 & . 188 & . 647 & . 367 & -. 897 & -. 950 & . 604 & . 567 & . 550 & -. 158 \\
\hline 102 & . 190 & . 647 & . 365 & -. 897 & -. 936 & . 604 & . 564 & . 565 & -. 201 \\
\hline 103 & . 192 & . 647 & . 363 & -. 897 & -. 922 & . 604 & . 561 & . 579 & -. 245 \\
\hline 104 & . 194 & . 647 & . 360 & -. 897 & -. 908 & . 604 & . 557 & . 593 & -. 288 \\
\hline 105 & . 196 & . 647 & . 357 & -. 897 & -. 893 & . 604 & . 552 & . 607 & -. 331 \\
\hline 106 & . 198 & . 647 & . 353 & -. 897 & -. 879 & . 604 & . 546 & . 622 & -. 374 \\
\hline 107 & . 200 & . 647 & . 349 & -. 897 & -. 864 & . 604 & . 540 & . 637 & -. 416 \\
\hline 108 & . 202 & . 647 & 345 & -. 897 & -. 849 & . 604 & . 533 & . 652 & -. 458 \\
\hline
\end{tabular}

Appendix II - Software for Calculation of Partially Coherent Imaging of Planar Line Objects
```

 PROGRAM PCIMAG2
 PROFPLAY.MAIN
 C
C*
C
C
C
C

```
```PROFPLAY.MAIN
THIS IS THE MAIN PROGRAM FOR COMPUTING PARTIALLY COHERENT
IMAGERY OF 1-D PERIODIC OBJECTS.
THE COMPUTATIONS EMPLOY THE METHODS OF FOURIER OPTICS.
 THIS PROGRAM CONTROLS THE FLOW OF THE CALCULATIONS BY TESTING
 CERTAIN INPUT PARAMETERS. IT ALLOWS FOR THE CHOICE OF 1-D OR 2-D
 OPTICS, AND THE INPUT PARAMETERS CAN BE CHANGED WITHOUT HALTING
 THE EXECUTION OF THE PROGRAM.
 PARAMETER DEFINITIONS -
 WIDTH - LINEWIDTH OF OBJECT IN MICROMETERS
 WT - HALF-WIDTH OF FOREGROUND OBJECT
 PER - PERIOD
 XIR - FUNDAMENTAL FREQUENCY
 CHARACTER*2 ANSWER
 CHARACTER*5 TYPE
 CHARACTER*12 SIZE
 COMMON WIDTH, WAVE, OBJ, SSO, SAO, AB2, AB4, AP, TBO, PB,TTO, PT, SLIT,
 * DATAS(13)
 COMMON/PAR/PI,TWOPI
 COMMON/MN/XIR,WT, PER,NX
 COMMON/IM/DUM1 (2000),NX1,DUM2,DUM3,DUM4
 COMMON/IO/INA, IOUTA, IOUTB
 DATA INA, IOUTA, IOUTB/10,16,40/
 \(\mathrm{PI}=4.0\) *ATAN \((1.0)\)
 TWOPI \(=2.0 * P I\)
 OPEN (UNIT=INA,FILE='INDATA')
 OPEN (UNIT=IOUTA,FILE='PRTDATA')
 OPEN (UNIT=IOUTB,FILE='PLOTDAT')
 *
 SUMMARY OF THE INPUT/OUTPUT STRUCTURE.
 FILE VARIABLE LOGICAL UNIT DEFINITION
 INDATA INA INPUT DATA FILE
 PRTDATA IOUTA 16 OUTPUT DATA FILE - PRINTER
 PLOTDAT IOUTB 40 OJTPUT DATA FILE - PLOTTER
C
C
 PRINT*
 READ (INA, *)ANSWER
C
\(C^{C}\)
```

9 C

$\begin{aligned} & 61 \\ & 62 \end{aligned}$	C READ THE INPUT PARAMETERS THAT CHARACTERIZE THE OPTICAL SYSTEM.   C CONVERT INPUT DATA FOR INTENSITY TRANSMITTANCE (OR REFLECTANCE)
63	C AND PHASE OF THE OBJECT TO COMPLEX AMPLITUDE TRANSMITTANCE
64	C (OR REFLECTANCE).
65	C
66	C*
67	C
68	100 CALL RDATA
69	C
70	C***********************
71	c
72	C TEST 'WIDTH' INPUT PARAMETER.
73	C THE WIDTH CAN VARY FROM 0.01 TO 10.00 MICROMETERS.
74	C
75	C NOTE: WIDTH IS MULTIPLIED BY 2 WHEN CALCULATING 'NX' IN ORDER
76	C TO VIEW THE BEHAVIOR OF THE INTENSITY PROFILE OF LINES
77	C OR SPACES FURTHER FROM THE EDGE.
78	
	C AN ERROR MESSAGE OCCURS IF THE WIDTH LIES OUTSIDE THIS RANGE-
80	C THE PROGRAM THEN DEMANDS A NEW SET OF INPUT DATA
81	C
82	C
83	C
84	200 IF(WIDTH.GT.2.5.OR.WIDTH.LE.10.0) THEN
85	WT=0.1
86	PER=5.0*WIDTH
87	SIZE='GREATER THAN'
88	NX=100.0*WIDTH +0.0001
89	ELSEIF(WIDTH.LE.2.5.AND.WIDTH.GT.0.0) THEN
90	WT=WIDTH/10.0
91	PER=5.0
92	SIZE='LESS THAN'
93	NX=100.0*WIDTH*2.0+0.0001
94	ELSE
95	PRINT*,'ERROR IN WIDTH. PROGRAM STOPS.'
96	STOP
97	ENDIF
98	XIR=WAVE/(PER*OBJ)
99	C
100	
101	C
102	C COMPUTE the COMPLEX FOURIER COEFfiCIENTS, A(N), OF A PERIODIC
103	C OBJECT WITH A SYMMETRIC RECTANGULAR WAVEFORM.
104	C
105	C*
106	C
107	CALL OBJECT
108	C
109	C*****
110	C
111	C COMPUTE THE REAL FOURIER COEFFICIENTS, $\mathrm{C}(\mathrm{N})$, WHICH CHARACTERIZE
112	C 'The intensity distribution in the image plane.
113	C
114	C ('CROS1D' IS CALLED FOR 1-D OPTICS, WHILE 'CROS2D' IS CALLED FOR
115	C 2-D OPTICS.)
116	C
117	
118	C
119	IF (ANSWER.EQ.'1D')THEN
120	

```
121
```

122
123
124 C
125 C
126 C
127 C INCLUDE THE EFFECT OF A SCANNING SLIT IN THE IMAGE PLANE BY
128 C ADJUSTING THE VALUES OF THE REAL FOURIER COEFFICIENTS, C(N).
129 C (THIS IS NOT NECESSARY IF THE SLIT IS LESS THAN 0.01 MICRCMETERS
130 C IN WIDTH.)
131 C
132
133 C
134 IF(SLIT.GE.0.01) CALL CSLIT
135 C
136 C
137 C
138 C
139 C
140 C
141 C
142 C
143
144 C
145
146 C
147 C
148 C
149 C
150 C
151 C
152
153
154
155
156
157
158

165 C

ELSE
CALL CROS2D
ENDIF

C
$\square$ INCLUDE TH
ADJUSTING
(THIS IS N
IN WIDTH.)



C*
CALCULATE THE INTENSITY DISTRIBUTION OF A PLANAR OBJECT USING PARTIALLY COHERENT IMAGING FORMULAS.
$\qquad$

```
C
C
CALL IMAGE
C
C**
C
 TEST FOREGROUND TRANSMITTANCE IN ORDER TO SET CERTAIN PARAMETERS
 PRIOR TO NORMALIZATION.
C***
C
 IF(TTO.EQ.1.0)THEN
 NUM=1
 TYPE='SPACE'
 ELSE
 NUM=NX1
 TYPE='LINE'
 ENDIF
C
C***
 CALI YNORM(NUM)
C
C***
PRINT A TABLE OF NORMALIZED INTENSITY VERSUS DISTANCE ONTO
AN OUTPUT DEVICE. ALSO PRINT TWO COLUMNS OF INTENSITY AND
DISTANCE OUT TO FILE PLOTDAT FOR PLOTTING PURPOSES.
C
CALL PRINT(TYPE,SIZE,ANSWER)

C
CLOSE(UNIT=INA)
CLOSE(UNIT=IOUTA)
CLOSE(UNIT=IOUTB)
STOP
END
```

181 C

182
183 C
184 C THIS SUBROUTINE COMPUTES THE COMPLEX FOURIER COEFFICIENTS, A(N), OF 185 C A PERIODIC OBJECT WITH A SYMMETRIC RECTANGULAR WAVEFORM.
186 C
187 C
188 C
189
190 C
THE COMPUTED COEFFICIENTS ARE STORED IN LABLED COMMON/ACOEF/. C
$\stackrel{C}{C}$ SUBROUTINE OBJECT
C
C

COMPLEX TB, TT, $A(100), A 0, C C$
COMMON/ACOEF/ A, AO
COMMON/MN/DUM1,WT,DUM2,DUM3
COMMON/RD1/TB,TT
COMMON/PAR/PI,TWOPI
C

C
SEE EQUATION \#21A, 'METHOD FOR THE CALCULATION OF PARTIALLY COHERENT IMAGERY', ERIC KINTNER, J. APPLIED OPTICS, VOL.17, NO.17, PAGE 2747
$A 0=T B+2.0 *(T T-T B) * W T$
COMPUTE CONSTANT COMMON TO ALL COEFFICIENTS.
$C C=(T T-T B) / P I$
NOTE THE USE OF THE IDENTITY -
$\operatorname{SIN}\left(N^{*} X\right)=2.0 * \operatorname{COS}(X) * \operatorname{SIN}((N-1) * X)-\operatorname{SIN}((N-2) * X)$.
$\operatorname{COSN}=\operatorname{COS}(T W O P I * W T)$
$\mathrm{S}=0.0$
Sl=-SIN (TWORI *WT)
DO $300 \mathrm{~N}=1,100$
S2=S1
S1=S
$\mathrm{S}=2.0^{*} \operatorname{cosN}^{*} \mathrm{~S} 1-\mathrm{S} 2$
$A(N)=C C * S / N$
300 CONTINUE
RETURN
END
C
C
THIS SUBROUTINE COMPUTES THE REAL FOURIER COEFFICIENTS, C(N), WHEN THE 1-D OPTION OF THE PROGRAM IS SELECTED.

C***************************************************************************)
C
SUBROUTINE CROSID
C
$C$
$C$
$C$
COMMON WIDTH, WAVE,OBJ,SSO,SAO, AB2,AB4,AP
COMMON /MN / XIR, DUM1, DUM2, DUM3
COMMON/RD2/SS,SA
C
C*

```
 COMMON/CROS/C(325),LJ,LJI,CO
 COMPLEX CCFID, A
 SEE EQUATION #18, 'METHOD FOR THE CALCULATION OF PARTIALLY COHERENT
 IMAGERY', ERIC KINTNER, J. APPLIED OPTICS, VOL.17, NO.17, PAGE 2747
 FOR THE MATHEMATICAL FORMULATION OF THE FOURIER COEFFICIENTS, C(N).
 COMPUTE THE NUMBER OF FOURIER COEFFICIENTS NEEDED IN THE SUMMATION
 WITHOUT EFFECTING THE ACCURACY.
 LJ=2.0/XIR+1.0
 LJ1=LJ+1
 LNO=(1.0+SS)/XIR+1.0
 TEMPORARILY SET AB2 AND AB4 TO ZERO BEFORE ENTERING CCFID FUNCTION
 THROUGH CNORM1.
 TEMP1=AB2
 TEMP2=AB4
 AB2=0.0
 AB4=0.0
 COMPUTE NORMALIZING FACTOR FOR COEFFICIENTS (CNO). THIS IS DONE
 THROUGH THE FUNCTION CNORM1.
 CNO=CNORMI (SA)
 SET AB2 AND AB4 BACK TO THEIR ORIGINAL VALUES.
 AB2=TEMP1
 AB4=TEMP2
 CALCULATE THE FOURIER COEFFICIENTS CORRESPONDING TO THE PRIMARY
 AXIS FIRST (CO).
 C0=CABS}(A(0))**2.0*\operatorname{CCF1D}(0.0,0,0
 DO 300 N=1, INO
 C0=C0+REAL (CABS(A(N))**2*CCF1D(XIR,N,N)
 +CABS(A(-N))**2*CCF1D(XIR, -N, -N))
300 CONTINUE
 CO=CO/CNO
 COMPUTE FOURIER COEFFICIENTS, C(N), VIA EQUATION #18 (KINTNER'S REF.)
 DO 500 J=1, LJ
 IN=LNO+J
 CT=REAL(A(J)*CONJG(A(0))*CCF1D(XIR,J,0))
 DO 400 N=1, IN
 CT=CT+REAL(A(J+N)*CONJG(A(N))*CCFID(XIR,J+N,N)
 1
 +A(J-N)*CONJG(A(-N))*CCFID(XIR,J-N,-N))
400 CONTINUE
 C(J)=CT/CNO
500 CONTINUE
 RETURN
 END
```

301
302 303 304 305 306 307 308 309 C 310 311 312 313 314 C 315 316 317
32.

321
322
323
324
325
326
327
328
329
330
331
332 C
333 C
334 C
335 C
336 C
337 C
338 C
339
340 C
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355 C
356 C
357 C
358 C
359 C
360 C

```
C
 THIS FUNCTION RETRIEVES THE FOURIER COEFFICIENTS FROM COMMON/A/.
 IT IS CALLED FROM THE FUNCTION CCF1D AND CCF2D.
 COMPLEX FUNCTION A(N)
C***
 COMPLEX AA(100), AO
 COMMON/ACOEF/ AA, AO
C
C
 NA=IABS(N)
 -I(NA .GT. 100) THEN
 z}=(0.0,0.0
 RETURN
 ELSEIF(NA .EQ. O) THEN
 A=AO
 RETURN
 ELSE
 A=AA (NA)
 RETURN
 ENDIF
 END
C
C**
 FUNCTION TO NORMALIZE IMAGERY.
 FOR BRIGHT-FIELD IMAGERY, FIEID IS UNITY.
 FOR DARK-FIELD IMAGERY, FIELD WITHOUT SOURCE STOP IS UNITY.
 THIS FUNCTION IS CALLED FROM THE SUBROUTINE CROSID (ONLY NEEDED
 WHEN THE 1-D OPTION OF THE PROGRAM IS USED).
 FUNCTION CNORMI(SA)
C
C**
 IF(SA .GE. 1.0) THEN
 CNORM1=1.0
 RETURN
 ELSE
 CNORM1=REAL(CCF1D(0.0,0,0))
 RETURN
 ENDIF
 END
C
C*
FUNCTION TO NORMAIIZE IMAGERY.
FOR BRIGHT-FIEID IMAGERY, FIEID IS UNITY.
FOR DARK-EIEID IMAGERY, FIEZD WITHOUT SOURCE STOP IS UNITY.
THIS FUNCTION IS CALLED FROM THE SUBROUTINE CROS2D (ONLY NEEDED
```

$\begin{aligned} & 361 \\ & 362 \end{aligned}$	
363	
364	C
365	FUNCTION CNORM2(SA)
366	C
367	C*************************
368	C
369	IF(SA .GE. 1.0) THEN
370	CNORM2 $=1.0$
371	RETURN
372	ELSE
373	CNORM2 $=$ REAL $(\operatorname{CCF} 2 \mathrm{D}(0.0,0,0))$
374	RETURN
375	ENDIF
376	END
377	C
378	C*****************************)
379	C
380	C FUNCTION TO COMPUTE THE TRANSMISSION CROSS-COEFFICIENT FOR A
381	C ONE DIMENSIONAL PARTIALLY COHERENT IMAGING SYSTEM WITH
382	C DEFOCUSING, SPHERICAL ABERRATION, AND GAUSSIAN APODIZATION OF
383	C BOTH SOURCE AND PUPIL.
384	
	C (USED ONLY WITH THE 1-D OPTION OF THE PROGRAM)
386	C
387	
388	C
389	COMPLEX FUNCTION CCFID(XIR,N1,N2)
390	C
391	
392	C
393	C PARAMETER DEFINITIONS -
394	C XIR - FUNDAMENTAL FREQUENCY.
395	C N1 - HARMONIC FOR FIRST FREQUENCY.
	C N2 - HARMONIC FOR SECOND FREQUENCY.
397	C SS - SOURCE SIZE.
398	C SA - SOURCE APODIZATION.
399	C AB2 - DEFOCUSING
400	C AB4 - SPHERICAL ABERRATION.
401	$C$ AP - PUPIL APODIZATION.
402	C
	C ROUTINE ASSUMES THAT (N1 .GE. N2)
404	C
405	C*
406	C
407	COMPLEX ZERO, SUM, Y
408	COMMON WIDTH,WAVE, OBJ, SSO, SAO, AB2,AB4, AP
409	COMMON/RD2/SS,SA
410	COMMON/PAR/PI, TWOPI
411	DATA ZERO, EPS/(0.0,0.0),0.01/
412	DATA NO/10/
413	C
414	
415	C
416	X1=N1*XIR
417	X2=N2*XIR
418	CCF1D=2ERO
419	C
420	C In the Coherent limit, use alternate routine.

IF(SS .LT. EPS) GOTO 100
RETURN WITH ZERO IF SOURCE AND TWO PUPILS DO NOT INTERSECT.
IF ( (X1-X2) .GT. 2.0) RETURN
IF ((X1-1.0) .GT. SS) RETURN
IF $(-(1.0+X 2) . G T . S S)$ RETURN
DETERMINE LIMITS OF INTEGRATION. ASSUM: LIMITS DETERMINED BY PUPILS UNLESS SOURCE IS SMALLER.

RL2 $=1.0-\mathrm{X1}$
RLI $=-(1.0+X 2)$
IF (SS..LT. RL2) RL2=SS
IF(-SS .GT. RL1) RL1=-SS
SET UP INTEGRATION BY SIMPSON'S RULE.
SCALE THE INTEGRATION INTERVAL TO BE APPROXIMATELY EQUAL FOR
AIL CASES.
(NO IS THE APPROXIMATE NUMBER OF INTERVALS PER UNIT LENGTH.)
$\mathrm{NC}=1.0+(\mathrm{RL} 2-\mathrm{RL} 1)$ *NO
$D C=(R L 2-R L 1) / N C$
$D C 2=D C / 2.0$
$Q=R L 1$
Q1 $=Q+\mathrm{XI}$
$Q 2=Q+X 2$
$Q Q 1=Q 1 * Q 1$
$Q \mathrm{Q} 2=\mathrm{Q} 2 * \mathrm{Q} 2$
$A R=S A * Q * Q+A P *(Q Q 1+Q Q 2)$
$A I=T W O P I *(A B 2 *(Q Q 1-Q Q 2)+A B 4 *(Q Q 1 * Q Q 1-Q Q 2 * Q Q 2))$
$\operatorname{SUM}=\operatorname{CEXP}(\operatorname{CMPLX}(A R, A I))$
DO $50 \mathrm{~N}=1$, NC
QN=RLI $+\mathrm{N}^{*} \mathrm{DC}$
$Q=Q N-D C 2$
$Q 1=Q+X 1$
$\mathrm{Q} 2=\mathrm{Q}+\mathrm{X} 2$
$Q Q 1=Q 1 * Q 1$
$\mathrm{QQ} 2=\mathrm{Q} 2 * \mathrm{Q} 2$
$A R=S A * Q * Q+A P *(Q Q 1+Q Q 2)$
$A I=T W O P I *(A B 2 *(Q Q 1-Q Q 2)+A B 4 *(Q Q 1 * Q Q 1-Q Q 2 * Q Q 2))$
$Y=\operatorname{CEXP}(\operatorname{CMPLX}(A R, A I))$
SUM $=$ SUM $+4.0 * Y$
$Q=Q N$
Q1 $=9+\mathrm{XI}$
$\mathrm{Q} 2=\mathrm{Q}+\mathrm{X} 2$
$\mathrm{QQ1=Q1*} \mathrm{Q1}$
QQ2 $=$ Q2* 22
$A R=S A * Q^{*} Q+A P^{*}(Q Q 1+Q Q 2)$
$A I=T W O P I *(A B 2 *(Q Q 1-Q Q 2)+A B 4 *(Q Q 1 * Q Q 1-Q Q 2 * Q Q 2))$
$Y=\operatorname{CEXP}(\operatorname{CMPLX}(A R, A I))$
SUM=SUM+2.O*Y
50 CONTINUE
EXTRA FACTOR OF TWO IN DENOMINATOR CORRECTLY NORMALIZES RESUIT.
CCE1D=(SUM-Y)*DC2/6.0
RETURN
C
C

## 

C

C ALTERNATE ROUTINE FOR COHERENT LIMIT.
100 IF(ABS(X1) .GT. 1.0) RETURN
IF (ABS (X2) .GT. 1.0) RETURN
QQ1=X1*X1
QQ2=X2*X2
$A R=A P *(Q Q 1+Q Q 2)$
$A I=T W O P I *(A B 2 *(Q Q 1-Q Q 2)+A B 4 *(Q Q 1 * Q Q 1-Q Q 2 * Q Q 2))$
$C C F 1 D=\operatorname{CEXP}(\operatorname{CMPLX}(A R, A I))$
RETURN
END
FUNCTION TO COMPUTE TRANSMISSION CROSS-COEFFICIENT FOR CIRCULAR
OPTICAL SYSTEM (ANNULAR SOURCE) WITH NO ABERRATIONS OR
APODIZATION.
(USED ONLY WITH THE 2-D OPTION OF THE PROGRAM)
PARAMETER DEFINITIONS -
XIR - FUNDAMENTAL FREQUENCY.
N1 - HARMONIC FOR FIRST FREQUENCY.
N2 - HARMONIC FOR SECOND FREQUENCY.
SS - OUTER RADIUS OF SOURCE ANNULUS.
SA - INNER RADIUS OF SOURCE ANNULUS.

ROUTINE ASSUMES THAT (N1 .GE. N2).

COMPLEX FUNCTION CCF2D(XIR,N1,N2)

COMMON /RD2/SS,SA
COMMON/PAR/PI,TWOPI
$\mathrm{XI}=\mathrm{N} 1 * \mathrm{XIR}$
X2=N2*XIR
$\operatorname{CCF} 2 \mathrm{D}=(0.0,0.0)$
USE ALTERNATE ROUTINE FOR COHERENT SOURCE.
IF (SS .LT. 0.01) THEN
GOTO 2000
ENDIF
RETURN WITH ZERO IF SOURCE AND PUPILS DO NOT INTERSECT.
IF((X1-X2).GT. 2.0) RETURN
IF ( $(X 1-1.0) . G T . S S)$ RETURN
IF (-(1.0+X2) .GT. SS) RETURN
MAXIMUN AND MINIMUM EXTENT OF INTERSECTION OF TWO PUPILS.
$X M A X=X 2+i .0$

541
542 543 544

```
 XMIN=X1-1.0
```

        XMIN=X1-1.0
        IFLAG=0
        IFLAG=0
        SET FLAG IF SOURCE IS ANNULAR - TWO SEPARATE PASSES REQUIRED.
        SET FLAG IF SOURCE IS ANNULAR - TWO SEPARATE PASSES REQUIRED.
        IF(SA .GT. 0.01) IFLAG=1
        IF(SA .GT. 0.01) IFLAG=1
        XS=SS
        XS=SS
    100 XS2=XS*XS
    100 XS2=XS*XS
        IF SOURCE SIZE IS LESS THAN PUPIL SIZE, USE ALTERNATE ROUTINE.
        IF SOURCE SIZE IS LESS THAN PUPIL SIZE, USE ALTERNATE ROUTINE.
        IF(XS .LT. 1.0) GOTO 400
        IF(XS .LT. 1.0) GOTO 400
        IF(XS .LT. XMAX .OR. -XS .GT. XMIN) GOTO 200
        IF(XS .LT. XMAX .OR. -XS .GT. XMIN) GOTO 200
        IF SOURCE ENVELOPES AREA COMMON TO BOTH PUPILS, CALCULATE THIS
        IF SOURCE ENVELOPES AREA COMMON TO BOTH PUPILS, CALCULATE THIS
        AREA.
        AREA.
        Y=AREA(1.0,1.0,(X1-X2))
        Y=AREA(1.0,1.0,(X1-X2))
        GOTO 1100
        GOTO 1100
    200 IF(XS2 .LE. (X1*X2+1.0)) GOTO 300
    200 IF(XS2 .LE. (X1*X2+1.0)) GOTO 300
        IF REQUIRED AREA IS BOUNDED BY SOURCE AND BOTH PUPILS, CALCULATE
        IF REQUIRED AREA IS BOUNDED BY SOURCE AND BOTH PUPILS, CALCULATE
        THIS AREA.
        THIS AREA.
        Y=AREA(1.0,1.0,(X1-X2))+AREA(XS,1.0,AMIN1(ABS(X1),ABS(X2)))-PI
        Y=AREA(1.0,1.0,(X1-X2))+AREA(XS,1.0,AMIN1(ABS(X1),ABS(X2)))-PI
        GOTO 1100
        GOTO 1100
    IF REQUIRED AREA IS BOUNDED ONLY BY SOURCE AND ONE PUPIL,
    IF REQUIRED AREA IS BOUNDED ONLY BY SOURCE AND ONE PUPIL,
    CALCULATE THIS AREA.
    CALCULATE THIS AREA.
    300 Y=AREA(XS,1.0,AMAX1(ABS(X1),ABS(X2)))
    300 Y=AREA(XS,1.0,AMAX1(ABS(X1),ABS(X2)))
        GOTO 1100
        GOTO 1100
        ALTERNATE ROUTINE FOR SOURCE SMALLER THAN PUPIL.
        ALTERNATE ROUTINE FOR SOURCE SMALLER THAN PUPIL.
        FIND WHETHER BOUNDARY OF SOURCE EXTENDS BEYOND THE AREA COMMON
        FIND WHETHER BOUNDARY OF SOURCE EXTENDS BEYOND THE AREA COMMON
        TO BOTH PUPILS, IN EITHER DIRECTION.
        TO BOTH PUPILS, IN EITHER DIRECTION.
    4 0 0 ~ I F L 1 = 0
4 0 0 ~ I F L 1 = 0
IFL2=0
IFL2=0
IF (XMIN .LE. -XS) IFL1=1
IF (XMIN .LE. -XS) IFL1=1
IF(XMAX .GE. XS) IFL2=1
IF(XMAX .GE. XS) IFL2=1
IF(IFLI+IFL2-1) 900, 600, 500
IF(IFLI+IFL2-1) 900, 600, 500
IF SOURCE IS ENVELOPED BY AREA COMMON TO BOTH PUPILS, CALCULATE
IF SOURCE IS ENVELOPED BY AREA COMMON TO BOTH PUPILS, CALCULATE
AREA OF SOURCE.
AREA OF SOURCE.
500 Y=PI*XS2
500 Y=PI*XS2
GOTO 1100
GOTO 1100
IF REQUIRED AREA IS BOUNDED BY SOURCE AND EITHER PUPIL (ALONE),
IF REQUIRED AREA IS BOUNDED BY SOURCE AND EITHER PUPIL (ALONE),
CALCULATE AREA IN COMMON BETWEEN SOURCE AND THIS PUPIL.
CALCULATE AREA IN COMMON BETWEEN SOURCE AND THIS PUPIL.
(ZERO IS IMPOSSIBLE IN IF-STATEMENT AT 600.)
(ZERO IS IMPOSSIBLE IN IF-STATEMENT AT 600.)
6 0 0 ~ I F ( I F L 1 - I F L 2 ) ~ 7 0 0 , ~ 1 1 0 0 , ~ 8 0 0 ~
6 0 0 ~ I F ( I F L 1 - I F L 2 ) ~ 7 0 0 , ~ 1 1 0 0 , ~ 8 0 0 ~
700 Y=AREA(1.0,XS,ABS(X1))
700 Y=AREA(1.0,XS,ABS(X1))
GOTO 1100
GOTO 1100
800 Y=AREA(1.0,XS,ABS(X2))
800 Y=AREA(1.0,XS,ABS(X2))
GOTO 1100
GOTO 1100
900 IF((X1*X2+1.0) .LE. XS2) GOTO 1000

```
900 IF((X1*X2+1.0) .LE. XS2) GOTO 1000
```

```
601 C
6 0 2 ~ C
603 C
6 0 4 ~ C
6 0 5
6 0 6
6 0 7 ~ C
608 C IF SOURCE ENVELOPES AREA COMMON TO BOTH PUPILS, CALCULATE THIS
609 C AREA.
610 C
6 1 1 1 0 0 0 ~ Y = A R E A (1 . 0 , 1 . 0 , (X 1 - X 2)) ,
612 GOTO 1100
6 1 3 ~ C
614 C
6 1 5 ~ C
6 1 6 ~ C
617 1100 IF(IFLAG-1) 1500, 1600, 1700
6 1 8 ~ C
619 C FOR CIRCULAR SOURCE, NORMALIZE AND RETURN.
620 C
621 1500 CCF2D=Y/PI
6 2 2 ~ R E T U R N
623 C
624 C
625 C
626 C
627 C
628 1600 IFL.AG=2
629 CCF2D=Y
6 3 0
6 3 1
6 3 2
6 3 3
634
635 c
 636 C FOR SECOND PASS WITH ANNULAR SOURCE, SUBTRACT RESULTS OF INNER
637 C SOURCE FROM SAVED RESULTS OF OUTER SOURCE. NORMALIZE AND RETURN.
638 C
639 1700 CCF2D=(CCF2D-Y)/PI
6 4 0 ~ R E T U R N
64 C
6 4 2 ~ C
643 C
644 2000 IF(ABS(X1) .GT. 1.0) RETURN
C IF REQUIRED AREA IS BOUNDED BY SOURCE AND BOTH PUPILS, CALCULATE
C THIS AREA.
Y=AREA(1.0,XS,ABS(X1))+AREA(1.0,XS,ABS(X2))-PI*XS2
GOTO 1100
CHECK FLAG FOR CIRCULAR SOURCE, OR FIRST OR SECOND PASS WITH
ANNULAR SOURCE.
C
C FOR FIRST PASS WITH ANNULAR SOURCE, SAVE RESULTS FROM OUTER
BOUNDARY OF ANNULUS, SET INNER BOUNDARY AS BOUNDARY OF INNER
SOURCE.
 Y=0.0
 XS=SA
 IF((X1-1.0) .GT. SA) GOTO 1100
 IF(-(X2+1.0) .GT. SA) GOTO 1100
 GOTO }10
C
C
 ALTERNATE ROUTINE FOR COHERENT SOURCE.
 IF(ABS(X2) .GT. 1.0) RETURN
 CCF2D=(1.0,0.0)
 RETURN
 END
C
C*
FUNCTION TO COMPUTE THE AREA COMMON TO TWO DISPLACED CIRCLES.
 FOR THE MATHEMATICAL FORMULATION PERTAINING TO THIS FUNCTION,
 SEE THE APPENDIX OF 'METHOD FOR THE CALCULATION OF PARTIALIY COHERENT
 IMAGERY', ERIC KINTNER, J. APPIIED OPTICS, VOI.17, NO.17, PAGE 2750.
C
C**
 PARAMETER DEEINITIONS -
```

661	C	R1 - RADIUS OF FIRST CIRCLE.
662	C	R2 - RADIUS OF SECOND CIRCLE.
663	C	D - SEPARATION BETWEEN FOCII OF TWO CIRCLES.
664	C	
665	C	ROUTINE ASSUMES SOME CONTACT EXISTS, AND EXPECTS ALE THREE
666		PARAMETERS TO BE POSITIVE.
667	C	
668		*********************************************************************
669	C	
670		FUNCTION AREA(R1,R2,D)
671		COMMON/PAR/PI, TWOPI
672	C	
673		******************************************************************
674	C	-
675		TRAP FOR CONCENTRIC CIRCLES.
676	C	
677		IF(D.LT. O.OO1) GOTO 100
678	C	
679		FIND ANGLE IN EACH CIRCLE SUBTENDED BY COMMON AREA. NOTE TRAPS
680		TO SUPPRESS ERRORS IN ARC-COSINE ROUTINES.
681	C	
682		D2 $=$ D* D
683		RADII $=$ R1*R1-R2*R2
684		DENOM $=2.0 * D$
685		$\mathrm{T}=(\mathrm{D} 2+\mathrm{RADII}) /($ DENOM*R1)
686		IF(T.GT. 1.0) T=1.0
687		THETA1=ACOS (T)
688		T=(D2-RADII) /(DENOM*R2)
689		IF(T.GT. 1.0) T=1.0
690		THETA2=ACOS (T)
691	C	
692		COMPUTE HALF-IENGTH OF CHORD COMMON TO THE TWO COMPUTED ANGLES.
693	C	
694		C=R1*SIN (THETA1)
695	C	
696		COMPUTE THE AREA OF THE REGION OF OVERLAP.
697	C	
698		AREA $=(\mathrm{R} 1 * * 2 * T H E T A 1+R 2 * * 2 * T H E T A 2)-C * D$
699		RETURN
700	C	
701		IF CIRCLES ARE CONCENTRIC, CALCULATE AREA OF SMALIER CIRCLE.
702	C	
703		100 AREA=PI*(AMIN1 (R1,R2))**2
704		RETURN
705		END
706	C*	
707	C	
708		THIS SUBROUTINE CORRECTS THE FOURIER COEFFICIENTS, $\mathrm{C}(\mathrm{N})$, FOR THE
709		EFFECT OF THE SCANNING SLIT IN THE IMAGE PLANE.
710	C	
711	C*	
712	C	
713		SUBROUTINE CSIIT
714	C	
715		
716	C	
717		COMMON WIDTH, WAVE, OBJ, SSO, SAO, AB2, AB4, AP, TBO, PB, TTO,PT, SIIT
718		COMHON/MN/XIR, DUM1, DUM2, DUN3
719		COMMON/CROS/C(325), LJ
720		COMMON/PAR/PI, TWOPI

721 C
SEE EQUATION \#19 IN 'METHOD FOR THE CALCULATION OF PARTIALLY COHERENT
IMAGERY', ERIC KINTNER, J. APPLIED OPTICS, VOL.17, NO.17, PAGE 2747
FOR THE MATHEMATICAL FORMULATIONS RELATING TO THIS SUBROUTINE.

C
C
ARG=PI*XIR*(SLIT*OBJ/WAVE)
COSN2=2.0*COS (ARG)
$\mathrm{s}=0.0$
SI=-SIN (ARG)
DO $700 \mathrm{~J}=1$, LJ
S2=S1
S1=S
$S=\operatorname{COSN} 2 * S 1-S 2$
$C(J)=C(J) * S /(J * A R G)$
700 CONTINUE
RETURN
END
THIS SUBROUTINE COMPUTES THE REAL FOURIER COEFFICIENTS, C(N), WHEN
THE 2-D OPTION OF THE PROGRAM IS SELECTED.
SUBROUTINE CROS2D

COMMON/MN/XIR, DUM1, DUM2, DUM3
COMMON/RD2/SS,SA
COMMON/CROS/C(325),LJ,LJ1,C0
COMPLEX CCF2D, A
SEE EQUATION \#18 IN 'METHOD FOR THE CALCULATION OF PARTIALLY COHERENT
IMAGERY', ERIC KINTNER, J. APPIED OPTICS, VOL. 17 , NO. 17 , PAGE 2747
FOR THE MATHEMATICAL FORMULATION OF THE FOURIER COEFFICIENTS, C(N).
COMPUTE THE NUMBER OF FOURIER COEFFICIENTS NEEDED IN THE SUMMATION
$L J=2.0 / X I R+1.0$
$\mathrm{LJ} 1=\mathrm{LJ}+1$
LNO $=(1.0+S S) / X I R+1.0$
COMPUTE THE NORMALIZING FACTOR FOR THE COEFFICIENTS (CNO). THIS
IS DONE THROUGH THE FUNCTION CNORM2.
$\mathrm{CNO}=\mathrm{CNORM2}(S A)$
CALCULATE THE FOURIER COEEEICIENTS CORRESPONDING TO THE PRIMARY
AXIS FIRST (CO):
816 C
817 C
818 C
819 C
820 C
C
C
C
C
C

```
 CO=CABS(A(0))**2* CCF2D(0.0,0,0)
 DO 300 N=1, INO
 CO=C0+REAL(CABS(A(N))**2*CCF2D(XIR,N,N)
 1 +CABS(A(-N))**2*CCF2D(XIR,-N,-N))
300 CONTINUE
 CO=CO/CNO
 COMPUTE FOURIER COEFFICIENTS, C(N), VIA EQUATION #18 (KINTNER'S REF.)
 DO 500 J=1, IJ
 LN=LNO+J
 CT=REAL(A(J)*CONJG(A(0))* CCF2D(XIR,J,0))
 DO 400 N=1, LN
 CT=CT+REAL(A(J+N)*CONJG(A(N))*CCF2D(XIR,J+N,N)
 1 +A(J-N)*CONJG(A(-N))*CCF2D(XIR,J-N, -N))
 400 CONTINUE
 C(J)=CT/CNO
 500 CONTINUE
 RETURN
 END
C
C**
 THIS SUBROUTINE NORMALIZES ALI OF THE INTENSITY VALUES STORED IN
 THE ARRAY YLIST(N).
 SUBROUTINE YNORM(NUM)
 COMMON/IM/YLIST(2000),NX1,YMAXBN,DUM1, YMAXAN
C^**
SINCE SCANNING IS ASSUMED TO START FROM THE CENTER OF THE LINE
OBJECT (CORRESPONDING TO X=0), THE INTENSITY VALUES ARE NORMAIIZED
RELATIVE TO THE FOREGOUND INTENSITY WHEN THE INPUT VALUE FOR THE
INTENSITY TRANSMITTACE (TTO) IS 1.0.
OTHERWISE, THE INTENSITY VALUES ARE NORMAIIZED REIATIVE TO THE
BACKGROUND INTENSITY CORRESPONDING TO AN INPUT OF 1.0 FOR THE
BACKGROUND INTENSITY (TBO).
 YMAXAN.......THE MAXIMUM INTENSITY VALUE AFTER NORMRIIZATION
 YMAXAN=YMAXBN/YLIST(NUM)
 CONST=YLIST(NUM)
 DO 100 I=1,NX1
 YLIST(I)=YLIST(I)/CONST
 100 CONTINUE
 RETURN
 END
C**
C THIS SUBROUMINE RERDS THE INPUT PARAMETERS THAT CHARACTERIZE THE
OPTICRI SYSTEV. TO BE MODELED. THE COMPIEX AMPIITUDE TRANSMITTANCE
```



901
902
903
904
905
906
907
908
909
910
911
912
913 C
914 C
915 C
916 C
917 C
918 C
919 C
920 C
921 C
922 C
923
924
925
926
C

C
C

$$
\mathrm{PT}=\mathrm{DATAS}(12)
$$

SLIT=DATAS (13)
SS=SSO/OBJ
SA=SAO/OBJ
AMPL=SQRT (TBO)
PHASE $=$ PI* $P B$
TB=CMPLX (AMPL*COS (PHASE), AMPL*SIN(PHASE))
AMPL=SQRT (TTO)
PHASE=PI*PT
TT=CMPLX (AMPL*COS (PHASE), AMPL*SIN (PHASE))
RETURN
END

THIS SUBROUTINE PRINTS A TABLE OF DISTANCE VERSUS INTENSITY VALUES FOR the partially coherent imaging of periodic objects out to FILE 'PRTDATA'.

TWO COLUMNS CONSISTING OF X-VALUES AND CORRESPONDING INTENSITY
values are output to file 'plotdat'. these values may be used as A PLOT FILE TO PRODUCE A THEORETICAL OPTICAL PROFILE FOR THE LINE OBJECT.

SUBROUTINE PRINT(TYPE,SIZE,ANSWER)

COMMON WIDTH, WAVE,OBJ,SSO,SAO, AB2, AB4, AP,TBO, PB,TTO,PT,SLIT
COMMON/IO/INA, IOUTA, IOUTB
COMMON/IM/YLIST(2000),NX1, YMAXBN, XMAX, YMAXAN
CHARACTER*5 TYPE
CHARACTER*12 SIZE
CHARACTER*2 ANSWER

PRINT PERTINENT INFORMATION FOLLOWED BY A TABLE OF INTENSITY VALUES FOR THE DISTANCE TRAVERSED:

```
WRITE(IOUTA,1) TYPE, SIZE
WRITE(IOUTA,2) NX1
WRITE(IOUTA,3) YMAXBN
WRITE(IOUTA,4) YMAXAN
WRITE(IOUTA,5) XMAX
IF(ANSWER.EQ.'2D') THEN
 PRINT*,' 2-D OPTION SELECTED'
ELSE
 PRINT*,' 1-D OPTION SELECTED'
 ENDIF
 WRITE(IOUTA,*)
 WRITE(IOUTA,*)
 WRITE(IOUTA,6)
 WRITE(IOUTA,7)WIDTH,WAVE,OBJ,SSO,SAO,AB2,AB4,AP,TBO,PB,TTO,PT,SLIT
 WRITE(IOUTA,8)
 WRITE(IOUTA,9)
 WRITE(IOUTA,10)
 NA=1
```

```
 NB=10
 X=0.0
100 WRITE(IOUTA,11) X, (YLIST(NP), NP=NA,NB)
 NA}=NA+1
 NB}=NB+1
 X=X+0.1
 IF(NB.GT.NX1) NB=NX1
 IF(NA.GT.NX1) GOTO 200
 GOTO }10
THE FOLLOWING CODE PRINTS TWO COLUMNS OF DISTANCE AND INTENSITY
VALUES OUT TO FILE 'PLOTDAT'. SINCE YLIST(N) ONLY CONTAINS INTENSITY
VALUES STARTING FROM THE CENTER OF THE LINE OBJECT, A ROUTINE HAS BEEN
DEVELOPED TO REPEAT THE CORRESPONDING INTENSITY VALUES FOR NEGATIVE
X-VALUES (LYING TO THE LEFT OF THE LINE OBJECT'S CENTER).
THIS ROUTINE ALSO COMPARES THE SLOPE OF A SET OF (X,Y) POINTS
AND PRINTS ONLY THOSE POINTS WHICH HAVE INTENSITY VALUE DIFFERENCES
GREATER THAN 0.001. IN THIS WAY, THE PLOT FILE GENERATED MAY
BECOME MORE EFFICIENT BY ELIMINATING UNNECESSARY POINTS.
THIS PORTION OF CODE PRINTS OUT CORRESPONDING NEGATIVE X-VALUES
AND INTENSITY VALUES - STARTS FROM YLIST(NX1) AND GOES TO YLIST(1):
200 N=NX1
 J=0
J IS COUNTER FOR NUMBER OF POINTS APART TO COMPARE WITH (UP TO 15)
SUBTRACT J BECAUSE WE ARE HEADING TOWARDS CENTER OF PROFILE...YLIST(1)
300 N=N-J
 J=0
 DO 400 I=1,15
 J=J+1
 DIFF=ABS(YIIST(N)-YLIST(N-I))
 IF YLSIT(1) HAS BEEN REACHED, SWITCH TO SECOND PART OF ROUTINE (BELOW)
 IF((N-I).LE.1) GOTO }60
 IF(DIFF.GE.0.001) GOTO 500
 400 CONTINUE
500 X=(N-J-1)*0.01
 WRITE(IOUTB,12) YLIST(N-J), -X
 GOTO 300
 THIS PORTION OF CODE PRINTS OUT THE POSITIVE X-VALUES AND
 INTENSITY VALUES - STARTS FROM YLIST(1) AND GOES TO YLIST(NX1):
600 X=0.0
 WRITE(IOUTB,12) YLIST(1), X
 START AT LOWEST INDEX NUMBER OF ARRAY AND WORK UP TO HIGHEST.
 N=1
 J=0
 ADD J BECAUSE WE START WITH YIIST(1) AND PROCEED TO YLIST(NX1).
700 N=N+J
 J=0
 DO 800 I=1,15
```

```
 J=J+1
 DIFF=ABS(YLIST(N)-YLIST(N+I))
 IF((N+I).GE.NXI) GOTO 1000
 IF(DIFF.GE.0.001) GOTO 900
 800 CONTINUE
900 X=(N+J-1)*0.01
 WRITE(IOUTB,12) YIIST(N+J), X
 GOTO }70
1000 X=(NX1-1)*0.01
 WRITE(IOUTB,12) YLIST(NXI), X
 WRITE(IOUTB,*)'END OF DATA'
1100 ENDFILE 40
 RETURN
 1 FORMAT(1X//1X,'THE FOLLOWING DATA CORRESPONDS TO A ',A5/IX,
 A12,' 2.5 MICROMETERS IN WIDTH: '/)
 2 FORMAT(IX,'THE NUMBER OF DATA POINTS = ', I4/)
 3 FORMAT(IX,'THE MAXIMUM INTENSITY VALUE BEFORE NORMALIZATION =',
 * F7.4)
 4 FORMAT(1X,'THE MAXIMUM INTENSITY VALUE AFTER NORMALIZATION =',
 * F7.4)
 5 FORMAT(1X,'THE CORRESPONDING X-VALUE TO THESE MAXIMUM INTENSITIES
 *=',F6.2//)
 6 ~ F O R M A T (1 X , 5 H W I D T H , 6 H ~ W A V E , 4 H ~ O B J , 5 H ~ S S O , 5 H ~ S A O , 5 H ~ A B 2 , 5 H ~ A B 4 ,
 * 5H AP,6H TBO,6H PB,6H TTO,6H PT,6H SLIT)
 7 FORMAT(1X, 8(F5.2), 4(F6.2), F5.2///)
 8 FORMAT(1X,'LEFT-MOST RELATIVE INTENSITY VALUES CORRESPONDING TO
 * STEPS OF')
 9 FORMAT(1X,'X-VALUES 0.01 MICROMETERS FROM LEFT TO RIGHT')
 10 FORMAT(IX,'
 * -'/)
 11 FORMAT(1X,F6.2,2X,10F6.3)
 12 FORMAT(1X,F7.4,3X,F7.2)
 END
C
C**
 THIS SUBROUTINE COMPUTES THE IMAGE INTENSITY IN THE OBJECT PLANE
 BY AN INVERSE FOURIER TRANSFORM METHOD.
C
C
 SUBROUTINE IMAGE
C
C***
C
 COMMON WIDTH,WAVE,OBJ
 COMMON/MN/DUM1,DUM2,PER,NX
 COMMON/CROS/C(325),LJ,LJ1,C0
 COMMON/IM/YLIST(2000),NX1,YMAXBN,XMAX,DUM3
 COMMON/PAR/PI,TWOPI
```



```

 THE MRTHEMATICAL FORMULRTIONS RELATING TO THIS SUBROUTINE CAN
 BE FOUND IN EQUATIONS $14 AND #17 IN 'METHOD FOR THE CALCULATION
 OF PARTIALLY COHERENT IMAGERY', ERIC KINTNER, J. APPIED OPTICS,
 VOL.17, NO.17, PAGE 2747.

```

```
1081 C
1082 C
1083 C
1084 C
1085 C
1086 C
1087 C
1088 C
1089 C
1090
1 0 9 1
1092
1 0 9 3
1094
1095
1096
1097
1098
1 0 9 9
1100 C
1 1 0 1 ~ C
1102 C
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
 - TOTAL NUMBER OF CALCULATED IMAGE POINTS
 YMAXBN - MAXIMUM INTENSITY VALUE BEFORE NORMALIZATION
 XMAX - X-VALUE CORRESPONDING TO THE MAXIMUM INTENSITY VALUE
 X - TRANSVERSE DISTANCE ACROSS THE OBJECT (STARTING AT X=0)
 Y - INTENSITY VALUE CORRESPONDING TO EACH X-VALUE OF
 OBJECT
 YLIST(N) - ARRAY THAT CONTAINS EACH INTENSITY VALUE CORRESPONDINC
 TO ACCENDING VALUES OF X.
C
 X0=0.01
 NX1=NX+1
 YMBN=0.0
 DO 900 N=1, NX1
 X=(N-1)*X0
 NOTE THE USE OF THE IDENTITY:
 cosNX = 2* cos(X)* cos(N-1)*X - < Cos(N-2)*X
 COSN=COS (TWOPI *X/PER)
 COSN2=2.0*COSN
 CK1=0.0
 CK=0.0
 DO }800\textrm{J}=1,\textrm{LJ
 CK2=CK1
 CK1=CK
 CK=COSN2*CK1-CK2+2.0*C(LJ1-J)
 800 CONTINUE
 CK2=CK1
 CK1=CK
 CK=COSN2*CK1-CK2+CO
 Y=CK-COSN*CK1
 IF(Y .LE. YMBN) THEN
 GOTO 850
 ENDIF
 XM=X
 YMBN=Y
 850 YLIST(N)=Y
 900 CONTINUE
 XMAX=XM
 YMAXBN=YMBN
 RETURN
 END
(EOR)
```


## INPUT DATA

Line
No.

$$
\begin{aligned}
& 1 \text { '1D' } \\
& 23.00
\end{aligned}
$$

Notes:

1) phase angles are given in units of $\pi$
2) both defocus and spherical aberrations are given in "number of waves"
3) all distances are given in $\mu \mathrm{m}$
output
```
THE FOLLOWING DATA CORRESPONDS TO A SPACE
GREATER THAN 2.5 MICROMETERS IN WIDTH:
```

THE NUMBER OF DATA POINTS = 301
THE MAXIMUM INTENSITY VALUEBEFORE NORMALIZATION $=1.2948$
THE MAXIMUM INTENSITY VALUE AFTER NORMALIZATION $=1.2989$
THE CORRESPONDING X-VALUE TO THESE MAXIMUM INTENSITIES $=1.17$

WIDTH	WAVE OBJ	SSO	SAO	AB2	AB4	AP	TBO	PB	TTO	PT	SLIT	
3.00	.53	.85	.17	.00	.00	.00	.00	1.00	.00	1.00	1.00	.20

LEFT-MOST RELATIVE INTENSITY VALUES CORRESPONDING TO STEPS OF X-VALUES 0.01 MICROMETERS FROM LEFT TO RIGHT

.00	1.000	1.000	1.000	1.000	.999	.999	.998	.998	.997	.996	
.10	.996	.995	.994	.994	.993	.993	.992	.992	.991	.991	
.20	.991	.991	.991	.992	.992	.993	.994	.995	.997	.998	
.30	1.000	1.002	1.004	1.006	1.009	1.011	1.014	1.017	1.020	1.024	
.40	1.027	1.030	1.033	1.037	1.040	1.043	1.046	1.049	1.051	1.053	
.50	1.055	1.057	1.058	1.058	1.058	1.058	1.057	1.055	1.053	1.050	
.60	1.047	1.043	1.038	1.033	1.027	1.021	1.014	1.007	1.000	.992	
.70	.984	.976	.967	.959	.951	.943	.935	.928	.921	.914	
.80	.909	.903	.899	.896	.893	.892	.891	.892	.894	.897	
.90	.901	.907	.914	.923	.933	.944	.957	.971	.986	1.002	
1.00	1.020	1.039	1.058	1.078	1.099	1.120	1.141	1.162	1.182	1.202	
1.10	1.221	1.239	1.255	1.269	1.280	1.290	1.296	1.299	1.298	1.294	
1.20	1.286	1.274	1.258	1.237	1.212	1.183	1.149	1.112	1.070	1.025	
1.30	.977	.926	.872	.817	.759	.701	.643	.585	.528	.473	
1.40	.420	.370	.324	.281	.243	.210	.182	.161	.145	.136	
1.50	.132	.136	.146	.162	.184	.211	.245	.283	.326	.373	
1.60	.423	.476	.531	.588	.646	.705	.763	.820	.875	.929	
1.70	.980	1.028	1.073	1.114	1.152	1.185	1.213	1.238	1.258	1.274	
1.80	1.285	1.293	1.296	1.296	1.292	1.285	1.275	1.263	1.248	1.231	
1.90	1.213	1.194	1.173	1.152	1.131	1.109	1.088	1.067	1.047	1.027	
2.00	1.009	.991	.975	.961	.947	.935	.925	.916	.908	.902	
2.10	.897	.894	.892	.892	.892	.894	.897	.900	.905	.911	
2.20	.917	.924	.931	.939	.947	.955	.964	.972	.981	.989	
2.30	.998	1.005	1.013	1.020	1.027	1.033	1.039	1.043	1.048	1.051	
2.40	1.054	1.057	1.058	1.059	1.059	1.059	1.058	1.057	1.055	1.053	
2.50	1.050	1.047	1.044	1.040	1.036	1.033	1.029	1.025	1.021	1.017	
2.60	1.014	1.010	1.007	1.004	1.001	.999	.997	.995	.993	.991	
2.70	.990	.989	.988	.988	.988	.987	.987	.988	.988	.988	
2.80	.989	.990	.990	.991	.992	.993	.994	.994	.995	.996	
2.90	.907	.998	.998	.999	1.000	1.000	1.001	1.001	1.002	1.002	
3.00	1.002										

## 1. MAIN

2. Subroutine OBJECT - Calculates Fourier series coefficients for input line object.
3. Subroutine CROS1D - Calculates Fourier coefficients of the image for 1-D optics using transmission cross-coefficients.
4. Function $A(N)$ - Retrieves Fourier coefficients for the line object from calculated array assuming symmetric object.
5. Function CNORM1 - Normalizes transmission crosscoefficients for 1-D optics.
6. Function CNORM2 - Normalizes transmission crosscoefficients for 2-D optics.
7. Function CCF1D - Calculates transmission crosscoefficients for 1-D optics.
8. Function CCF2D - Calculates transmission crosscoefficients for 2-D optics.
9. Function AREA - Calculates the overlapping area of circular lens apertures; used by CCF2D.
10. Subroutine CSLIT - Multiplies image Fourier coefficients by scanning slit function.
11. Subroutine CROS2D - Calculates Fourier coefficents of the image for $2-D$ optics using transmission cross-coefficients.
12. Subroutine YNORM - Normalizes the image to 1.0 at either the center or the edge of the image, whichever has the higher intensity.
13. Subroutine RDATA - Reads input data and sets up parameters used in calculations.
14. Subroutine PRINT - Creates two print files, one for printing of a table of image data (optical intensity vs. distance) and the second for a plot file. The plot file reduces the number of data points by eliminating values for which there is less than a $0.1 \%$ change in intensiy.
15. Subroutine IMAGE - Calculates the image intensity vs. distance from the image Fourier coefficients.



NOTES:
PER = PERIOD
WT = NORMALIZED WIDTH
XIR = NORMALIZED FREQUENCY
NX = INCREMENT OF DISTANCE IN IMAGE
2. FLOW DIAGRAM OF SUBROUTINE 'OBJECT'

3. FLOW DIAGRAM OF SUBROUTINE 'CROSID'

4. FLOW DIAGRAM OF THE FUNCTION 'A(N)'


5. ELOW DIAGRAM OF THE FUNCTION 'CNORM1'

6. FLOW DIAGRAM OE FUNCTION 'CNORM2'

7. FLOW DIAGRAM OF EUNCTION CCE1D (XIR,N1,N2)



8. FLOW DIAGRAM OF THE FUNCTION 'CCF2D'







11. ELOW DIAGRAM FOR SUBROUTINE 'CROS2D'


12. FLOW DIAGRAM FOR THE SUBROUTINE 'YNORM'

13. FLOW DIAGRAM FOR THE SUBROUTINE 'RDATA'




15. FLOW DIAGRAM FOR SUBROUTINE 'IMAGE'




## Acknowledgments

Support for documentation and publication of this software was provided by VLSI Standards, Inc. under an NBS Research Associate Agreement. A PASCAL version of this software has also been developed. In addition, the assistance of Ruth N. Varner and Carmelo Montanez in converting this software for use on the CYBER 855 is gratefully acknowledged.
4. TITLE AND SUBTITLE

Narrow-Angle Laser Scanning Microscope System for Linewidth Measurement on Wafers
5. AUTHOR(S)
D. Nyyssonen
6. PERFORMING ORGANIZATION (If joint or other thon NBS, see instructions)
7. Contract Grant No.

NATIONAL BUREAU OF STANDARDS
U.S. DEPARTMENT OF COMMERCE GAITHERSBURG, MD 20899
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)
10. SUPPLEMENTARY NOTES
[- Document describes a computer program; SF-185, FIPS Software Summary, is attached.
11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes o significant bibliogrophy or literoture survey, mention it here)

The integrated-circuit industry in its push to finer and finer line geometries approaching submicrometer dimensions has created a need for ever more accurate and precise feature-size measurements to establish tighter control of fabrication processes. In conjunction with the NBS Semiconductor Linewidth Metrology Program, a unique narrow-angle laser measuremnt system was developed. This report describes the theory, optical design, and operation of this system and includes computer software useful for characterizing the pertinent optical parameters and images for patterned thin layers. For thick layers, the physics is more detail the reader is referred to several related reports listed in the references.
12. KEY WORDS (Six to twelve entries; olphovetical order; copitolize only proper nomes; and seporate key words by semicolons) coherence; critical dimensions; linewidth measurements; metrology; micrometrology; scannine microscopy
13. AVAILABILITY

EXX Unlimited

- For Official Distribution. Do No: Release to NTIS

O Order From Superintencent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

EXO Order From National Technical Information Service (NTIS), Springfield, VA. 22161

```
14. NO. OF PRINTED PAGES
```

110
15. Price
$\$ 19.95$


[^0]:    * Defined as that polarization component with its electric field parallel to the line being measured.

