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Abstract – The nonparametric two-sample bootstrap is successfully applied to computing the 
measurement uncertainties in receiver operating characteristic (ROC) analysis on large datasets 
in areas such as biometrics, speaker recognition system, etc. To determine the number of 
bootstrap replications in our applications, the bootstrap variability related to standard error and 
two bounds of 95 % confidence interval was studied in a scenario where the statistic of interest 
was the true accept rate (TAR) of the genuine scores at a specified false accept rate (FAR) of the 
impostor scores. From the operational perspective, three more scenarios are of interest, in which 
the statistics are the TAR at a given threshold value, the FAR at a specified threshold value, and 
the equal error rate, respectively. Regarding the ROC analysis, the area under ROC curve is also 
of interest. In this article, the bootstrap variability was studied in all these five scenarios 
concerning both high- and low-accuracy matching algorithms. With the tolerance 0.02 of the 
coefficient of variation, which can be applied to all cases investigated, it is found that 2000 
bootstrap replications are appropriate for ROC analysis on large datasets in order to reduce the 
bootstrap variance and ensure the accuracy of the computation. 
 
 
 
 
 
 
 
 
 
 
 
Index Terms – Bootstrap, variability, ROC analysis, biometrics, speaker recognition, standard 
error, confidence interval, large datasets. 
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1 Introduction 
 
The receiver operating characteristic (ROC) analysis is employed in many applications as a 
useful statistical technique. Sampling variability can result in uncertainties of measures in ROC 
analysis. Thus, it is important to take account of the measurement uncertainties when evaluating 
and comparing the performance of algorithms. The nonparametric two-sample bootstrap is 
successfully applied to computing the measurement uncertainties in ROC analysis on large 
datasets in areas such as biometrics, speaker recognition system, etc [1-4]. 
 
Generally speaking, for instance in biometrics, genuine scores are created by comparing two 
different images of the same subject, and impostor scores are generated by matching two images 
of two different subjects. Both scores may be referred to as similarity scores. These two sets of 
similarity scores constitute two distributions, respectively, as schematically depicted in Figure 1 
(A) for continuous similarity scores. 
 
The cumulative probabilities of genuine and impostor scores from the highest similarity score to 
a specified similarity score (i.e., threshold) are defined as the true accept rate (TAR) and the false 
accept rate (FAR), respectively. Thus, in the FAR-and-TAR coordinate system, while the 
threshold moves from the highest similarity score down to the lowest similarity score, an ROC 
curve is constructed as drawn in Figure 1 (B). 
 

Figure 1 (A): A schematic diagram of two distributions of continuous genuine scores and impostor scores, 
showing three related variables: TAR, FAR, and threshold. (B): A schematic drawing of an ROC curve 
constructed by moving the threshold from the highest similarity score down to the lowest one. 

 
Any point P on an ROC curve has two coordinates FAR and TAR and is associated with a 
threshold through two distributions of genuine scores and impostor scores. The three variables, 
FAR, TAR, and threshold, are related to each other, as illustrated in Figure 1 (A) and (B). Any 
one of these three variables can determine the other two variables. In practice, it is never required 
that TAR be specified in the first place. Thus, from the operational perspective, the three 
scenarios are of interest, that are measuring the TAR at a specified FAR, measuring the TAR at a 
given threshold value, and measuring the FAR at a specified threshold value, respectively. 
 

 2



The equal error rate (EER) is defined to be 1 – TAR (i.e., the probability of type I error) or FAR 
(i.e., the probability of type II error) when they are equal. As is well-known, these two error rates 
are traded-off of each other. Generally speaking, the smaller the EER is, the more apart the two 
distributions of genuine scores and impostor scores are, thus the higher the ROC curve is and the 
more accurate the matching algorithm is [5, 6].  Therefore, from the operational perspective, the 
fourth scenario that is of interest is measuring the EER. 
 
In addition, an ROC curve can be measured by employing the area under the ROC curve 
(AURC), which corresponds to the probability of correctly identifying which of the two stimuli 
is more likely than the other, and measures the overall ROC curve [5, and references therein]. If 
it is computed using the trapezoidal rule, the AURC is equivalent to the Mann-Whitney statistic 
that is formed by genuine and impostor scores. Hence, the variance of the Mann-Whitney 
statistic can be utilized as the variance of the AURC. On the other hand, the standard error (SE) 
of AURC can also be computed using the nonparametric two-sample bootstrap [7]. Moreover, 
the metric AURC is widely employed in areas such as medical decision making, even though the 
sizes of datasets are far less than those in our applications. Hence, the fifth scenario that is of 
interest is measuring the AURC. 
 
As extensively investigated [5], there is usually no underlying parametric distribution function 
for genuine and impostor scores; the distributions of genuine scores and impostor scores are 
considerably different in general; and the distributions vary substantially from algorithm to 
algorithm in a way that differentiates algorithms in terms of qualities. This suggests that 
nonparametric analysis is pertinent to evaluating matching algorithms on large-scale datasets. 
 
An ROC curve is characterized by the relative relationship between the distributions of the 
genuine scores and the impostor scores [5, 6]. These two distribution functions are interrelated 
by the algorithm that generates them. The performance of a matching algorithm is determined 
not only by its ability of executing genuine matching but also by its ability of executing impostor 
matching. All statistics of interest are influenced by the combined impact of these two 
distributions. As a result, computing the measurement uncertainties in ROC analysis is a two-
distribution issue rather than a one-distribution issue. Thus, the nonparametric two-sample 
bootstrap is employed to compute the uncertainties of measures, in terms of SEs and confidence 
intervals (CI), in all five scenarios stated above. The two samples are referred to as a set of 
genuine scores and a set of impostor scores. 
 
One of the important parameters regarding bootstrap methods is the number of bootstrap 
replications. It is intrinsically related to bootstrap variability. As investigated in the literature [8-
11], the substantial bootstrap variance is caused by the sampling variability as well as the 
bootstrap resampling variability. The former is because the sample size is finite and limited, and 
the latter is because the number of bootstrap replications is not infinite. The bootstrap variance 
results in the variances of, for example, the SE and the lower bound and upper bound of CI of the 
distribution formed by bootstrap replications of the statistic of interest. As a consequence, these 
variances can be functions of the sample size as well as the number of bootstrap replications. 
Inversely, the sample size and the number of bootstrap replications can be determined by 
studying the variances of SE and the two bounds of the CI of two-sample bootstrap distribution 
of the statistic of interest. 
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Regarding the sample sizes, in this article, the total number of genuine scores is a little over 
60 000 and the total number of impostor scores is a little over 120 000. They are fixed based on 
our previous studies [12]. The research was carried out using Chebyshev’s inequality on two 
statistics of interest, namely, the TAR at an operational FAR and AURC. It was found that if the 
numbers of similarity scores increased from what were used, the measurement accuracy would 
improve little. 
 
In our applications, as pointed out above, it is inappropriate to assume the normality for 
distributions of similarity scores. The statistics of interest are probabilities such as TAR, FAR, 
EER, and AURC rather than a simple arithmetic mean. Moreover, the sizes of datasets are much 
larger than those encountered in other applications, such as medical application, etc [11]. Hence, 
in order to reduce the bootstrap variance and ensure the accuracy of computation, and 
subsequently determine the appropriate number of two-sample bootstrap replications in our 
applications, the bootstrap variability was studied in Ref. [1]. However, it was carried out only in 
one scenario where the statistic of interest was the TAR at a specified FAR. In this article, the 
bootstrap variability studies will be conducted in all other four scenarios as well. 
 
As is well-known, the bootstrap method assumes that an independent and identically distributed 
(i.i.d.) random sample of size n is drawn from a population with its own probability distribution. 
Our large government data bases used for developing similarity scores in fingerprint technology 
were randomly collected from real practice rather than using multiple acquisitions and thus had 
no dependencies. Moreover, our studies showed that our data bases have no dependencies [7]. 
Thus, the random sample is assumed to be i.i.d. in our work. 
 
With the i.i.d. assumption, the bootstrap objects are individuals in the sample. Otherwise, the 
bootstrap objects are the subsets of the sample into which the sample is grouped based on data 
dependencies caused by multiple biometric acquisitions [11, 13, 14]. This can preserve the 
dependencies among the data. However, everything else in the bootstrap method remains intact. 
Of course, how the sample is grouped into subsets will have impact on the bootstrap results. As a 
matter of fact, from the statistical point of view, the sample should be collected as randomly as 
possible. 
 
All similarity scores are converted to integer scores if they are not already [5]. Thus, the 
probability distribution functions of similarity scores are all discrete, and the ROC curve is not a 
smooth curve. Since there is usually no underlying parametric distribution function for similarity 
scores, the empirical distribution is assumed for each of the observed scores. 
 
As opposed to continuous distribution some concepts and definitions need to be established and 
modified accordingly. For instance, first, ties of genuine scores and/or impostor scores can often 
occur on large fingerprint data sets and thus must be taken into account while computing the 
estimated TAR at a specified FAR. Second, when computing the cumulative discrete probability 
at a score, the probability of this score must be taken into account [15]. Third, generally speaking 
there does not exist such a similarity score (range) at which the probabilities of the type I error 
and the type II error are exactly equal. All related formulas for computing statistics of interest in 
this article can be found in Refs. [2, 5, and references therein]. 

 4



 
The methods involving the nonparametric two-sample bootstrap and bootstrap variability studies 
are presented in Section 2. The results of bootstrap variability studies in all five scenarios for 
both high- and low-accuracy algorithms1 are provided in Section 3, which determine the number 
of bootstrap replications for ROC analysis on large datasets. The conclusions and discussion can 
be found in Section 4. Tables and figures are shown in Appendices 1 and 2, respectively. 
 
2 Methods 
 
2.1 The formulations of discrete distribution functions of similarity scores 
 
Without loss of generality, the similarity scores are expressed inclusively using the integer score 
set {s} = {smin, smin+1, …, smax}, running consecutively from the lowest score smin to the highest 
score smax. The genuine score set and the impostor score set are denoted as 

G = { mi  | mi  {s} and i = 1, …, NG} , (1) 
and 

I = { ni  | ni  {s} and i = 1, …, NI} , (2) 
where NG  and NI are the total numbers of genuine scores and impostor scores, respectively. 
These two sets, G and I, constitute two discrete probability distribution functions of genuine 
scores and impostor scores, respectively. 
 
2.2 An algorithm for the nonparametric two-sample bootstrap 
 
The nonparametric two-sample bootstrap [8, 11] is employed to compute the estimates of 
measurement uncertainties in all five scenarios. The algorithm is as follows. 
 
Algorithm I (Nonparametric two-sample bootstrap) 
 
1: for i = 1 to B do 
2: select NG scores randomly WR from G to form a set {new NG genuine scores}i 

3: select NI scores randomly WR from I to form a set {new NI impostor scores}i 

4: {new NG genuine scores}i & {new NI impostor scores}i => statistic  iT̂
5: end for 

6:  ))2/1(Q̂),2/(Q̂ ( and ÊS  } B ..., 1,  i | T̂ { BBBi 
7: end 
 
where B is the number of two-sample bootstrap replications and WR stands for “with 
replacement”. The original genuine score set G in Eq. (1) and impostor score set I in Eq. (2) are 
generated by a matching algorithm. As shown from Step 1 to 5, this algorithm runs B times. In 
the i-th iteration, NG scores are randomly selected WR from the original genuine score set G to 
form a new set of NG genuine scores, NI scores are randomly selected WR from the original 

                                                 
1 Specific hardware and software products identified in this report were used in order to adequately support the 
development of technology to conduct the performance evaluations described in this document. In no case does such 
identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor 
does it imply that the products and equipment identified are necessarily the best available for the purpose. 
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impostor score set I to form a new set of NI impostor scores, and then from these two new sets of 

similarity scores the i-th bootstrap replication of the estimated statistic of interest, , is 
generated. 

iT̂

 

The  are different in different scenarios discussed in Section 1. In Scenario 1,  =  

at a specified f = FAR. In Scenario 2,  =  at a given threshold t. In Scenario 3,  = 

 at a given threshold t. In Scenario 4,  = . And in Scenario 5,  = AÛRC

iT̂

(t) Ri

iT̂

iT̂

(f) RÂT i

iT̂iT̂ (t) RÂT i

iT̂ÂF iRÊE i. 
The formulas for computing all these five statistics of interest can be found in Refs. [2, 5, and 
references therein]. 
 

Finally, as indicated in Step 6, from the set , the estimator of the SE, denoted by 

, i.e., the sample standard deviation of the B replications, and the estimators of the /2 

100 % and (1 - /2) 100 % quantiles of the bootstrap distribution, denoted by  and 

, at the significance level  can be calculated [

} B ..., 1,  i | T̂ { i 

(Q̂ ( 

BÊS

1(Q̂B

)2/(Q̂B 

)2/ 11]. Definition 2 of quantile in Ref. 
[16] is adopted. That is, the sample quantile is obtained by inverting the empirical distribution 

function with averaging at discontinuities. Thus, BB  stands for the 

estimated bootstrap (1 - ) 100 % CÎ. If 95 % CÎ is of interest, then  is set to be 0.05. 

))2/1(Q̂),2/ 

 
2.3 An algorithm for empirical studies of nonparametric two-sample bootstrap variability 
 
As pointed out in Section 1, it is important to re-study the variances of the SE and the two 
bounds of the CI of two-sample bootstrap distribution of the statistic of interest in our 
applications. To take into account the impact of the mean value, the coefficients of variation 
(CV) rather than just variance is employed. The empirical studies of bootstrap variability will be 
carried out in all five scenarios, respectively. Here is an algorithm for studies of bootstrap 
variability: 
 
Algorithm II (Bootstrap variability) 
 
1: for i = 1 to L do 
2:     for j = 1 to B do 
3:          select NG scores randomly WR from G to form a set {new NG genuine scores}j 
4:          select NI scores randomly WR from I to form a set {new NI impostor scores}j 

5:          {new NG genuine scores}j & {new NI impostor scores}j => statistic  j iT̂

6:     end for 

7:      ))2/1(Q̂),2/(Q̂ ( and ÊS  } B ..., 1,  j | T̂ { i Bi Bi Bj i 
8: end for 

9:  α/2) - (1Qα/2) (QSE LB,LB,LB,  , ,),(V̂CL}..., 1, i| /2) - (1Q̂ /2),(Q̂ ,Ê{S LB,i Bi Bi B 
10: end 
 
where L is the number of Monte Carlo iterations and B is the number of bootstrap replications. 
As indicated from Step 1 to 8, Algorithm II runs L iterations for a specified B. The part from 
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Step 2 to 7 is equivalent to the nonparametric two-sample bootstrap Algorithm I, which 

generates the i-th SÊB i, (/2) and (1 - /2) of a statistic of interest in the i-th iteration for 
a given B. The statistics of interest in five scenarios are specified, respectively, in Section 2.2. 

i BQ̂ i BQ̂

 
As shown in Step 9, for a specified B, after L iterations of executing two-sample bootstrap 
algorithm, the following three sets are generated, 

}. L , 1,  i | α/2) - (1 Q̂ { 

}, L , 1,  i | α/2) ( Q̂ { 

}, L , 1,  i | ÊS {            

i B

i B

i B













 α/2) - (1 Q

 α/2) ( Q    

 SE

L B,

L B,

L B,

 (3) 

Thereafter, from these three sets, three estimated s of SE, lower-bound and upper-bound of 
CI, can be obtained, respectively, 

V̂C

.  , ,    where,
)( Ê

)( RÂV
  )( V̂C

L B,

L B,
L B, α/2) - (1Qα/2) (QSE L B,L B,L B,




  (4) 

 

It is clear that the three estimated s are functions of the number of bootstrap replications B 
and the number of Monte Carlo iterations L, as well as the significance level α. Therefore, the 
number of bootstrap replications B can be determined by the tolerable CVs. Then, the question 
is: How many iterations L are sufficient for a specified B to guarantee the accuracy of the Monte 
Carlo computation? 

V̂C

 
2.4 Determine the number of Monte Carlo iterations L 
 
Two fingerprint-image matching algorithms are employed. Algorithm 1 is of high accuracy, and 
Algorithm 2 is of low accuracy. The significance level is set to be 5 %. As discussed in Section 
1, the total number of genuine scores is a little over 60 000 and the total number of impostor 
scores is a little over 120 000. With these sample sizes, in order to have statistical significance, in 
Scenario 1 the operational FAR is specified to be 0.001 [6, 12]. 
 
To show the operational significance for each algorithm, in Scenarios 2 and 3 the system 
threshold yielding a FAR 0.001 is chosen [2]. Thus, for Algorithm 1 employing integer scores, 
the threshold was set to be 455; for Algorithm 2 using real-number scores in [0.0, 1.0), the 
threshold was set to be 0.634030. The estimates of the three CVs for the SE, lower bound and 

upper bound of 95 % CI are denoted by , , and , respectively. SEV̂C LBV̂C UBV̂C
 
In all five scenarios as classified in Section 2.2 and for each algorithm, the number of 
replications B was set to range from 200 up to 1000 at intervals of 200. Then, for each specified 
B, the number of Monte Carlo iterations L ran from 100 up to 1000 at intervals of 100, and thus 
10 estimates of CVSEs, CVLBs, and CVUBs were generated, respectively. From these 10 

estimates, the minimum, maximum, and range of s, s, and s for each 
specified B were obtained. 

SEV̂C LBV̂C UBV̂C

 

 7



As shown in the odd numbered tables in Appendix 1, in general, both minimal s and 

maximal s decrease and the range between these two gets smaller as the number of 

replications B increases. For instance, in 

V̂C

V̂C

V̂C

V̂C

Table 1, for the SE, the ranges of 10 estimated s 
vary from about 0.007 down to 0.002. For the lower bound and upper bound of 95 % CIs, the 

maximal s and s are less than 0.00007, and the ranges are not greater than 
0.000008. 

SE

LB UBV̂C

 
As a result, to obtain the estimates of CVs at a fixed number of replications B higher than 1000, 
the number of Monte Carlo iterations L does not need to run from 100 up to 1000 at intervals of 
100. As estimating CVs, to save tremendous computing time, while the number of replications B 
varied from 1200 up to 2000 at intervals of 200, the number of Monte Carlo iterations L was 
fixed at 500. All the estimates of the corresponding CVs are shown in the even numbered tables 
in Appendix 1. 
 
3 Results 
 

All estimated s, s, and s are presented in SEV̂C

SEV̂C

LBV̂C

LBV̂C

UBV̂C

UBV̂C

Table 1 through Table 20 in 
Appendix 1, and depicted in Figure 2 through Figure 16 in Appendix 2, respectively. In the cases 
where the number of replications B was set to be from 200 up to 1000 at intervals of 200, only 

the maximal s, s, and s, as shown in the odd numbers of tables in 

Appendix 1, are employed. It shows that all estimated s, s, and s decrease 
as the number of replications B increases. In order to determine the number of bootstrap 
replications B, the tolerances of CVs in different situations must be set. 

SEV̂C LBV̂C UBV̂C

 
3.1 Set the tolerances of CVs 
 
As defined in Eq. (4), the CV is a ratio of the SE to the mean, and thus its estimator is affected 
by both values. For the distributions of the SEs and lower bounds and upper bounds of 95 % CIs 
created by Monte Carlo iterations as shown in Eq. (3), respectively, the magnitudes of the 
estimated means are quite different with respect to different statistics of interest that are stated in 

Section 2.2, and thus the magnitudes of the estimated s are also quite different. As a result, 
the tolerances of the CVs in different situations shall be set accordingly. 

V̂C

 
For instance, in Scenario 1 where the statistic of interest is the TAR at a given FAR, for high-
accuracy Algorithm 1, the estimated SÊs of distributions of SEs, lower bounds and upper bounds 
of 95 % CIs, generated by 500 Monte Carlo iterations while the number of bootstrap replications 
B was set to be 2000 as discussed in Section 2.4, are 0.0000053, 0.0000198, and 0.0000192, 
respectively. It is demonstrated that the distribution of SEs is of less dispersion than the 
distributions of lower bounds and upper bounds of 95 % CIs, respectively. This is because in the 
tail of the distribution fewer samples occur [11]. 
 
The estimated means of the corresponding distributions are 0.000331, 0.992617, and 0.993913, 
respectively. Thus, the corresponding estimated CVs are 0.016040, 0.000020, and 0.000019, 
respectively, as presented in the last column of Table 2 in Appendix 1. It is noticed that the 
estimated mean for SEs is much less than 1, while on the contrary the estimated means for the 
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two bounds of 95 % CIs are close to 1. This is why the estimated SEV̂C  is much larger than the 

estimated LBV̂C  and UBV̂C  in Scenario 1 as presented in Table ugh  1 thro Table 4. Therefore, 
generally s ance for CVSE needs to be set larger than those for CVLB and 
CVUB [

peaking, the toler

he estimated s for low-accuracy Algorithm 2 are in general greater than the corresponding 

ll the tolerances of CVs in different situations can be found in Figure 2 through Figure 16 in 

.2 The number of nonparametric two-sample bootstrap replications 

ll estimated s of Algorithms 1 and 2 in five scenarios are depicted from Figure 2 to 

ll estimated s and s in five scenarios are illustrated from Figure 7 to Figure 16, 

toleran

egarding CVLB and CVUB in all other cases as depicted in Figure 9 through Figure 16 in 

1]. 
 

T V̂C

V̂C s for high-accuracy Algorithm 1, except for CVLB and CVUB in Scenario 4 where the 
stic of interest is EER. This is due to the combined impact of the magnitudes of the estimated 

means and SÊs in Scenario 4. Another exception is that the estimated LBV̂C s and UBV̂C s in 
Scenarios 3 and 4 where the statistics of interest are FAR at a given threshold value and EER, 
respectively, are larger than those in other scenarios. This is because the magnitudes of the 
estimated means in these two scenarios are quite small. 
 

stati

A
Appendix 2. Some tolerances of CVs are larger than others. Nonetheless, the largest tolerance of 
CV is 0.02, which is set for all CVSEs in five scenarios for both high-accuracy Algorithm 1 and 
low-accuracy Algorithm 2. 
 
3
 

A  SEV̂C
Figure 6 in Appendix 2. As indicated in Section 3.1, the tolerance for all CVSEs is set to be 0.02. 
With this 0.02 tolerance, for instance, in Scenario 1 where the statistic of interest is TAR at a 
given FAR, as shown in Figure 2, 1400 two-sample bootstrap replications are sufficient for high-
accuracy Algorithm 1, and 1800 replications are enough for low-accuracy Algorithm 2. In all 
other four scenarios for both Algorithms 1 and 2 as depicted in Figure 3 through Figure 6, with 
the tolerance 0.02, 1400 bootstrap replications are sufficient. 
 

A LBV̂C

ure sh

UBV̂C

e resulwhere each fig ows th ts of one algorithm. For instance, the estimated LBV̂C  and 

UBV̂C  in Scenario 1 for Algorithm 1 are shown in Figure 7. As discussed in Section 3.1, the 
ces for CVLB and CVUB should be set smaller. Hence, if the tolerance is set to be at 

0.000025, as indicated in Figure 7, 1400 replications can meet the requirement. Those for 
Algorithm 2 are depicted in Figure 8. As pointed out in Section 3.1, the tolerance for low-
accuracy algorithms should be set larger. Thus, if the tolerance is set to be at 0.000450, 1400 
replications can satisfy the restriction. 
 
R
Appendix 2, all tolerances set for CVs are less than 0.008 that is set in Scenario 3 where the 
statistic of interest is FAR at a given threshold value as shown in Figure 11 and Figure 12. For 
such tolerance settings, the least 1200 or 1400 or 1600 bootstrap replications can meet the 
constraints, respectively, depending on individual case. 
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It is clear that the largest tolerance employed so far is 0.02. Although the tolerance set for the 
CVSE is larger than those for CVLB and CVUB, the tolerance 0.02 for CVs is acceptable 
concerning our applications [11]. To reconcile numbers of bootstrap replications for all five 
scenarios where different statistics of interest are used as well as different qualities of matching 
algorithms, and further to be more conservative, it is suggested that 2000 nonparametric two-
sample bootstrap replications be required in order to reduce the bootstrap variance and achieve 
statistical accuracy of the computation. 
 
4 Conclusions and discussion 
 
In our applications, the normality assumption for distributions of similarity scores cannot be 
made, the statistics of interest are all probabilities rather than a simple sample mean, and the 
datasets are very large. Therefore, the bootstrap variability needs to be re-studied to determine 
the appropriate number of two-sample bootstrap replications in order to reduce the bootstrap 
variance and ensure the accuracy of the computation. 
 
The nonparametric two-sample bootstrap variability related to SE and two bounds of 95 % CI of 
bootstrap distributions was empirically studied in five scenarios for ROC analysis, where the 
statistics of interest are TAR at a specified FAR, TAR at a given threshold value, FAR at a given 
threshold value, EER, and AURC, respectively. In addition, the bootstrap variability studies were 
conducted on both high-accuracy matching algorithm and low-accuracy matching algorithm. 
 
To take into account the impact of the mean value, the CV rather than just variance is employed. 

All estimated s, s, and s in five scenarios for both high-accuracy and low-
accuracy algorithms were computed, and are presented in 20 tables and depicted in 15 figures 
accordingly. They decrease as the number of replications B increases. 

SEV̂C LBV̂C UBV̂C

 
The largest tolerance of CVs set so far is 0.02, which is acceptable in our applications. With this 
tolerance, to reconcile all cases and to be more conservative, it is suggested that the appropriate 
number of nonparametric two-sample bootstrap replications for ROC analysis on large datasets 
be 2000. It is worth mentioning that such extensively empirical studies of bootstrap variability 
involved numerous computations and thus took weeks of CPU time. 
 
As pointed out in Section 1, the variance of two-sample bootstrap is also caused by the sample 
size. The sample sizes employed in this article were based on our previous studies [12]. 
Certainly, the 2000 number of bootstrap replications can also be applied to the cases where the 
sample sizes are smaller than what is used in this article. However, if for some reason the 
number of bootstrap replications needs to be reinvestigated, the empirical methods for studying 
the bootstrap variability developed in this article should remain the same. 
 
In this article, TAR at a specified FAR and TAR at a given threshold value were discussed. In 
some literature [17], the false non-match rate (FNMR), which is equal to 1 – TAR, at a given 
FAR or threshold value was employed. It is trivial to show that with respect to the same two new 
sets of similarity scores randomly selected WR from the two original sets of scores, respectively, 
as shown in the two-sample bootstrap Algorithm I in Section 2.2, the SE of FNMR is equal to the 
SE of TAR. But the lower bound and upper bound of 95 % CI for FNMR can be obtained by 
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interchanging two bounds for TAR and subtracting them from 1, respectively. Subsequently, the 
two bounds of 95 % CIs of FNMR are quite close to 0 as opposed to 1 that is what TAR does. 
Hence, if switching from TAR to FNMR, the CVSE will remain the same but the CVLB and 
CVUB of FNMR will be larger than those of TAR. 
 
For instance, in Scenario 1 for both Algorithms 1 and 2 when the number of bootstrap 
replications B was set to be 2000 as shown in the last columns of Table 2 and Table 4, 

respectively, the estimated  and  of high-accuracy Algorithm 1 changed from 
0.000020 and 0.000019 to 0.003152 and 0.002687, respectively; and those of low-accuracy 
Algorithm 2 changed from 0.000318 and 0.000389 to 0.001595 and 0.001196, respectively. 
However, they are all less than the tolerance 0.02. Hence, the assertion that the number of two-
sample bootstrap replications be 2000 is still valid if FNMR is employed. In the meantime, it is 
worth pointing out that the CVLB and CVUB increase greatly if using FNMR instead of TAR. 

LBV̂C UBV̂C

 
In some applications, such as speaker recognition evaluation, etc, the statistic of interest is a 
detection cost function that is defined as a weighted sum of probabilities of type I error and type 
II error [4]. The variance of this kind of cost function involves a covariance term (i.e., the cross 
term) of correlated probabilities of type I error and type II error. Such a metric is not dealt with 
in this article. However, the probability of type I error (i.e., the FNMR at a given threshold 
value) and the probability of type II error (i.e., the FAR at a specified threshold value) have been 
coped with individually in this article. 
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Appendix 1 -- Tables 
 
1 Scenario 1: TAR at a given FAR 
1.1 Algorithm 1 

Num. of replications B 200 400 600 800 1000 
Min. 0.047524 0.034664 0.027754  0.023912  0.021570 
Max. 0.054346 0.039866 0.031685 0.026866 0.023686 CVSE 
Range 0.006822 0.005202 0.003931 0.002954 0.002116 
Min. 0.000062 0.000044 0.000036 0.000030 0.000026 
Max. 0.000067 0.000047 0.000041 0.000037 0.000031 CVLB 
Range 0.000005 0.000003 0.000005 0.000007 0.000005 
Min. 0.000054 0.000041 0.000032 0.000030 0.000026 
Max. 0.000062 0.000044 0.000036 0.000032 0.000030 CVUB 
Range 0.000008 0.000003 0.000004 0.000002 0.000004 

Table 1 High-accuracy Algorithm 1’s minimum, maximum, and range of 10 estimators of CVSEs, CVLBs, 
and CVUBs, as the number of iterations ran from 100 up to 1000 at intervals of 100 for each specified B. B 
ran from 200 up to 1000 at intervals of 200. The statistic of interest is TAR at a given FAR. 

 
Num. of replications B 1200 1400 1600 1800 2000 

CVSE 0.021218 0.018613 0.017951 0.016331 0.016040 
CVLB 0.000027 0.000024 0.000023 0.000023 0.000020 
CVUB 0.000024 0.000023 0.000022 0.000020 0.000019 

Table 2 High-accuracy Algorithm 1’s estimators of CVSEs, CVLBs, and CVUBs, while B ran from 1200 up to 
2000 at intervals of 200 as the number of iterations was fixed at 500. The statistic of interest is TAR at a given 
FAR. 

 
1.2 Algorithm 2 

Num. of replications B 200 400 600 800 1000 
Min. 0.056895 0.037193 0.031792 0.026763 0.024033 
Max. 0.062609 0.043167 0.034696 0.030500 0.026695 CVSE 
Range 0.005714 0.005974 0.002904 0.003737 0.002662 
Min. 0.000941 0.000677 0.000519 0.000473 0.000442 
Max. 0.001052 0.000734 0.000627 0.000526 0.000478 CVLB 
Range 0.000111 0.000057 0.000108 0.000053 0.000036 
Min. 0.001068 0.000685 0.000637 0.000532 0.000488 
Max. 0.001171 0.000838 0.000738 0.000611 0.000544 CVUB 
Range 0.000103 0.000153 0.000101 0.000079 0.000056 

Table 3 Low-accuracy Algorithm 2’s minimum, maximum, and range of 10 estimators of CVSEs, CVLBs, 
and CVUBs, as the number of iterations ran from 100 up to 1000 at intervals of 100 for each specified B. B 
ran from 200 up to 1000 at intervals of 200. The statistic of interest is TAR at a given FAR. 

 
Num. of replications B 1200 1400 1600 1800 2000 

CVSE 0.023673 0.022299 0.021272 0.018918 0.017705 
CVLB 0.000457 0.000397 0.000354 0.000331 0.000318 
CVUB 0.000445 0.000429 0.000420 0.000389 0.000389 

Table 4 Low-accuracy Algorithm 2’s estimators of CVSEs, CVLBs, and CVUBs, while B ran from 1200 up to 
2000 at intervals of 200 as the number of iterations was fixed at 500. The statistic of interest is TAR at a given 
FAR. 
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2 Scenario 2: TAR at a given threshold value 
 
2.1 Algorithm 1 

Num. of replications B 200 400 600 800 1000 
Min. 0.045133 0.030526 0.025991 0.024365 0.020767 
Max. 0.051907 0.036352 0.031090 0.026430 0.023275 CVSE 
Range 0.006774 0.005826 0.005099 0.002065 0.002508 
Min. 0.000055 0.000041 0.000035 0.000030 0.000027 
Max. 0.000068 0.000048 0.000039 0.000035 0.000030 CVLB 
Range 0.000012 0.000006 0.000004 0.000005 0.000003 
Min. 0.000057 0.000040 0.000033 0.000028 0.000026 
Max. 0.000063 0.000044 0.000038 0.000033 0.000030 CVUB 
Range 0.000006 0.000004 0.000004 0.000005 0.000004 

Table 5 High-accuracy Algorithm 1’s minimum, maximum, and range of 10 estimators of CVSEs, CVLBs, 
and CVUBs, as the number of iterations ran from 100 up to 1000 at intervals of 100 for each specified B. B 
ran from 200 up to 1000 at intervals of 200. The statistic of interest is TAR at a given threshold value. 

 
Num. of replications B 1200 1400 1600 1800 2000 

CVSE 0.019498 0.018551 0.018105 0.016516 0.015611 
CVLB 0.000026 0.000025 0.000022 0.000022 0.000021 
CVUB 0.000025 0.000023 0.000023 0.000021 0.000019 

Table 6 High-accuracy Algorithm 1’s estimators of CVSEs, CVLBs, and CVUBs, while B ran from 1200 up to 
2000 at intervals of 200 as the number of iterations was fixed at 500. The statistic of interest is TAR at a given 
threshold value. 

 
2.2 Algorithm 2 

Num. of replications B 200 400 600 800 1000 
Min. 0.046884 0.033602 0.027518 0.023721 0.020796 
Max. 0.053526 0.036123 0.030318 0.025797 0.022964 CVSE 
Range 0.006642 0.002521 0.002800 0.002076 0.002168 
Min. 0.000361 0.000259 0.000215 0.000185 0.000162 
Max. 0.000409 0.000277 0.000230 0.000205 0.000175 CVLB 
Range 0.000048 0.000018 0.000015 0.000020 0.000013 
Min. 0.000350 0.000253 0.000206 0.000183 0.000159 
Max. 0.000397 0.000278 0.000229 0.000192 0.000182 CVUB 
Range 0.000046 0.000025 0.000023 0.000009 0.000023 

Table 7 Low-accuracy Algorithm 2’s minimum, maximum, and range of 10 estimators of CVSEs, CVLBs, 
and CVUBs, as the number of iterations ran from 100 up to 1000 at intervals of 100 for each specified B. B 
ran from 200 up to 1000 at intervals of 200. The statistic of interest is TAR at a given threshold value. 

 
Num. of replications B 1200 1400 1600 1800 2000 

CVSE 0.020317 0.018649 0.018001 0.016775 0.015417 
CVLB 0.000155 0.000138 0.000142 0.000128 0.000119 
CVUB 0.000150 0.000146 0.000132 0.000129 0.000119 

Table 8 Low-accuracy Algorithm 2’s estimators of CVSEs, CVLBs, and CVUBs, while B ran from 1200 up to 
2000 at intervals of 200 as the number of iterations was fixed at 500. The statistic of interest is TAR at a given 
threshold value. 
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3 Scenario 3: FAR at a given threshold value 
 
3.1 Algorithm 1 

Num. of replications B 200 400 600 800 1000 
Min. 0.046920 0.033853 0.028190 0.023259 0.021197 
Max. 0.052033 0.036638 0.029539 0.026110 0.024945 CVSE 
Range 0.005112 0.002786 0.001349 0.002850 0.003748 
Min. 0.018391 0.012871 0.010412 0.009149 0.008345 
Max. 0.020984 0.013912 0.011661 0.009910 0.009570 CVLB 
Range 0.002593 0.001041 0.001250 0.000761 0.001225 
Min. 0.013832 0.009846 0.008105 0.007568 0.006658 
Max. 0.015573 0.011428 0.008911 0.008174 0.007806 CVUB 
Range 0.001741 0.001582 0.000806 0.000606 0.001147 

Table 9 High-accuracy Algorithm 1’s minimum, maximum, and range of 10 estimators of CVSEs, CVLBs, 
and CVUBs, as the number of iterations ran from 100 up to 1000 at intervals of 100 for each specified B. B 
ran from 200 up to 1000 at intervals of 200. The statistic of interest is FAR at a given threshold value. 

 
Num. of replications B 1200 1400 1600 1800 2000 

CVSE 0.021625 0.019059 0.017675 0.016809 0.015373 
CVLB 0.008368 0.007647 0.007375 0.007022 0.006433 
CVUB 0.006691 0.005849 0.005742 0.005388 0.005315 

Table 10 High-accuracy Algorithm 1’s estimators of CVSEs, CVLBs, and CVUBs, while B ran from 1200 up 
to 2000 at intervals of 200 as the number of iterations was fixed at 500. The statistic of interest is FAR at a 
given threshold value. 

 
3.2 Algorithm 2 

Num. of replications B 200 400 600 800 1000 
Min. 0.047950 0.034903 0.026481 0.022305 0.021546 
Max. 0.053789 0.039294 0.031482 0.026376 0.023059 CVSE 
Range 0.005839 0.004391 0.005000 0.004071 0.001514 
Min. 0.017901 0.011890 0.010299 0.009629 0.008471 
Max. 0.019640 0.015084 0.012322 0.010173 0.009521 CVLB 
Range 0.001739 0.003194 0.002023 0.000544 0.001050 
Min. 0.013287 0.010158 0.008025 0.007195 0.006535 
Max. 0.015618 0.011602 0.009204 0.008099 0.008224 CVUB 
Range 0.002330 0.001444 0.001179 0.000904 0.001689 

Table 11 Low-accuracy Algorithm 2’s minimum, maximum, and range of 10 estimators of CVSEs, CVLBs, 
and CVUBs, as the number of iterations ran from 100 up to 1000 at intervals of 100 for each specified B. B 
ran from 200 up to 1000 at intervals of 200. The statistic of interest is FAR at a given threshold value. 

 
Num. of replications B 1200 1400 1600 1800 2000 

CVSE 0.020671 0.019016 0.018532 0.016877 0.015095 
CVLB 0.008657 0.007888 0.007592 0.006696 0.006458 
CVUB 0.006265 0.005850 0.005729 0.005452 0.005164 

Table 12 Low-accuracy Algorithm 2’s estimators of CVSEs, CVLBs, and CVUBs, while B ran from 1200 up 
to 2000 at intervals of 200 as the number of iterations was fixed at 500. The statistic of interest is FAR at a 
given threshold value. 
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4 Scenario 4: EER 
 
4.1 Algorithm 1 

Num. of replications B 200 400 600 800 1000 
Min. 0.046155 0.034597 0.027452 0.024199 0.022360 
Max. 0.050898 0.037824 0.031983 0.026339 0.023736 CVSE 
Range 0.004743 0.003227 0.004532 0.002139 0.001376 
Min. 0.008676 0.006376 0.005198 0.004332 0.003818 
Max. 0.009634 0.006946 0.006061 0.004997 0.004364 CVLB 
Range 0.000958 0.000570 0.000864 0.000665 0.000546 
Min. 0.008086 0.005970 0.004702 0.004117 0.003758 
Max. 0.008772 0.006529 0.005376 0.004747 0.004054 CVUB 
Range 0.000686 0.000559 0.000674 0.000630 0.000297 

Table 13 High-accuracy Algorithm 1’s minimum, maximum, and range of 10 estimators of CVSEs, CVLBs, 
and CVUBs, as the number of iterations ran from 100 up to 1000 at intervals of 100 for each specified B. B 
ran from 200 up to 1000 at intervals of 200. The statistic of interest is EER. 

 
Num. of replications B 1200 1400 1600 1800 2000 

CVSE 0.020348 0.019152 0.017907 0.017155 0.015610 
CVLB 0.003768 0.003800 0.003270 0.003240 0.003033 
CVUB 0.003520 0.003299 0.003122 0.002907 0.002673 

Table 14 High-accuracy Algorithm 1’s estimators of CVSEs, CVLBs, and CVUBs, while B ran from 1200 up 
to 2000 at intervals of 200 as the number of iterations was fixed at 500. The statistic of interest is EER. 

 
4.2 Algorithm 2 

Num. of replications B 200 400 600 800 1000 
Min. 0.047634 0.034402 0.027218 0.021963 0.017186 
Max. 0.051995 0.036459 0.029568 0.027059 0.023337 CVSE 
Range 0.004361 0.002056 0.002350 0.005095 0.006150 
Min. 0.001918 0.001334 0.001161 0.000972 0.000929 
Max. 0.002091 0.001548 0.001254 0.001089 0.000998 CVLB 
Range 0.000173 0.000213 0.000093 0.000117 0.000069 
Min. 0.001954 0.001386 0.001101 0.000920 0.000799 
Max. 0.002206 0.001522 0.001240 0.001046 0.000949 CVUB 
Range 0.000253 0.000136 0.000139 0.000126 0.000150 

Table 15 Low-accuracy Algorithm 2’s minimum, maximum, and range of 10 estimators of CVSEs, CVLBs, 
and CVUBs, as the number of iterations ran from 100 up to 1000 at intervals of 100 for each specified B. B 
ran from 200 up to 1000 at intervals of 200. The statistic of interest is EER. 

 
Num. of replications B 1200 1400 1600 1800 2000 

CVSE 0.020697 0.018524 0.016898 0.016887 0.016330 
CVLB 0.000875 0.000789 0.000768 0.000676 0.000649 
CVUB 0.000828 0.000796 0.000678 0.000675 0.000637 

Table 16 Low-accuracy Algorithm 2’s estimators of CVSEs, CVLBs, and CVUBs, while B ran from 1200 up 
to 2000 at intervals of 200 as the number of iterations was fixed at 500. The statistic of interest is EER. 
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5 Scenario 5: AURC 
 
5.1 Algorithm 1 

Num. of replications B 200 400 600 800 1000 
Min. 0.047289 0.033978 0.027837 0.023290 0.021658 
Max. 0.051731 0.036868 0.029854 0.026749 0.025690 CVSE 
Range 0.004442 0.002890 0.002017 0.003459 0.004032 
Min. 0.000023 0.000018 0.000013 0.000012 0.000011 
Max. 0.000027 0.000021 0.000016 0.000014 0.000013 CVLB 
Range 0.000004 0.000003 0.000003 0.000002 0.000001 
Min. 0.000022 0.000015 0.000013 0.000011 0.000010 
Max. 0.000025 0.000016 0.000014 0.000013 0.000011 CVUB 
Range 0.000003 0.000002 0.000002 0.000001 0.000001 

Table 17 High-accuracy Algorithm 1’s minimum, maximum, and range of 10 estimators of CVSEs, CVLBs, 
and CVUBs, as the number of iterations ran from 100 up to 1000 at intervals of 100 for each specified B. B 
ran from 200 up to 1000 at intervals of 200. The statistic of interest is AURC. 

 
Num. of replications B 1200 1400 1600 1800 2000 

CVSE 0.020065 0.019558 0.017755 0.015916 0.015397 
CVLB 0.000011 0.000011 0.000010 0.000008 0.000008 
CVUB 0.000009 0.000009 0.000008 0.000008 0.000007 

Table 18 High-accuracy Algorithm 1’s estimators of CVSEs, CVLBs, and CVUBs, while B ran from 1200 up 
to 2000 at intervals of 200 as the number of iterations was fixed at 500. The statistic of interest is AURC. 

 
5.2 Algorithm 2 

Num. of replications B 200 400 600 800 1000 
Min. 0.048170 0.034661 0.028056 0.023298 0.021355 
Max. 0.052180 0.036136 0.030047 0.027780 0.024504 CVSE 
Range 0.004010 0.001475 0.001991 0.004482 0.003148 
Min. 0.000089 0.000063 0.000051 0.000044 0.000041 
Max. 0.000100 0.000068 0.000055 0.000049 0.000044 CVLB 
Range 0.000011 0.000005 0.000004 0.000005 0.000003 
Min. 0.000085 0.000060 0.000051 0.000044 0.000039 
Max. 0.000092 0.000069 0.000054 0.000048 0.000043 CVUB 
Range 0.000007 0.000008 0.000003 0.000004 0.000004 

Table 19 Low-accuracy Algorithm 2’s minimum, maximum, and range of 10 estimators of CVSEs, CVLBs, 
and CVUBs, as the number of iterations ran from 100 up to 1000 at intervals of 100 for each specified B. B 
ran from 200 up to 1000 at intervals of 200. The statistic of interest is AURC. 

 
Num. of replications B 1200 1400 1600 1800 2000 

CVSE 0.020828 0.017814 0.017853 0.016148 0.015287 
CVLB 0.000038 0.000036 0.000033 0.000030 0.000030 
CVUB 0.000039 0.000035 0.000033 0.000029 0.000029 

Table 20 Low-accuracy Algorithm 2’s estimators of CVSEs, CVLBs, and CVUBs, while B ran from 1200 up 
to 2000 at intervals of 200 as the number of iterations was fixed at 500. The statistic of interest is AURC. 
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Appendix 2 -- Figures 
 
1 CVSE of Algorithms 1 and 2 
 
1.1 Scenario 1: TAR at a given FAR 
 

Figure 2 The estimators of CVSEs for high-accuracy Algorithm 1 and low-accuracy Algorithm 2 as a function 
of the number of bootstrap replications. The tolerance is set to be 0.02. The statistic of interest is TAR at a 
given FAR. 

 
1.2 Scenario 2: TAR at a given threshold value 
 

Figure 3 The estimators of CVSEs for high-accuracy Algorithm 1 and low-accuracy Algorithm 2 as a function 
of the number of bootstrap replications. The tolerance is set to be 0.02. The statistic of interest is TAR at a 
given threshold value. 
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1.3 Scenario 3: FAR at a given threshold value 
 

Figure 4 The estimators of CVSEs for high-accuracy Algorithm 1 and low-accuracy Algorithm 2 as a function 
of the number of bootstrap replications. The tolerance is set to be 0.02. The statistic of interest is FAR at a 
given threshold value. 

 
1.4 Scenario 4: EER 
 

Figure 5 The estimators of CVSEs for high-accuracy Algorithm 1 and low-accuracy Algorithm 2 as a function 
of the number of bootstrap replications. The tolerance is set to be 0.02. The statistic of interest is EER. 
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1.5 Scenario 5: AURC 
 

Figure 6 The estimators of CVSEs for high-accuracy Algorithm 1 and low-accuracy Algorithm 2 as a function 
of the number of bootstrap replications. The tolerance is set to be 0.02. The statistic of interest is AURC. 

 
2 CVLB and CVUB of Algorithms 1 and 2 
 
2.1 Scenario 1: TAR at a given FAR 
 
2.1.1 Algorithm 1 
 

Figure 7 The estimators of CVLBs and CVUBs for high-accuracy Algorithm 1 as a function of the number of 
bootstrap replications. The tolerance is set to be 0.000025. The statistic of interest is TAR at a given FAR. 
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2.1.2 Algorithm 2 
 

Figure 8 The estimators of CVLBs and CVUBs for low-accuracy Algorithm 2 as a function of the number of 
bootstrap replications. The tolerance is set to be 0.000450. The statistic of interest is TAR at a given FAR. 

 
2.2 Scenario 2: TAR at a given threshold value 
 
2.2.1 Algorithm 1 
 

Figure 9 The estimators of CVLBs and CVUBs for high-accuracy Algorithm 1 as a function of the number of 
bootstrap replications. The tolerance is set to be 0.000025. The statistic of interest is TAR at a given threshold 
value. 
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2.2.2 Algorithm 2 
 

Figure 10 The estimators of CVLBs and CVUBs for low-accuracy Algorithm 2 as a function of the number of 
bootstrap replications. The tolerance is set to be 0.000150. The statistic of interest is TAR at a given threshold 
value. 

 
2.3 Scenario 3: FAR at a given threshold value 
 
2.3.1 Algorithm 1 
 

Figure 11 The estimators of CVLBs and CVUBs for high-accuracy Algorithm 1 as a function of the number 
of bootstrap replications. The tolerance is set to be 0.008. The statistic of interest is FAR at a given threshold 
value. 
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2.3.2 Algorithm 2 
 

Figure 12 The estimators of CVLBs and CVUBs for low-accuracy Algorithm 2 as a function of the number of 
bootstrap replications. The tolerance is set to be 0.008. The statistic of interest is FAR at a given threshold 
value. 

 
2.4 Scenario 4: EER 
 
2.4.1 Algorithm 1 
 

Figure 13 The estimators of CVLBs and CVUBs for high-accuracy Algorithm 1 as a function of the number 
of bootstrap replications. The tolerance is set to be 0.004. The statistic of interest is EER. 
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2.4.2 Algorithm 2 
 

Figure 14 The estimators of CVLBs and CVUBs for low-accuracy Algorithm 2 as a function of the number of 
bootstrap replications. The tolerance is set to be 0.000850. The statistic of interest is EER. 

 
2.5 Scenario 5: AURC 
 
2.5.1 Algorithm 1 
 

Figure 15 The estimators of CVLBs and CVUBs for high-accuracy Algorithm 1 as a function of the number 
of bootstrap replications. The tolerance is set to be 0.000012. The statistic of interest is AURC. 
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2.5.2 Algorithm 2 
 

Figure 16 The estimators of CVLBs and CVUBs for low-accuracy Algorithm 2 as a function of the number of 
bootstrap replications. The tolerance is set to be 0.000040. The statistic of interest is AURC. 
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