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ABSTRACT 
 
 
 
 
 
 
 
Receiver operating characteristic (ROC) or Detection Error Trade-off (DET)  
curves are used to measure the performance of a biometric verification or 
identification system. To go beyond reporting the ROC/DET and to enhance 
evaluation of a verification system we compute the confidence intervals of the 
False Accept Rate (FAR) and False Reject Rate (FRR).  
 
In this paper, we validate the accuracy of variance estimators by comparing the 
estimators to variance computed over repeated experiments. The confidence 
intervals of the error rate using both parametric and non-parametric methods are 
evaluated. For the parametric approach, we calculate the confidence interval 
based on variance estimations from the survey sampling variance approach and 
the binomial distribution model approach. For the non-parametric approach, we 
use the bootstrap method to compute the confidence intervals directly. Two 
different datasets selected from the National Institute of Standards and 
technology (NIST) Proprietary Fingerprint Template Evaluation II (PFTII) program 

and several authentication systems are tested in the evaluation process. Then 
the confidence intervals from all three approaches are reported with different 
sample sizes. 
 
What we found from the evaluation result is that there is no significant difference 
between the confidence intervals computed by all three methods. However, for 
very large data sets, the binomial model approach is computationally the most 
efficient among the three approaches, and we also argue that it can easily be 
extended in theory to evaluation problems with smaller data sets or extremely 
low error rates.   
 
To enhance readability, we have chosen to use the familiar terms FAR and FRR 
rather than the more formal equivalent terms False Match Rate (FMR) and False 
Non-Match Rate (FNMR).  Because the interest is using the operation of the 
matcher rather than that of the complete verification or identification system, we 
do not include other types of system errors such as Failure To Acquire (FTA), or 
Failure To Enroll (FTE). 
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1. Introduction 
 

The confidence intervals for FAR and FRR based on smaller datasets of hundred 
subjects or less have been studied and researched in papers by using both 
parametric and non-parametric estimation. The parametric approach estimates 
the confidence intervals based on the binomial distribution. The non-parametric 
approach, bootstrap technique, has been proposed to estimate the confidence 
intervals of the error rate [1, 2, 3].  Note that [3] is based on much larger dataset 
with 60K (thousand) subjects. 

We use both methods to compute confidence intervals for very large datasets. In 
addition to these two common methods, we take a different approach by using 
the sampling variance theory to estimate the confidence interval. Based on [4, 5], 
simple random sampling, stratified sampling and cluster sampling, have been 
investigated extensively. The variance estimated from a single trial agrees with 
the average sample variance from repeating experiments. This research came 
from the realm of biometric facial recognition. In the present study, we adapt 
simple random sampling (SRS) to compute the variance, then comparing with the 
results in [1, 3] of the binomial and bootstrap estimates. Confidence intervals 
from each method are described in detail. The resulting confidence intervals 
based on several data sets are then compared.  

Indeed, to strengthen our results, datasets of different sample size with different 
genuine scores and impostor scores have been explored with the same 
procedures.  
 
In this report, we include the following sections: 

 Datasets  and Terminology in section 2 

 Variance estimation by random sampling with partitions and by binomial 
estimator in section 3 

 Confidence Interval in section 4 

 Conclusion and findings in section 5 

 Reference  in section 6 

 Appendix A & B in section 7 

2. Datasets and Terminology 

The datasets used in this study are taken from the NIST PFTII program. PFTII is 
part of a NIST ongoing program to measure the performance of fingerprint 
matching software utilizing vendor proprietary fingerprint templates1.  

                                                           
1
 PFTII web site can be found in http://www.nist.gov/itl/iad/ig/pftii.cfm 
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PFTII contains three sample datasets: two two-finger datasets, and one ten-print 
dataset. We select one two-finger dataset (dataset 1) of sample 120,000 subjects 
which are randomly selected from 3.5 million, and the ten-print  dataset  (dataset 
2) of sample 120,000 subjects from 2 million.  

The similarity scores used in the study are from evaluating three algorithms (A, 
B, C) from NIST PFT2 tests for finger 02 (right index) of dataset 1, and finger 01 
(right thumb) of dataset 2. 

2.1 Dataset Configuration 

The sample data are randomly selected  and grouped into one gallery set and 
two probe sets with the following structure:     

 The gallery set G contains M subjects. 

 The first probe set Pm contains M mates to the M subjects of set G.  

 A second probe set Pnm contains N non-mates to the M subjects in G.  

where  M = 120,000, and N = 120,000  with the following constraints: 

 Pm contains exactly the same subject IDs as G, but with different 

images that have been acquired at a different time. 

 All the IDs from datasets are consolidated,  

i.e. there are no common IDs between G and Pnm, from which it 

necessarily follows that there are no common IDs between Pm and 

Pnm. 

The consolidation came from the results of evaluating the NIST  PFT 
test, other NIST Automated Fingerprint Identification System(AFIS) 
testing and confirmation by  the examiners. 

 Fingerprint matching always involved the same finger position (e.g.,  
right index) for both the probe and the gallery.   

The fingerprint verification protocol of PFTII is one-to-one matching which is 
shown in Figure 1. Therefore the matching process produces M genuine scores 
and N (= M) impostor scores.  

                                                           
2
 PFT web site is in http://www.nist.gov/itl/iad/ig/pft.cfm 
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          Figure 1 

 
2.2 Terminology 

Let X = {X1,..  XN} be a sample of impostor scores from matching subjects 

between sets { Pnm,  G }  and Y ={Y1,.. YM}  be a sample of genuine scores set 

from matching subjects between {Pm, G}.    

For the set of impostor scores, assume  that x is a sample of N numbers drawn 
from a population with distribution function  F, that is, F(x) = Prob(X ≤ t). For the 
set of genuine scores Y, assume that Y be a sample of N numbers drawn from a 
population with the distribution G(y) =  Prob( Y ≤ t ). 

Let x denote the imposter score from any chosen case, and y is the genuine 
score from any chosen case: 

 F(x) = Prob( X ≤ x )  is the theoretical cumulative distribution function of 
impostor scores X.  

 G(y) = Prob( Y ≤ y ) is the cumulative distribution function of genuine 
scores Y. 

 The unbiased estimate of F(t) at x = t (threshold)  and 

  the unbiased estimate of G(t) at y = t are: 

          
 

 
           

 

 

   

    
 

 
           

         
 

 
           

 

   

     
 

 
           

These two estimates are random variables.   
 
From the definition FAR and FRR at threshold t are: 
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FAR(x) = ( #Xi  > t ) ∕ N = 1 − (#Xi  ≤  t) ∕ N     (1) 

FRR(y)  = ( #Yi  ≤  t ) ∕ M  
 Thus   

FAR(x) = 1 −       
FRR(y) =         
 

Since N=M, we use M throughout  the report. 

3. Variance Estimation 
 
First we will compute the empirical variance by the random partition samples and 
from binomial distribution theory. 

There is a relationship between SRS and i.i.d. data: see [4, 5] in the survey 
sampling. SRS implies that every element has the same probability of being 
selected.  If the sample data (impostor scores and genuine scores) are i.i.d., we 
can estimate the variance of FAR and FRR from a single trial from repeatable 
experiments by SRS.  

Micheals [6] shows that the unbiased variance for the simple random sampling is: 

         σө
2    =    VSRS (  )  =   μө ( 1 - μө) / M                      (2) 

 
where μө  and  σө represent the true mean and variance of θ, and θ is the 
probability of success of the random variable X. Details about the distribution of θ 
can also be found in [5,  6].  
 
3.1 Random Sampling using Partitions & Procedure 
 
In order to get multiple estimates of the true empirical variance and to determine 
qualitatively if the choice of partition significantly affects the result, we use 
random, non-overlapping partitioning of the sample to simulate a „hold-out‟ style 
cross-validation of the experiment. 
 
To simplify the mechanics of the randomizing process, we begin by randomly 
generating L exhaustive partitions of the set {1, 2, 3, …, M}, where each 
partitioning Pk (1 ≤ k ≤ L) consists of m sets each of size n, such that n x m = M. 

We note that the first set in each partition Pk is selected by random sampling 

without replacement from set {1, …, M}, the second set selected by random 
sampling without replacement from the residue left by the selection of the first 
set, and so on; the mth such set finally exhausts {1, …, M}. 
 
Let P = {(X1,Y1),∙∙∙ (XM,YM)} T be the set of pairs of impostor score and genuine 

score from a specific matcher. From this baseline of sample scores, we 
empirically determine a set of thresholds of interest:   T = {t1, t2, t3, t4, t5 }  that 

corresponding to the following set of target Far values:   
{10-4, 5x10-4, 10-3, 5x10-3, 10-2} respectively. 
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By using the partitioning P k we generate sets of random sampled pairs [without 

replacement] from set P. We do this L times to form new sets { P1, P2, ∙∙∙ PL}. 

Each set Pi, is thus partitioned into m subsets of size n, where  M = m x n, shown  

as in Figure 2. 
 
 P1          P2    PL 

 
 
 
 
             . . .   
 
 
                

      

Figure  2 
 
Let Pi = (Xi , Yi), the i-th random sample set of P where  

 
   Xi  = {X1, … Xn, .Xn+1, .. X2n,    . . .    X(m-1)n , .. Xmn }i

T ( i-th imposter set )  

                       ….        
          = {   Xi1,              Xi2,         ….           Xi m     }T ;   (T – Transpose) 

   
                                                           
   Yi  = {Y1, … Yn, .Yn+1, .. Y2n, . . . .    Y(m-1)n , .. Ymn }i

T    (i-th genuine set )  

                      ….        
         = {   Yi 1,               Yi 2,         ….           Yi m        }

T  

 
3.2 Sampling Variance of FAR and FRR 
 

First, compute the FAR(Xi) and FRR(Yi) from each Pi by the following procedure: 

 
For  each (i = 1 … L): 
 

 Calculate FAR(Xi1,), …. , FAR(Xi m)  from each subgroup { Xi1, ….  Xi m}  

 Calculate FRR(Yi1,), …. , FRR(Yi m)  from each subgroup {Yi1,  ….  Yi m }   

 Compute the sample variance of   FAR(Xi),   V(FAR(Xi)) from  

       
           

  
   

   
                                 

 

 where xij= FAR(Xi j)  and              
  FAR(Xi j )) ∕ m,   (i= 1,.. L).  

Apply FRR(Yi) to equation (4) to compute V(FRR(Yi)). 

P 1,1  . . 
.  
 
  P1 ,n 

 

P 1,n+1  . . 
.  
.  P1,n+5 

 
  …  P1,2n 

 
P1,n(m-1)+1 

.. 
 P1,n*m 

 

PL,1 

PL,2 … 
  . 
   PL,n 
 

PL,n 
 

   PL,n+1   
PL,n+2   

….  
  .   
PL,2n  

PL,n(m-1)+1 

PL,n( 
…. 

PL,n*m 

 

 . .     .   .   

.   .   
.  .  .  . .    P2,1  

   P2,2 
    . .  

P2,N=1  

P2,n+2   .  

. 
P2,n(m-1)+1 

P2,n(m-1)+2 
. .. .  

P2,n*m 
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To simplify notation, let                           , and                           

3.3 Estimated Variance of Binomial Estimator 

Given data X={x1, x2,∙∙∙  xM} as described in 2.2 is a binomial random variable 
with the probability of success in M trials,  i.e., 

                  

 

   

             

then the sample proportion Z = X ∕M is an unbiased estimator of F(t), with the 
expectation:    

                         E(     ) = F(t) 

and the variance:  

           

                         
 

 
                                             

 
We compute the variance for the binomial estimator from (4). Same applies to 

V(     ). Details of this approach can be found in [2].  

The binomial model for a sum of independent and identically distributed 0,1-
valued random variables, or Bernoulli trials is standard, but the model applies to 
more general situations such as when the individual trials have different 
probability distributions [10]. To explain this important extension, we introduce 
some generic notations. Let pi denote the probability of success at the ith trial, 
and S be the number of successes in M independent trials. Then the variance of 
S is maximum when p1=p2=… . =pM=p. This can be interpreted as follows: using 

the binomial model B(M,    
 
      )  to compute the variance  provides the 

correct upper bound for Var (S) even when the error rates of individual 
components are not equal (Theorem 3 of [10]).  Furthermore, the confidence 
intervals based on the above binomial model are still valid even when the 
individual trials have unequal probabilities (cf Theorem 5 of [10]). When M is very 
large, the standard approximation using the normal distribution or Poisson 
approximation (for very small p‟s) of the Binomial distribution can be used to 
simplify binomial probability calculations.  

For each random partition samples Pi, we computer the variance: 

    
           

                                       

 
                      

where  n is the sample size of Pi. 

 
Therefore  
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and  

             
                                       

 
 

 
for (i= 1,.. L). 
 
The resulting variance from those two computations (3) and (5) and the mean of 
the sample variance of both FAR and FRR are displayed in Figure 3 and Figure 4 
for matcher Algorithm A at the threshold  where FAR = 10 –4, L = 1000. 
 

 
  

        Figure 3 
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        Figure 4 
4. Confidence Intervals 

 
Applying the normality tests Anderson Darling and Wilk-Shapiro, to each set 

{FAR(Xi1,), …. , FAR(Xi m)} and to { FRR(Yi1,), …. , FRR(Yi m) }. The result show 

that FAR(Xi) and FRR(Yi) are both normally distributed when FAR and FRR are 

not too small (> 10-4) from the p-values listed in Table 4 in appendix A. 

Furthermore, applying the multivariate Wilk-Shapiro test to FAR(Xi) and FRR(Yi)  

indicates that these sets are Bivariate Normal distributed (p-values are shown in 

Appendix A). The statistical summary of correlation coefficients (ρ) indicates that 

the correlation of FAR and FRR is centered around ρ=0. (The minimum, twenty-

five percentile, median, seventy five percentile and maximum of ρ values are 

shown in Appendix A Table 5).  Further investigation and research will be needed 

to establish the confidence region from the correlation coefficients. 

However the individual normal distribution 95 % confidence interval of FAR and 

FRR are:   

 a. For each Pi  :  

                                                 
  

  
           

  

  
                               

 

                          where                                                          
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b. For the binomial estimate, the confidence interval is derived from 

the 95th percentile of the normal distribution for large M: 
   

                                 (7) 
where 

        
                                   

 
 

c. For the non-parametric bootstrap, the 95 % confidence interval is: 

( FAR q(α/2) ( x*) ,  FAR q(1- α/2) ( x*) ) 

where  α = 0.05, and q(α/2) and q(1- α/2) are the 2.5 % and 97.5 % 

quantiles of bootstrap estimate of FAR(x*). In this report, a NIST 
non-parametric program from [3] was adopted here to estimate the 
confidence interval. The number of bootstrap replication in the 
program is 2000.  

d. Calculate the confidence interval from the mean of FARi(x) by 
applying (6) with:         

                                                                     
                  

 
 

   

In calculation the confidence interval for the binomial distribution B(n, p), we 
approximate, using the normal distribution N(np, np(1-p)). This works well when n 
is very large and p is not too small. However, when n is large and p is very small, 
B(n, p) can be approximated by the Poisson distribution P(λ= np). As a rule of 
thumb, the Poisson approximation can be applied if  n ≥ 20, p ≤ 0.05 or n ≥ 100, 
np ≤ 10. 
 

The details of the confidence intervals of FAR and FRR from the each 
experiment (i), i = 1…L at FAR = 10-3 , for binomial,  bootstrap, and confidence 
interval  from the mean variance are shown in the Figure 5, and 6.  
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       Figure 5 

 

        Figure 6 

 

Figure 7 and 8 represent the CI of FAR and FRR from all five target threshold set  

T,  by the variance mean, binomial, and bootstrap estimation for Algorithm C.  
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       Figure 7 

 

   Figure 8 

 

Data of the CIs from Algorithm A, B and C are shown by Table 1, 2 and 3.  Note 
that these results are based on the scores from dataset 1 of finger 02.  
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      Table 1:  Algorithm A  -  Dataset 1 finger 02 
 

A 
 

FAR Variance Binomial Bootstrap FRR Variance Binomial Bootstrap 

   CI
+ (3)

 
CI- 

0.0001 
0.000156 0.000157 0.000158 

0.070142 
0.071587 0.071587 0.071608 

0.000044 0.000043 0.000050 0.068697 0.068697 0.068729 

CI
+ 

CI- 0.0005 
0.000636 0.000635 0.000635 

0.054058 
0.055345 0.055337 0.055317 

0.000380 0.000381 0.000381 0.052771 0.052779 0.052758 

CI
+ 

CI- 0.0010 
0.001241 0.001242 0.001242 

0.045408 
0.046590 0.046586 0.046550 

0.000875 0.000874 0.000874 0.044226 0.044230 0.044221 

CI
+ 

CI- 0.0050 
0.005483 0.005485 0.005485 

0.033567 
0.034593 0.034586 0.034613 

0.004683 0.004681 0.004681 0.032541 0.032548 0.032525 

CI
+ 

CI- 0.0100 
0.010624 0.010623 0.010623 

0.028925 
0.029880 0.029873 0.029858 

0.009492 0.009493 0.009493 0.027970 0.027977 0.027950 

 
 

     Table 2:  Algorithm B 
 

B 
 

 
FAR 

 
Variance Binomial Bootstrap FRR Variance Binomial Bootstrap 

CI
+
 

CI- 
0.0001 

0.000157 0.000157 0.000158 
0.019234 

0.020024 0.020011 0.020038 

0.000043 0.000043 0.000050 0.018444 0.018457 0.018479 

CI
+ 

CI- 0.0005 
0.000635 0.000635 0.000642 

0.014042 
0.014708 0.014708 0.014683 

0.000381 0.000381 0.000383 0.013376 0.013376 0.013350 

CI
+ 

CI- 0.0010 
0.001206 0.001206 0.001208 

0.012425 
0.013053 0.013052 0.013083 

0.000844 0.000844 0.000850 0.011797 0.011798 0.011817 

CI
+ 

CI- 0.0048 
0.005189 0.005191 0.005175 

0.009883 
0.010445 0.010443 0.010442 

0.004411 0.004409 0.004408 0.009321 0.009323 0.009358 

CI
+ 

CI- 0.0109 
0.011497 0.011496 0.011500 

0.008683 
0.009208 0.009208 0.009208 

0.010319 0.010320 0.010350 0.008158 0.008158 0.008158 

      

     Table 3:  Algorithm C  
 

C 
 

FAR Variance Binomial Bootstrap FRR Variance Binomial Bootstrap 

CI
+
 

CI- 
0.0001 

0.000157 0.000157 0.000158 
0.005292 

0.005701 0.005703 0.005708 

0.000043 0.000043 0.000050 0.004883 0.004881 0.004875 

CI
+ 

CI- 0.0005 
0.000647 0.000646 0.000650 

0.004308 
0.004678 0.004679 0.004692 

0.000387 0.000388 0.000392 0.003938 0.003937 0.003942 

CI
+ 

CI- 0.0010 
0.001198 0.001197 0.001200 

0.003842 
0.004192 0.004192 0.004188 

0.000836 0.000837 0.000842 0.003492 0.003492 0.003500 

CI
+ 

CI- 0.0049 
0.005342 0.005339 0.005333 

0.003058 
0.003371 0.003370 0.003375 

0.004542 0.004545 0.004558 0.002745 0.002746 0.002742 

CI
+ 

CI- 0.0102 
0.010822 0.010820 0.010846 

0.002767 
0.003064 0.003064 0.003067 

0.009678 0.009680 0.009683 0.002470 0.002470 0.002475 

 

                                                           
3 CI

+ 
is the upper bound of the confidence intervals, CI- is the lower bound. 
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5. Conclusion and Findings 
 
We can summarize with the following findings: 
 

 Figures 3, and 4 illustrate that the mean variance calculated from the 
simple random sample method are almost identical to the variance from 
binomial estimates.  

 Figures 5, and 6 illustrate that the CI computed from mean variance of 
simple random sample and the binomial estimate almost identical. Thus 
this validates equation (2) and (4), i.e., the mean of empirical variance is 
the binomial estimate variance.  

 Figures 7 and 8 illustrate the 95 % CIs of FAR and FRR for all target 
thresholds from algorithm C. The figures show the CI from bootstrap 
coincides with the others. 

As predicted by statistical asymptotic theory, we found no significant difference in 
the confidence intervals of FAR and FRR among all three approaches:  the mean 
of estimated variance, the binomial estimation, and the bootstrap. In Appendix B, 
Tables 6-8 show the CI from dataset 2 of evaluation results on finger 01 with 
similar results, i.e., without any significant difference.  
 
Therefore, we can adopt the Binomial approach by 

 locating the FRR from a specific FAR from DET curve of the test scores, 

 applying FRR to equation (7) to obtain the CI for FRR. 

The binomial approach avoids the long computing time by the bootstrap 
simulations.  
 
Nevertheless, there are some questions which arise from the above analysis. 
 
1. Can we apply the binomial estimated confidence interval equation to a 

much smaller sample size dataset?  Will there be any difference between 
parametric and non-parametric estimates? If not, how much smaller can 
the dataset size be so that it still gives a good estimate? 

  
Two subsets of the original 120K sample dataset with the size of 60K and 20K 
are selected randomly to compute their confidence intervals from the same 
procedures. The partition size n has been adjusted in the process from the 
different sample sizes. The resulting CIs of FRR for dataset 2 of finger 01 are 
shown from Figure 9 and 10. 
  
Once again, Figures 9 and 10 show that there is no significant difference among 
the three estimates. Yes, binomial estimation can be applied  to smaller data 
samples. But the measured error rate has to be at least 1/n, where n is the 
sample size.  
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        Figure 9 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

         Figure 10 
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Plots of all the CI of FRR from three sample sizes: 120K, 60K  and 20K along 
with their respective DETs are shown in Figure 11.  
 

 
      Figure 11 

 
The confidence intervals do indeed converge from 20K sample to 120K sample 
but not symmetrically. The DET curves coincide each other until after the tail end 
of FAR value (< 2e-4) which is slightly greater than 0.01 %.  

Minimum error for the sample size M (=120,000) is 1/M (= 8.3e-6) which is less 
than FAR = 1e-4 in Figure 11.  

Adoption of the “Rule of 30” for the biometric test size was initially suggested in 
[7] and is supported in [8].  It gives the lower bounds of errors of a test for a given 
level of accuracy. For example, If the FAR is 0.01 %, then the sample size will 
need to be 300K to have at least 30 errors to comply with the rule.  In Figure 11, 
three vertical dotted lines represent the minimal FAR values, {2.5e-4, 5e-4, 1.4e-
3} from the respective sample sizes, {120K, 60K, and 20K} according to “Rule of 
30”.  

From the observation of Figure 11, there are too  fewer data points at the tail end 
of the DET for the smaller size sample where the CI is far from that of the larger 
size sample. There are some research papers on the estimation tails of 
probability distributions and the confidence region around a very smaller error 
rate as in [8]. Further investigation of that aspect is warranted in future.  

However, in our study, the experiment dataset sample size is 120K. If we follow 
this rule of 30, the guideline suggests that we can only guarantee the error rate 
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0.025 % for FAR instead of 0.01 % that we are estimating here. This leads us to 
the question “Do we really need a sample size of 300K in order to report FRR 
with a CI of 95 % at FAR = 0.01 % ?” 
 
2. If by doubling the imposter scores but with the same number of genuine 

scores in the experiment with the same protocol, will the binomial 
estimator still give accurate estimate confidence intervals?  

For example, we let M = 60K, and N =120K for sample scores sets, then the 
confidence intervals are shown in Figure 12 and 13. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Figure 12 

 
       Figure 13 

 
Once again, all three methods illustrate the similar confidence intervals. The 
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confidence intervals of FRR of the 60Kx120K (genuine, impostor sizes) showed 
the similar range of FRR of 60Kx60K. (In appendix B, table 9, and 10).  We can 
therefore apply binomial estimation to compute the confidence interval which is 
based on the sample size and the corresponding FAR from the DET curve but 
with the different FRR value.   
 
If we apply the same analogy to 120Kx120K and 120Kx300K, can we predict the 
accurate CI range for 120Kx300K from 120Kx120K? Will it look like Figure 11 
where the FRR of 60KX60K approximately equal to 120Kx120K? It‟s possible, 
but unless we increase the imposter score to 300K, we don‟t know.  
 
From the aspect of the “Rule of 30”, Table 1-3 and 6-8 show that CIs are very 
compatible with all three methods where the sample size is 120K which only 
provides 12 errors for FAR = 10-4. Therefore we do not find “Rule of 30” relevant 
for the PFTII tests. 
  
In this study, we have selected a target set T of thresholds of interested FAR 

values to compute the CI of FRR. We will investigate further by selecting a set of 
interested FRR values to compute the confidence intervals of FAR by the same 
procedures. 
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7. Appendix A    Table 4  Normality test P-Values 
 

Algorithm Dataset
FAR 

Value

Median FAR  

p-value 

(Shapiro) 

Median   

FRR  p-value 

(Shapiro)

Median    

FAR  p-value  

(Anderson)

Median     

FRR  p-value 

(Anderson) 

Median 

Multivariate 

p-value 

(Shapiro)

A 2 0.0001 0.000105 0.000002 0.519552 0.000002 0.067715

A 2 0.0005 0.100611 0.074713 0.481129 0.074713 0.259513

A 2 0.0010 0.238208 0.191036 0.498212 0.191036 0.312403

A 2 0.0050 0.434978 0.409187 0.495715 0.409187 0.329778

A 2 0.0100 0.477359 0.458813 0.474295 0.458813 0.320820

A 1 0.0001 0.000089 0.000002 0.478007 0.000002 0.064373

A 1 0.0005 0.099951 0.072191 0.505644 0.072191 0.261747

A 1 0.0010 0.237872 0.196611 0.498333 0.196611 0.301616

A 1 0.0050 0.453799 0.431782 0.509553 0.431782 0.362946

A 1 0.0100 0.478621 0.449979 0.518082 0.449979 0.362283

B 2 0.0001 0.000082 0.000002 0.494205 0.000002 0.054991

B 2 0.0005 0.100256 0.070558 0.462484 0.070558 0.274883

B 2 0.0010 0.243477 0.208760 0.447962 0.208760 0.312299

B 2 0.0050 0.417540 0.387144 0.428931 0.387144 0.312714

B 2 0.0100 0.453561 0.427894 0.431700 0.427894 0.343890

B 1 0.0001 0.000105 0.000002 0.450043 0.000002 0.075009

B 1 0.0005 0.094934 0.073585 0.456605 0.073585 0.254219

B 1 0.0010 0.236580 0.189092 0.464645 0.189092 0.296973

B 1 0.0050 0.431710 0.418430 0.464428 0.418430 0.337072

B 1 0.0100 0.471834 0.448874 0.473857 0.448874 0.340417

C 2 0.0001 0.000116 0.000002 0.403654 0.000002 0.053667

C 2 0.0005 0.103226 0.075246 0.399971 0.075246 0.278797

C 2 0.0010 0.227611 0.187754 0.365675 0.187754 0.293249

C 2 0.0050 0.426359 0.419611 0.356065 0.419611 0.306368

C 2 0.0100 0.451815 0.434846 0.343314 0.434846 0.309760

C 1 0.0001 0.000078 0.000002 0.445476 0.000002 0.035026

C 1 0.0005 0.110294 0.080157 0.429163 0.080157 0.289135

C 1 0.0010 0.251130 0.197729 0.407773 0.197729 0.305428

C 1 0.0050 0.036931 0.015718 0.371635 0.015718 0.243925

C 1 0.0100 0.515979 0.483681 0.382362 0.483681 0.376075

 
The median p-values from 1000 experiments show that majority of the p-values  
from Wilks-Shapiro and Anderson Darling tests indicate that FAR and FRR are 
normally distributed. There are exceptions  at FAR = 0.0001 which reject the 
normality of the data due to insufficient errors generated from the data or p being 
too small for the normal approximation while the Poisson distribution might give a 
better approximation. 
Note: Anderson, Shapiro normal and multivariate tests are implemented from R 
software. 



21 

 

Table 5 – Correlation Coefficient ρ  

 

Algorithm Dataset
FAR 

mean

FRR 

mean

Minimum 

ρ

Twenty five 

Percentile 

ρ

   Median  

ρ

Seventy 

five 

Percentile 

ρ

Maximum  

ρ

A 2 0.0001 0.0456 -0.7715 -0.1773 -0.0040 0.1570 0.6886

A 2 0.0005 0.0331 -0.6931 -0.1621 -0.0129 0.1605 0.5638

A 2 0.0010 0.0304 -0.6451 -0.1702 -0.0131 0.1580 0.7267

A 2 0.0050 0.0238 -0.6457 -0.1646 0.0014 0.1710 0.6704

A 2 0.0101 0.0214 -0.5796 -0.1512 -0.0017 0.1729 0.8304

A 1 0.0001 0.0701 -0.6612 -0.1682 -0.0083 0.1619 0.5968

A 1 0.0005 0.0541 -0.7198 -0.1568 0.0032 0.1823 0.6200

A 1 0.0011 0.0454 -0.7338 -0.1480 0.0034 0.1632 0.6880

A 1 0.0051 0.0336 -0.6514 -0.1562 0.0123 0.1906 0.6638

A 1 0.0101 0.0289 -0.6554 -0.1408 0.0180 0.1628 0.6926

B 2 0.0001 0.0108 -0.6731 -0.1607 -0.0029 0.1643 0.7789

B 2 0.0005 0.0079 -0.7463 -0.1683 0.0006 0.1702 0.6310

B 2 0.0010 0.0070 -0.6563 -0.1750 -0.0068 0.1488 0.6795

B 2 0.0051 0.0054 -0.7164 -0.1935 -0.0158 0.1621 0.6466

B 2 0.0103 0.0045 -0.7586 -0.1804 -0.0279 0.1334 0.6403

B 1 0.0001 0.0192 -0.6669 -0.1519 0.0051 0.1630 0.6448

B 1 0.0005 0.0140 -0.6260 -0.1591 0.0074 0.1707 0.6620

B 1 0.0010 0.0124 -0.7034 -0.1528 0.0110 0.1689 0.7123

B 1 0.0048 0.0099 -0.7131 -0.1606 -0.0031 0.1462 0.6663

B 1 0.0109 0.0087 -0.7330 -0.1498 -0.0014 0.1415 0.6310

C 2 0.0001 0.0034 -0.6199 -0.1365 0.0139 0.1630 0.7567

C 2 0.0005 0.0028 -0.7775 -0.1291 0.0239 0.1710 0.6400

C 2 0.0010 0.0026 -0.7323 -0.1499 0.0067 0.1483 0.6384

C 2 0.0055 0.0023 -0.6970 -0.1802 -0.0115 0.1530 0.6876

C 2 0.0096 0.0022 -0.6425 -0.1704 -0.0118 0.1582 0.6866

C 1 0.0001 0.0053 -0.6384 -0.1510 -0.0001 0.1673 0.7708

C 1 0.0005 0.0043 -0.7032 -0.1757 -0.0107 0.1410 0.6544

C 1 0.0010 0.0038 -0.6571 -0.1829 -0.0215 0.1438 0.6724

C 1 0.0049 0.0031 -0.7959 -0.3818 -0.2330 -0.0635 0.5865

C 1 0.0102 0.0028 -0.6596 -0.1774 -0.0195 0.1287 0.5976
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Appendix B:  Confidence Intervals for Dataset 2, finger 01 (120Kx120K) 
      
     Table 6 - Algorithm A 

 
A 
 

FAR Variance Binomial bootstrap FRR Variance Binomial Bootstrap 

CI
+
 

CI
-
 

0.000100 
0.000157 0.000157 0.000158 

0.045600 
0.046781 0.046780 0.046771 

0.000043 0.000043 0.000050 0.044419 0.044420 0.044483 

CI
+ 

CI
-
 0.000517 

0.000644 0.000646 0.000650 
0.033083 

0.034093 0.034095 0.034079 

0.000390 0.000388 0.000383 0.032073 0.032071 0.032033 

CI
+ 

CI
-
 0.001000 

0.001176 0.001179 0.001192 
0.030375 

0.031343 0.031346 0.031325 

0.000824 0.000821 0.000825 0.029407 0.029404 0.029408 

CI
+ 

CI
-
 0.005042 

0.005443 0.005443 0.005442 
0.023792 

0.024653 0.024654 0.024633 

0.004641 0.004641 0.004658 0.022931 0.022930 0.022958 

CI
+ 

CI
-
 0.010150 

0.010718 0.010717 0.010717 
0.002145 

0.022267 0.022270 0.022258 

0.009582 0.009583 0.009583 0.020633 0.020630 0.020667 

 

       Table 7 - Algorithm B 
 

B 
 

FAR Variance Binomial bootstrap FRR Variance Binomial Bootstrap 

CI
+
 

CI
-
 

0.000100 
0.000157 0.000157 0.000167 

0.010883 
0.011386 0.011385 0.011379 

0.000043 0.000043 0.000050 0.010214 0.010215 0.010221 

CI
+ 

CI
-
 0.000500 

0.000646 0.000646 0.000650 
0.008450 

0.008426 0.008427 0.008433 

0.000388 0.000388 0.000392 0.007424 0.007423 0.007450 

CI
+ 

CI
-
 0.001033 

0.001223 0.001225 0.001225 
0.007317 

0.007497 0.007498 0.007500 

0.000861 0.000859 0.000867 0.006553 0.006552 0.006558 

CI
+ 

CI
-
 0.005217 

0.005510 0.005511 0.005500 
0.005333 

0.005849 0.005849 0.005842 

0.004706 0.004705 0.004717 0.005017 0.005017 0.005021 

CI
+ 

CI
-
 0.010233 

0.010911 0.010914 0.010900 
0.004583 

0.004923 0.004922 0.004925 

0.009773 0.009770 0.009775 0.004161 0.004162 0.004183 

 

     Table 8 - Algorithm C 
 

C 
 

FAR Variance Binomial bootstrap FRR Variance Binomial Bootstrap 

CI
+
 

CI
-
 

0.000100 
0.000156 0.000157 0.000167 

0.003442 
0.003774 0.003773 0.003792 

0.000044 0.000043 0.000050 0.003110 0.003111 0.003108 

CI
+ 

CI
-
 0.000517 

0.000645 0.000646 0.000650 
0.002758 

0.003054 0.003055 0.003067 

0.000389 0.000388 0.000392 0.002462 0.002461 0.002487 

CI
+ 

CI
-
 0.001000 

0.001178 0.001179 0.001183 
0.002625 

0.002914 0.002915 0.002925 

0.000822 0.000821 0.000825 0.002336 0.002335 0.002350 

CI
+ 

CI
-
 0.005508 

0.005926 0.005927 0.005933 
0.002283 

0.002552 0.002553 0.002533 

0.005090 0.005089 0.005092 0.002014 0.002013 0.002004 

CI
+ 

CI
-
 0.009558 

0.010111 0.010109 0.010133 
0.002208 

0.002472 0.002474 0.002483 

0.009005 0.009007 0.009004 0.001944 0.001942 0.001958 
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Table 9: 60Kx60K (Subset of Dataset 1, finger 02) 
 

B 
 

FAR Variance Binomial bootstrap FRR Variance Binomial Bootstrap 

CI
+
 

CI
-
 

0.000109 
0.000180 0.000180 0.000177 

0.010800 
0.018727 0.018738 0.018771 

0.000020 0.000020 0.000032 0.016639 0.016628 0.016707 

CI
+ 

CI
-
 0.000496 

0.000700 0.000699 0.000710 
0.007925 

0.012671 0.012682 0.012855 

0.000334 0.000335 0.000339 0.010963 0.010952 0.011116 

CI
+ 

CI
-
 0.001016 

0.001273 0.001272 0.001323 
0.007025 

0.011390 0.011402 0.011563 

0.000761 0.000762 0.000806 0.009776 0.009764 0.009914 

CI
+ 

CI
-
 0.005022 

0.005357 0.005353 0.005831 
0.005433 

0.009127 0.009130 0.009101 

0.004243 0.004247 0.004677 0.007673 0.007670 0.007655 

CI
+ 

CI
-
 0.010338 

0.012640 0.012630 0.012726 
0.004542 

0.007856 0.007859 0.007964 

0.010894 0.010904 0.011000 0.006510 0.006507 0.006598 

 
 
Table 10:  60Kx120K (Dataset 1, finger 02) 

 
B 
 

FAR Variance Binomial bootstrap FRR Variance Binomial Bootstrap 

CI
+
 

CI
-
 

0.000100 
0.000169 0.000168 0.000164 

0.015000 
0.018759 0.018758 0.018763 

0.000049 0.000050 0.000049 0.016647 0.016648 0.016756 

CI
+ 

CI
-
 0.000550 

0.000623 0.000622 0.000639 
0.007850 

0.012714 0.012707 0.012823 

0.000369 0.000370 0.000377 0.010968 0.010975 0.011116 

CI
+ 

CI
-
 0.001000 

0.001195 0.001196 0.001238 
0.007201 

0.011444 0.011435 0.011571 

0.000837 0.000836 0.000861 0.009786 0.009795 0.009857 

CI
+ 

CI
-
 0.005000 

0.005420 0.005422 0.005484 
0.005553 

0.009035 0.009023 0.009134 

0.004624 0.004622 0.004689 0.007559 0.007571 0.007679 

CI
+ 

CI
-
 0.010300 

0.010918 0.010910 0.011009 
0.005005 

0.007982 0.007971 0.008077 

0.009758 0.009766 0.009882 0.006598 0.006609 0.006680 

 
 
 


