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Trust-Based Multi-Agent Filtering for Increased Smart Grid Security

Ion Matei John S. Baras Vijay Srinivasan

Abstract—We address the problem of state estimation of the
power system for the Smart Grid. We assume that the monitoring
of the electrical grid is done by a network of agents with
both computing and communication capabilities. We propose
a security mechanism aimed at protecting the state estimation
process against false data injections originating from faulty
equipments or cyber-attacks. Our approach is based on a multi-
agent filtering scheme, where in addition to taking measurements,
the agents are also computing local estimates based on theirown
measurements and on the estimates of the neighboring agents.
We combine the multi-agent filtering scheme with atrust-based
mechanism under which each agent associates a trust metric to
each of its neighbors. These trust metrics are taken into account
in the filtering scheme such that information transmitted from
agents with low trust is disregarded. In addition, a mechanism
for the trust metric update is also introduced, which ensures that
agents that diverge considerably from their expected behavior
have their trust values lowered.

I. Introduction

Smart Grid refers to the modernization of the electric system
through the integration of new information-age technologies
and new strategic public policies. It is based on adding and
integrating new digital computing and communication tech-
nologies and services with the power-delivery infrastructure.
Bidirectional flows of energy and two-way communication
and control capabilities will enable new functionalities and
applications that go well beyond “smart” meters for homes
and businesses. Some of the characteristics of the Smart Grid
include an increased use of digital information and controls
technology to improve reliability, security, and efficiency of
the electric grid, dynamic optimization of grid operationsand
resources, with full cyber security [2]. It is widely recognized
that one of the most challenging task in implementing the
Smart Grid is putting in place security policies that address
security threats to the infrastructure. The main goal of a cyber-
security strategy is the prevention of damages to, unauthorized
use of, exploitation of, and, if needed, the restoration of elec-
tronic information and communication systems and services
to ensure confidentiality, integrity and availability [3].

The part of the Smart Grid infrastructure used to control the
electricity generation and transmission is represented bythe
Supervisory Control and Data Acquisition (SCADA) systems.
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A SCADA system receives measurements of the state of the
power grid and computes an estimate on the state of the power
grid on which the control strategy is based. Power blackout
events due to the failure of the SCADA systems to recognize
load and stability restrictions, human errors, faults, etc. suggest
the need for improved system-wide monitoring, alarms and
power system state estimation programs [10]. As emphasized
in [1], the SCADA system state of the art architecture is
vulnerable to cyber and physical attacks such as sabotage by
disgruntled insiders, false data injection from faulty equipment
or from cyber attacks.

In this paper we focus on thesecurity of the state estimation
of the power system. We propose a strategy aimed at im-
proving the security of the SCADA systems, by implementing
algorithmic policies aimed at protecting the estimation process
against false data injection generated by faulty equipmentor
cyber attacks. Our approach is based on amulti-agent filtering
scheme, where intelligent agents, geographically distributed in
the power grid, receive (local) measurements on the state of
the power grid and compute local estimates based on their own
measurements and on the estimates of the neighboring agents
as well. We combine the multi-agent filtering scheme with a
trust-based mechanismunder which each agent associates a
trust metric to each of its neighbors. These trust metrics are
taken into account in the filtering scheme such that information
transmitted from agents with low trust is disregarded. In
addition, a mechanism for the trust metric update is introduced,
which is based on the long-term behavior characteristics ofthe
agents. Other approaches for dealing with false data injections
on SCADA systems can be found in [6], for example.

II. Problem formulation

State estimation of power systems, using real-time measure-
ments of active and reactive power flows in the network, is
used to build the model for the observable part of the power
grid. It was introduced to help the system operators having
a good image on the state of the power system in order to
increase the ability to tackle contingency conditions. Rather
than centralizing the measurements to the SCADA systems
for state estimate computations, we propose a strategy to
decentralize the estimation process, under which a network
of intelligent agents computes local estimates based on their
measurements and the estimates computed by other agents.

Thanks to their simplicity, the most common models used
to represent the dynamics of the power grid are linear [9],
[11], [22]. Similarly, throughout this paper we consider the
following stochastic linear equation as an approximate model
for the power grid dynamics

x(k+1)= A(k)x(k)+w(k), (1)



wherek denotes the discrete time,x(k) ∈Rn is the state vector,
A(k) is the matrix connecting the current state with the one at
the next time instant, andw(k) ∈Rn is the state noise, assumed
Gaussian with zero mean and covariance matrixQ. The state
variables usually includenodal voltages(voltage magnitudes,
voltage angles),transformer ratios, andcomplex power flows
(active and reactive power flows) [20]. The initial statex0 has
a Gaussian distribution, with meanµ0 and covariance matrix
P0. The parameters of the model,A(k) and Q, are assumed
to be determined a priori through a parameter identification
process [9]. Usually, the matrixA(k) is assumed slow time-
varying; and, for simplicity in this paper we assumeA(k) to
be constant, i.e.,A(k) = A for all k.

In the context of this paper an agent is an intelligent
device with computation and communication capabilities; it
can receive measurements on the state of the power grid and it
is able to compute state estimates. A candidate for playing the
role of an agent is the Phasor Data Concentrator (PDC), which
collects the measurements from a set of GPS synchronized
Phasor Measurement Units (PMUs). Their ability to measure
positive sequence voltages at network busses and positive
sequence currents in transmission lines and transformers led to
an improvement of the state estimation capabilities [19]. The
estimation setup considered in this paper is somewhat similar
to the two-level estimator framework proposed in [25], where
the bus system is split into different areas where SCADA-
like systems compute separately estimates. These estimates
are centralized and combined to obtain an overall estimate of
the entire power system. Unlike the aforementioned approach,
we do not centralize the estimates computed by different
areas, but use local collaboration to obtain an overall estimate
of the power grid. We assume that the agents (PDCs) can
communicate with each other and the SCADA system, thereby
forming a communication network. We denote by

Ni = { j such thati communicates withj}

the neighborhood of agenti, i.e., all agents it is capable to
communicate with. We assume linear sensing models for the
agents, given by

yi(k) =Ci x(k)+vi(k), (2)

where yi(k) ∈ Rpi is the observation of the statex(k) made
by the agenti and vi(k) ∈ Rpi is the measurement noise,
assumed Gaussian with zero mean and covariance matrixRi .
The measurements that are normally included in practical state
estimators are voltage magnitudes and angle differences, active
and reactive powers, current magnitude flows, magnitude of
turn ratios, phase shift angles of transformers, and activeand
reactive power flows [20]. The above model is usually obtained
as a linearization of a nonlinear sensing model, where the
matrixCi is the Hessian of a nonlinear functionci(x) computed
at some nominal point [11], relating the measurements to the
states.

Remark 2.1:We would like to point out that the entries of
matrix Ci reflect only components from the state vectorx(k)
related to the bus(es) the agenti monitors. This implies that

the agenti has only a local view on the state of the network,
but through collaboration with other agents, this view can be
potentially enlarged.

We denote by ˆxi(k) and by ei(k) , x(k) − x̂i(k) the local
estimate and the estimation error computed by agenti, re-
spectively. Each agenti associates to each of its neighbors a
trust metric denoted byTi j , for j ∈ Ni . Intuitively, the trust
metrics designate the weight agenti gives to the information
received from its neighbors.

Problem: We assume that some agents can become faulty or
under the control of non-authorized entities that can causethe
respective agents to spread false data on the power grid to the
other agents. This false information can affect the computation
of control strategies for the power generation and transmission
needed to cope with changes in the state of the power grid.
Our goal is to propose a strategy aimed at limiting the effect
of false data injection on the state estimate computation, based
on the notion oftrust.

III. Trust Model

Trust appears in various ways and meanings. We can refer
to the reduced trustworthiness of a sensor, meaning that the
sensor may have been compromised, or we can refer to the
trustworthiness of the data transmitted by a sensor. Similarly,
we can refer to a compromised link due to jamming, which
reduces the trustworthiness of the link. Thus trust in sensor
networks, and more generally in hybrid networks consisting
of collaborating humans and automated agents (sensors, actu-
ators, computers) is a composite entity, represented by several
metrics and/or parameters.

There are various ways to represent trust weights numeri-
cally. In some trust schemes, continuous or discrete numerical
values are assigned to measure the level of trustworthiness. For
example, in [18], an entity’s opinion about the trustworthiness
of a certificate is described by a continuous value in [0, 1]. In
[24], a 2-tuple in [0,1]2 describes the trust opinion. In [12],
the metric is a triplet in [0,1]3, where the elements in the
triplet represent belief, disbelief, and uncertainty, respectively
(we denoted by [0,1]n the n times Cartesian product of the
set [0,1]). Trust can also be interpreted as probability. In [13],
subjective probability is employed, while objective probability
is used in [14]. As a concept of uncertainty, entropy in
information theory is a natural measurement of trust as well
[23]. In the extreme case, trust can be binary: trust (trust
weight=1) or distrust (trust weight=0) because either there is
100% security in the network or the approach to evaluate trust
is very coarse. There is no absolutely right or wrong way to
represent these trust weights. All the aforementioned numeri-
cal representations are suitable for different environments and
management requirements.

In this paper, we assume each agenti assigns a trust metric
to each of its neighborsj, denoted byTi j , which refers to
the reliability of data received from agentj. We represent
trust values as non-negative real numbers taking values in
the interval [0, Tmax], for some positive realTmax. In the
following, these trust values will be used in conjunction with



a multi-agent estimation algorithm to limit the negative effect
on the state estimation process caused by false data injection.

IV. Trust-based Multi Agent State Estimation

In this section we present the trust-based multi-agent fil-
tering scheme aimed at improving the security of the state
estimation process in the power grid. The section is divided
into three parts. First, we present a multi-agent filtering
scheme. Second, we describe the update mechanism for the
trust values, based on the behavior of the agents. Third, we
combine the multi-agent filtering scheme with the trust update
mechanism, which ensures that agents with low trust values
have limited influence on the estimation process.

A. Distributed Estimation

A fundamental problem in sensor networks is developing
multi-agent (distributed) algorithms for the state estimation
of a process of interest. Generically, a process is observed
by a group of sensors organized in a network. The goal
of each sensor is to compute accurate state estimates. The
distributed filtering (estimation) problem has received a lot of
attention during the past years, starting with the contributions
made by Borkar and Varaiya [7]. The main idea behind
distributed estimation, found in most of the papers addressing
this problem, consists of using a standard Kalman filter locally,
together with a consensus step in order to ensure that the local
estimates agree [8], [16], [21].

In what follows, we use a simplified version of the algorithm
proposed in [21], which is described next. For simplicity

Algorithm 1 : Distributed Filtering
Input : µ0, P0
Initialization: x̂i = µ0, Pi = P01
while new data exists2
Compute the filtering gainLi3
Compute the intermediate estimate of the state:4

ϕi = x̂i + Li(yi −Ci x̂i)

Estimate the state after a Consensus step:5

ξi =
∑

j∈Ni
wi jϕ j

Update the state of the local filter:6

x̂i = Aξi

we omitted the time index in Algorithm 1. There are several
approaches for computing the filtering gains. In [21], the
authors propose the filtering gains to be computed using the
local Kalman filter equations. Other ideas include the off-line
computation of the (stationary) filtering gains using Linear
Matrix Inequalities techniques [16], which takes into account
the topology of the network. In line 5, the local informationis
linearly combined with information received from neighbors.
Unlike the algorithm introduced in [21], we assume that only
local estimates are exchanged but not output measurements.
We will refer to line 5 as either theinformation fusion stepor

theconsensus step. Further on in the paper, we will focus our
analysis on the values of the weightswi j , which are positive
values summing up to one. Through these weights each agent
controls how the information received from neighbors is used.

Remark 4.1:It is reasonable to assume that the agents
cannot observe the entire state of the grid. However, through
collaboration (line 5 of Algorithm 1), provided that the power
grid is globally observable, the agents will potentially have a
global view on the state of the power grid.

B. Trust Update Algorithm

Due to the dynamic nature of agents (some of them may
become faulty, receive measurements from faulty equipment,
or may come under the control of unauthorized entities),
agents need to implement a mechanism for updating the trust
valuesTi j . Examples of trust update mechanisms are presented
in [15], in the context of reputation systems where the update
is based on the notion ofbelief divergenceand in [17] in the
context of distributed estimation.

In this paper we pursue a different avenue of investigation.
We assume that the agents “learn” the behavior patterns of
their neighbors, and when they determine significant changes
in these patterns, they adjust the trust values accordingly, i.e.,
by decreasing them. We assume that the learning period takes
place during the initial operation of the system, when it is
reasonable to assume that the agents function properly, i.e.,
the information provided by them is correct.

As mentioned earlier, agenti receives from its neighbors
their local estimates ˆx j (k), for j ∈ Ni . Let us denote byei j (k)
the difference between the estimates of agentsi and j, i.e.

ei j (k) = x̂i(k)− x̂ j(k).

We note thatei j (k) can be equivalently written as

ei j (k) = ej(k)−ei(k),

where ei(k) = x(k)− x̂i(k) is the estimation error at agenti.
If we define the vectore(k) = (ei(k)), then it can be easily
shown that this vector has a multivariate normal distribution,
for all k, sincee(k) is updated according to a linear dynamics
with initial state normally distributed. Consequently, itcan
be shown that the vectorsei j (k) have multivariate normal
distributions as well. From the equations of the distributed
estimation algorithm we get thatei(k) have zero means, and
thereforeei j (k) have zero means as well, for allk ≥ 0. Let
us denote byPi j (k) the covariance matrices of the vectors
ei j (k). Unfortunately, due to cross-correlations, computing
these matrices exactly is intractable for large values ofk (in
fact the complexity increases exponentially with the time).

We consider thatthe statisticsof the vectorsei j (k) determine
the behavior patternsof the agenti’s neighbors. We can
define confidence regions forei j (k) based on thechi-square
distribution. It is well known that for a multivariate normally
distributed vectorX ∼ N(µ,Σ) in Rn, the region

{x | (x−µ)′Σ−1(x−µ) ≤ χ2(α)}, (3)



contains (1− α)100% of the probability in the distribution,
whereχ2(α) is the chi-square distribution withn degrees of
freedom, computed atα. By varyingα we can define different
confidence regions.

The update mechanism of the trust values is based on the
following idea. Every timeei j (k) is outside the confidence
region determined by parameterα, the trust valueTi j is
decreased up to a zero value, while every timeei j (k) is inside
the confidence region, the trust valueTi j is increased up to a
maximum valueTmax.

Learning - As mentioned earlier, the behavior patterns are
determined by the covariance matricesPi j (k) whose exact
computation is unfortunately not tractable for large values of k
(computingPi j (k) is in the same spirit as computing the gains
in a decentralized control problem; problem which is still open
for decades [5]). Therefore, the agents need to approximate
these matrices. Denoting bŷPi j (k) the estimate ofPi j (k), we
propose the use of a time averaging filter given by

P̂i j (k+1)=
1

k+1
ei j (k)ei j (k)′+

k
k+1

P̂i j (k), (4)

to approximate the covariances matrices. The intuition behind
this approach is the following. Under the assumption that
the parameters of the stochastic process are time-invariant
(and under the assumption that the estimation errors are mean
square stable), the distributions of the estimation errorsei (k)
will converge to some stationary distributions. Consequently,
the same will happen for the random vectorsei j (k). The
covariance matrix of the stationary distribution ofei j (k) can
be approximated by taking the average over a sufficiently
large numbers of samples. Writing the averaging operation
iteratively, it results in a filter as in (4). Let̄Pi j be the approx-
imation of the covariance matrix of the stationary distribution
of the vectorei j (k), given by

P̄i j = P̂i j (K),

where K is sufficiently large and represents the learning
horizon. Algorithm 2 summarizes the trust update mechanism
implemented by agenti (for brevity, the time index is ignored).

According to the aforementioned algorithm, every time the
error ei j (k) lies in the confidence region{x | x′P̄−1

i j x≤ χ2(α)},
the trust valueTi j is increased byδ1 (a positive real value)
up to Tmax, while every time the trust values lie outside the
aforementioned confidence region, they are decreased byδ2
(assumed positive). We note that even a correctly functioning
agent j can have its trust value decreased. In the long run,
the trust valueTi j is decreased approximatelyαχ2(α)100% of
the total time. A good idea is to choose the parametersδ1
and δ2 such that they reflect how close or far the errors are
from the regions of the type (3). For example, ife′i j P̄

−1
i j ei j

is large compared toχ2(α), then δ2 should be chosen large
as well, such that the corresponding trust value is decreased
rapidly. We chose an incremental procedure for updating the
trust values, through the parametersδ1 and δ2. We can also
envisage a model where the increase/decrese rate of the trust

values is exponential. In such a case, we would have

Ti j =











min{δ1Ti j ,Tmax} e′i j P̄
−1
i j ei j ≤ χ

2(α)
δ2Ti j e′i j P̄

−1
i j ei j > χ

2(α)

whereδ1 > 1 and 0< δ2 < 1.

Algorithm 2 : Trust update

Input : P̄i j , Tmax, δ1, δ2, α
while new data exists1
Compute the errors between estimates:2

ei j = x̂i − x̂ j

Update the trust values:3

Ti j =















min{Ti j + δ1,Tmax} e′i j P̄
−1
i j ei j ≤ χ

2(α)

max{Ti j − δ2,0} e′i j P̄
−1
i j ei j > χ

2(α)

end while4

C. Trust-based Distributed Estimation

In this subsection we introduce an estimation algorithm
where the distributed estimation scheme presented in Algo-
rithm 1 is combined with the trust update mechanism presented
in Algorithm 2.

We note that the weightswi j control how much the neigh-
bors influence the update of the estimates ˆxi (k). A small value
of the weightwi j means that agentj will have little influence
on the agenti. Therefore, it makes sense to choose the weights
wi j to be proportional to the trust valuesTi j . We propose to
choose the weightswi j as weighted trust values, such that they
sum up to one, i.e.,

wi j =
Ti j

∑

j∈Ni
Ti j
.

This way the weights decrease with the trust values, such that
agents with low reliability will have little influence in the
computation of the local estimates. Algorithm 3 presents the
trust-based distributed estimation algorithm. We would like to
emphasize that Algorithm 3 acts on two levels. On one level
it extends the scope of the agents’ view with respect to the
grid by making the estimation process distributed. This way,
through collaboration, the agents can potentially have a more
accurate image on the global state of the grid, which otherwise
would be more difficult. On another level, the agents limit the
effect of false data injection by updating the agents’ trust in
their neighbors, according to their recorded behavior. Thus,
the estimation process becomes more robust.

V. Numerical example

We consider an example of a power grid with three gen-
erators and nine buses [4], shown in Figure 1. We assume
that a PMU is placed at each bus that measures the complex
voltages and currents (in the case of adjacent buses). We usean
estimation model similar to the one presented in [26]. Under
this model, the state vector is formed by the voltages measured
at buses, i.e.,X= (Ui), whereUi is the complex voltage at bus



Algorithm 3 : Trust-based Distributed Estimation Algo-
rithm
Input : µ0, P0,Tmax, α, δ1, δ2, K
Initialization: x̂i = µ0, Pi = P0, Ti j = Tmax1
For a learning horizonK, apply Algorithm 1 together with (4)2
to approximate the covariance matricesPi j (k).
Set P̄i j = P̂i j (k)3
while new data exists4
Compute the filtering gainLi5
Compute the intermediate estimate of the state:6

ϕi = x̂i + Li(yi −Ci x̂i)

Compute the errors between estimates:7

ei j = x̂i − x̂ j

Update the trust values:8

Ti j =















min{Ti j + δ1,Tmax} e′i j P̄
−1
i j ei j ≤ χ

2(α)

max{Ti j − δ2,0} e′i j P̄
−1
i j ei j > χ

2(α)

Update the consensus weights9

wi j =
Ti j

∑

j∈Ni
Ti j
.

Compute the state after a Consensus step:10

ξi =
∑

j∈Ni
wi jϕ j

Update the state of the local filter:11

x̂i = Aξi

end while12

Fig. 1. The 3-generators, 9-bus system

i. The measurement models are as follows. In the case where
the buses (i, j) are adjacent (e.g., (2,7), (3,9) and (1,4) in
Figure 1), the complex measurement model for each PMU is
given by

Zi(k) =

(

1 0
Yi j −Yi j

)(

Xi(k)
X j (k)

)

+Vi(k),

where the measurement vectorZi(k)′ = (Ui(k), I i j (k)) encom-
passes the complex voltage at busi and the complex current
on the line (i, j), Yi j is the admittance of line (i, j) and Vi(k)
is the complex measurement noise. In the case busi has no

other adjacent bus, the measurement model gets simplified to

Zi(k) = Xi(k)+Vi(k).

Thus, we can generically represent the complex measurement
model as

Zi(k) = Hi X(k)+Vi(k).

The real valued measurement model is given by

yi(k) =Ci x(k)+vi(k),

where

yi =

(

Re(Zi)
Im(Zi)

)

,Ci =

(

Re(Hi) −Im(Hi)
Im(Hi) Re(Hi)

)

,vi =

(

Re(Vi)
Im(Vi)

)

,

and x′ = (Re(X′), Im(X′)).
We consider the power system to be reasonably stable, and

where the oscillations in the state variables are assumed tobe
small and induced by a white Gaussian noise. Thus, we model
the dynamics of the power system by

x(k+1)= x(k)+w(k), x(0)= x0,

where a solution to the power grid in Figure 1 is used as initial
state for the dynamics of the state variables.

We assume that each PMU plays the role of a PDC and that
they form a communication network, as shown in Figure 2,
where each node represents a PMU.

2 7 8 9 3

5
6

4

1

Fig. 2. PMU network

In the numerical simulations that follow, we assume the
estimation is performed over 1500 time units and that during
the interval [500,1000] agent (PDC) 8 (color red in Figure 2)
shares false data with the neighbors.

Figure 3(a) shows the voltage at bus 1 (u1(k)) and the
estimates of the voltage at bus 1 made by agents 4, 7 and
9 (û1

4(k), û1
7(k), û1

9(k)), together with the false data injected by
agent 8 (ˆu1

8(k)), when Algorithm 1 is used (and assigning
equal consensus weights), i.e., the trust update mechanismis
not applied. We note that the estimates of the aforementioned
agents are significantly affected. We have repeated the numer-
ical simulation using Algorithm 3. The results are presented
in Figure 3(b). We note that although agent 8 shares false
information, its neighbors are not affected this time. This is
because the neighbors of agent 8 adjust their trust values such
that the data coming from agent 8 is rejected. Figure 3(c)
shows the time evolution of the consensus weights of agent
4. We note that between the interval [500,1000] the weight
w4,8(k) is lowered to zero, as a result of decreased trust in
agent 8.
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Fig. 3. (a) Estimates of the voltage at bus 1 using Algorithm 1, with agent 8 injecting false data; (b) Estimates of the voltage at bus 1 using Algorithm 3,
with agent 8 injecting false data; (c) The evolution of agent4’s weights.

Remark 5.1:The local filtering gains were computed using
only the observable part of the pairs (A,Ci). However, as it can
be seen from Figure 3(b), through collaboration (consensus
step) even agents that do not measure directly the voltage
at bus 1 are still able to compute good estimates for the
aforementioned voltage.

VI. Conclusions

In this paper we proposed an algorithm for the state es-
timation of the power grid, aimed at making the estimation
process robust to false data injection. Our approach consisted
of combining a multi-agent filtering algorithm with a trust
metric, where agents with low trust values have little influence
on the computation of the estimates. In addition, we proposed
a trust update mechanism such that the trust values of the
agents are updated according to their recorded behavior.
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