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RECONSTRUCTING THE PAST FROM IMPRECISE KNOWLEDGE
OF THE PRESENT: SOME EXAMPLES OF NON UNIQUENESS IN

SOLVING PARABOLIC EQUATIONS BACKWARD IN TIME

ALFRED S. CARASSO∗

Abstract. Identifying sources of ground water pollution, and deblurring astronomical galaxy
images, are two important applications generating growing interest in the numerical computation
of parabolic equations backward in time. However, while backward uniqueness typically prevails
in parabolic equations, the precise data needed for the existence of a particular backward solution
is seldom available. This paper discusses previously unexplored non uniqueness issues, originating
from trying to reconstruct a particular solution from imprecise data. Explicit 1D examples of linear
and nonlinear parabolic equations are presented, in which there is strong computational evidence
for the existence of distinct solutions wred(x, t) and wgreen(x, t), on 0 ≤ t ≤ 1. These solutions
have the property that the traces wred(x, 1) and wgreen(x, 1) at time t = 1, are close enough to
be visually indistinguishable, while the corresponding initial values wred(x, 0) and wgreen(x, 0), are
vastly different, well-behaved, physically plausible functions, with comparable L2 norms. This implies
effective non uniqueness in the recovery of wred(x, 0) from approximate data for wred(x, 1). In all
these examples, the Van Cittert iterative procedure is used as a tool to discover unsuspected, valid,
additional solutions wgreen(x, 0). This methodology can generate numerous other examples and
indicates that multidimensional problems are likely to be a rich source of striking non uniqueness
phenomena.

Key words. advection dispersion equation; backward parabolic equations; hydrologic inversion;
image deblurring; ill-posed continuation; non uniqueness; Van Cittert iteration.

AMS subject classifications. 35R25, 35B60, 35K10, 65M20, 65M30.

1. Introduction. This paper discusses computationally generated 1D examples
of non uniqueness in solving parabolic equations backward in time. These examples
are unexpected and, to the author’s knowledge, are of a type not previously known in
the literature. Such non uniqueness is of major significance in applications. Resolv-
ing the increased uncertainty in backward reconstructions may require more detailed
prior information about the true solution than may be available. The methodology
used to create these examples can generate numerous other examples. Multidimen-
sional problems are likely to be a rich source of striking non uniqueness phenomena.
As noted below, backward uniqueness typically prevails in parabolic equations. How-
ever, the precise data needed for the existence of a particular backward solution is
seldom available. The non uniqueness issues discussed here originate from trying to
reconstruct a particular solution from imprecise data.

There has been growing interest in recent years in the development of numerical
methods for solving parabolic equations backward in time. In [2], [9], [10], [16], [19],
[23], [24], [26], [28], and [32], various useful methods are analyzed and illustrated with
interesting test computations. Currently, the two most significant areas of applica-
tion of backward parabolic equations are hydrologic inversion and image deblurring.
In hydrologic inversion, the aim is to identify sources of groundwater pollution by
reconstructing the contaminant plume history. This involves solving the advection
dispersion equation (ADE) backward in time, given the contaminant spatial distribu-
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2 ALFRED S. CARASSO

tion g(x, y) at the current time T ,

Ct = ∇.{D∇C} − ∇.{vC}, 0 < t ≤ T,

C(x, y, T ) = g(x, y).
(1)

Here, C is the mass concentration, D is the diffusion tensor, and v is the velocity
vector. There is a large literature on this topic. Instructive expository discussions of
this problem, together with backward calculations of realistic examples, principally
in 1D, may be found in [3], [4], [5], [6], [7], [25], [29], and [31].

Brownian motion is pervasive in many branches of science, including image sci-
ence. For this reason, images blurred by Gaussian point spread functions are a com-
mon occurrence. Deblurring Gaussian blur is mathematically equivalent to solving
the heat conduction equation backward in time, with the noisy blurred image g(x, y)
as data at time t = 1, and with conduction coefficient α > 0 proportional to the point
spread variance,

wt = α∆w, 0 < t ≤ 1,

w(x, y, 1) = g(x, y).
(2)

A discussion of this problem may be found in [11], [12], [15], [17], [27], and [33]. In
many areas of applied science, the underlying random process involves a fundamen-
tal modification of Brownian motion, whereby the motion takes place in a specific
randomized operational time Q(t), rather than in standard clock time t. This new
subordinated Brownian process leads to non standard diffusion equations. Such no-
tions have also been found useful in image deblurring. In [14], and references therein,
backward in time problems for fractional and/or logarithmic diffusion equations,

wt = −α(−∆)βw, wt = −
[

λ log{1 + γ(−∆)β}
]

w, 0 < t ≤ 1,(3)

are successfully applied, in a blind deconvolution scheme, to enhance Hubble Space
Telescope images, as well as Scanning Electron Microscope images of interest in Nan-
otechnology. In (3), α, β, λ, and γ are positive constants, with β < 1.

2. Stabilized problems, backward uniqueness, and stability estimates.
Theoretical discussions of backward parabolic equations and other non standard prob-
lems may be found in [1], [13], [20], [21], [30], and the references therein. Back-
ward parabolic equations are classical examples of ill-posed problems in the sense of
Hadamard. Typically, a backward solution exists only for highly restricted data satis-
fying certain smoothness and other requirements that are not easily characterized. In
most cases of practical interest, when a solution exists, it is unique. However, back-
ward solutions depend discontinuously on the data for which they exist and slight
changes in that data can result in very large, if not explosive, changes in the corre-
sponding solutions.

Backward parabolic problems can be stabilized by prescribing an a-priori bound
M for the L2 norm of the solution at time t = 0. The following situation illustrates
the general ideas. Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let
L be an elliptic operator in Ω acting on smoothly differentiable functions vanishing
on ∂Ω. In the simplest case, L is a linear positive self adjoint differential operator
with variable coefficients that may depend on time. However, we will also consider
nonlinear problems. In all cases, the forward problem wt = Lw, t > 0, is well-posed.
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The stabilized backward parabolic problem for L may be stated as follows. Given
f(x) ∈ L2(Ω) and M, δ > 0, with δ ≪ M , find all solutions of

wt = Lw, x ∈ Ω, w = 0, x ∈ ∂Ω, 0 < t ≤ T,(4)

such that

‖ w(., T ) − f ‖2≤ δ, ‖ w(., 0) ‖2≤ M.(5)

It is assumed that f(x), δ, and M are compatible with the existence of solutions.
Here, f(x) is presumed to be a sufficiently close L2 approximation to the exact values
w(x, T ) at t = T , of a solution w(x, t) of (4), believed to satisfy ‖ w(., 0) ‖2≤ M . In
many engineering or applied science contexts, only educated guesses would generally
be available to estimate δ and M , rather than exact values. Typically, the L2 relative
error

‖ w(., T ) − f ‖2 / ‖ w(., T ) ‖2≤ δ/ {‖ f ‖2 −δ} ≈ δ/ ‖ f ‖2,(6)

might be expected to be on the order of 1% or thereabouts. Since the given data f(x)
may simultaneously approximate several distinct solutions wp(x, t) of (4) at time T ,
there are, in general, infinitely many possible solutions of (4) and (5). If δ is small,
it is generally assumed that any two such solutions would differ only slightly. The
extent to which this expectation is justified is determined by the backward stability
inequality governing the particular parabolic equation wt = Lw.

The following logarithmic convexity method, [1], [20], [30], is often used to obtain
stability inequalities for ill-posed continuation problems. Let w1(x, t) and w2(x, t) be
any two solutions of the well-posed forward problem wt = Lw. For 0 ≤ t ≤ T , let
F (t) =‖ w1(., t)−w2(., t) ‖2

2. Using properties of the differential operator L, together
with appropriate restrictions on the class of solutions being considered, the aim is to
establish the following inequality

F (t)F ′′(t) − {F ′(t)}2 ≥ −a1 F (t)F ′(t) − a2 F 2(t), 0 < t < T,(7)

where a1 and a2 are constants.
If a1 = a2 = 0 in (7), then log F (t) is a convex function of t and

F (t) ≤ {F (0)}(T−t)/T{F (T )}t/T , 0 ≤ t ≤ T.(8)

More typically, a1 6= 0 in (7). In that case, let

q = −a2/2a1, µ(t) = {e−a1t − 1}{e−a1T − 1}−1, 0 ≤ t ≤ T.(9)

Then, as shown in [1], [20], [30],

e2qtF (t) ≤ {F (0)}1−µ(t){e2qT F (T )}µ(t), 0 ≤ t ≤ T.(10)

Inequalities of this type have been obtained for a wide class of problems, in addition
to the class of parabolic problems wt = Lw considered in this paper; see [1], [13], [20],
[21], [30]. For solutions satisfying a prescribed L2 bound M at t = 0, we obtain from
(10), for 0 ≤ t ≤ T ,

eqt ‖ w1(., t) − w2(., t) ‖2≤ {2M}1−µ(t){eqT ‖ w1(., T ) − w2(., T ) ‖2}µ(t).(11)

This inequality establishes L2 Hölder-continuous dependence of solutions at any fixed
t with 0 < t ≤ T , on the data at time T . The Hölder exponent µ(t) satisfies 0 ≤
µ(t) ≤ 1, with µ(t) > 0, t > 0, µ(T ) = 1, µ(0) = 0, and µ(t) ↓ 0 monotonically as
t ↓ 0.
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2.1. Backward uniqueness. The inequality (11) implies backward uniqueness
of solutions satisfying a prescribed bound. Indeed, if ‖ w1(., T )−w2(., T ) ‖2= 0, then
‖ w1(., t)−w2(., t) ‖2= 0 for every 0 < t ≤ T , since µ(t) > 0 for t > 0. By continuity,
‖ w1(., t) − w2(., t) ‖2= 0 on 0 ≤ t ≤ T .

Remarkably, backward uniqueness even holds true for the Navier-Stokes equa-
tions. This landmark result was obtained in [21] by establishing the stability inequal-
ity (10) appropriate for these equations.

2.2. Backward continuity. We may now address the recoverability of solutions
in the stabilized backward problem (4), (5). Let w1(x, t), w2(x, t) be any two possible
solutions of (4), (5). Then,

‖ w1(., 0) − w2(., 0) ‖2≤ 2M, ‖ w1(., T ) − w2(., T ) ‖2≤ 2δ.(12)

Hence, from (11),

eqt ‖ w1(., t) − w2(., t) ‖2≤ 2M1−µ(t){eqT δ}µ(t), 0 ≤ t ≤ T.(13)

Here, the dependence of the Hölder exponent µ(t) on t plays a crucial role. In the best
possible case, that of a linear self adjoint elliptic operator L with time-independent
coefficients, we have µ(t) = t/T , so that µ(t) decays linearly to zero as continuation
progresses from t = T to t = 0. At t = T/2, we have µ(T/2) = 1/2 and, assuming
q = 0, ‖ w1(., T/2) − w2(., T/2) ‖2 ≤ 2

√
Mδ . This loss of acccuracy from O(δ)

to O(
√

δ), while still only half way to t = 0, is noteworthy. More typically, with
a1 < 0 in (7), µ(t) is sublinear in t, possibly with rapid exponential decay. This
can lead to much more severe loss of accuracy as reconstruction progresses to t = 0.
As shown in [13], rapid decay of µ to zero can be brought about by various factors,
including nonlinearity, non self adjointness, diffusion coefficients that grow rapidly
with time, or adverse spectral properties in the elliptic operator L. In all cases, (13)
does not guarantee any accuracy at t = 0, but only provides the redundant information
‖ w1(., 0) − w2(., 0) ‖2≤ 2M .

While inequality (13) is best-possible in general, it necessarily contemplates worst
case scenarios that may be too pessimistic in some applications. Indeed, successful
recoveries of contaminant plumes in hydrology, as well as striking enhancement of
Hubble telescope galaxy images, have been documented [5], [6], [14]. Nevertheless,
the behavior of the Hölder exponents in (13) reflects a basic underlying truth. This
behavior is indicative of the rate at which the particular evolution equation wt = Lw
has forgotten the past and, hence, of the subsequent difficulty of reconstructing the
past from imperfect knowledge of the present. This paper illuminates this deeper
meaning by exhibiting specific 1D parabolic equations on 0 ≤ t ≤ 1, with distinct
solutions wred(x, t) and wgreen(x, t). These solutions are such that their traces at t =
1, wred(x, 1), wgreen(x, 1), are visually indistinguishable, while their corresponding
initial values wred(x, 0), wgreen(x, 0), are vastly different. Therein lies the difficulty
of reconstructing the correct backward solution from approximate data at t = 1.

3. Exploring backward solutions using Van Cittert iterations. Consider
the well-posed, forward, linear or nonlinear parabolic initial value problem wt =
Lw, 0 < t ≤ 1, w(x, 0) = wred

0 (x). Define S to be the associated solution operator
at time t = 1. Thus, given any h(x) in L2(Ω), the operator S uses h(x) as initial
data w(x, 0) in (4) and produces the corresponding solution wh(x, 1) at t = 1, so
that S[h(x)] = wh(x, 1). In particular, S[wred

0 (x)] = wred(x, 1). Next, let f(x) be
an approximation to wred(x, 1) with ‖ wred(., 1) − f ‖2≤ δ, as in (5). With fixed
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relaxation parameter γ > 0, and with h1(x) = γf(x), consider the following iterative
procedure

hn+1(x) = hn(x) + γ {f(x) − S[hn(x)]} , n ≥ 1.(14)

In spectroscopy and image processing, with S an explicitly known linear convolution
integral operator, this procedure is the widely used Van Cittert iteration [18], [22].
In these applications, the Van Cittert method generally produces useful results after
finitely many iterations, although it may not converge. In the present case, S may be
highly nonlinear and is not known explicitly. For given h(x) in L2(Ω), S[h(x)] must
be obtained by numerically solving the well-posed forward parabolic problem.

Clearly, in the present parabolic context, the Van Cittert iteration is unlikely to
converge. Indeed, if hn → h† in L2(Ω) in (14), then S[h†(x)] = f(x). However,
S[h†(x)] necessarily satisfies highly restrictive smoothness requirements and these are
not likely to be met by the given approximate data f(x). Nevertheless, as will be
seen below, the Van Cittert iteration is a valuable exploratory tool. In a wide variety
of 1D linear and nonlinear parabolic equations, this procedure typically generates
iterates hn(x) such that the L∞ norm of the residual, ‖ f − S[hn] ‖∞, decays quasi
monotonically to a small value after finitely many iterations. This is often sufficient
for our purpose. From (5), if for some positive integer N we find ‖ f − S[hN ] ‖2≤ δ,
with ‖ hN ‖2≤ M, then hN (x) is a valid candidate reconstruction of wred(x, 0), given
the approximation f(x) to the unavailable wred(x, 1).

4. Numerical implementation of Van Cittert’s iteration. All of the ex-
amples discussed below are one dimensional, take place on the interval −1 ≤ x ≤ 1,
involve smooth coefficients and initial values, and have homogeneous Dirichlet bound-
ary conditions. To implement the iterative process in (14), use is made of an efficient,
highly accurate parabolic equation solver. This method of lines procedure is discussed
in [8] and is implemented as subroutine D03PDF/D03PDA in the NAG Mathematical
Software Library. It uses Chebyshev C0 collocation for spatial differencing, together
with backward time differencing to advance the solution forward in time. Here, one
hundred equispaced breakpoints, −1 = x1 < x2 < x3 < · · · < x100 = 1, are placed
on [−1, 1]. Between each pair of breakpoints, the solution of wt = Lw is approxi-
mated by a cubic Chebyshev polynomial whose space and time derivatives are made
to satisfy the parabolic equation at two collocation points chosen internally by the
subroutine. C0 continuity is enforced at the breakpoints. This leads to a total of 298
(non equispaced) mesh points on [−1, 1]. For each tk = k∆t, the computed solution
w(x, tk) is a piecewise cubic polynomial in x on [−1, 1].

All the examples below will follow the same road map. With initial data wred
0 (x),

the parabolic problem wt = Lw is first integrated up to time t = 1, to produce a
presumed good approximation f(x) to the unknown true solution wred(x, 1). This
calculated f(x), shown as a black curve in the figures, is then viewed as given data
in an applied science or engineering context and is used in the Van Cittert procedure
(14) to recover the unknown initial value wf (x, 0) that gave rise to f(x) at t = 1.
However, it will turn out that f(x) is also a close approximation to an unsuspected
additional solution wgreen(x, 1) corresponding to initial data wgreen

0 (x) that can be
vastly different from wred

0 (x). The relaxation parameter γ in (14) was set to 0.5 in all
six examples.

5. Example 1 (Fig. 1). Linear self adjoint. The following relatively well-
behaved example is used to set the stage for the less well-behaved examples to follow.
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t=1

t=0

t=0

Mild backward non u niqueness in Exampl e 1

Either red or green  initial values at t=0, terminate on b lack curve
at t=1 to within 3. 1E−3 pointwise, and  L2 relative error=4.1 E−3.

Fig. 1. Well-behaved self adjoint problem. Data f(x) (black curve), approximating solution
wred(x, t) at time t = 1 with an L2 relative error of 0.41%, recovers reasonably close initial value
w

green
0

(x), in lieu of true initial value wred
0

(x).

With a = 0.05, α = 0.05, σ = 0.025, consider the linear, self adjoint, variable
coefficient problem

wt = a
{

e(σx+αt)wx

}

x
, − 1 < x < 1, 0 < t ≤ 1.0,

w(x, 0) = e2x sin(2πx), − 1 ≤ x ≤ 1, w(−1, t) = w(1, t) = 0, t ≥ 0.
(15)

The initial data in (15), denoted by wred
0 (x), is shown as the red trace in Figure 1.

Using the parabolic solver in Section 4, the computed solution at time t = 1, denoted
by f(x), is shown as the black trace in Figure 1. While that computed solution is,
in fact, an excellent approximation, we view f(x) as merely a good approximation
to the unknown true solution wred(x, 1) with ‖ wred(., 1) − f ‖2≤ δ. We stress that
in an actual engineering application with real data, the expected L2 relative error
δ/ ‖ f ‖2 might be on the order of 1% or thereabouts. Using f(x) in the Van Cittert
procedure (14), we seek to recover the unknown initial values wf (x, 0) that gave rise
to f(x) at t = 1. For each successive iterate hn(x) in (14), we can evaluate and
monitor the L∞ residual, ‖ f − S[hn] ‖∞, as well as the L2 relative error at t = 1,
‖ f − S[hn] ‖2 / ‖ f ‖2. In this example, these two errors decay monotonically.

After 200 iterations, the L∞ residual is 3.1E-3, so that the trace of S[h200](x) is
visually indistinguishable from that of f(x), while the L2 relative error at t = 1 is
0.4%. The iterate h200(x) is shown as the green trace wgreen

0 (x) in Figure 1. Moreover,
‖ wred

0 ‖2= 1.8, while ‖ wgreen
0 ‖2= 1.7. Therefore, both solutions wred(x, t) and
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Effective backward non uniqueness in E xample 2

t=0

t=0

t=1

Either red or green  initial values at t=0, terminate on b lack curve
at t=1 to within 1. 4E−3 pointwise, and L2 relative error=2.3 E−4.

Behavior of Van Cit tert residual norm in Example 2

Fig. 2. TOP. Behavior of log {‖ f − S[hn] ‖∞} versus iteration number n, in Van Cittert
procedure in Example 2. BOTTOM. Ill behavior in non self adjoint problem. Accurate data f(x)
(black curve), approximating solution wred(x, t) at time t = 1 with an L2 relative error of 0.023%,
recovers vastly different initial value w

green
0

(x), in lieu of true initial value wred
0

(x).
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Red and green trace s at t=1 coincide i n Example 2

t=1

t=1

Green trace artific ially raised to ren der red trace visib le.

Fig. 3. Red and green traces are the solutions at time t = 1, wred(x, 1), wgreen(x, 1), corre-
sponding to the initial values wred

0
(x), w

green
0

(x), in Figure 2 (bottom). Traces at t = 1 agree to

within 1.43E − 3, pointwise. This close agreement explains the difficulty of recovering wred
0

(x) from

approximate values for wred(x, 1) in Example 2.

wgreen(x, t) satisfy

‖ w(., 1) − f ‖2≤ δ ≤ 0.004 ‖ f ‖2, ‖ w(., 0) ‖2≤ M = 1.8.(16)

Thus, given only the approximate data f(x), wgreen
0 (x) in Figure 1 can be considered

a valid reconstruction of the unknown initial data. Evidently, f(x) is a close approx-
imation to (at least) two distinct true solutions at t = 1, wred(x, 1) and wgreen(x, 1).
These two solutions have visually indistinguishable traces at t = 1, but have distinct
traces at t = 0. In this example, either reconstruction at t = 0 might be considered
successful.

The next two examples offer a sharp contrast to the mild non uniqueness behavior
in the above self adjoint problem.

6. Example 2 (Figs. 2 and 3). Linear non self adjoint. With a =
0.05, α = 0.05, σ = 0.025, this example involves a linear non self adjoint equation
with variable coefficients, non negative initial values, and non negative solution,

wt = a
{

e(σx+αt)wx

}

x
+ {sin(4πx)}wx, − 1 < x < 1, 0 < t ≤ 1.0,

w(x, 0) = e3x sin2(3πx), − 1 ≤ x ≤ 1, w(−1, t) = w(1, t) = 0, t ≥ 0.

(17)

The initial data in (17), denoted by wred
0 (x), is shown as the red trace in Figure 2

(bottom) while the computed approximation f(x) to wred(x, 1) is shown as the black
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trace in the same figure. Using f(x) in (14), the Van Cittert procedure was applied
for 1000 iterations and resulted in h1000(x) = wgreen

0 (x), shown as the green trace in
Figure 2 (bottom), with a final L∞ residual of 1.4E-3, and an L2 relative error at
t = 1, ‖ f −S[h1000] ‖2 / ‖ f ‖2= 0.023%. Both of these values are noticeably smaller
than was the case in Example 1. Moreover, ‖ wred

0 ‖2= 3.3, while ‖ wgreen
0 ‖2= 2.4.

Therefore, both solutions wred(x, t) and wgreen(x, t) satisfy

‖ w(., 1) − f ‖2≤ δ ≤ 0.00023 ‖ f ‖2, ‖ w(., 0) ‖2≤ M = 3.3.(18)

Clearly, wgreen
0 (x) is a valid reconstruction of the initial data corresponding to the

given data f(x) at t = 1. The behavior of log {‖ f − S[hn] ‖∞} versus n, is shown
in Figure 2 (top) for the first 200 iterations. Evidently, the iterative procedure locked
onto wgreen

0 (x) after twenty or so iterations, with very slow systematic decrease in the
L∞ residual norm taking place thereafter.

The traces for wred(x, 1) and wgreen(x, 1) are plotted in Figure 3 and are vi-
sually indistinguishable. In fact, in Figure 3, the green trace was artificially raised
by 0.05, so as to render the red trace visible. Both these traces coincide with the
black trace in Figure 2 (bottom). Evidently, the given data f(x) is a close approxi-
mation to two very distinct solutions of the parabolic problem in (17) and this is a
good example of effective backward non uniqueness. Indeed, given the black trace in
Figure 2, wgreen

0 (x) would appear to be a more likely initial value than wred
0 (x). In

ill-posed inverse problem computations, smoothness and non negativity of solutions
are considered beneficial regularizing constraints. Here, both traces are smooth and
non negative, but a serious ambiguity remains.

7. Example 3 (Figs. 4 and 5). Linear non self adjoint. This example
differs from the preceding one only by having a different coefficient multiplying the
wx term. With a = 0.05, α = 0.05, σ = 0.025, consider

wt = a
{

e(σx+αt)wx

}

x
+ 0.25wx, − 1 < x < 1, 0 < t ≤ 1.0,

w(x, 0) = e3x sin2(3πx), − 1 ≤ x ≤ 1, w(−1, t) = w(1, t) = 0, t ≥ 0.
(19)

The initial data wred
0 (x) in (19) is shown as the red trace in Figure 4 (bottom),

while the computed approximation f(x) to wred(x, 1) is shown as the black trace in
the same figure. Using f(x) in (14), the Van Cittert procedure was applied for 650
iterations and resulted in h650(x) = wgreen

0 (x), shown as the green trace in Figure
4 (bottom), with a final L∞ residual of 1.8E-2, and an L2 relative error at t = 1 of
0.58%. The behavior of log {‖ f − S[hn] ‖∞} versus n, is shown in Figure 4 (top).
Here, ‖ wred

0 ‖2= 3.3, while ‖ wgreen
0 ‖2= 4.7. Therefore, both solutions wred(x, t)

and wgreen(x, t) in Example 3 satisfy

‖ w(., 1) − f ‖2≤ δ ≤ 0.0058 ‖ f ‖2, ‖ w(., 0) ‖2≤ M = 4.7.(20)

Again, even though it is substantially different from wred
0 (x), wgreen

0 (x) must be con-
sidered a valid reconstruction of the initial data corresponding to the given data f(x)
at t = 1. The traces for wred(x, 1) and wgreen(x, 1) are plotted in Figure 5, and are
again visually indistinguishable. Indeed, in Figure 5, the green trace was artificially
raised by 0.025 so as to render the red trace visible. Here again, the given data f(x) is
a close approximation to two very distinct solutions of the parabolic problem in (19).
In this example, if it is known a-priori that the initial values must be non negative,
this knowledge can be used to reject wgreen

0 (x) as false. Such knowledge would not
have been helpful in Example 2.
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t=0

t=0

t=1

Effective backward non uniqueness in E xample 3

Either red or green  initial values at t=0, terminate on b lack curve
at t=1 to within 1. 8E−2 pointwise, and  L2 relative error=5.8E −3.

Behavior of Van Cit tert residual norm in Example 3

Fig. 4. TOP. Behavior of log {‖ f − S[hn] ‖∞} versus iteration number n, in Van Cittert
procedure in Example 3. BOTTOM. Ill behavior in non self adjoint problem. Data f(x) (black
curve), approximating solution wred(x, t) at time t = 1 with an L2 relative error of 0.58%, recovers
strikingly different initial value w

green

0
(x), in lieu of true initial value wred

0
(x).
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t=1

t=1

Red and green trace s at t=1 coincide i n Example 3

Green trace artific ially raised to ren der red trace visib le.

Fig. 5. Red and green traces are the solutions at time t = 1, wred(x, 1), wgreen(x, 1), corre-
sponding to the initial values wred

0
(x), w

green
0

(x), in Figure 4 (bottom). Traces at t = 1 agree to

within 1.8E − 2, pointwise. This close agreement explains the difficulty of recovering wred
0

(x) from

approximate values for wred(x, 1) in Example 3.

8. Example 4 (Fig. 6). Burgers equation. Behavior in this instructive
nonlinear example involving Burgers equation needs to be compared with Example 1
to be fully appreciated. With a = α = 0.05, consider

wt = a(wx)x − wwx, − 1 < x < 1, 0 < t ≤ 1.0,

w(x, 0) = e2x sin(2πx), − 1 ≤ x ≤ 1, w(−1, t) = w(1, t) = 0, t ≥ 0.
(21)

The initial value wred
0 (x) in (21) is shown as the red trace in Figure 6 (bottom), while

the computed approximation f(x) to wred(x, 1) is shown as the black trace in the same
figure. The red and black traces in Figure 6 (bottom) bear much the same qualitative
and quantitative relationships to each other that occur in the corresponding traces
in Figure 1. Using f(x) in (14), the Van Cittert procedure was applied for 40, 000
iterations, resulting in a final L∞ residual of 7.8E-6, and an L2 relative error at t = 1
of 0.00122%. The behavior of log {‖ f − S[hn] ‖∞} versus n, is shown in Figure 6
(top). Clearly, S[h40,000(x)]) = wgreen(x, 1) is a very accurate match to the given
data f(x) and to wred(x, 1). However, even with such small residuals, h40,000(x) =
wgreen

0 (x), shown as the green trace in Figure 6 (bottom), differs markedly from
wred

0 (x). The two traces have comparable L2 norms with ‖ wred(., 0) ‖2= 1.8 and
‖ wgreen(., 0) ‖2= 2.2. Evidently, wgreen(x, 1) and wred(x, 1) are extremely close
together and significantly more accurate data f(x) might be needed to reconstruct
the correct initial value wred

0 (x). Such accuracy is highly unlikely in practice. This is
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t=1

t=0

t=0

 Effective backward  non uniqueness in Example 4

Either red or green  initial values at t=0, terminate on b lack curve
at t=1 to within 7. 8E−6 pointwise, and  L2 relative error =1.2 2E−5.

Behavior of Van Cit tert residual norm in Example 4

Fig. 6. TOP. Behavior of log {‖ f − S[hn] ‖∞} versus iteration number n, in Van Cittert
procedure in Example 4. BOTTOM. Intractable recovery in nonlinear Burgers equation. Highly
accurate data f(x) (black curve), approximating solution wred(x, t) at time t = 1 with an L2 relative
error of 0.00122%, fails to recover true initial value wred

0
(x), and results in different initial value

w
green
0

(x). Compare with self adjoint behavior in Figure 1.
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in sharp contrast to Figure 1, where, with a 400 times larger L∞ residual of 3.1E-3, the
reconstructions wred

0 (x) and wgreen
0 (x) are reasonably comparable. Clearly, accurate

backward recovery can be intractable in some nonlinear parabolic equations.

9. Example 5 (Figs. 7 and 8). Strongly nonlinear. We now consider
parabolic equations where the diffusion coefficient is a nonlinear function of the solu-
tion,

wt = 0.05(e0.4wwx)x, − 1 < x < 1, 0 < t ≤ 1.0,

w(x, 0) = e3x sin(2πx), − 1 ≤ x ≤ 1, w(−1, t) = w(1, t) = 0, t ≥ 0.
(22)

The initial data wred
0 (x) in (22) is shown as the red trace in Figure 7 (bottom),

while the computed approximation f(x) to wred(x, 1), is shown as the black trace
in the same figure. Using f(x) in (14), the Van Cittert procedure was applied for
750 iterations, resulting in a final L∞ residual of 2.6E-2, and an L2 relative error at
t = 1 of 0.38%. This relative error is smaller than was the case in the well-behaved
Example 1. The function h750(x) = wgreen

0 (x) is the green trace in Figure 7 (bottom).
The behavior of log {‖ f − S[hn] ‖∞} versus n, is shown in Figure 7 (top). Here,
‖ wred

0 ‖2= 3.7, while ‖ wgreen
0 ‖2= 3.9. Therefore, both solutions wred(x, t) and

wgreen(x, t) in Example 5 satisfy

‖ w(., 1) − f ‖2≤ δ ≤ 0.0038 ‖ f ‖2, ‖ w(., 0) ‖2≤ M = 3.9.(23)

The traces for wred(x, 1) and wgreen(x, 1) are plotted in Figure 8 and are again visually
indistinguishable. As before, the green trace in Figure 8 was artificially raised by 0.075
so as to render the red trace visible. Evidently, wgreen

0 (x) is a valid reconstruction.
Note, however, that ‖ wred

0 ‖∞= 10.6, while ‖ wgreen
0 ‖∞= 23.4, is more than twice

as large. Accurate prior knowledge of the L∞ norm of w(x, 0) in (22), if available,
might be used to reject wgreen

0 (x) as false.

10. Example 6 (Figs. 9 and 10). Strongly nonlinear. While the level
of accuracy in this last example is slightly lower than was the case in the preceding
examples, that accuracy is representative of several practical applications. Consider
the nonlinear problem with non negative solution

ut = 0.05(e0.5uux)x + uux, − 1 < x < 1, 0 < t ≤ 1.0,

u(x, 0) = e3x sin2(3πx), − 1 < x < 1, u(−1, t) = u(1, t) = 0, t > 0.
(24)

The initial data wred
0 (x) in (24) is shown as the red trace in Figure 9 (bottom), while

the computed approximation f(x) to wred(x, 1) is shown as the black trace in the
same figure. Using f(x) in (14), the Van Cittert iteration is not well-behaved in
this example. As shown in Figure 9 (top), the smallest L∞ residual occurs after
49 iterations and has the value 4.4E-2. This is about ten times larger than was
the case in the well-behaved Example 1. The function h49(x) = wgreen

0 (x) is the
green trace in Figure 9 (bottom). The corresponding L2 relative error at t = 1,
‖ f−S[h49] ‖2 / ‖ f ‖2= 2.75%. This is about 7 times larger than in Example 1, while
remaining acceptable. In this case, the traces for wred(x, 1) and wgreen(x, 1), plotted
in Figure 10, are naturally distinguishable and there is no need for artificially raising
one of these traces to render the other one visible. Nevertheless, the agreeement at
t = 1 is reasonably close and might well be considered satisfactory in many situations



14 ALFRED S. CARASSO

t=0
t=1

t=0

Effective backward non uniqueness in E xample 5

Either red or green  initial values at t=0, terminate on b lack curve 
at t=1 to within 2. 6E−2 pointwise, and  L2 relative error=3.8 E−3.

Behavior of Van Cit tert residual norm in Example 5

Fig. 7. TOP. Behavior of log {‖ f − S[hn] ‖∞} versus iteration number n, in Van Cittert
procedure in Example 5. BOTTOM. Ill behavior in strongly nonlinear problem. Data f(x) (black
curve), approximating solution wred(x, t) at time t = 1 with an L2 relative error of 0.38%, recovers
substantially different initial value w

green
0

(x), in lieu of true initial value wred
0

(x).
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t=1
t=1

Red and green trace s at t=1 coincide i n Example 5

Green trace artific ially raised to ren der red trace visib le.

Fig. 8. Red and green traces are the solutions at time t = 1, wred(x, 1), wgreen(x, 1), corre-
sponding to the initial values wred

0
(x), w

green
0

(x), in Figure 7 (bottom). Traces at t = 1 agree to

within 2.6E − 2, pointwise. This close agreement explains the difficulty of recovering wred
0

(x) from

approximate values for wred(x, 1) in Example 5.

involving real data. Moreover, the reconstruction wgreen
0 (x) in Figure 9 (bottom)

appears quite plausible. Indeed, given the black trace f(x) in Figure 9 (bottom),
the initial value wgreen

0 (x) seems much more likely than wred
0 (x). As was the case in

Example 2, the beneficial regularizing constraints of smoothness and non negativity,
do not eliminate the candidate wgreen

0 (x). In Example 5, accurate prior knowledge of
the L∞ norm at t = 0, rather than the L2 norm, could be used to reject wgreen

0 (x).
The reverse is true in the present case. Both green and red curves have an L∞ norm
of about 13. However, ‖ wred

0 ‖2= 3.3, while ‖ wgreen
0 ‖2= 9.7.

11. Concluding remarks. In recent years, there has been considerable interest
in the numerical computation of ill-posed inverse problems, as a result of growth in
such fields as non destructive evaluation, geophysical prospecting, remote sensing, di-
agnostic imaging in medical and industrial applications, and other related areas. One
central question, that of stabilizing ill-posed computations so as to prevent explosive
noise amplification, has received much attention. This is the regularization problem,
which has spawned a large literature.

The problem discussed in this paper is unrelated to such noise amplification, but
is equally serious. While backward uniqueness of solutions holds true for large classes
of linear and nonlinear parabolic equations, the exact, highly restricted data at time
t = 1 necessary to recover a particular solution, is seldom available. One must rely
on approximate data. However, such data may unexpectedly approximate several
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Effective backward non uniqueness in E xample 6

t=0

t=0

t=1

Either red or green  initial values at t=0, terminate on b lack curve
at t=1 to within 4. 4E−2 pointwise, and  L2 relative error=2.7 5E−2.

Behavior of Van Cit tert residual norm in Example 6

Fig. 9. TOP. Ill behavior of log {‖ f − S[hn] ‖∞} versus iteration number n, in Van Cittert
procedure in Example 6. BOTTOM. Use of less accurate data in strongly nonlinear problem. Data
f(x) (black curve), approximating solution wred(x, t) at time t = 1 with an L2 relative error of
2.75%, recovers plausible, but vastly different initial value w

green
0

(x), in lieu of true initial value

wred
0

(x).
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t=1

t=1

Small deviation in red and green trace s in Ex 6

Red and green solut ions at t=1 in reas onably good agree ment.

Fig. 10. Red and green traces are the solutions at time t = 1, wred(x, 1), wgreen(x, 1), cor-
responding to the initial values wred

0
(x), w

green
0

(x), in Figure 9 (bottom). Traces at t = 1 agree
to within 4.4E − 2, pointwise. This reasonably close agreement explains the difficulty of recovering
wred

0
(x) from approximate values for wred(x, 1) in Example 6.

distinct solutions at time t = 1.

This paper has focused attention on a class of 1D parabolic equations wt = Lw,
and presented several examples where there is strong computational evidence for the
existence of distinct solutions wred(x, t) and wgreen(x, t) on 0 ≤ t ≤ 1, having the
following properties:

• The quantity ‖ wred(., 1) − wgreen(., 1) ‖∞ is small enough that the traces
wred(x, 1) and wgreen(x, 1) at t = 1 are visually indistinguishable.

• The L2 relative error at t = 1 ,
{

‖ wred(., 1) − wgreen(., 1) ‖2 / ‖ wred(., 1) ‖2

}

is generally less than 1%.

• The functions wred(x, 0) and wgreen(x, 0) are smooth, well-behaved, physi-
cally plausible, and entirely different. Except in the case of Example 6, both
functions have very comparable L2 norms.

In these examples, there is effective non uniqueness in the recovery of wred(x, 0)
in the stabilized backward problem (4), (5), because reasonably accurate data f(x) for
the unknown wred(x, 1) also approximates wgreen(x, 1). Indeed, in Examples 2 and
6, wgreen(x, 0) appears significantly more compatible with f(x) than does wred(x, 0).
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The Van Cittert iterative procedure was a vital part of this investigation. While
that iteration seldom converges, and can behave unpredictably and even diverge in
some cases, it is able to generate unexpected, valid, noise free, candidate solutions
wgreen(x, t). Other iterative procedures might be found that produce further viable,
yet distinctly different, initial functions w(x, 0) from the same data f(x). Such multi-
ple possible solutions explain why the inequality (13) does not guarantee any accuracy
at t = 0, but only provides the redundant information ‖ w1(., 0) − w2(., 0) ‖2≤ 2M .
To the author’s knowledge such explicit examples of effective non uniqueness are new.

The Hölder exponent µ(t) in the inequality (13) also plays an important behind
the scenes role in the above examples. That exponent is a property of the particular
parabolic equation, and it reflects how fast that equation forgets the past. It may be
viewed as a barometer on the difficulty of backward reconstruction. The relatively
well-behaved self adjoint problem in Example 1, corresponds to the best possible
case where µ(t) = t. However, as shown in [13], non self adjointness, nonlinearity, and
other adverse properties of the elliptic spatial operator L in (4), can cause significantly
faster decay of µ(t) to zero, as t ↓ 0. Behavior in the non self adjoint Examples 2 and
3 illustrate this point. The intractable recovery in the Burgers equation in Example
4 is especially noteworthy.

These unexpected results imply a need for caution in applying backward parabolic
equations. There is ever growing interest in the use of backward parabolic equations as
an all-purpose image sharpening tool. Images blurred by space variant, non isotropic,
Gaussian like point spread functions, are equivalent to solutions of 2D linear non self
adjoint parabolic equations, with variable coefficients. Examples 2 and 3 imply that
false deblurred images are possible from approximately known blurred image data,
even with very little noise. Likewise, the 2D or 3D advection dispersion equation could
potentially generate false backward solutions from reasonably accurate knowledge of
the current contaminant spatial distribution.
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[19] W. Höhn, Finite elements for parabolic equations backwards in time, Numer. Math., 40 (1982),
pp. 207–227.

[20] R. J. Knops, Logarithmic convexity and other techniques applied to problems in continuum
mechanics, in Symposium on Non-Well-Posed Problems and Logarithmic Convexity, R. J.
Knops, ed., Lecture Notes in Math. 316, Springer-Verlag, New York, 1973.

[21] R. J. Knops and L. E. Payne, On the stability of solutions of the Navier-Stokes equations
backward in time, Arch. Rat. Mech. Anal., 29 (1968), pp. 331–335.

[22] R. L. Lagendijk and J. Biemond, Iterative Identification and Restoration of Images, Kluwer
Academic Publishers, Boston, 1991.

[23] R. Lattès and J. L. Lions, The Method of Quasi-Reversibility, American Elsevier, New York,
1969.

[24] C.-S. Liu, An efficient backward group preserving scheme for the backward in time Burgers
equation, Comput Model Eng Sci, 12 (2006), pp. 5565.

[25] C.-S. Liu, C.-W. Chang, and J.-R. Chang, The backward group preserving scheme for 1D
backward in time advection-dispersion equation, Numerical Methods for Partial Differential
Equations, 26 (2008), pp. 6180.

[26] J. Lee and D. Sheen, A parallel method for backward parabolic problems based on the Laplace
transformation, SIAM J. Numer. Anal. 44 (2006), pp. 1466–1486.

[27] J. Lee and D. Sheen, A parallel method for backward parabolic problems and its application to
image deblurring: Part II. See http://www.ksiam.org/conference/annual061/upfile/ksiam-
submit.pdf (2006). pp. 41–54.

[28] J. M. Marbán and C. Palencia, A new numerical method for backward parabolic problems
in the maximum-norm setting, SIAM J. Numer. Anal., 40 (2002), pp. 1405–1420.

[29] R. M. Neupauer and J. L. Wilson, Backward probabilistic model of groundwater contami-
nation in non-uniform and transient flow, Advances in Water Resources, 25 (2002) pp.
733-746.

[30] L. E. Payne, Improperly Posed Problems in Partial Differential Equations, CBMS-NSF Re-
gional Conference Series in Applied Mathematics, Volume 22 (1975), SIAM Publications,
Philadelphia, PA.

[31] T. H. Skaggs and Z. J. Kabala, Recovering the history of a groundwater contaminant plume:
Method of Quasi-Reversibility, Water Resources Research, 31 (1995), pp. 2669–2673. DOI
10.1029/95WR02383

[32] N. H. Tuan and D. D Trong, A nonlinear parabolic equation backward in time: Regulariza-
tion with new error estimates, Nonlinear Analysis: Theory, Methods and Applications, 73
(2010), pp. 1842–1852. DOI 10.1016/j.na.2010.05.019

[33] L. Wang, S. Luo, and Z. Wang, Image deblur with regularized backward heat diffusion, Image
Processing (ICIP), 2010 17th IEEE International Conference Proceedings, pp. 1141–1144.
DOI 10.1109/ICIP.2010.5651365


