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Trust-Based Multi-Agent Filtering for Increased Smart Grid Security

lon Matei John S. Baras Vijay Srinivasan

Abstract—We address the problem of state estimation of the A SCADA system receives measurements of the state of the
power system for the Smart Grid. We assume that the monitorig  power grid and computes an estimate on the state of the power
of the electrical grid is done by a network of agents with 4 on which the control strategy is based. Power blackout

both computing and communication capabilities. We propose . .
a security mechanism aimed at protecting the state estimath events due to the failure of the SCADA systems to recognize

process against false data injections originating from falty load and stability restrictions, human errors, faults, stggest
equipments or cyber-attacks. Our approach is based on a mult the need for improved system-wide monitoring, alarms and
agent filtering scheme, where in addition to taking measuremnts, power system state estimation programs [10]. As emphasized
the agents are also computing local estimates based on th&wn in [1], the SCADA system state of the art architecture is

measurements and on the estimates of the neighboring agents .
We combine the multi-agent filtering scheme with atrust-based  VUIN€rable to cyber and physical attacks such as sabotage by

mechanism under which each agent associates a trust metric to disgruntled insiders, false data injection from faulty ipeuent
each of its neighbors. These trust metrics are taken into acunt  or from cyber attacks.

in the filtering scheme such that information transmitted from In this paper we focus on theecurity of the state estimation
agents with low trust is disregarded. In addition, a mecharsm ¢ the power system. We propose a strategy aimed at im-

for the trust metric update is also introduced, which ensure that . . . .
agents that diverge considerably from their expected behawr proving the security of the SCADA systems, by implementing

have their trust values lowered. algorithmic policies aimed at protecting the estimatiooqass
against false data injection generated by faulty equiproent
[. INTRODUCTION cyber attacks. Our approach is based anudti-agent filtering

Smart Grid refers to the modernization of the electric Systeschemewhere intelligent agents, geographically distributed in

. : . . .the power grid, receive (local) measurements on the state of
through the integration of new information-age technatggi . . :

; . - . . the power grid and compute local estimates based on their own
and new strategic public policies. It is based on adding an

. . L . o measurements and on the estimates of the neighboring agents
integrating new digital computing and communication tech-

nologies and services with the power-delivery infrasuies as well. We combine the multi-agent filtering scheme with a

O ... trust-based mechanismnder which each agent associates a
Bidirectional flows of energy and two-way communication

and control capabilities will enable new functionalitiesda trust metric to each of its neighbors. These trust metries ar

o u " taken into account in the filtering scheme such that infoionat
applications that go well beyond “smart” meters for homes

and businesses. Some of the characteristics of the Smatt Clj;rr:i;\n_smltted from a_lgents with low tru_st IS dlsr_eg_arded. In
) . T . i—lddltlon, a mechanism for the trust metric update is intoedy
include an increased use of digital information and costro

. - . . which is based on the long-term behavior characteristi¢bef
technology to improve reliability, security, andfieiency of agents. Other approaches for dealing with false data iniest
the electric grid, dynamic optimization of grid operaticarsd 9 . PP 9 JE

resources, with full cyber security [2]. It is widely recoged on SCADA systems can be found in [6], for example.
that one of the most challenging task in implementing the [l. PROBLEM FORMULATION

Smart Grid is putting in place security policies that addres State estimation of power systems, using real-time measure
security threats to the infrastructure. The main goal oflZecy ments of active and reactive power flows in the network, is
security strategy is the prevention of damages to, unaizr ysed to build the model for the observable part of the power
use of, exploitation of, and, if needed, the restorationlet-e grid. It was introduced to help the system operators having
tronic information and communication systems and servicgsgood image on the state of the power system in order to
to ensure confidentiality, integrity and availability [3]. increase the ability to tackle contingency conditions.hRat
The part of the Smart Grid infrastructure used to control thRan centralizing the measurements to the SCADA systems
electricity generation and transmission is representedhBy for state estimate computations, we propose a strategy to
Supervisory Control and Data Acquisition (SCADA) systemslecentralize the estimation process, under which a network
e it o ] e Nafiofmit f of intelligent agents computes local estimates based an the
G M e Crancersbrio o e ekt f, measurements and the esiimates computed by other agens
with the University of Maryland, College Park, MD 20742 (iteg@umd.edu). 1 hanks to their simplicity, the most common models used
John S. Baras is with the Electrical and Computer Engingebiapartment to represent the dynamics of the power grid are linear [9],

"’C";‘ﬂe‘g’ghptri "K/fgtgt(f?zozr éﬁggﬁ?ﬁ{;h at the UniyewsitMaryland,  111] [22]. Similarly, throughout this paper we considee th
Vijay Srinivasan is with the Engineering Laboratory at thetitinal Institute  Tollowing stochastic linear equation as an approximate ehod
of Standards and Technology, Gaithersburg, MD 20899 (\@niist.gov). for the power grid dynamics
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wherek denotes the discrete time(k) € R" is the state vector, the ageni has only a local view on the state of the network,
A(K) is the matrix connecting the current state with the one htit through collaboration with other agents, this view can b
the next time instant, ang(k) € R" is the state noise, assumedotentially enlarged.
Gaussian with zero mean and covariance ma@ixThe state ~ We denote byx{k) and by (k) = x(k) — %(k) the local
variables usually includeodal voltagegvoltage magnitudes, estimate and the estimation error computed by agemne-
voltage angles)transformer ratios andcomplex power flows spectively. Each agentassociates to each of its neighbors a
(active and reactive power flows) [20]. The initial statehas trust metricdenoted byT;j, for j € Aj. Intuitively, the trust
a Gaussian distribution, with meany and covariance matrix metrics designate the weight agergives to the information
Po. The parameters of the modél(k) and Q, are assumed received from its neighbors.
to be determined a priori through a parameter identification Problem We assume that some agents can become faulty or
process [9]. Usually, the matriA(k) is assumed slow time- under the control of non-authorized entities that can céuse
varying; and, for simplicity in this paper we assurAé&) to respective agents to spread false data on the power griéto th
be constant, i.e A(k) = A for all k. other agents. This false information cédfieat the computation
In the context of this paper an agent is an intelligertdf control strategies for the power generation and transions
device with computation and communication capabiliti¢s; heeded to cope with changes in the state of the power grid.
can receive measurements on the state of the power grid an@utr goal is to propose a strategy aimed at limiting tffect
is able to compute state estimates. A candidate for playiag tof false data injection on the state estimate computatiaset
role of an agent is the Phasor Data Concentrator (PDC), whigh the notion oftrust
collects the measurements from a set of GPS synchronized
Phasor Measurement Units (PMUs). Their ability to measure Il TrusT MopEL
positive sequence voltages at network busses and positiv@rust appears in various ways and meanings. We can refer
sequence currents in transmission lines and transformeét®| to the reduced trustworthiness of a sensor, meaning that the
an improvement of the state estimation capabilities [1%fe T sensor may have been compromised, or we can refer to the
estimation setup considered in this paper is somewhataimitrustworthiness of the data transmitted by a sensor. Sipila
to the two-level estimator framework proposed in [25], whemwe can refer to a compromised link due to jamming, which
the bus system is split into fiiérent areas where SCADA-reduces the trustworthiness of the link. Thus trust in senso
like systems compute separately estimates. These essimatetworks, and more generally in hybrid networks consisting
are centralized and combined to obtain an overall estimiatead collaborating humans and automated agents (sensous, act
the entire power system. Unlike the aforementioned approaators, computers) is a composite entity, represented tBralev
we do not centralize the estimates computed bffetknt metrics angbr parameters.
areas, but use local collaboration to obtain an overaliregt There are various ways to represent trust weights numeri-
of the power grid. We assume that the agents (PDCs) ceally. In some trust schemes, continuous or discrete nuaileri
communicate with each other and the SCADA system, therebglues are assigned to measure the level of trustworthiRess
forming a communication network. We denote by example, in [18], an entity’s opinion about the trustwantsgs
of a certificate is described by a continuous value in [0,1d]. |
[24], a 2-tuple in [01]? describes the trust opinion. In [12],
the neighborhood of ageiit i.e., all agents it is capable tothe metric is a triplet in [0L]3, where the elements in the
communicate with. We assume linear sensing models for thiplet represent belief, disbelief, and uncertaintypexgively
agents, given by (we denoted by [AL]" the n times Cartesian product of the
set [Q1]). Trust can also be interpreted as probability. In [13],
yi(k) = Cix(k) +vi(k), 2) subj[ect%\)/e probability is employez, while obr}ective pybb'my[ ]
whereyi(k) € R is the observation of the statdk) made is used in [14]. As a concept of uncertainty, entropy in
by the agenti and vj(k) € RP is the measurement noisejnformation theory is a natural measurement of trust as well
assumed Gaussian with zero mean and covariance nRtrix[23]. In the extreme case, trust can be binary: trust (trust
The measurements that are normally included in practiaé stweight=1) or distrust (trust weightO) because either there is
estimators are voltage magnitudes and angterinces, active 100% security in the network or the approach to evaluaté trus
and reactive powers, current magnitude flows, magnitude iefvery coarse. There is no absolutely right or wrong way to
turn ratios, phase shift angles of transformers, and aetivk represent these trust weights. All the aforementioned mume
reactive power flows [20]. The above model is usually obthineal representations are suitable foffelient environments and
as a linearization of a nonlinear sensing model, where th&anagement requirements.
matrix C; is the Hessian of a nonlinear functioifx) computed  In this paper, we assume each ageassigns a trust metric
at some nominal point [11], relating the measurements to ttee each of its neighborg, denoted byT;j, which refers to
states. the reliability of data received from agent We represent
Remark 2.1:We would like to point out that the entries oftrust values as non-negative real numbers taking values in
matrix C; reflect only components from the state veck@k) the interval [Q Tmay, for some positive reallnax In the
related to the bus(es) the agemnmonitors. This implies that following, these trust values will be used in conjunctioritwi

Ni ={j such thati communicates wittj}



a multi-agent estimation algorithm to limit the negatiféeet the consensus stefrurther on in the paper, we will focus our
on the state estimation process caused by false data atjectanalysis on the values of the weighvg, which are positive
values summing up to one. Through these weights each agent
IV. TrusT-BASED MULTI AGENT STATE ESTIMATION controls how the information received from neighbors isdse

In this section we present the trust-based multi-agent fil- Remark 4.1:It is reasonable to assume that the agents

tering scheme aimed at improving the security of the statannot observe the entire state of the grid. However, throug

estimation process in the power grid. The section is dividedllaboration (line 5 of Algorithm 1), provided that the pemw

into three parts. First, we present a multi-agent filteringrid is globally observable, the agents will potentiallyéa

scheme. Second, we describe the update mechanism for glabal view on the state of the power grid.

trust values, based on the behavior of the agents. Third, we

combine the multi-agent filtering scheme with the trust updaB. Trust Update Algorithm

mechanism, which ensures that agents with low trust Valueq:)ue to the dynamic nature of agents (Some of them may
have limited influence on the estimation process. become faulty, receive measurements from faulty equipment
A Distributed Estimation or may come L_Jnder the control of. unauthorize(_j entities),
agents need to implement a mechanism for updating the trust
A fundamental problem in sensor networks is developingluesT;;. Examples of trust update mechanisms are presented
multi-agent (distributed) algorithms for the state estiora in [15], in the context of reputation systems where the updat
of a process of interest. Generically, a process is obserygthased on the notion dfelief divergencend in [17] in the
by a group of sensors organized in a network. The go@bntext of distributed estimation.
of each sensor is to compute accurate state estimates. Thg this paper we pursue aftrent avenue of investigation.
distributed filtering (estimation) problem has received®df \we assume that the agents “learn” the behavior patterns of
attention during the past years, starting with the contitins their neighbors, and when they determine significant change
made by Borkar and Varaiya [7]. The main idea behingh these patterns, they adjust the trust values accordingly
distributed estimation, found in most of the papers adiligss py decreasing them. We assume that the learning period takes
this problem, consists of using a standard Kalman filterllgca pjace during the initial operation of the system, when it is
together with a consensus step in order to ensure that the Iq@asonable to assume that the agents function properly, i.e
estimates agree [8], [16], [21]. the information provided by them is correct.
In what follows, we use a simplified version of the algorithm As mentioned earlier, ageitreceives from its neighbors
proposed in [21], which is described next. For simplicityheir Jocal estimates;(k), for j € Ai. Let us denote byg; (k)
the diference between the estimates of agerasd |, i.e.

aj (k) = %(K) - X;(K).

Algorithm 1: Distributed Filtering
Input: uo, Po

; wm%%zwggtﬁ;eﬁ?étsp 1= Po We note thatg;j (k) can be equivalently written as
3 Compute the filtering gairh;
4 Compute the intermediate estimate of the state: & (K = ej(k) —a(k),

¢i = %+ Li(yi —Ci%) where g (k) = x(k) — %(k) is the estimation error at agent
If we define the vectoe(k) = (e(Kk)), then it can be easily

5 Estimate the state after a Consensus step: . ot L]
P shown that this vector has a multivariate normal distrifnuiti

&i = Zjen Wij@ for all k, sinceg(k) is updated according to a linear dynamics
6 Update the state of the local filter: with initial state normally distributed. Consequently,cn
R be shown that the vectorgj(k) have multivariate normal
X = Adi distributions as well. From the equations of the distridute

estimation algorithm we get th&(k) have zero means, and

. o _ _ thereforegj(k) have zero means as well, for &> 0. Let
we omitted the time index in Algorithm 1. There are severgls genote byPij(k) the covariance matrices of the vectors
approaches for computing the filtering gains. In [21], thg;(k). Unfortunately, due to cross-correlations, computing
authors propose the filtering gains to be computed using ifiase matrices exactly is intractable for large valuek ¢ih
local Kalman filter equations. Other ideas include tifielioe  fact the complexity increases exponentially with the time)
computation of the (stationary) filtering gains using Linea \ne consider thathe statisticof the vectors;j (k) determine
Matrix Inequalities techniques [16], which takes into amtb he pehavior patternsof the agenti’s neighbors. We can
the topology of the network. In line 5, the local informatisn efine confidence regions fey;(k) based on thehi-square

linearly combined with information received from neigh&or gistribution It is well known that for a multivariate normally
Unlike the algorithm introduced in [21], we assume that onlyistributed vectonX ~ N(w.X) in R", the region

local estimates are exchanged but not output measurements.
We will refer to line 5 as either thimformation fusion stepr (X | (x=p) = (x—p) < x2(@)}, 3)



contains (- @)100% of the probability in the distribution, values is exponential. In such a case, we would have
where y?(a) is the chi-square distribution with degrees of ; 5
X(@) q : aeg min{s1Tij, Tmaxd €, P:lej < x?(@)
freedom, computed at. By varyinga we can define dierent Tij = 5T e/J FT_11 7,
confidence regions. 21ij i Pij e > x(@)
The update mechanism of the trust values is based on thieeres; > 1 and 0< 52 < 1.
following idea. Every timegj(k) is outside the confidence
region determined by parameter, the trust valueTij is ~Algorithm 2: Trust update
decreasc_ed up to a zero value, while every tiepék) is inside Input.: 5”' T 01, 02 @
the confidence region, the trust vallig is increased up to @ 1 while new data exists
maximum valueTl max 2 Compute the errors between estimates:
Learning- As mentioned earlier, the behavior patterns are e o
. : . &j =X —Xj
determined by the covariance matricBg(k) whose exact
computation is unfortunately not tractable for large valogk 3 Update the trust values:

_(computingPij_(k) is in the same spirit as compqting the_ gains Min(Tij +61. Tmax € FTi—jlaj <x2(@)
in a decentralized control problem; problem which is stpibol ij = { maxT;; - 62,0} ¢ FT_—_1QJ > v%(a)
for decades [5]). Therefore, the agents need to approximate i
these matrices. Denoting b%-(k) the estimate oPjj(k), we 4 end while
propose the use of a time averaging filter given by

|5i,-(k+ 1)= Fllqj(k)qj(k)’ + Fklﬁij(k)’ (4) C. Trust-based Distributed Estimation

In this subsection we introduce an estimation algorithm
to approximate the covariances matrices. The intuitiorifgeh where the distributed estimation scheme presented in Algo-
this approach is the following. Under the assumption thgthm 1 is combined with the trust update mechanism presente
the parameters of the stochastic process are time-intarignAlgorithm 2.

(and under the assumption that the estimation errors ara meawe note that the weightsi; control how much the neigh-
square stable), the distributions of the estimation eredl9 bors influence the update of the estimatgk)” A small value

will converge to some stationary distributions. Consedlyen of the weightwi; means that agerjtwill have little influence

the same will happen for the random vectag(k). The on the ageni Therefore, it makes sense to choose the weights
covariance matrix of the stationary distribution &f(k) can wij to be proportional to the trust valuds. We propose to

be approximated by taking the average over #iciently choose the weightsi; as weighted trust values, such that they
large numbers of samples. Writing the_averaging operatigm up to one, i.e.,

iteratively, it results in a filter as in (4). L&Y be the approx- Ti:

. . . . . . - ]

imation of the covariance matrix of the stationary disttibn Wij = o——.

of the vectorgj(k), given by 2jeni Tij
. This way the weights decrease with the trust values, sudh tha
Pij = Pij(K), agents with low reliability will have little influence in the

h K is suficiently | q he | ._computation of the local estimates. Algorithm 3 presenés th
where K is suficiently large and represents the earning;st-based distributed estimation algorithm. We wouke lio

horizon. Algorithm 2.summariz.es the Frust_upda?e .meChan'Séthhasize that Algorithm 3 acts on two levels. On one level
|mplemen_ted by agent(for brey|ty, the t|me_|ndex 1S |gnqred). it extends the scope of the agents’ view with respect to the
According to the aforementioned glgorltr/lrn_,leveryztlme trid by making the estimation process distributed. This,way
error &; (k) lies in the_confldence regiofx | X ',Dij x<x“(a)}, through collaboration, the agents can potentially have eemo
the trust valueTi; is increased by (a positive real value) 5ccyrate image on the global state of the grid, which othsswi

up t0 Tmax while every time the trust values lie outside the,, 14 be more dficult. On another level, the agents limit the
aforementioned confidence region, they are decreased bygect of false data injection by updating the agents' trust in

(assumed positive). We note that even a correctly funat®niy,eir neighbors, according to their recorded behavior.sThu

agentj can have its trust value decreased. In the long rue estimation process becomes more robust.
the trust valueT;; is decreased approximatety?(a)100% of

the total time. A good idea is to choose the paramefers V. NUMERICAL EXAMPLE

and o2 such that they reflect how close or far the errors are We consider an example of a power grid with three gen-
from the regions of the type (3). For example,&ffP;'ej erators and nine buses [4], shown in Figure 1. We assume
is large compared tg?(a), then s, should be chosen largethat a PMU is placed at each bus that measures the complex
as well, such that the corresponding trust value is decdeas®ltages and currents (in the case of adjacent buses). Wanuse
rapidly. We chose an incremental procedure for updating testimation model similar to the one presented in [26]. Under
trust values, through the parametéisand 6. We can also this model, the state vector is formed by the voltages measur
envisage a model where the incredserese rate of the trustat buses, i.eX = (U;), whereU; is the complex voltage at bus



Algorithm 3: Trust-based Distributed Estimation Algo-
rithm
Input: o, Po,Tmax @, 01, 02, K

1 Initialization: % = uo, Pj = Po, Tij = Tmax
2 For a learning horizorK, apply Algorithm 1 together with (4)
to approximate the covariance matrideg(k).

SetPjj = Pjj(K)
while new data exists

Compute the filtering gair;

Compute the intermediate estimate of the state:

o g b~ w

¢i = % +Li(yi - Ci%)

7 Compute the errors between estimates:

8 =% =%
8 Update the trust values:
1 _ | minTj+01Tmad € Pjjey <x*(a)
ij= D—
! maxTij — 62,0} el(J Pijlaj >X2(a)
9 Update the consensus weights
Wi = il
1= -
2jen: Tij
10 Compute the state after a Consensus step:
&i = Dljen; Wij @
11 Update the state of the local filter:
% = Asi
12 end while
e s e e T o S B
o1l 128 e l 3 Ei8
‘;%jsm [‘;5
L. | Hoops,

Fig. 1. The 3-generators, 9-bus system

other adjacent bus, the measurement model gets simplified to
Zi(k) = Xi(K) + Vi(k).

Thus, we can generically represent the complex measurement
model as
Zi(k) = HiX(K) + V;i(k).

The real valued measurement model is given by

Yi(K) = Cix(k) + vi(K),
where
RgZ) Re(Hi)

Y :( Im(Z) )’Ci =( Im(H;) Rt )’Viz(

Re(H))
and X' = (RgX’), Im(X")).

We consider the power system to be reasonably stable, and
where the oscillations in the state variables are assumbd to
small and induced by a white Gaussian noise. Thus, we model
the dynamics of the power system by

X(k+ 1) = x(k) + w(k), x(0)= xo,

Re(Vi) )
Im(vi) J°

where a solution to the power grid in Figure 1 is used as Initia
state for the dynamics of the state variables.

We assume that each PMU plays the role of a PDC and that
they form a communication network, as shown in Figure 2,
where each node represents a PMU.

S "

Fig. 2. PMU network

In the numerical simulations that follow, we assume the
estimation is performed over 1500 time units and that during
the interval [5001000] agent (PDC) 8 (color red in Figure 2)
shares false data with the neighbors.

Figure 3(a) shows the voltage at bus u'(k)) and the
estimates of the voltage at bus 1 made by agents 4, 7 and
9 (@3(K), 03(K), 03(K)), together with the false data injected by
agent 8 (I%(k)), when Algorithm 1 is used (and assigning
equal consensus weights), i.e., the trust update mechasism

i. The measurement models are as follows. In the case whegé applied We note that the estimates of the aforementioned

the busesi(j) are adjacent (e.g., {2), (39) and (14) in

agents are significantlyfi@cted. We have repeated the numer-

Figure 1), the complex measurement model for each PMUigal simulation using Algorithm 3. The results are presénte

given by
(5, )

X Jrvico,

where the measurement vecta k)’ = (Ui(k), I;j(k)) encom-

in Figure 3(b). We note that although agent 8 shares false
information, its neighbors are noffacted this time. This is
because the neighbors of agent 8 adjust their trust valugs su
that the data coming from agent 8 is rejected. Figure 3(c)
shows the time evolution of the consensus weights of agent

passes the complex voltage at bhusnd the complex current4. We note that between the interval [50000] the weight

on the line {, j), Yij is the admittance of linei(j) and V;(k)

wag(k) is lowered to zero, as a result of decreased trust in

is the complex measurement noise. In the caseibhess no agent 8.
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Fig. 3. (a) Estimates of the voltage at bus 1 using Algorithmvith agent 8 injecting false data; (b) Estimates of theagst at bus 1 using Algorithm 3,

with agent 8 injecting false data; (c) The evolution of agéstweights.

Remark 5.1:The local filtering gains were computed using12]
only the observable part of the pai’s C;). However, as it can
be seen from Figure 3(b), through collaboration (consen
step) even agents that do not measure directly the voltage
at bus 1 are still able to compute good estimates for tHe¢!
aforementioned voltage.

VI. CoNCLUSIONS [15]

In this paper we proposed an algorithm for the state es-
timation of the power grid, aimed at making the estimatiofjg
process robust to false data injection. Our approach dedsis
of combining a multi-agent filtering algorithm with a trUSt[17]
metric, where agents with low trust values have little inflce
on the computation of the estimates. In addition, we progose
a trust update mechanism such that the trust values of {Qge]
agents are updated according to their recorded behavior.
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