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Abstract – Sampling variability results in uncertainties of measures. The nonparametric two-
sample bootstrap method has been used to compute uncertainties of measures in receiver 
operating characteristic (ROC) analysis on large datasets, such as the standard error (SE) of the 
equal error rate in biometrics, the SE of a detection cost function in speaker recognition 
evaluation, and others. Specifically, the SE of the area under ROC curve (AURC) can be 
computed analytically using the Mann-Whitney statistic. It can also be calculated using the 
nonparametric two-sample bootstrap method. The analytical result could be treated as a ground 
truth. The relative errors of bootstrap-method results with respect to the analytical-method results 
using different matching algorithms were examined, and they were quite small. Hence, this 
validates the nonparametric two-sample bootstrap method applied in ROC analysis on large 
datasets. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Index Terms -- ROC analysis, bootstrap, area under ROC curve, uncertainty, standard error, 
biometrics, speaker recognition. 
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1 Introduction 
 
Sampling variability results in uncertainties for all measurements. That is, multiple sample sets 
are collected under the similar conditions, and then statistical measures will vary across. Indeed, 
the measurement uncertainty quantification is a very important issue. Hence, when evaluating 
and comparing the performance of algorithms, the measurement uncertainties must be taken into 
account [1-3]. 
 
Receiver operating characteristic (ROC) analysis is an important statistical technique in many 
areas. The nonparametric two-sample bootstrap method has been used to compute uncertainties 
of measures in operational ROC analysis on large datasets, such as the standard error (SE) of the 
equal error rate (EER) in biometrics, the SE of a detection cost function in speaker recognition 
evaluation, etc., based on our extensive bootstrap variability studies on large datasets [2]. The 
detection cost function is defined as a weighted sum of probabilities of type I error and type II 
error [4]. It has been hard to calculate uncertainties of these statistics of interest without using the 
two-sample bootstrap method [3]. 
 
The area under an ROC curve (AURC) is an important metric in ROC analysis [5, and references 
therein]. The AURC corresponds to the probability of correctly identifying which of the two 
stimuli is more likely than the other. It measures the overall ROC curve rather than the 
performance at a particular operational point on the ROC curve. Moreover, if it is computed 
using the trapezoidal rule, the AURC is equivalent to the Mann-Whitney statistic that is formed 
by matching scores, namely, genuine and impostor scores in biometrics, or target and non-target 
scores in speaker recognition evaluation, etc. Hence, the variance of the Mann-Whitney statistic 
can be utilized as the variance of the AURC. In other words, the SE of AURC can be computed 
analytically. This analytical approach is a deterministic process and thus the result is unique. 
 
The Mann-Whitney statistic is asymptotically normally distributed, regardless of the 
distributions of matching scores, thanks to the Central Limit Theorem. Thus, the Z statistic 
formulated in terms of two AURCs along with their SEs and correlation coefficient is subject to 
the standard normal distribution and can be used to test the significance of the difference of two 
ROC curves [6, 7, and references therein]. 
 
On the other hand, the SE of AURC can also be calculated using the nonparametric two-sample 
bootstrap method [1-3, 8-10]. Unlike the analytical approach using the Mann-Whitney statistic, 
the bootstrap method is a stochastic process. In other words, the result will change for different 
runs. Thus, rather than dealing with a single measure of the SE of AURC in the analytical 
approach, the results derived from the bootstrap method constitute a probability distribution. 
Some results may be more probable and others less. However, if the analytical result is treated as 
the ground truth and if the relative errors of the bootstrap results with respect to the analytical 
results are not large, this can validate nonparametric two-sample bootstrap method used in 
computing the uncertainties of some statistics of interest on large datasets, which cannot be 
calculated otherwise. 
 
The nonparametric two-sample bootstrap method is particularly of interest in operational ROC 
analysis on large datasets. The two samples are referred to as a set of genuine (i.e., target) scores 
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and a set of impostor (i.e., non-target) scores. They constitute two distributions. An ROC curve is 
characterized by the relative relationship between these two distributions [5, 11]. These two 
distribution functions are indeed interrelated by the algorithm that generates them. In other 
words, the performance of a matching algorithm is affected not only by genuine matching but 
also by impostor matching. All statistics of interest in ROC analysis are influenced by the 
combined impact of these two samples. 
 
Furthermore, it was shown in our previous studies that 1) these two distributions usually do not 
have well defined parametric forms; 2) the shapes of these two distributions may be considerably 
different for the same algorithm; and 3) the distributions may vary substantially from algorithm 
to algorithm in a way that differentiates algorithms in terms of matching accuracy [5]. This 
suggests that the nonparametric statistical analysis be appropriate for analyzing such data. Thus, 
the empirical distribution is assumed for each of the observed scores. 
 
As is well-known, the bootstrap method assumes that an independent and identically distributed 
(i.i.d.) random sample of size n is drawn from a population with its own probability distribution. 
Our large government data bases used for developing similarity scores in fingerprint technology 
were randomly collected from real practice rather than using multiple acquisitions and thus had 
no dependencies. Thus, the random sample is assumed to be i.i.d. in our work. 
 
With the i.i.d. assumption, the objects of a nonparametric two-sample bootstrap are individuals 
in the sample [2, 3]. Otherwise, the bootstrap objects are the subsets of the sample into which the 
sample is grouped based on data dependencies caused by multiple biometric acquisitions [12, 
13]. This can preserve the dependencies among the data. However, everything else in the 
bootstrap method remains intact. Of course, how the sample is grouped into subsets will have 
impact on the bootstrap results. As a matter of fact, from the statistical point of view, the sample 
should be collected as randomly as possible in test design. 
 
The number of bootstrap replications is a very important parameter in bootstrap method. In order 
to reduce the bootstrap variance and ensure the accuracy of the computation in our applications 
where the size of data samples is large, the statistics of interest are probabilities, and no 
normality assumption can be made for distributions of similarity scores, the bootstrap variability 
was empirically studied extensively [2, 14]. As a result of our study, the appropriate number of 
bootstrap replications was determined to be 2000 in our applications. 
 
In this article, the total number of genuine scores is a little over 60 000 and the total number of 
impostor scores is a little over 120 000. As demonstrated in our previous studies of sample size 
in fingerprint applications, if the numbers of similarity scores get larger than these, the 
measurement accuracy will improve little [15]. The research was carried out by applying 
Chebyshev’s inequality to two metrics: the AURC and the true accept rate (TAR) at an 
operational false accept rate (FAR). All similarity scores were converted to integers if they were 
not already. Hence, the probability distribution functions of the similarity scores were all 
discrete, and thus the ROC curve was not a smooth curve [5]. 
 
The analytical method using the Mann-Whitney statistic to compute the estimated SÊA (A) of 
AURC along with the formulations of discrete distribution functions of genuine scores and 
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impostor scores is shown in Section 2. The algorithm of the nonparametric two-sample bootstrap 
method for calculating the estimated SÊB (A) of AURC and how to generate a probability 
distribution of SÊB (A) are provided in Section 3. The relative errors used for comparison are 
presented in Section 4. The results of the analytical method and the results of the bootstrap 
method, as well as a comparison of these two types of results, are offered in Section 5, involving 
14 different fingerprint-image matching algorithms1 used as examples. Finally, conclusions and 
discussion can be found in Section 6. 
 
2 The analytical method to compute the estimated SÊA (A) of AURC 
 
It is assumed that the trapezoidal rule is employed while computing AURC, and thus the AURC 
is equivalent to the Mann-Whitney statistic directly formed from the discrete genuine and 
impostor scores. Further, the variance of the Mann-Whitney statistic can be computed 
analytically. Hence, it can be utilized as the variance of AURC [5, and references therein]. First 
are the formulations of distribution functions. 
 
2.1 The formulations of discrete distribution functions of genuine and impostor scores 
 
All similarity scores were converted into integers if they were not, as mentioned in Section 1. 
Thus, without loss of generality, the similarity scores generated by an algorithm are expressed 
inclusively using the integer score set {s} = {smin, smin+1, …, smax}, running consecutively from 
the lowest score smin to the highest score smax. 
 
The genuine score set is denoted as 

G = { mi  | mi  {s} and i = 1, …, NG} , (1) 
where NG   is the total number of genuine scores. And the impostor score set is expressed as 

I = { ni  | ni  {s} and i = 1, …, NI} , (2) 
where NI is the total number of impostor scores. 
 
These two sets of similarity scores constitute two discrete probability distribution functions, 
respectively. Let Pi (s), where s  {s} and i  {G, I}, denote the empirical probabilities of the 
genuine scores and the impostor scores at a score s, respectively. It may very well be that some 
of them are zeroes at some scores in the set {s}. Nonetheless, the two distribution functions can 
be expressed, respectively, as 

Pi = { Pi (s) |  s  {s} and P


max

min

s

s
i () = 1 } , i  {G, I} . (3) 

 
The cumulative discrete probability distribution functions of genuine scores and impostor scores 
are defined in this article to be the probabilities cumulated from the highest score smax down to 
the integer score s, and are expressed as 

                                                 
1 Specific hardware and software products identified in this report were used in order to adequately support the 
development of technology to conduct the performance evaluations described in this document. In no case does such 
identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor 
does it imply that the products and equipment identified are necessarily the best available for the purpose. 
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Ci = { Ci (s) = P


maxs

s
i () |  s  {s} } , i  {G, I} , (4) 

where Ci (s), i  {G, I}, are the cumulative probabilities of genuine scores and impostor scores 
at a score s, respectively. 
 
2.2 Compute the estimated AÛRC 
 

Figure 1 A schematic drawing of four points A, B, C, and D along with their coordinates in the FAR-and-
TAR coordinate system. They form a trapezoid at a score s, and BC is a segment of an ROC curve. 

 
After conversion of similarity scores to integers, the distributions of genuine scores and impostor 
scores are all discrete. As a result, the ROC curve is no longer a smooth curve. While cumulating 
probabilities of genuine scores and impostor scores from the highest similarity score, 
respectively, an ROC curve can go horizontally, vertically, inclined toward upper right, or stay 
where it is for each decrement of score, depending on whether PI(s) and/or PG(s) are nonzero or 
not. Thus, the AURC consists of a set of trapezoids, each of which is built by a rectangle and a 
triangle in general. The trapezoid can be reduced to a rectangle, a vertical line, or a point. 
 
Without loss of generality, a trapezoid is shown in Figure 1. In the FAR-and-TAR coordinate 
system, at a score s  {s}, by including zero-frequency scores, a trapezoid is constructed by four 
points: A (CI (s + 1), 0), B (CI (s + 1), CG (s + 1)), C (CI (s), CG (s)), and D (CI (s), 0), in 
clockwise direction, assuming CI (smax + 1) = CG (smax + 1) = 0. This boundary condition 
corresponds to the origin of the FAR-and-TAR coordinate system, and will be applied 
throughout the following discussion. The lengths (CI (s)  CI (s + 1)) (i.e., PI (s)) and (CG (s)  
CG (s + 1)) (i.e., PG (s)) form a triangle, and the lengths (CI (s)  CI (s + 1)) (i.e., PI (s)) and CG 

(s + 1) (i.e.,  


max

1

s

s

P  ()) create a rectangle. As a consequence, the estimated AÛRC can be 

calculated as, 

G
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Â =  


min

max

s

ss

trapezoid (s) 

    =  


min

max

s

ss

triangle (s) + rectangle (s) 


min

max

s

ss

 

    =  


min

max

s

ss

P  (s) × [ I
2

1
 × P  (s) +  

G 


max

1

s

s

PG () ] 

 
(5) 

 
Note that the summation runs consecutively in the descending order from smax to smin, including 

zero-frequency scores, and  = 0 is assumed according to the above boundary condition. 

This notation will be applied throughout the following discussion. 




max

1max

s

s

 
2.3 Relate AURC to the Mann-Whitney statistic 
 
In order to relate AURC to the Mann-Whitney statistic, the order relations among similarity 
scores are established as follows. All the NI scores in the impostor score set I in Eq. (2) are 
compared with all the NG scores in the genuine score set G in Eq. (1). It counts 1, ½, or zero 
depending whether an impostor score sI is less than, equal to, or greater than a genuine score sG. 
This rule can be expressed as 

                             1    if sI < sG 
R (sG, sI) =          ½    if sI = sG 
                             0    if sI > sG 

 
(6) 

 
After converting probabilities of genuine and impostor scores in Eq. (5) back to frequencies and 
by including zero-frequency scores, the first term in Eq. (5) shows the total number of score pairs 
in which the impostor score is equal to the genuine score, weighted by ½ and divided by NGNI. 
And the second term in Eq. (5) represents the total number of score pairs in which the impostor 
score is less than the genuine score, weighted by 1 and divided by NGNI. This term is the so 
called “the number of inversions” in a sequence formed by impostor and genuine scores [16]. 
 
Finally, the estimated AÛRC can be re-written as 

Â = 
IG NN

1
 × 



G

G

N

1s



I

I

N

1s

 R (sG, sI) (7) 

Except for the coefficient, this is exactly the Mann-Whitney statistic formed by the genuine and 
impostor scores. As a consequence, the variance of AURC can be obtained by computing the 
variance of the Mann-Whitney statistic. 
 
2.4 Compute the estimated SÊA (A) of AURC 
 
The variance of the Mann-Whitney statistic can be computed analytically and it is utilized as the 
variance of AURC. To do so, two more cumulative probability distribution functions are 
required. One is 
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QG = { QG (s) =  PG () |  s  {s} } . (8) 

The other one is 

I () |

The probability igher sim
scores than one randomly chosen impostor match, can be written as 

 


max

1

s

s

QI = { QI (s) =   P




1

min

s

s

  s  {s} } (9) 

where another boundary condition 




1min

min

s

s

 = 0 is assumed. Note that the cumulation of 

probabilities is taken place from smax down to s + 1 with respect to genuine scores in Eq. (8), and 
from smin up to s – 1 on impostor scores in Eq. (9). 
 

 BGGI, that two randomly chosen genuine matches will obtain h ilarity 

BGGI = 


max

min

s

ss

 PI (s) × [QG
2 (s) + QG (s) × PG (s) + 

3

1
 × P 2 (s) ] G (10) 

And the proba IIG, t t higher sim
score than two randomly chosen impostor matches, can be expressed as 

IIG

bility B hat one randomly chosen genuine match will ge ilarity 

B  = 
maxs

 P (s) × [Q 2 (s) + Q  (s) × P  (s) + 
s mins

G I I I
3

1
 × PI

2 (s) ] (11) 

Finally, the analytical estimator of SE of AURC can be computed as 

(A) ÊS  = square root { A
IG NN

                                                                           + (N

1
 × [ Â (1 – Â) + (N  – 1) (B  - Â2) G GGI

BIIG - Â2) ] } 

(12) 

B

which the 
s, as mentioned in Section 1. With such 

sample bootstrap is as follows. 

e ores}i 

NI scores randomly WR from I to form a set {new NI impostor scores}i 

   {new NG genuine scores}i & {new NI impostor sco s}i => statistic 
or 

I – 1) (
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3.1 The algorithm of the nonparametric two-sample bootstrap [1-3, 8-10] 
 
The estimated uncertainties in terms of SE and 95 % confidence interval (CI) can also be 
computed using the nonparametric two-sample bootstrap. Assuming the data set is i.i.d., the 
ootstrap objects are individuals in the data set, rather than subsets of the sample into b

sample data are grouped according to data dependencie
n assumption, the algorithm of the nonparametric two-a

 
Algorithm I (Nonparametric two-sample bootstrap) 
 
1: for i = 1 to B do 
2:     select NG scores randomly WR from G to form a set {new NG genuin sc
3:     select 

iÂ  4:  re
5: end f

6: ))2/1( Q),2/( Q ( and ES  } B ..., 1,  i | A { BBBi   
7: end 
 

ˆˆˆˆ
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where B is the number of two-sample bootstrap replications and WR stands for “with 
replacement”. The original genuine score set G with NG scores shown in Eq. (1) and the original 
impostor score set I with NI scores shown in Eq. (2) are generated by a matching algorithm. As 
shown from Step 1 to 5, this algorithm runs B times. In the i-th iteration, NG scores are randomly 
selected WR from the original genuine score set G to form a new set of NG genuine scores, NI 

ores are randomly selected WR from the original impostor score set I to form a new set of NI 
similarity scores

 and 
17] is adopted. That is, the sam le quantile is obtained by 

bution function with av tinuities. Thus, 

replications is, in order to 
duce the bootstrap variance and ensure the accuracy of the computation. As stated in Section 1, 

s, the appropriate number of bootstrap 
plications B in our applications was determined to be 2000 [2, 14]. 

od is a stochastic process. It can generate different 
sults from different runs, and some results may be more probable and others less. Hence, the 

a probability distribution. Here is an 
lgorithm for generating such a distribution. 

istribution) 

 NG scores randomly WR from G to form a set {new NG genuine scores}j 
 I to form a set {new NI impostor scores}j 

w NG genuine scores}j & {new NI impostor scores}j => statistic 

i j | j = 1, …, B } => SÊB i (A) 
: end for 

9: SEB (A) = { SÊB i (A) | i = 1, …, L } => estimators of mean, median, 68.27 % CI, & 95 % CI 

sc
impostor scores, and then in Step 4 from these two new sets of  the i-th bootstrap 

replication of the estimated AÛRC, i.e., iÂ  = AÛRCi, is generated using Eq. (5). 
 

Finally, after B iterations, as indicated in Step 6, from the set } B ..., 1,  i |  Â { i  , the estimator of 

the SE, denoted by BES , i.e., the sample standard deviation of the B replications, and the 

estimators of the /2 100 % and (1 - /2) 100 % quantiles of the bootstrap distribution, denoted 

)2/ , at the significance level  can be calculated [

ˆ

1( Q̂Bby )2/( Q̂B  10]. The 
Definition 2 of quantile in Ref.

verting the empirical distri
 [ p

eraging at disconin

))2/1( Q̂),2/( Q̂ ( BB   stands for the estimated bootstrap (1 - ) 100 % CÎ. If 95 % CÎ is of 

interest, then  is set to be 0.05. 
 
The remaining issue is to determine how many iterations this bootstrap algorithm needs to run, 
i.e., what the number of the nonparametric two-sample bootstrap 
re
based on our empirical bootstrap variability studie
re
 
3.2 Generate a probability distribution of SÊB (A) 
 
The analytical approach of computing the estimated SÊA (A) of AURC using the Mann-Whitney 
statistic is a deterministic process, and thus the analytical solution is unique. On the other hand, 
as pointed out in Section 1, the bootstrap meth
re
bootstrap estimators SÊB (A) of AURC constitute 
A
 
Algorithm II (Generating a probability d
 
1: for i = 1 to L do 
2:     for j = 1 to B do 
3:          select
4:          select NI scores randomly WR from

j iÂ  5:          {ne

6:     end for 
7:     { Â
8
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10: end 
 
where L is the number of Monte Carlo iterations and B is the number of bootstrap replications. 
As a matter of fact, in Algorithm II, from Step 2 to 7 is the Algorithm I shown in Section 3.1, 
which computes the i-th SÊB i (A) of AURC using the nonparametric two-sample bootstrap and 
runs L iterations as indicated in Step 1. As shown in Step 9, L estimated SÊB i (A) of AURC are 
created and form a set SEB (A). Subsequently from this set, the estimated mean, median, 
8.27 % CI and 95 % CI of the distribution of estimated SÊB (A) of AURC can be calculated. 

The CI can be obtained using the Definition 2 o
 

b ns

6
f quantile in Ref. [17]. 

Num er of Iteratio  L 
SÊB (A) 

100 200 300 400 500 
Min. 0.0001289 0.0001288 0.0001278 0.0001262 0.0001279 
Max. 0.0001393 0.0001413 0.0001395 0.0001385 0.0001418 Alg. A 
Range 0.0000104 0.0000125 0.0000118 0.0000123 0.0000140 
Min. 0.0004595 0.0004560 0.0004560 0.0004574 0.0004560 
Max. 0.0004978 0.0004978 0.0005011 0.0004984 0.0004963 Alg. B 
Range 0.0000383 0.0000418 0.0000451 0.0000410 0.0000403 

Table 1 High-accuracy Algorithm A’s and low-accuracy Algorithm B’s minimum, maximum, and range of L 
timated SÊB (A) of AURC, where the number of iterations L was set to be from 100 up to 500 at intervals of 

or low-accuracy Algorithm 
 are rounded to 0.00046, 0.00050, and 0.00004 (except one), respectively. As a result, the 

each matching algorithm, 500 estimated SÊB (A) 
ill be generated to constitute a probability distribution, and each of 500 estimators is computed 

 close 

es
100, while the number of bootstrap replications B was set to be 2000. 

 
In Algorithm II, the number of bootstrap replications B was set to be 2000, as discussed above. 
Then the next question is how to determine the number of iterations L. Two fingerprint-image 
matching algorithms, high-accuracy A and low-accuracy B, were taken to be examples. The 
number of iterations L was set to be from 100 up to 500 at intervals of 100. Then the minimum, 
maximum, and range of L estimated SÊB (A) of AURC were calculated and are shown in Table 
1. If the accuracy is up to the 5th decimal place, the minimum, maximum, and range of SÊB (A) 
of AURC for high-accuracy Algorithm A across all five different numbers of iterations are 
rounded to 0.00013, 0.00014, and 0.00001, respectively; and those f
B
discrepancies among the results from 100 runs to 500 runs are small. 
 
Further, in order to obtain statistically meaningful estimated CÎ, the number of SÊB (A) of 
AURC, i.e., the number of iterations L, must be quite large. For instance, in order to obtain 95 % 
CÎ, there are only about two instances located in each end of the distribution for 100 SÊB (A), 
however there are about 12 instances for 500 SÊB (A). As a consequence, the number of 
iterations was set to be 500. In other words, for 
w
using the nonparametric two-sample bootstrap. 
 
The distribution of estimated SÊB (A) of AURC for the matching Algorithm A is shown in 
Figure 2, where the red triangle stands for the analytical result, the blue diamonds are the two 
bounds of 68.27 % CI, and the green circles represent the two bounds of 95 % CI. It is also 
shown in Figure 2 that for Algorithm A the analytical estimator SÊA (A) of AURC is very
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to the mean as well as the median of the distribution of 500 estimated SÊB (A), which are all 
approximately equal to 0.0001336  (see Table 2 in Section 5.1 referred to as Algorithm 3). 
 

Figure 2 The distribution of 500 estimators of SÊB (A) of AURC computed using the nonparametric two-
mple bootstrap for the matching Algorithm A. The red triangle stands for the analytical result, the blue 

e green circles represent the two bounds of 95 % CI. 

A (A) of AURC, 
the comparison is n d by th lative er r to take into account the impact of the 

sa
diamonds are the two bounds of 68.27 % CI, and th

 
4 The relative errors used for comparison 
 
While comparing the bootstrap results with the unique analytical estimator SÊ

 qua tifie e re ror in orde
magnitude of the analytical result. The estimated relative error ̂  is defined as 

̂  = | X̂  - (A) ÊS A  | / (A) ÊS A  × 100 % (13) 

where (A) ÊS A  is the analytical estimator of SE of AURC computed using Eq. (12) in Section 

2.4, an  is one of estimated quantities which describe the probability distribution of bootstrap 

er 
ound of CI, respectively, will be employed. Notice that with probability about 27 % the 

bootstrap estimators of SE can fall in between 68.27 % CI and 95 % CI of the estimated SÊs. 
 

d X̂
estimated SÊB (A) of AURC. 
 
As pointed out in Section 1, the bootstrap method is a stochastic process. While performing the 
comparisons involving a distribution, it is not enough to just pick one bootstrap result from a 
random run. In order to take account of the variance of stochastic process, not only should the 
estimated mean and median of the distribution be compared with the analytical result, but the 
upper bound and lower bound of 68.27 % CI (corresponding to one standard deviation) as well 
as the two bounds of 95 % CI (corresponding to 1.96 standard deviation) of the distribution 
should also be compared. While comparing the estimated CÎ with the analytical result SÊA (A) 
of AURC, the larger one between the two relative errors using the upper bound and the low
b
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The relative errors of the estimated SÊB (A) of AURC with respect to the analytical estimated 
SÊA (A) using the estimated mean, median, 68.27 % CÎ, and 95 % CÎ of the distribution of SÊB 
(A) are denoted by , , , and ̂ ̂ ̂ ̂ , respectively, in the following text. 

 
5 Results 
 
5.1 The analytical results and bootstrap results 
 

Distribution of estimated SÊB (A) 
Alg. AÛRC SÊA (A) 

Mean Median 68.27 % CÎ 95 % CÎ 

1 0.9985568 0.0001242 0.0001083 0.0001083 
(0.0001066, 
0.0001100) 

(0.0001048, 
0.0001116) 

2 0.9982568 0.0001231 0.0001231 0.0001231 
(0.0001209, 
0.0001251) 

(0.0001193, 
0.0001274) 

3 0.9982322 0.0001336 0.0001336 0.0001336 
(0.0001316, 
0.0001356) 

(0.0001297, 
0.0001377) 

4 0.9973597 0.0001463 0.0001465 0.0001466 
(0.0001442, 
0.0001489) 

(0.0001422, 
0.0001507) 

5 0.9967486 0.0001695 0.0001695 0.0001695 
(0.0001668, 
0.0001723) 

(0.0001641, 
0.0001752) 

6 0.9943234 0.0002472 0.0002464 0.0002463 
(0.0002427, 
0.0002505) 

(0.0002373, 
0.0002541) 

7 0.9939199 0.0002670 0.0002435 0.0002436 
(0.0002395, 
0.0002473) 

(0.0002362, 
0.0002517) 

8 0.9929374 0.0002579 0.0002530 0.0002528 
(0.0002486, 
0.0002572) 

(0.0002457, 
0.0002607) 

9 0.9923011 0.0002656 0.0002605 0.0002606 
(0.0002564, 
0.0002645) 

(0.0002526, 
0.0002682) 

10 0.9914864 0.0002742 0.0002728 0.0002726 
(0.0002685, 
0.0002770) 

(0.0002636, 
0.0002815) 

11 0.9846023 0.0003928 0.0003664 0.0003666 
(0.0003601, 
0.0003725) 

(0.0003548, 
0.0003784) 

12 0.9845747 0.0004343 0.0004341 0.0004342 
(0.0004279, 
0.0004404) 

(0.0004206, 
0.0004480) 

13 0.9818637 0.0003910 0.0003912 0.0003914 
(0.0003847, 
0.0003974) 

(0.0003781, 
0.0004024) 

14 0.9729011 0.0004781 0.0004783 0.0004779 
(0.0004711, 
0.0004860) 

(0.0004641, 
0.0004931) 

Table 2 The estimated AÛRC, the unique analytical SÊA (A), and the estimated mean, median, 68.27 % CÎ, 
and 95 % CÎ of the probability distribution of estimated SÊB (A) for 14 matching algorithms. The 
distribution was generated by 500 runs. 

 
To show both analytical results and bootstrap results, 14 fingerprint-image matching algorithms 
were taken as examples. The estimated AÛRC, the unique analytical SÊA (A), and the estimated 
mean, median, 68.27 % CÎ, and 95 % CÎ of the probability distribution of estimated SÊB (A) for 
14 matching algorithms are shown in Table 2. The distribution was generated by 500 runs. Some 
matching algorithms are of relatively high accuracy and some are of relatively low accuracy, as 
indicated by their estimated AÛRC. The larger the estimated AÛRC is, the more accurate the 
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matching algorithm is [5, and references therein]. In Table 2, Algorithms 3 and 14 are 
Algorithms A and B employed in Section 3.2, respectively. 
 
In order to show the difference, seven decimal places were kept. Indeed, in our real computation, 
many more decimal places were kept in the intermediate steps of calculations. It is noticed that 
most analytical estimators SÊA (A) fall in the estimated 95 % CÎ of the distributions of SÊB (A), 
except Algorithms 1, 7, and 11. This is related to the characteristics of the distributions of 
genuine scores and impostor scores. 
 
For these three algorithms, there are huge stand-alone peaks at the lowest impostor score, which 
occupy 98.54 %, 97.15 %, and 80.02 % of impostor population. For other matching algorithms, 
if there is a stand-alone peak, it does not occupy larger than 50 % of the population. These 
extremely large peaks of impostor distribution at the lowest score can cause a very large portion 
of ROC curve at the top part to be formed by a long straight line segment (i.e., the ROC curve 
jumps from one point to the next one by a large distance). They might impede bootstrap to 
function well. 
 
As indicated in Section 3.1, the estimated CÎ in Table 2 were all obtained using the Definition 2 
of quantile in Ref. [17]. In the meantime, they can also be computed by assuming that the 
probability distribution of SÊB (A) for each matching algorithm is normal. The estimated SÊs of 
the distribution of SÊB (A) for Algorithms 1 through 14 are 0.00000171, 0.00000208, 
0.00000206, 0.00000227, 0.00000278, 0.00000411, 0.00000388, 0.00000400, 0.00000406, 
0.00000452, 0.00000602, 0.00000656, 0.00000622, and 0.00000731, respectively. 
 
The estimated 95 % CÎs calculated in these two ways do match at least up to the fifth decimal 
place. Generally speaking, the more accurate the matching algorithms are, the more decimal 
places they do match. For example, for high-accuracy Algorithm 2, the estimated 95 % CÎ using 
the quantile method is (0.0001193, 0.0001274) as shown in Table 2, and the 95 % CÎ assuming 
normal distribution is (0.0001190, 0.0001272) using the estimated mean 0.0001231 and the 
estimated SÊ 0.00000208. This indicates that the distributions of the estimated SÊB (A) of 
AURC can be assumed to be normal. 
 
5.2 The comparison of two types of results using relative error 
 
In Table 3 are shown the relative errors (%) ̂ , ̂ , ̂ , and ̂  of SÊB (A) with respect to the 

analytical estimated SÊA (A) using the estimated mean, median, 68.27 % CÎ, and 95 % CÎ of the 
distribution of estimated SÊB (A) of AURC, respectively, for 14 matching algorithms. The 
corresponding box diagrams of relative errors of 14 matching algorithms are depicted in Figure 
3. It is obvious that there are three outliers that correspond to Algorithms 1, 7, and 11, 
respectively. This is consistent with the discussion in Section 5.1. 
 
For those random runs using the nonparametric two-sample bootstrap, the results of SEs that 
would be obtained more probably than others are those at the estimated mean, median, and 
within the 68.27 % CI of the distribution of estimated SÊB (A). As discussed in Section 4, the 
bootstrap estimators of SE can fall in between 68.27 % CI and 95 % CI with probability about 27 
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%. In other words, the relative errors ̂ , ̂ , and ̂ , defined in Section 4, may be more 

probable than the relative error . ̂
 

Relative Errors (%) of  (A) ÊS BAlg. 
̂  ̂  ̂  ̂  

1 12.83 12.79 14.17 15.60 
2 0.05 0.02 1.74 3.55 
3 0.02 0.03 1.48 3.06 
4 0.14 0.21 1.75 3.00 
5 0.03 0.03 1.66 3.37 
6 0.34 0.38 1.83 3.99 
7 8.80 8.76 10.29 11.51 
8 1.91 1.97 3.60 4.74 
9 1.93 1.90 3.47 4.91 
10 0.53 0.61 2.08 3.88 
11 6.71 6.66 8.32 9.65 
12 0.05 0.04 1.48 3.16 
13 0.04 0.09 1.62 3.30 
14 0.04 0.05 1.64 3.14 

Table 3 Relative errors (%) , , , and  of SÊμη̂ νη̂ ξη̂ ζη̂ B (A) using the estimated mean, median, 68.27 % 

CÎ, and 95 % CÎ of the distribution of SÊB (A), respectively, for 14 matching algorithms. 

 

Figure 3 Box diagrams of 14 relative errors of SÊB (A) using the estimated mean, median, 68.27 % CÎ, and 
95 % CÎ of the distribution of estimated SÊB (A), respectively. There are three outliers. 
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Relative Errors (%) of  (A) ÊS B
Include 
three 

outlines ̂  ̂  ̂  ̂  

Mean 2.39 2.39 3.94 5.49 
Median 0.24 0.30 1.79 3.71 

Table 4 The estimated mean and median of 14 relative errors (%) of SÊB (A) using the estimated mean, 
median, 68.27 % CI, and 95 % CI of the distribution of SÊB (A), respectively, if three outliers are included. 

 

Relative Errors (%) of  (A) ÊS B
Exclude 

three 
outlines ̂  ̂  ̂  ̂  

Mean 0.46 0.48 2.03 3.65 
Median 0.05 0.09 1.74 3.37 

Table 5 The estimated mean and median of 11 relative errors (%) of SÊB (A) using the estimated mean, 
median, 68.27 % CI, and 95 % CI of the distribution of SÊB (A), respectively, if three outliers are excluded. 

 
Moreover, it is shown in Figure 3 that all four distributions are skewed. Thus, the median of the 
distribution is more important than the mean. Hence, the estimated mean and median of 14 
relative errors (%) of SÊB (A) using the estimated mean, median, 68.27 % CI, and 95 % CI of 
the distribution of estimated SÊB (A), respectively, are shown in Table 4, where three algorithms 
as outliers are included. Those excluding three outliers are presented in Table 5. 
 
If including three outliers, the worst relative error of SÊB (A) is 5.49 % that is related to a bound 
of the 95 % CI of the distribution, but the median of 14 relative errors ̂  using the median of 

the distribution of estimated SÊB (A) for each matching algorithm is 0.30 %. If excluding three 
outliers, they are 3.65 % and 0.09 %, respectively. As a result, the discrepancies between the 
estimated SÊB (A) computed using the nonparametric two-sample bootstrap and the analytically 
estimated SÊA (A) using the Mann-Whitney statistic are quite small especially for those random 
bootstrap runs obtained more probably. Subsequently, this validates the two-sample bootstrap 
method on large datasets. 
 
6 Conclusions and discussion 
 
The estimated SÊ of AURC was computed analytically using the Mann-Whitney statistic if the 
trapezoidal rule is employed, as well as numerically using the nonparametric two-sample 
bootstrap method. The analytical approach is a deterministic process, and thus its estimated SÊA 
(A) is unique. However, the bootstrap method is a stochastic process, and thus its estimators of 
SÊB (A) constitute a distribution. In order to take the variance of such a process into 
consideration, the estimated mean, median, 68.27 % CÎ, and 95 % CÎ of the distribution of 
estimated SÊB (A) of AURC are compared with the analytical SÊA (A) for each matching 
algorithm. While comparing an estimated CÎ with the analytical result, the relative error is 
defined to be the larger one between using the upper bound and the lower bound of CÎ. 
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14 matching algorithms, including three outliers, were taken as examples. Therefore, in each 
case, i.e., using mean, median, 68.27 % CÎ and 95 % CÎ, respectively, 14 relative errors were 
generated. The mean and median of such 14 relative errors were created as well. All such means 
and medians, with or without three outliers, were presented. It was found that the discrepancies 
between the bootstrap estimated SÊB (A) and the analytically estimated SÊA (A) are quite small 
especially for those random bootstrap runs obtained more probably. 
 
As a consequence, this validates the two-sample bootstrap method on large datasets. In the 
meantime, the nonparametric two-sample bootstrap was carried out with the i.i.d. assumption for 
the datasets in this article. Hence, it shows again that our large government data bases used for 
developing similarity scores in fingerprint technology have no dependencies. As a matter of fact, 
from the statistical point of view, the sample should be collected as randomly as possible in test 
design. 
 
The one-algorithm hypothesis testing was carried out on each of 14 matching algorithms to 
determine whether the difference between the estimated mean of the distribution of estimated 
SÊB (A) of AURC and the analytical SÊA (A) as a hypothesized value is statistically significant, 
since the distribution can be assumed to be normal as discussed in Section 5.1 [1]. It was found 
that the two-tailed p-values of Algorithms 1, 7, and 11 (three outliers) were close to zero, those 
of Algorithms 8 and 9 were about 20 %, and all others were greater than 70 %. This is consistent 
with the observations in Table 2, where the analytical SÊA (A) falls outside the estimated 95 % 
CÎ for Algorithms 1, 7, and 11, between 68.27 % CÎ and 95 % CÎ for Algorithms 8 and 9, and 
inside 68.27 % CÎ for all other algorithms. Hence, generally speaking, the difference is not real. 
 
An extremely large stand-alone peak of distribution of similarity scores, which occupies a very 
large portion of population, can impede the bootstrap functioning well, as shown in Section 5. 
This might be because the randomness of resampling similarity scores from such a distribution 
could be affected by the huge stand-alone peak. The objective of creating such a peak at the 
lowest (and/or highest) similarity score is to separate the distributions of genuine scores and 
impostor scores as far as possible so as to increase the matching accuracy [5, 11]. This is one of 
techniques employed by some matching algorithms. Nevertheless, the worst relative error 
15.60 % that is related to a bound of the 95 % CI of the distribution as shown in Table 3 is 
relatively large in comparison with others in the table, but it is acceptable in real numerical 
computation. 
 
All the tests performed in this article were on large datasets with tens and hundreds of thousands 
of genuine scores and impostor scores. A simple test on small medical datasets from Ref. [7] was 
also conducted, in which there were 54 genuine scores and 58 impostor scores for both Modality 
1 and 2. It was based on a random run of bootstrap method rather than generating a distribution 
of estimated SÊB (A). However, the number of bootstrap replications was set to be 2000, as 
discussed in Section 1. For Modality 1, the estimated AÛRC was 0.882822, the analytical SÊA 
(A) was 0.032606, and the bootstrap SÊB (A) was 0.031943. Thus, the relative error was 2.03 %. 
For Modality 2, they were 0.930236, 0.026434, and 0.025059, respectively. Hence, the relative 
error was 5.20 %. They are all small relative errors. 
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In comparison of datasets, it seems that the larger the dataset, the more accurate the bootstrap 
method. For small datasets, the statistics of interest employed in operational ROC analysis, such 
as TAR, EER, detection cost function, etc., can lose statistical meaning anyway, because of the 
small numbers of genuine scores and impostor scores. Under such circumstances, the metric 
AURC can be used and its estimated SÊ can be computed analytically. 
 
For large datasets, from the operational perspective, the metrics, such as TAR, EER, detection 
cost function, etc., must be employed. And as pointed out in Section 1, it is hard to calculate 
uncertainties of such statistics of interest without using the nonparametric two-sample bootstrap 
method. Therefore, the validation of such an approach on large datasets provides a foundation for 
computing uncertainties in operational ROC analysis. 
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