

Integrating jQuery with the 3D
Descriptive Markup of X3DOM

Sandy Ressler

NISTIR 7827

NISTIR 7827

Integrating jQuery with the 3D
Descriptive Markup of X3DOM

Sandy Ressler
Applied and Computational Mathematics Division

Information Technology Laboratory

October, 2011

U.S. Department of Commerce
John E. Bryson, Secretary

National Institute of Standards and Technology

Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director

Integrating jQuery with the 3D Descriptive Markup of X3DOM

Sandy Ressler∗

National Institute of Standards and Technology

Abstract

This paper describes a number of techniques using jQuery to take
advantage of the 3D descriptive markup implemented by X3DOM
[Behr et al. 2009]. X3DOM is a project of the Web3D Consortium,
primarily being implemented by staff at Fraunhoffer IGD to provide
3D descriptive markup. Using this markup embeds 3D directly into
HTML such that a web browser can render 3D scenes without re-
sorting to plug-ins. Given 3D descriptive markup this paper demon-
strates a number of techniques that take advantage of having the 3D
geometry and scene graph represented directly in a web browser.
Placing a 3D scene graph into the browsers DOM (Document Ob-
ject Model) offers the opportunity to leverage frameworks such as
jQuery in powerful ways.

CR Categories: I.3.7 [Computer Graphics]: Web3D—X3D; I.3.6
[Methodology and Techniques]: Standards—Languages

Keywords: X3D, X3DOM, jQuery, javascript, DOM, HTML5

1 Background on X3D, X3DOM, jQuery,
HTML, the DOM and all those Acronyms

X3D, the ISO standard for representing 3D virtual environments
and is the successor to VRML (Virtual Reality Modeling Lan-
guage). X3DOM [Behr et al. 2009] is a project to take X3D, 3D ex-
pressed with HTML or XML, and place the X3D graphics directly
into the HTML document. The in-memory representation of the
HTML document is called the DOM (Document Object Model) and
is analogous to a typical scene-graph representation of 3D graphic
geometry. X3DOM merges the 3D scene-graph represented by
X3D with the DOM. OK, so what? Well given that there is a huge
and growing collection of infrastructure for dealing with the Web
and Web applications, one might attempt to take advantage of some
of that infrastructure. It should also be noted that another effort to-
wards defining 3D descriptive markup called XML3D [Sons et al.
2010] is also underway and there is no reason that the techniques
described in this paper shouldn’t work with it, we however did not
test this assumption due to time constraints.

jQuery [Reisig 2010] is a Javascript framework that is very pop-
ular and more importantly makes Javascript into a robust language
suitable for non-trivial applications. jQuerys power derives from its
ability to let you succinctly select portions of the DOM, and then
operate on them. Similarly we can use jQuery to select portions of
the DOM representing 3D objects and perform operations on them.
Related to jQuery is a project called jQuery UI (User Interface)
which is a collection of jQuery plugins that provides a collection
of robust widgets enabling the creation of highly interactive web
pages. Throughout the rest of this paper we will refer both to jQuery

∗e-mail: sressler@nist.gov

and jQuery UI as simply jQuery. We also demonstrate the integra-
tion of some of these widgets with X3DOM to illustrate additional
leveraging of the rich internet development infrastructure applied
to 3D environments expressed as 3D descriptive markup. Figure
1 illustrates an integrated 3D scene with jQuery buttons, sliders,
dialogs and an accordion interface.

2 Automatic Buttons

Let’s examine how to leverage jQuery’s button widget to automat-
ically create one button for each of the viewpoints in our scene. In
the AnthroGloss [Ressler 2011] X3DOM world, there is a collec-
tion of 74 body landmarks and a few other general overview view-
points. We want to create a button for each of the viewpoint ele-
ments, such that clicking on the button moves us to the new view-
point. The X3DOM description of a viewpoint looks like:

<v iewpo in t o r i e n t a t i o n = ’x , y , z ’ p o s i t i o n = ’x , y , z’>
</ v iewpoint>

The usual mantra for jQuery coding is to select something then do
something. The jQuery selectors are a straightforward derivation of
CSS (Cascading Style Sheet) selectors. To select all of the view-
point elements in the document we simply code:

$ (’ v iewpoint ’)

One technique to dynamically create a collection of buttons is to
clone them from a single button. [Griefer 2009]

We iterate over all of the viewpoint elements, and create a new but-
ton via the .clone() function and place that new button in the ap-
propriate place in the DOM. (See cloneViewpointButtons code in
Appendix) The result is a collection of buttons, one for each of the
viewpoints that enables the user to navigate the scene via buttons.
In this case the buttons also sit inside of an accordion frame, utiliz-
ing the accordion UI elements provided by jQuery. The buttons in
Figure 1 were generated automatically.

3 Sliding through the Viewpoints

Another useful UI widget is the slider. It is typically a horizontal
widget with a control handle that enables the user to smoothly select
from a minimum value to a maximum. Lets examine how we can
use the slider to select from the first viewpoint to the last and update
the display.

The slider widget itself must appear somewhere in the DOM so we
must make an entry in the HTML something like:

<div id = ’ v i e w p o i n t S l i d e r ’></div>

The details of setting up a slider can be found at
http://jqueryui.com/demos/slider/. The only X3DOM specific
aspect of it that you must set is the ’set bind’ attribute of the
viewpoint element. Set it to true for the scene to actually move
to the viewpoint. We again take advantage of jQuerys selection
mechanism to select all the viewpoints, via the dollar viewpoint
code and iterate through all the viewpoints, this time via the slider
widget (see slider code in Appendix) rather then making individual
buttons as described earlier.

Figure 1: Web page with X3DOM including jQuery UI elements

Viewpoints are a type of element in X3DOM that are ’bindable’
and only one viewpoint can be active at any one point in time. This
makes perfect sense as the viewpoint represents the virtual camera,
the point of view of the user and there can only be one active at
any onc instant in time. To make a viewpoint active set its set bind
attribute to true, which also places it on top of the Viewpoint stack.
This is however handled automatically by the X3DOM software, as
a developer you simply need to set the set bind attribute to TRUE.

4 Operating on Geometry

Just as we can operate on viewpoints, a sort of environmental char-
acteristic of an X3D scene, we can operate on the geometric ele-
ments as well. Again using the AnthroGloss world as an example,
lets imagine that we want to modify the size of the spheres for the
body landmarks. If we change the radius or anything else that is
part of the <sphere >element we are unfortunately out of luck. In
its current version the X3DOM software creates the scene graph
and the actual structure and attributes of the geometry is fixed un-
til another reload of the page. However we are not totally out of
luck as the software does let you change attributes of a surrounding
’transform’ or a sibling ’material’ node which effectively lets you
modify quite a bit in the world.

Imagine again that we want to create a set of new buttons, this time
however we want one for each of the <sphere >elements in the
scene. Not surprisingly this functionality can be achieved in exactly
the same way that we created viewpoint buttons. Simply select all
the sphere elements then iterate through and clone a set of sphere
buttons. Figure 2 below illustrates the result of a global operation
to modify the scale of all spheres via clicking on a single button
which executed the code:

$ (’ # sphScaleUp ’) . c l i c k (f u n c t i o n () {
$ (’ sphere ’) . parent () . parent () . a t t r (’ s c a l e ’ , ’ 1 0 10 1 0 ’) ;

}) ;

This code says that when we click on the element with an id sph-
ScaleUp (which happens to be a button) execute the code defined in
the click function. The click function says, for each sphere element
$(sphere), travel up two DOM levels (the parent().parent() portion
and change the scale attribute to 10, 10, 10. This code depends on
the spheres being structured in a specific way (see jQuery plugin
section description for details).

5 Making Geometry Interactive

We can introduce interactivity into the scene using two fundamen-
tally different methods. First we can associate HTML onclick
events into the X3D scene graph. Second we can utilize the na-
tive X3D event model to control animations and other behaviors of
the 3D scene.

5.1 Using the HTML onclick Event

Web browsers are really event driven systems. Code such as
Javascript contains an event model in which different user, or com-
putational actions result in an event. When the event fires we exe-
cute a callback function to respond to the event. X3D also contains
an event model and the integration of the X3D events with HTML
events is still a work in progress for X3DOM, however we can be-
gin to use both quite effectively. First let’s examine the use of the
onclick event, which is fired when a mouse clicks on something of
interest. In a typical HTML button we would see code such as:

Figure 2: Globally Modifying Geometry (spheres)

<button type =” button”>Cl ick Me!</ button>

this will render as a button which does nothing when clicked. To
cause it to take an action we could do something like:

<button type = b u t t o n o n c l i c k = a l e r t (o u c h !) >Cl ick Me</button>

which would cause an alert dialog to appear with the word ouch!
in the dialog. Again given our descriptive markup we could create
markup such as:

<sphere o n c l i c k = ’ you c l i c k e d a sphere ’></sphere>

Associating popup dialogs with complicated scenes is useful for
interaction. This popup dialog is illustrated in Figure 1, informing
the user about name of the landmark selected.

In addition we can use jQuery again to select all of the sphere ele-
ments and define a behavior for clicking all of the spheres. In this
case we modify the message of the dialog based on other (view-
point) descriptions in the attributes of the 3D descriptive markup as
follows:

o n c l i c k =
”$ (’ # d ia log ’) . html (’& l t ; p> ; You j u s t s e l e c t e d the ’ +
$ (’ # vp” + x + ” ’) . a t t r (’ d e s c r i p t i o n ’) +
’ landmark . &l t ; / p> ; ’) ;
$ (’ # d ia log ’) . d i a l o g (’ open ’) ;
$ (’ # d ia log ’) . d i a l o g ({ t i t l e :
$ (t h i s) . parent () . parent () . a t t r (’ id ’) }) ; ”

5.2 Using X3D Events

X3D can represent not just geometry but can represent interactive
elements and animation. It contains its own event model and the
ability to specify interaction as well as the timing of events in a
scene. In fact an active area of development for the X3DOM devel-
opers is exactly how to map and integrate the two event models, a
still to be completed task. However we can use an event in the DOM
to trigger an event in X3D. For example we can click on a button

or a 3D object, use the onclick event to trigger an X3D TimeSensor
which will send events to geometry via the X3D ROUTE mecha-
nism.

If we define an onclick of a <sphere >to be:

o n c l i c k = $ (# c l o c k 5) . a t t r (c y c l e I n t e r v a l , 2 . 0)

When the sphere is clicked, the cycleInterval attribute of the ele-
ment with the id clock5 will be fired. This assumes of course that
clock5 is the id of a TimeSensor node. We then link up the chang-
ing values of the TimeSensor (via the fraction changed attribute)
via two ROUTES to a ColorInterpolator in order to create a color
cycling sphere. Simply put, you click the sphere and it starts cycling
through colors.

Again taking advantage of jQuery we now have a method to easily
duplicate the functionality of a color cycling sphere. We clone the
elements of a ColorInterpolater the same way we cloned buttons
for viewpoints and can have jQuery effectively create a great many
TimeSensors and ColorInterpolators by executing a javascript func-
tion rather then us explicitly authoring X3D. It is a technique much
more efficient and less prone to error. We created a template for the
color cycling code that is as follows:

<group id =” co lorIn terpTempla te”>
<C o l o r I n t e r p o l a t o r id = ’ colorTemplate ’

keyValue = ’1 0 0 , 0 1 0 , 0 0 1 , 1 0 0 ’
key = ’0 .0 0 .333 0 .666 1.0 ’/ >

<TimeSensor c l a s s = ’ timer ’ id = ’ clockTemplate ’
c y c l e I n t e r v a l = ’0 ’ loop = ’ true ’/>

<ROUTE id =” clockTemplateR1 ” fromNode = ’ clockTemplate ’
fromFie ld = ’ f r a c t i o n c h a n g e d ’ toNode = ’ colorTemplate ’
t o F i e l d = ’ s e t f r a c t i o n ’/>

<ROUTE id =” colorTemplateR2 ” fromNode = ’ colorTemplate ’
fromFie ld = ’ value changed ’ toNode = ’ matTemplate ’
t o F i e l d = ’ d i f f u s e C o l o r ’/>

</group>

Next we create a javascript function which operates on all spheres
since they were all made part of the class ball.

f u n c t i o n c l o n e C o l o r I n t e r p () {
/ / f o r each transform of the c l a s s b a l l
/ / c r e a t e new c o l o r i n t e r p s and p l a c e in group
/ / as c h i l d o f transform
$ (” . b a l l ”) . each (f u n c t i o n (index) {

/ / c l o n e the group
newElem = $ (’ # co lorInterpTemplate ’) . c l o n e ()

. a t t r (’ id ’ , ’ c o l o r I n t e r p ’+ index) ;
$ (newElem) . c h i l d r e n (” c o l o r i n t e r p o l a t o r ”) .

. a t t r (’ id ’ , ’ co lor ’+ index) ;
$ (newElem) . c h i l d r e n (” t i m e s e n s o r ”)

. a t t r (’ id ’ , ’ c lock ’+ index) ;
$ (newElem) . c h i l d r e n (”ROUTE: f i r s t ”)

. a t t r (’ id ’ , ’ clockR1 ’+ index) ;
$ (newElem) . c h i l d r e n (”ROUTE: f i r s t ”)

. a t t r (’ fromNode ’ , ’ c lock ’+ index) ;
$ (newElem) . c h i l d r e n (”ROUTE: f i r s t ”)

. a t t r (’ toNode ’ , ’ co lor ’+ index) ;
$ (newElem) . c h i l d r e n (”ROUTE: eq (1) ”)

. a t t r (’ id ’ , ’ clockR2 ’+ index) ;
$ (newElem) . c h i l d r e n (”ROUTE: eq (1) ”)

. a t t r (’ fromNode ’ , ’ co lor ’+ index) ;
$ (newElem) . c h i l d r e n (”ROUTE: eq (1) ”)

. a t t r (’ toNode ’ , ’ mat ’+ index) ;
$ (t h i s) . a f t e r (newElem) ; / / p l a c e the new group
}) ;

};

6 Developing a jQuery Plugin to Modify Ge-
ometry and Interaction

Last, but not least, let’s conclude our jQuery exploration by creating
a jQuery plugin that lets the user perform more powerful operations
on the X3D geometry. jQuery plugins are a technique to extend the
capabilities of jQuery in a seamless manner. It would be useful
to create a plugin that enables us to turn small pieces of geometry
into interactive ’buttons’, and modify some of the geometric char-
acteristics such as position or color. We can of course simply edit
the X3D description itself adding ’onclick’ and ’diffuseColor’ in-
formation as follows:

<transform id = ’ tr0 ’ c l a s s =” b a l l ”
t r a n s l a t i o n = ’5 0 0 ’ s c a l e = 5 1 5
o n c l i c k = a l e r t (h e y you h i t me!) >

<shape>
<appearance>
<m a t e r i a l id = ’mat0 ’ d i f f u s e C o l o r = ’0 .9 0 0.4 ’>
</ mater ia l>
</appearance>

<sphere rad ius = ’0 .26 ’ ></sphere>
</shape>

</ transform>

The result is perfectly good X3D code however editing a large
quantity of geometry is not a pleasant task, and is prone to error.
A plugin allows us to modify many pieces of geometry simultane-
ously, is easier to maintain, and is clearly more useful. The plu-
gin we developed, X3DOMgeomButton, in fact lets us create these
geometric buttons along with modifications to a few geometric pa-
rameters. An example usage of the plugin is as follows:

/ / a s s o c i a t e s an o n c l i c k event to the
/ / s e l e c t e d element (in t h i s case a s i n g l e id)
$ (# t r 0) . X3DOMgeomButton({ o n c l i c k :

a l e r t (Ouch you h i t me!) }) ;
/ / a s s o c i a t e s an o n c l i c k and d i f f u s e
/ / c o l o r with a l l i t ems of the c l a s s b a l l
$ (. b a l l) . X3DOMgeomButton({ o n c l i c k :
a l e r t (Ouch you h i t me!) ,

d i f f u s e C o l o r : 1 0 0 })

The code for the plugin is as follows:

/ / X3DOMgeomButton p lug in
(f u n c t i o n ($) {

$. fn . X3DOMgeomButton = f u n c t i o n (o p t i o n s) {
/ / Extend our d e f a u l t o p t i o n s with t h o s e provided .
var opt s =

$. extend ({} , $. fn . X3DOMgeomButton . d e f a u l t s , o p t i o n s) ;
/ / i t e r a t e each matched element
re turn t h i s . each (f u n c t i o n () {
var base = $ (t h i s) ;
/ / var a t t r i b u t e = base . a t t r (op t s) ;
var sca leOpt = opt s . s c a l e ;
var onc l i ckOpt = opt s . o n c l i c k ;
var d i f fuseCo lorOpt = opt s . d i f f u s e C o l o r ;
var t r a n s l a t i o n O p t = opt s . t r a n s l a t i o n ;

i f (sca leOpt) base . a t t r (’ s c a l e ’ , s ca leOpt) ;
i f (onc l i ckOpt) base . a t t r (’ o n c l i c k ’ , onc l i ckOpt) ;
i f (t r a n s l a t i o n O p t)

base . a t t r (’ t r a n s l a t i o n ’ , t r a n s l a t i o n O p t) ;
/ / base i s the transform then −> shape −> app −> mat
i f (d i f fuseCo lorOpt) base

. c h i l d r e n () . c h i l d r e n () . c h i l d r e n ()

. a t t r (’ d i f f u s e C o l o r ’ , d i f fuseCo lorOpt) ;
}) ;

};
$. fn . X3DOMgeomButton . d e f a u l t s = {

s c a l e : ’10 10 10 ’ ,

o n c l i c k : ’ a l e r t (” I am h i t ”) ; ’ ,
d i f f u s e C o l o r : ’0 1 0 ’

};
}) (jQuery) ;

We can use the selection methods of jQuery to carefully and ex-
plicitly add functionality to the geometry of a scene, by using
jQuery plugins designed to operate on 3D descriptive markup.
X3DOMgeomButton is a toy example but demonstrates yet another
advantage of using descriptive 3D markup. See Appendix for full
listing of X3DOMgeomButton code.

7 Summary and Conclusions

In this paper we demonstrate a number of techniques to take de-
scriptive 3D markup, instantiated via the X3DOM software and
illustrate how this markup can be manipulated in powerful ways
using the jQuery Javascript framework. User interface elements
such as buttons can be automatically created by associating them
with selected element types. We made buttons for each view-
point in a scene as well as buttons for each sphere in a scene.
In addition we demonstrate how to link up the interactive capa-
bilities of modern HTML widgets via jQuery to the 3D geome-
try of a scene. Finally a jQuery plugin was developeded to illus-
trate how to seamlessly extend jQuery for operations on the X3D
scene. Note that full listings of the code can be found online at
http://math.nist.gov/ SRessler/x3dom/, including demonstrations of
the X3DOM worlds and plugin’s discussed.

3D descriptive markup is not yet another 3D file format. It lever-
ages the infrastructure of the web in such as way as to finally offer
the hope of ubiquitous portable interoperable 3D. Recent develop-
ments, in particular WebGL based browsers, that can render 3D
scenes, taking advantage of powerful GPU hardware coupled with
a standard format such as X3D is a realistic set of technologies to
bring 3D to everyone.

DISCLAIMER: Please note that mention of any commercial prod-
ucts, companies and technologies does not constitute an endorse-
ment by NIST.

References

BEHR, J., ESCHLER, P., JUNG, Y., AND ZOLLNER, M. 2009.
X3dom: a dom-based html5/x3d integration model. In Web3D
2009, Fraunhoffer, 127–135.

GRIEFER, C. 2009. jquery dynamically adding form elements.
http://charlie.griefer.com/blog/index.cfm/2009/9/17/jQuery–
Dynamically-Adding-Form-Elements.

REISIG, J. 2010. The jquery project. http://jquery.org.

RESSLER, S. 2011. Anthrogloss human body land-
mark reference (x3dom with jquery version) v2.
http://math.nist.gov/ SRessler/x3dom/mangloss2.xhtml.

SONS, K., KLEIN, F., RUBINSTEIN, D., BYELOZYOROV, S., AND
SLUSALLEK, P. 2010. Xml3d: interactive 3d graphics for the
web. In Web3D ’10: Proceedings of the 15th International Con-
ference on Web 3D Technology, ACM, New York, NY, USA,
DFKI and Sarrland University, 175–184.

