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When High-Quality Face Images Match Poorly

J. Ross Beveridge, P. Jonathon Phillips, Geof H. Givens, Bruce A. Draper,
Mohammad Nayeem Teli and David S. Bolme

Abstract— In face recognition, quality is typically thought
of as a property of individual images, not image pairs. The
implicit assumption is that high-quality images should be easy to
match to each other, while low quality images should be hard to
match. This paper presents a relational graph-based evaluation
technique that uses match scores produced by face recognition
algorithms to determine the “quality” of images. The resulting
analysis demonstrates that only a small fraction of the images in
a well-studied data set (FRVT 2006) are low-quality images. It
is much more common to find relationships in which two images
that are hard to match to each other can be easily matched with
other images of the same person. In other words, these images
are simultaneously both high and low quality. The existence of
such contrary images represents a fundamental challenge for
approaches to biometric quality that cast quality as an intrinsic
property of a single image. Instead it indicates that quality
should be associated with pairs of images. In exploring these
contrary images, we find a surprising dependence on whether
elements of an image pair are acquired at the same location,
even in circumstances where one would be tempted to think
of the locations as interchangeable. The results presented have
important implications for anyone designing face recognition
evaluations as well as those developing new algorithms.

I. INTRODUCTION

In the field of biometrics, there is considerable interest
in identifying quality measures [6]. A quality measure can
be defined as any measurable property of an image that is
predictive of face recognition performance. An example of
a quality measure is edge density in the facial region of
an image, which was shown by Beveridge et al. to relate to
face recognition performance in the Face Recognition Vendor
Test (FRVT) 2006 evaluation [13]. The motivation for finding
quality measures is to provide feedback to operators to help
them collect good images, and to predict how well a face
recognition algorithm will work on a new data set or in the
context of a federated1 system.

An open question is whether most face recognition failures
are caused by low-quality images or by pair-wise inconsis-
tencies between target and query images. This paper presents
a novel analysis suggesting that, at least for the FRVT
2006 data set, low-quality images are relatively rare. More
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1A federated data set is one in which images collected by one agent are
matched to images collected independently and under different conditions
by another.

common are what we call ”contrary images”: images that
have a contrary nature with respect to quality in so much as
their quality is simultaneously high and low as defined by
how they match to other images of the same person.

We compare the relative frequency of these two types of
failures by analyzing a graph of pair-wise similarity scores
for the FRVT 2006 data set. This graph allows us to single
out low-quality images which match poorly against every
other image of the same person. It also allows us to single
out contrary image by defining an appropriate relationship
between a 4-tuple of images. The resulting analysis shows
that low-quality images are less common than contrary
images, and this in turn suggests that two high-quality face
images may, when compared to each other, match poorly.

This result leads to the question of what factors might
cause two high-quality images of the same face not to
match. In all likelihood there are many factors, including
differences in lighting, pose and expression, but our analysis
also strongly suggests another culprit: location. For all the
contrary images we found, the match pair leading us to
consider the contrary image to be of high quality was almost
always taken at the same location, and the match pair leading
us to consider the contrary image to be of low quality was
always taken at a different location. This does not imply that
traditional factors such as lighting are not important. Lighting
angles are in part a function of location, so the two factors
are inherently confounded. Nonetheless, it is striking that
same/different location is such a strong predictor of whether
two images will match well.

The findings presented here underscore the importance of
characterizing facial biometric quality in terms of pairs of
images as opposed to single images. This is important to
the biometrics community as a whole, and particularly to
those endeavoring to establish quality guidelines for facial
biometrics. The findings with respect to the importance of
location have significant implications for the design of future
face recognition systems, particularly federated systems.
This even holds for situations where the locations might
be thought of as interchangeable, for example when both
locations are indoors under fluorescent lighting. Finally, the
importance of location suggests factors at work within state-
of-the-art face recognition algorithms that make them unex-
pectedly sensitive to environmental factors associated with
location. Better understanding why this sensitivity exists,
and then developing algorithms robust with respect to such
factors, is clearly an important challenge.

The next section provides background on prior work
related to biometric quality in the context of face recognition.



Section III introduces the data set and algorithm used in our
analysis. Section IV presents the match and non-match score
distributions used in our analysis and provides empirical
justification for our decision to concentrate our analysis on
match scores. Section V introduces our new methodology for
framing questions about match quality in terms of patterns
in a match graph, and presents the results that give rise the
conclusion that quality is often a property of a match pair
rather than a single image. Section VI presents our findings
with respect to the critical role that location is playing in
making a pair of images easier or harder to recognize.

II. BACKGROUND

While this paper clearly demonstrates a fundamental lim-
itation of approaches which define quality for individual
images, as is so often the case, the fact that a task cannot be
achieved in all cases does not mean it is not worth pursuing.
Considerable work has already been done in the area of
predicting face recognition performance based on measures
associated with images, and here we review briefly some of
this work.

To begin with definitions, Grother and Tabassi [6] define a
quality measure as a number that relates an image’s quality
to a recognition system and is predictive of how well the
system will perform recognition. This definition is consistent
with most work on biometric quality, and a number of recent
papers [8], [16], [5],[18], [17], [7], [4], [10] have looked at
general image properties, such as contrast, sharpness, and
illumination intensity. Luo [8] presents an instance of a
general framework where quality is measured using Radial
Basis Function (RBF) without relying on reference images
for assessing quality. Subasic et al. [16] evaluate the quality
of face images in travel documents according to the guide-
lines set by the International Civil Aviation Organization
(ICAO). The quality of an image is represented by a fuzzy
value. Fronthaler et al. [5] study an orientation tensor of
an image with a set of symmetry descriptors which can be
varied according to the application. They provide empirical
results on fingerprints and show the applicability of the
approach to assess face quality as well. Werner et al. [18] and
Weber [17] recommend combining photographic (brightness,
contrast, etc.,) and feature level (pose, expression, etc.,)
scores to assess quality of images. Hsu et al. [7] showed the
consistency and discrepancy between human quality ratings
and machine quality scores using a classification-based score
normalization process for various quality metrics. Fourney
et al. [4] define an image’s quality based on its potential to
lead to a correct identification when used with existing face
recognition software. Nasrollahi et al. [10] measure quality
of faces in video sequences by combining features like out-
of-plane rotation, sharpness, brightness and resolution.

Defining quality based upon properties of a pair of bio-
metric signatures being matched is becoming more com-
mon. For example, in the context of iris and fingerprint
recognition, Nandakumar et al. [9] define a single quality
metric for each template-pair query based on the local image
quality measures rather than estimating the quality of the

template and the query images individually. Also, Phillips
and Beveridge[11] in a theoretical exploration of the limits
of quality measures define quality as a function of a pair of
images, not a single image. Their key finding is theoretical,
showing that the task of producing a perfect quality measure
reduces to the problem of constructing a perfect recognition
algorithm.

There is also a line of work [1], [2] that uses statistical
models to relate covariates to recognition performance, and
this work has resulted in a number of findings regarding how
image properties influence the probability a person will be
correctly verified given a query and target match pair. One
finding in particular shows that edge density in the region of
the face is a strong predictor of recognition performance.

Sheirer and Boult [14], [15] have pursued a different line
of work closely related to biometric quality concerned with
explicitly predicting when a recognition algorithm has failed.
A notable aspect of this work is the formal characterization of
the non-match distribution as a Weibull distribution and the
subsequent ability to frame questions of when an algorithm
has succeeded as a hypothesis test relative to the underlying
distribution.

There is also a literature concerned with how people assess
quality, and while this avenue of work does not meet the
standard of relating a measurable property of an image to
recognition performance, it is nonetheless interesting and of
importance to people responsible for fielding systems and
training individuals to use these systems. One recent example
of such work [3] presents a study involving 87 people and
their subjective assessment of a number possible face image
quality factors.

III. THE GOOD, THE BAD & THE UGLY CHALLENGE

The face image data for the Good, the Bad & the Ugly
Challenge Problem (GBU) comes from the Notre Dame
multi-biometric data set collected as part of FRVT 2006 [13],
[12]. The challenge problem is partitioned into three subsets:
the Good, the Bad, and the Ugly. Each partition contains
2170 images of 437 people. These images are further split
into two equal sized groups, a target set and a query
set. Evaluation is carried out by measuring how well face
recognition algorithms recognize images from the query set
matched against the target set.

The three partitions were carefully constructed to intro-
duce a wide range of difficulty, and this was done using sim-
ilarity scores from a fusion algorithm created out of results
from three distinct top-performing FRVT 2006 algorithms.
The resulting verification rates for the fusion algorithm at a
false accept rate (FAR) of 0.001 are 0.98, 0.80, and 0.15 for
the good, the bad, and the ugly partitions respectively. The
match and non-match distributions for this fusion algorithm
across the three partitions are shown in Figure 1 and will be
discussed further in the next section.

The images in the GBU were selected from a larger pool
of 9307 images of 570 people. In addition to introducing a
preference for easy matches in the good partition and very
difficult matches in the ugly partition, the selection process
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Fig. 1. Match score and non-match score distributions for the Good, the Bad & the Ugly partitions. More negative scores are better, match score
distributions are green and non-match distributions are yellow. The FAR=0.001 thresholds for the three distributions are nearly the same and are indicated
by red horizontal lines.

took account of several other constraints. First, no image
could be a member of more than one partition. Second,
images of the same 437 people are present in each partition
and there are between 1 and 4 images per person in the target
and query sets. Further, for each person, the same number
of images are present in every partition. Finally, no pair of
query and target images of the same person in the same
partition are taken on the same day. We will return to the
larger superset of 9307 images later in this paper, since we
will use the superset of similarity scores in our relational
match graph constructions.

In the Good, the Bad & the Ugly Challenge Problem, all
images were acquired using a high quality digital camera,
specifically a six megapixel Nikon D 70. All the photographs
were posed with a person standing in front of a camera
mounted at eye level on a tripod in a well lit setting. Indoors,
the settings were typically hallways. Outdoors, the settings
were either in an open area or against a building backdrop. In
all of the images, the person being photographed was asked
to look at the camera.

IV. TRUE MATCHES GONE BAD

Our analysis focuses exclusively on match scores, and
more generally on the properties of these pairs of images of
the same person. In so doing, we are neglecting the role that
non-match pairs might play in complicating the recognition
task. In essence, we are studying true matches gone bad
while ignoring the case where false matches turn good. The
justification for this simplification is apparent in the non-
match score distributions shown in Figure 1.

For the non-match scores, the distributions appears essen-
tially equivalent for the three partitions. In contrast, the shift

in the match score distributions moving between partitions
is striking. Absent the evidence shown in these distributions,
one might wonder if part of what makes the Bad and Ugly
partitions more difficult is false matches being assigned
uncharacteristically good similarity scores. However, given
the stability of the non-match distribution between partitions,
this does not seem to be the case.

Further, note the red lines in Figure 1. They represent the
verification thresholds based upon FAR = 0.001 and each
of the three non-match distributions. These thresholds are
−10.21, −8.90 and −9.59 for the good, the bad, and the
ugly partitions respectively.

As another measure of the stability of the tails of the non-
match distributions, we calculated a verification threshold
over all three partitions taken as a whole (−9.68). We then
counted how many false accepts occur in each of the three
partitions using this pooled threshold. For the good, the bad,
and the ugly partitions there are 1683, 724 and 1133 false
accepts, respectively. Considering that we are looking at
only the tip of each distribution’s tail, the fact that there
are a significant number of false accepts in every partition
provides additional evidence that the non-match distributions
are behaving similarly to each other.

V. QUALITY COMES IN PAIRS

For face recognition, it has become clear to us that given
a choice between discussing biometric quality in terms of
single images, or instead in terms of pairs of images, it
is more useful to think about biometric quality in terms
of pairs of images. Here we lay out some of the strongest
empirical evidence we have encountered so far in support of
the maxim: “quality comes in pairs.”



To develop the argument, consider for a moment the
implications of presuming the opposite. In other words,
consider what must logically follow from a presumption that
the primary responsibility for failures in face recognition
is explained by properties of individual images. The first
implication is that it should be relatively straightforward to
identify the best and worst quality images by the simple
fact they are either always easy or always hard to recognize.
The second implication is that once a match pair indicates
an image is hard to recognize, that same image should never
participate in a different easily recognized match pair. As we
are about to illustrate, both situations above can be formally
expressed in terms of subgraphs in a match graph.

A. Match Graphs

Consider a graph in which there is one vertex for each face
image in an evaluation. Next, create annotated edges between
vertices based upon similarity scores. The most elemental
form of such a graph would include an edge annotated with
a similarity score for every comparison carried out by a face
recognition algorithm. For our purposes here, edges will only
be defined between pairs of images of the same person. This
simplification results in a clean partition of the full match
graph into a series of connected subgraphs, one per person.

For simplicity, similarity scores are mapped to the cat-
egorical labels ”Hard”, ”Easy” and ”Medium”, and in this
analysis ”Medium” edges will be ignored. One can imagine
a multitude of ways of coming up with such a categoriza-
tion; we define an easy match pair based upon the match
scores from the good partition. Specifically, we determine
the similarity score threshold that defines the best 40% of
the matches in that partition and assign any match with a
score better than this threshold the label ”easy”. To define
a hard match pair, we turn to the ugly partition and find
the similarity score threshold that defines the worst 40% of
the matches. For the fusion algorithm these two threshold
scores are −24.0 and −6.1; a match pair with a score less
than −24.0 is easy and a match pair with a score greater
than −6.1 is hard.

As commonly carried out, an evaluation over the good, the
bad, and ugly data sets would not include similarity scores
between pairs of images straddling two of the partitions. In
other words, we would not have a similarity score relating
an image of a person in the good partition to a different
image of the same person in the bad or ugly partition.
Such a limitation is unnecessary and undesirable for our
match graphs. Therefore, we have chosen to expand our
analysis to use all the available images and match scores
from the original superset of data used to construct the GBU
partitions. Specifically, 9307 images of 570 people.

Applying our definitions of easy and hard to the match
pairs derived from these images, we obtain 14, 517 easy pairs
and 10, 868 hard pairs. That leaves 35, 564 pairs as neither
easy nor hard, for a total of 60, 949 match pairs. Recall from
above that because it is well understood that images taken
at or near the same time are more easily recognized, we
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Fig. 2. Examples illustrating subgraph patterns associated with images that
are: a) always easy to recognize and, b) always hard to recognize.

removed from consideration match pairs taken on the same
day.

B. Once Easy Always Easy and Once Hard Always Hard

If one believes quality is intrinsic to single face images,
then it follows that an image which is easy to recognize
in one circumstance should always be easy to recognize.
Similarly, an image which is intrinsically hard to recognize
should always be hard to recognize. These ideas may be
formalized as patterns in the match graph.

Specifically, the pattern illustrated in Figure 2a is one in
which all edges leaving a specific vertex are labeled easy.
Note that while in the illustration there are three edges,
in general there will be more. The pattern illustrated in
Figure 2b is one in which all edges leaving a specific vertex
are labeled hard. Again, while the illustration shows three
edges, in general the number of edges will vary and typically
be greater than three.

When we search the match graph for instances of the
once-easy-always-easy pattern, we find no instances. In
other words, not one of the 9307 face images satisfies the
constraint that it easily matches every other image of the
same person. The total absence of such consistently easy to
recognize images may in part be explained by an asymmetry
in recognition. In other words, one would expect an overall
low quality match from a comparison between a high-quality
image and a low quality image. Still, it is striking that the
pattern is never observed.
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Fig. 3. An example illustrating a subgraph pattern in which images are
simultaneously ”hard” and ”easy” to recognize.

When we search the match graph for the once-hard-
always-hard pattern, we find 86 examples, and the scarcity of
such images is more difficult to explain if one truly believes
quality resides intrinsically within individual images. If one
believes the asymmetry argument used above, one would
expect many images to satisfy the once-hard-always-hard
pattern. Such a belief seems unsupported given that we see
fewer than 100 images out of over 9000 that are consistently
hard to recognize.

C. Contrary Images

We can go further with the analysis of the match graph,
and define a four way interaction between images that
indicates that an image is hard to recognize in one match pair
and easy to recognize in another match pair, and further, that
the other image for which matching is hard is itself easily
recognized when compared to yet a different image. As stated
above, we call these contrary images. While the English
becomes a bit strained when describing contrary images, the
concept is clearly illustrated in terms of the match graph as
shown in Figure 3. Note while our previous relations were
defined over all the edges leaving a single image, this pattern
is defined over a 4-tuple of images related through three
edges where the center edge is labeled hard and the two
adjacent edges are labeled easy.

If we can find instances of such 4-tuples, then we will have
found contrary images. When we search the match graph for
this pattern, we not only find an instance, we found 221 such
4-tuples that include 214 distinct contrary images. Clearly,
contrary images are not that unusual, and what is interesting
is to begin to try to understand why these situations arise.

VI. LOCATION, LOCATION, LOCATION

To explore what might be giving rise to images that
are simultaneously easy and hard to recognize, we created
quadrature graphics showing the four images involved in
such a way that we could rapidly scan for the hard rela-
tionship across the top row and the two easy relationships
down the two columns. An example is shown in Figure 4
where both images in the top row are contrary images.

Hard to Match 

Easy to Match Easy to Match 

Fig. 4. The four images shown share an easy-hard-easy relationship. The
two images across the top are hard to recognize. The pairs of images in the
left and right columns are easy to recognize..

It would be a mistake to dismiss too quickly the many
factors that likely play some role in creating images that are
both hard to recognize and easy to recognize depending upon
the other image involved. Certainly lighting is important in
this context, and of course lighting and location are related.
Also, facial expression is certainly playing some role.

Those caveats aside, the most singularly striking aspect of
the 221 image 4-tuples we inspected is that the columns are
almost always taken at the same location. Indeed, when both
images are taken indoors, they are always taken at the same
location. Further, there is never a case where a hard pair, the
top row, are taken at the same location.

A. Same vs. Different Location Performance across the GBU

The tuple analysis indicates images taken at the same
location are more easily matched than those taken at different
locations. However, as solid a finding as this is, it represents
behavior in the extremes of the data set, specifically the
easiest match pairs in the Good partition and the hardest
match pairs in the Ugly partition. Therefore, how location
effects verification rates over all the data in each of the GBU
partitions still remains to be seen.

To address this question, we carried out a statistical
analysis of the fusion algorithm performance data for the
GBU partitions. While we could have simply reported
single numbers, the verification rates for same and different
locations across the GBU partitions, this would tell us
nothing about variability in these performance numbers. So
instead we’ve carried out a bootstrap analysis in order to
estimate the distribution of verification rates over these cases.
The details of this analysis follow. The punchline is evident
directly from the results presented in Figure 5a: changing
location significantly drops verification rates in all three
partitions.

To explain our analysis more precisely, we bootstrapped
verification rates for the good, bad, and ugly partitions split
by whether the target and query image locations matched.
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Same Versus Different Locations

Fig. 5. Verification rates and odds ratios comparing images acquired at
the same versus different locations. a) for each partition, the different and
same location rates, b) for each partition the odds ratio for same relative to
different.

For each of the 3 × 2 combinations of these variables, we
calculated the empirical verification rate in our sample. This
can also be viewed as the population-weighted predicted
verification rates marginalized over the random effects.

Next, a bootstrap dataset was created by resampling sub-
jects2 with replacement. The new dataset was assembled
using the accumulated data from this collection of pseudo-
subjects. Each bootstrap dataset may, therefore, have a differ-
ent number of trials than the original one. From this pseudo-
dataset a new set of verification rates were calculated. We
repeated this process 1000 times.

Figure 5a shows boxplots of the bootstrap distributions

2We are not sampling images or image pairs because our analysis assumes
people/subjects are interchangeable.

of verification rates at FAR = 0.001 split by partition and
whether locations were the same or different. The difference
in verification rates between the good, the bad, and the
ugly partitions are self-explanatory. Next, note that for each
partition verification rate tends to be higher when locations
are the same. Notwithstanding these two observations, it is
noteworthy that neither the incremental benefit of transition
up from ugly to bad to good, nor the incremental benefit
of same-location within each of these partitions, is constant.
Instead, both are reduced as partition quality increases. For
the good partition, this can be explained by the overall
excellent verification performance: there is little room left
for improvement.

As we delve deeper, however, more subtle differences are
also apparent. We can see that for the ugly and bad partitions,
the bootstrap variance of verification rates is considerably
greater when location matches than when it doesn’t. This
suggests that matching location, while important, does not
fully explain verification. Moreover, the effect is deceptively
large. Remember that each of the thousand points in one
boxplot is the mean of about 1000 individual verification
outcomes over a pseudo-dataset representative of the sort
one might obtain in the intended sampling population. Thus,
to see the downward whisker of a same-location box overlap
with the upward whisker of a different-location box is not to
observe that some individuals are poorly verified even when
the location is held constant, but instead to learn that the
verification rate for an entire population is highly variable
when same-location matches are attempted.

The magnitude of variation here is very large, considering
that these large samples of subjects should be interchange-
able. This suggests that there must be a strong subject-
specific effect on verification of same-location images, and
that there must likely be substantial effects of other unob-
served variables as well.

Another way to examine these results is to consider odds
ratios. Figure 5b shows boxplots of odds ratios for verifica-
tion for same-location relative to different-location, split by
the good/bad/ugly partitioning variable. These bootstrapped
values were calculated in the same manner described above.
Note that the vertical axis uses a log2 scale. Thus, for
example, the median odds ratio for the ugly partition is
about 3, meaning that if a population of subjects with ugly
different-location images were somehow transformed into a
population of subjects with ugly same-location images, the
overall population-weighted verification odds would more
than triple. The actual medians and 90% probability intervals
are 3.2 (1.8, 5.5), 1.4 (1.0, 2.1), and 4.2 (1.7, 18.0) for the
ugly, the bad, and the good partitions, respectively.

VII. CONCLUSION

Two aspects of the work just presented have broad impli-
cations for face recognition research. First, the discovery of
more contrary images than always-hard images highlights the
difficulty inherent in thinking of face quality as an intrinsic
property of one image. Recall that a contrary image is of
high-quality as implied by at least one match, but nonetheless



gives rise to a poor match when compared to an alternative
high-quality image.

The second major finding is a surprising and important
dependence upon the location where images are acquired.
This dependence suggests a sensitivity to location in sce-
narios where one might expect one location to behave more
or less like another. This location dependency has important
implications for those designing algorithm evaluations and
also for algorithm developers for whom the challenge will
be to lessen such dependencies.

In terms of methodology, formulating questions about
pairs of matching face images in terms of a relational match
graph is, to our knowledge, new. We expect it is an approach
to the study of how algorithms behave that will be open to
expansion and elaboration in the future.
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