
Maintainers Manual for Version 2.2.1 of the
NIST DMIS Test Suite

(for DMIS 5.2)

Thomas R. Kramer (thomas.kramer@nist.gov, phone 301-975-3518)
John Horst (john.horst@nist.gov, phone 301-975-3430)

Intelligent Systems Division
National Institute of Standards and Technology

Technology Administration
U.S. Department of Commerce

Gaithersburg, Maryland 20899, USA

NISTIR 7720
October 25, 2010

Maintainers Manual NIST DMIS Test Suite 2.2.1
Disclaimer
No approval or endorsement of any commercial product by the National Institute of
Standards and Technology is intended or implied.

Acknowledgements
Funding for the work described in this paper was provided to Catholic University by
the National Institute of Standards and Technology under grant Number
70NANB9H9131.
ii

Maintainers Manual NIST DMIS Test Suite 2.2.1

Table of Contents
1 Introduction. 1
1.1 Overview. 1
1.2 How the Test Suite is Made Available . 1
1.3 Documentation . 2
1.4 Terminology . 2
1.5 Use of Fonts and a Warning . 2
1.6 Compilers . 3

2 The Big Ideas . 3

3 In-line Documentation of Code . 4
3.1 Documentation in Automatically Generated Source Code. 4
3.2 Documentation of Hand-written Source Code . 5

4 DEBNF C++ Classes and Parser . 7
4.1 DEBNF C++ Classes . 7
4.2 DEBNF Parser . 8

5 Test Suite Quality Control . 9
5.1 Introduction. 9
5.2 DMIS Input Test Files . 9
5.3 Testing Conformance Information . 10
5.4 Testing the C++ Classes and the Parser . 12

6 Building Utility Components and Utilities . 12
6.1 Generating the Source Code . 12
6.2 Building the Library . 16
6.3 Building the dmisParser . 17
6.4 Building the dmisConformanceChecker. 18
6.5 Building the dmisConformanceRecorder . 19
6.6 Building the dmisConformanceTester . 19
6.7 Editing the C++ Code in the UtilityComponents Directory . 20

7 How the dmisConformanceChecker Works . 21
7.1 Overview. 21
7.2 Arrays for Conformance Checking. 22
7.3 Checking Conformance . 23
7.4 Reporting the Results . 24

8 How the dmisConformanceTester and dmisConformanceRecorder Work 26
8.1 LevelsSet.cc . 27
8.2 Check_inputFile . 28
8.3 dmisConformanceTester. 29
8.4 dmisConformanceRecorder . 29
iii

Maintainers Manual NIST DMIS Test Suite 2.2.1
9 How the dmisTestFileReductor Works. 29
9.1 Main function . 29
9.2 ProcessDmisFile function. 29
9.3 CompareReq function. 30
9.4 PrintInConformed function. 30

10 More on EBNF . 30
10.1 DmisStatement . 30
10.2 Naming Conventions . 31
10.3 Token Spelling Structure Conventions. 31
10.4 Multiple Optionals . 32

11 More on C++ Classes for DMIS . 32

12 Building Code Generators. 34
12.1 Pros and Cons of Code Generators. 34
12.2 Development Technique. 35
12.3 Generating Code Automatically . 35
12.4 Printing Directly . 36
12.5 Combining Manually Written and Automatically Generated Code 36
12.6 An Alternative - Generate and Execute . 36

13 How debnf2pars Works . 37
13.1 Introduction. 37
13.2 Data Structures Used in debnf2pars . 37
13.3 The Main Function . 38
13.4 DEBNF Parser . 39
13.5 Generating dmis.hh and dmis.cc. 39
13.6 Generating dmisConformanceChecker.cc . 42
13.7 Generating dmisConformanceTester.cc . 43
13.8 Generating allSubAtts.cc and MasterSubAtts.cc . 43
13.9 Modifying the C++ Class Instances for EBNF to Avoid Shift/Reduce Conflicts . . 44
13.10 Generating dmis.y. 48
13.11 Generating dmis.lex . 64

14 Building the Generators . 65
14.1 Building debnf2pars . 66
14.2 Building generateMore . 67
iv

Maintainers Manual NIST DMIS Test Suite 2.2.1
1 Introduction

1.1 Overview

The National Institute of Standards and Technology (NIST) is supporting use of the Dimensional
Measuring Interface Standard (DMIS) language. One form of this support is providing the NIST
DMIS Test Suite (NDTS), which has been developed in the Intelligent Systems Division (ISD) of
NIST.

This manual is a maintainers manual for the NIST DMIS Test Suite version 2.2.1. A maintainer is
anyone who is considering modifying the test suite1, particularly NIST personnel building a new
version of the test suite.

The test suite is intended to serve two purposes:
• to help users and vendors use version 5.2 of DMIS,
• to provide utilities and test files for conducting conformance tests on

- DMIS input files
- computer systems that generate DMIS input files
- computer systems that execute DMIS input files.

There are also a “Users Manual for Version 2.2.1 of the NIST DMIS Test Suite (for DMIS 5.2)”
and a “System Builders Manual for Version 2.2.1 of the NIST DMIS Test Suite (for DMIS 5.2)”.
Read those manuals carefully before starting on this manual. They contain a lot of important
information that is not duplicated here. If you find terms in this manual you do not understand,
search for them in the other two manuals.

1.2 How the Test Suite is Made Available

The primary mode of distributing the test suites has been to post them in the ISD web site as zip
files. The web site is:

http://www.isd.mel.nist.gov/projects/metrology_interoperability/dmis_test_suite.htm

The following earlier versions of the test suite are in the site in addition to this one:
• DMIS Test Suite 1.01 for version 5.0
• DMIS Test Suite 1.1 for version 5.0
• DMIS Test Suite 2.0 for version 5.1
• DMIS Test Suite 2.1 for version 5.1
• DMIS Test Suite 2.1.1 for DMIS version 5.1
• DMIS Test Suite 2.1.4 for DMIS version 5.1
• DMIS Test Suite 2.1.5 for DMIS version 5.1

For this release and NDTS 2.1.5, since the test suite is very large (so that prospective users may
want to look at the manuals before deciding whether to download it), the manuals may be
downloaded separately from the same site.

In addition, NDTS 2.1.5 is available from http://code.google.com/p/dmis-test-suite/downloads/
list.

It would be good to make it possible, in addition, to use the NDTS utilities on the web without

1. In the remainder of this manual “the test suite” means the NIST DMIS Test Suite, version 2.2.1.
1

Maintainers Manual NIST DMIS Test Suite 2.2.1
downloading anything. The user would upload a file to test and it would be run through whichever
utility the user wants (dmisParser, dmisConformanceChecker, dmisConformanceRecorder,
or dmisConformanceTester). Utilities for other languages have been made available that way at
NIST, and the idea of doing that for DMIS has been kicking around for several years.

Early versions of the NDTS were emailed occasionally. Versions 2.1.5 and 2.2.1 are too large to
email.

1.3 Documentation

NDTS documentation includes:
• the three manuals (users, system builders, maintainers),
• the Excel spreadsheet defining conformance classes (last edited September 2010)
• in-line documentation of the code in ebnf, generator, and utilityComponents directories,
• one journal article1.

1.4 Terminology

In this manual:
• bison = a system for generating C++ code from a YACC file (it’s not an acronym)
• BNF = Backus-Naur Form
• DEBNF = DMIS EBNF
• DMIS = Dimensional Measuring Interface Standard
• DMSC = Dimensional Metrology Standards Consortium
• EBNF = Extended BNF
• flex = a system for generating C++ code from a Lex file (it’s not an acronym)
• Lex = a language for encoding a lexical analyzer (it’s not an acronym)
• NDTS = NIST DMIS Test Suite
• NIST = National Institute of Standards and Technology
• YACC = Yet Another Compiler Compiler, a language for encoding a parser
• The term “subclass” (rather than “child class” or anything else) is used to refer to a C++

class that is derived from another class.
• The term “rule”, rather than “production” will be used for a YACC production. “Rule” is

the usual term, and makes it easy to differentiate between EBNF productions and YACC
productions.

1.5 Use of Fonts and a Warning

1.5.1 Fonts

Five formal languages are used in the test suite: DMIS, DEBNF, C++, YACC, and Lex. In
addition, the test suite deals with files and commands. To help make it clear what sort of thing is
being discussed, in this manual:

• DMIS code and keywords are shown in this font.
• File and directory names (including names of executable files) are shown in this font.
• C++ code (lines of code, class names, function names, etc.) is shown in this font.
• Commands typed in a command window or included in a Makefile are shown in this

1. Kramer, T. R., “Automatic detection and replacement of syntactic constructs causing shift/reduce conflicts”,
Software, Practice and Experience, 40:387-404, 2010.
2

Maintainers Manual NIST DMIS Test Suite 2.2.1
font.
• DEBNF code is shown in this font. So are production, definition, and
expression when referring to DEBNF code.

• YACC code is shown in this font. So is definition when referring to YACC code.

Some terms are used in more than one context. “Production”, for example, is both a descriptive
term used to talk about EBNF and the name of a C++ class. In these cases, the font used is
intended to show the context.

1.5.2 Warning

A source of disorientation in maintaining the test suite is that three of the languages are used on
two levels. YACC and Lex are used (1) to build a DEBNF parser and (2) to build a DMIS parser.
C++ classes are defined both to represent EBNF and to represent DMIS. C++ is used both for the
generator code and for the code written by the generator. You are sure to lose track periodically of
which level you are working on. Sometimes you need to think simultaneously about two different
levels using the same language. Hang in there.

1.6 Compilers

To build the test suite executables and libraries, you need a C++ compiler. Most Linux and Unix
(such as Sun) systems come with a C++ compiler. You can download and use the Gnu C++
compiler for free from ftp://ftp.gnu.org/gnu/gcc or http://ftp.gnu.org/gnu/gcc. For Windows, you
can download and use the Microsoft Visual C++ 2008 Express Edition for free from http://
www.microsoft.com/express/vc.

You also need bison (a YACC compiler) and flex (a Lex compiler). Bison and flex are free
software already installed on most Linux and unix (such as Sun) systems. For Linux and unix
systems, they may be downloaded for free from ftp://ftp.gnu.org/gnu or http://ftp.gnu.org/gnu. For
Windows systems they may be downloaded for free from http://gnuwin32.sourceforge.net or
http://sourceforge.net/projects/gnuwin32.

2 The Big Ideas

The construction of the utilities in the test suite is based on several big ideas. These are used
exclusively to deal with DMIS in the test suite, but they are applicable to any statement-based
language whose syntax may be represented in EBNF.

Perhaps the biggest idea is that it is possible to generate large amounts of useful C++ code
automatically. DMIS is a huge language. The EBNF file for DMIS is over 100 pages long. Over
half a million lines of C++ source code (about 10,000 pages) are used in the test suite. That is too
much for a small team. So, necessity has been the mother of invention.

The numbered items following are applications of this idea. Item 1 is not at all new. Item 2 has
probably been done elsewhere. We believe items 3-6 are completely new.

1. A YACC-Lex parser for a target language may be generated automatically from an EBNF file
describing the syntax of the language.

2. A set of C++ classes may be defined that represents EBNF and is rich enough to support
automatic generation of both (1) C++ classes describing the target language described by an
3

Maintainers Manual NIST DMIS Test Suite 2.2.1
EBNF file and (2) C++ source code for a variety of utilities for manipulating that language.

3. Methods of automatically analyzing the EBNF may be developed that recognize EBNF
constructs that lead to shift/reduce conflicts in the automatically generated YACC file. Those
constructs may be automatically modified to represent the same syntax but not produce conflicts
in the YACC file.

4. The automatically generated parser may be built so that, as it parses a target language file, it
builds a parse tree in terms of the automatically generated C++ classes. Moreover, the parse tree
may be built in terms of classes generated from the unmodified EBNF even though the syntax
recognition portions of the parser are built from modified EBNF.

5. A C++ data file may be built automatically describing the attributes and subclasses of the C++
classes representing the target language. This may be done in parallel with generating the classes.
Copies of the C++ data file may be manually edited so that each copy represents the C++ code for
a subset of the target language. Subsets of interest are those defining conformance modules of the
language. Other C++ files with data on the C++ classes needed for building a conformance testing
system may be also be generated automatically

6. Utilities that test conformance of target language files in various ways may be built semi-
automatically in C++ using all the other automatically generated code. These utilities have a
(relatively) small manually generated core that is included in a larger automatically generated
C++ file.

3 In-line Documentation of Code

The manually generated source code in the test suite contains extensive in-line documentation.
Most of the automatically generated source code does not.

3.1 Documentation in Automatically Generated Source Code

Much of the source code in the NDTS is generated automatically. Most of the automatically
generated code has no in-line documentation.

One exception to this is dmis.hh, which has 14,770 lines of automatically generated
documentation included in the 53,844 lines of the file. The C++ classes for DMIS are intended to
serve two purposes. The first purpose is to support automatic generation of code for the utilities;
for that, no documentation is required. The second purpose of the C++ classes is to be usable by
DMIS system builders for building DMIS generators and consumers. It is necessary to include
documentation in dmis.hh because that is only way a system builder can figure out what portion
of DMIS each C++ class represents. Without it, the C++ classes would be unusable. The dmis.hh
file starts with a page of documentation. After that, each class is documented. The automatically
generated documentation for each class is of one of three types for (1) a parent class, (2) a class
generated from a production with only one definition, or (3) a class generated from a production
with two or more definitions. Examples of these are shown in Figure 1, Figure 2, and Figure 3,
respectively.
4

Maintainers Manual NIST DMIS Test Suite 2.2.1
3.2 Documentation of Hand-written Source Code

The in-line documentation of the hand-written code is very extensive.

3.2.1 C++ source code documentation.

Most of the .cc hand-written C++ source code files start with a 1-6 page description of what the
file does. There is only one hand-written .hh file (generator/linuxSun/source/ebnf.hh) in the
test suite, and it is about half documentation.

The generator/linuxSun/source/debnf2pars.y file, which has over 13,000 lines (250 pages),
includes only about 150 lines of YACC. It is documented the same way as .cc files. The file is
about half C++ code and half documentation.

To make it easy to find functions in a .cc file, in most cases they are declared in alphabetical order
near the beginning of the file. Then they are defined in alphabetical order.

A uniform template has been used for documenting functions in hand-written C++ source code
files. An example is shown in Figure 4. The first line has the name of the function. This is
followed by a description of what the function returns and a list of functions that call the function.

/* dmisFreeStatement

This is a parent class.

*/

Figure 1. Automatically Generated Documentation - Parent Class

/* rotIncr

This is a class for the single definition of rotIncr.
It represents the following items:

INCR ’,’ rotOrient

*/
Figure 2. Automatically Generated Documentation - Single Definition

/* matDir_INNER

This is a derived class for one of the definitions of matDir.
It represents the following items:

INNER

*/
Figure 3. Automatically Generated Documentation - Multiple Definitions
5

Maintainers Manual NIST DMIS Test Suite 2.2.1
Next is a description of what the function does. Depending on the complexity of what the function
does, the description may be anywhere from one line to three pages.

Each argument of a function is given on a separate line, and a comment giving a description of the
argument follows the argument.

To make it easy to know what local variables are used, the local variables of each function are
declared at the beginning of the function, and each local variable is declared on a separate line. In
some functions, each local variable is followed by a comment describing the variable.

The commenting in the .cc and .hh files has been done in such a way that it would be easy to
modify it so it could be processed by the doxygen automatic documentation generation system. In
particular, the documentation of the function arguments needs only an exclamation point to be
added to each line.

3.2.2 EBNF documentation

The EBNF directory has two DEBNF files in it. One of the files (ebnf/dmisFull5.2.debnf) has no

/* findToken

Returned Value: int
If the text is the name of a token, this returns 1. Otherwise, it returns 0.

Called By:
printCppClassPrinter
printCppClassPrinterOpt1
printCppClassPrinterOpt2
printYaccProductions
printYaccUnionAndTypes
reviseSpelling
selectProductions

If the token is found in the tokenNames, this also sets *n to the zero-based index of the position
at which the token was found in the sub-array of the tokenNames starting with the first letter of
the token.

*/

int findToken(/* ARGUMENTS */
char * text, /* text to look for */
int * n) /* position at which found, if found */

{
char ** letterNames;
int result;

…

}

Figure 4. Hand-written In-Line Documentation
6

Maintainers Manual NIST DMIS Test Suite 2.2.1
documentation in it and describes the same syntax as that given in the DMIS 5.2 spec.

The other file (ebnf/dmis.debnf) includes documentation and describes the syntax of files that
have been produced by the preprocessor in the test suite, which is slightly different. Most of the
documentation in this file (1) identifies the EBNF constructs that will produce shift/reduce errors
in a YACC file that has the same structure, and (2) describes the alternate EBNF constructs that
will be mirrored in the automatically generated YACC and do not produce conflicts. This file also
contains hundreds of comments assigning names to classes and their attributes, but those are not
considered to be documentation.

4 DEBNF C++ Classes and Parser

4.1 DEBNF C++ Classes

The generator/linuxSun/source/ebnfClasses.hh,.cc files contain C++ classes representing
DEBNF. The classes support building a parse tree for DEBNF and doing data access on the tree
(but not printing the DEBNF out again). In addition, one class, stringCell, is defined that is not
needed for DEBNF but supports debnf2pars. The DEBNF classes include many attributes that
support the functionality of debnf2pars but are not needed for dealing with the DEBNF parse
tree.

The DEBNF classes include: production, definition, expression, and optional. For the first
three of those, a list cell (prodCell, defCell, expCell) and a doubly linked list (prodList, defList,
expList) are also defined. The lists cells each have next, back, and data attributes. Everything in
the DEBNF classes is public, so data access functions are not needed. The list classes all have
pushBack, pushFront, and findLength access functions. Each list type has a few other functions
for special purposes (such as splicing in a sublist). The list classes allow complete control of the
list structure and easy traversal in either direction.

4.1.1 Production class attributes

The production class has the following attributes:
defList * defs; // the definitions of the production
bool endsInOptional; // see below
fixTypeE fixType; // the kind of fix that has been or should be applied
int isList; // 0=not a list, 1=list no commas, 2=list with commas
bool isSupertype; // true = this production is a supertype of other productions
char * lhs; // the name of the production (lhs = left-hand side)
prodList subtypeOf; // list of productions of which this is a subtype
prodList usedIn; // list of productions in which the name of this appears
bool wasPrinted; // true = classes for this production have been printed

FixTypeE is an enumeration defined in the production class whose allowed values are
fixListItemDeleted, fixListItemsInserted1, fixListItemsInserted2, fixNone, fixProdC, and
fixProdCUser.

The endsInOptional attribute has a default value of false and is set to true if and only if at least
one definition of the production ends with an optional that starts with a comma.
7

Maintainers Manual NIST DMIS Test Suite 2.2.1
4.1.2 Definition class attributes

The definition class has the following attributes:
char * className; // class name for the definition
expList * expressions; // expressions giving the definition
defList * newDefs; // revised definitions to replace this

During processing by debnf2pars, the newDefs of each definition are set. Each optional in a
definition leads to at least two definitions in the newDefs. Fixing shift/reduce conflicts also
changes the newDefs. Printing rules in dmis.y is done primarily using the newDefs.

4.1.3 Expression class attributes

The expression class has the following attributes:
int theType; // see below
char * itemName; // see below
char * attName; // the name of the attribute that will represent the expression
optional * optValue; // pointer to an optional; 0 unless theType is OPTIONAL
production * prodValue; // pointer to a production; 0 unless theType is NONTERMINAL

TheType of an expression may be ENDLINE, KEYWORD, NONTERMINAL, ONECHAR,
OPTIONAL, TERMINAL, TERMINALSTRING, or TWOCHAR. These have integer values
#defined in debnf2parsYACC.cc.

The itemName of an expression is set to 0 if theType is OPTIONAL or TERMINALSTRING.
The itemName is set for the following values of theType. For KEYWORD and
NONTERMINAL, itemName is a string containing exactly the characters in the EBNF file. For
ENDLINE, itemName is “ENDLINE”. For ONECHAR, itemName is a string containing the
character between the apostrophes. For TERMINAL, itemName is a string containing the
characters that were read converted to all upper case. For TWOCHAR, itemName is a string
containing the two letters.

The optValue of an expression is 0 unless theType is OPTIONAL. In that case, optValue is set
to point to an optional.

The prodValue of an expression is 0 unless theType is NONTERMINAL. In that case,
prodValue is set to point to the production whose name is the itemName.

4.1.4 Optional class attributes

The optional class has the following attributes:

expList * expressions; // the expressions in the optional
int digit; // the multiplicity of the optional

4.2 DEBNF Parser

The DEBNF parser consists of a hand-written debnf2pars.lex file and about 150 lines of YACC
in the debnf2pars.y file. The parser parses DEBNF into a parse tree using the DEBNF classes. In
the current version of DEBNF, comments of the form (*A=name*) and (*C=name*) in the
DEBNF file represent names for attributes and classes, respectively. If an attribute name for an
expression that will become an attribute is not given in the DEBNF file, an attribute name will
8

Maintainers Manual NIST DMIS Test Suite 2.2.1
be assigned by the findAttributeNames function in debnf2pars.y. If a class name for a
definition is not given in the DEBNF file, a class name will be assigned by the
findClassNames function.

5 Test Suite Quality Control

5.1 Introduction

To be usable for conformance testing and be trusted by users, the NIST DMIS Test Suite must
have very few bugs in it. A great deal of effort has been put into ensuring that there are few bugs.
Whenever changes have been made in the test suite, tests have been performed to hunt for bugs.
All bugs that have been found have been fixed. The test suite maintainers must continue to test
and debug thoroughly when changes are made. If new functionality is introduced, new tests will
need to be devised.

Five types of files are involved in maintaining the quality of the test suite:
• the text of DMIS 5.2
• the DEBNF file for DMIS
• the Excel Spreadsheet describing DMIS conformance classes
• test files that are DMIS 5.2 input files
• executable utilities and the C++ code from which they are built

There are no calibration artifacts maintained by other organizations that can be used by NIST to
check the test suite. The five types of files are used to check each other. Every one of the five types
of files may have errors in it. The last four types are currently being maintained only by NIST.

5.2 DMIS Input Test Files

Parser test files and system test files are described in sections 8 and 9 of the Users Manual. This
section has additional information about the test files.

5.2.1 Parser test files vs. system test files

Parser test files are syntactically correct but may have semantic errors and may make no sense.
System test files are syntactically and semantically correct so that it should be possible to execute
them on commercial DMIS systems. Many of the system test files in the test suite do not produce
any motion and therefore do nothing useful. The system test files that produce motion require
using a physical part (or a simulation of one).

5.2.2 Parser test files

In Version 2.2.1, the parserTestFiles directory has test files only for full DMIS. In Version 2.1.5,
that directory had test files for full DMIS plus the three levels of the prismatic AP.

In Version 2.2.1, however, parser test files may be produced automatically by the
dmisTestFileReductor for any allowed set of conformance modules. The parser test files for full
DMIS are used as input to the dmisTestFileReductor. To enable the dmisTestFileReductor to
work, every non-comment line of every one of the 254 test files in the parserTestFiles/okIn
directory was marked with a DMIS comment on the line above indicating the conformance
modules needed to deal with the line. The marking was done by determining what conformance
module the Excel spreadsheet requires for each item on the line and inserting the comment
9

Maintainers Manual NIST DMIS Test Suite 2.2.1
manually. For example, in the following two lines of DMIS code from featCone1.dmi, the
comment PM1 TW3 on the first line means that at least level 1 of the prismatic AP or level 3 of
the thin-walled AP is needed in order for the second line to conform.

$$ PM1 TW3
F(c2)= FEAT/CONE,OUTER,CART,60,0,0,0,0,1,11.8

The conformance markings in the parser test files have been used for testing as described in
Section 5.3.

In addition, the first line of each of the files in okIn is a comment giving the minimum
conformance modules needed to handle a syntactically correct reduced version of the file
containing the DMIS item after which the file is named. For example, the first line of planid1.dmi
is “$$ PM1 TW1 QI2” because QI2 is needed for PLANID, and either PM1 or TW1 is needed
for DMISMN. As another example, the first line of funcsBool.dmi is “$$ PM2 TW2” because
boolean functions require level 2 of either PM or TW.

5.2.3 System test files

In Version 2.2.1, the systemTestFiles directory is still divided into subdirectories for full DMIS
and the three levels of the prismatic AP. All the files have been updated to DMIS 5.2.

5.2.4 Other test files

A large set of large test files was provided to NIST several years ago by an industrial partner.
These were written for DMIS 5.0. In earlier releases of the test suite, they were used to test the
utilities. They were manually updated to DMIS 5.1 and used to test version 2.1.5. They have not
yet been updated to DMIS 5.2, so they are not yet usable for testing the utilities in NDTS 2.2.1.

5.3 Testing Conformance Information

5.3.1 Testing without the dmisTestFileReductor

To check that the dmisConformanceRecorder works properly and to test that the parser test
files were marked correctly, a test was devised in which each of over 300 parser test files had its
conformance information inserted without using the dmisConformanceRecorder. Then each
file was run through the dmisConformanceRecorder, which replaced the conformance
information, and it was checked that the file was unchanged.

For the files in the parserTestFiles/okIn directory, the conformance information was inserted
automatically by a utility named insertConf that read the line markings, found the maximum
level of each conformance module used in the line markings, and inserted conformance
information on the DMISMN line of the file. Conformance information was inserted manually on
the DMISMN lines of the files in parserTestFiles/annexAIn, but that was done without marking
each line.

Then the checkLevels script was written which checks that the conformance information already
in each file of okIn and annexAIn is the same as the conformance information produced by the
dmisConformanceRecorder. Of course many errors were found in the manual markings and a
few errors were found in the dmisConformanceRecorder. Corrections were made and the
checkLevels script was run repeatedly until no differences were reported.

During further development, the checkLevels script has been run repeatedly as a regression test.
10

Maintainers Manual NIST DMIS Test Suite 2.2.1
This should continue to be done.

In addition, a testFullTester script was written for testing the dmisConformanceTester. This is
a weaker test because, although it checks that no error or warning messages are generated except
the expected ones, it does not compare the conformance information that is generated with the
expected conformance information. Since almost all the software for both the
dmisConformanceTester and the dmisConformanceRecorder is in the same file
(dmisConformanceTester.cc), a more stringent test does not seem needed.

5.3.2 Testing with the dmisTestFileReductor

The dmisTestFileReductor is described in Section 7 of the Users Manual. It was developed after
all the testing described in Section 5.3.1 was completed. The way the dmisTestFileReductor
works is described in Section 9 of this manual. The dmisTestFileReductor enabled additional
extensive testing of the dmisConformanceRecorder and the parser test files as follows.

First a command of the following sort was executed from the utilities/linux/full directory

../bin/dmisTestFileReductor runOkFull outgoing PM3

That command runs all the files in the parserTestFile/okIn directory through the
dmisTestFileReductor and, if the first line of a test file indicates that level 3 of the prismatic AP is
high enough to warrant producing a reduced test file, writes a reduced test file of the same name in
the utilities/linux/full/outgoing directory.

Then the checkRed script file is run from the utilities/linux/full directory. The checkRed script
is the same as the checkLevels script described above with two changes:

• The checkRed script reads files from the outgoing directory only.
• The checkRed script checks whether a file exists before processing it.

In other words, if a file exists in the outgoing directory, a copy of it is made, the copy is run
though the dmisConformanceRecorder, and it is checked that the file output from the
dmisConformaceRecorder is identical to the input file. Thus, the conformance requirements of
each file are derived in two completely independent ways, (1) by using the manually generated
markings in the test files plus the dmisTestFileReductor and, (2) by running the
dmisConformanceRecorder, and it is checked that the two methods get the same results.

Additional testing has included replacing the PM3 on the command line above with the following
single AP levels or combinations of AP and addenda. The parentheses below were not used in the
argument list; they are just to make the alternative sets arguments easy to read.

(PM2), (PM1), (TW3), (TW2), (TW1),

(PM3 RY3 MC3 CT3 IP3 QI3 MU3 SF3), (PM2 RY2 MC2 CT2 IP2 QI2 MU2 SF2),
(PM1 RY1 MC1 CT1 IP1 QI1 MU1 SF1),

(TW3 RY3 MC3 CT3 IP3 QI3 MU3 SF3), (TW2 RY2 MC2 CT2 IP2 QI2 MU2 SF2),
(TW1 RY1 MC1 CT1 IP1 QI1 MU1 SF1).

Between tests, all files in the outgoing directory were deleted.

Tests of this sort should be repeated if the test suite is modified.
11

Maintainers Manual NIST DMIS Test Suite 2.2.1
5.4 Testing the C++ Classes and the Parser

As described in Section 3.2.1 of the Users Manual, the testFullParser (or testFullParser.bat)
executable script processes 322 DMIS input files. Each DMIS file is parsed in to build a parse
tree. TestFullParser checks that the messages produced by the parser are identical to the
expected messages. If there are no errors in parsing the file, it is printed out again from the parse
tree using the printSelf functions in dmis.cc. Then another version of the input file is made by
reformatDmis (a utility built using lex), which also reads and reprints the DMIS file, but without
using the parser or the C++ classes. ReformatDmis formats the files it prints the same way as the
printSelf functions. The two reprinted versions are compared to check that they are identical.

Running testFullParser successfully demonstrates that:
• The dmisLex.cc, dmisYACC.cc, and dmis.cc files work correctly, and hence the

generator, bison, and flex work correctly.
• The C++ classes for DMIS can represent all of DMIS (since the test files cover all of

DMIS).

In addition, running testFullParser every time the software is rebuilt serves as a regression test.

6 Building Utility Components and Utilities

This section describes how the utilities and the source code for them are built in Linux. Building
them for SunOS is identical except for the directory names. It is not necessary to regenerate
source code for Sun since Linux and Sun use the same source code. Building source code for
Windows could be done similarly, but has not been. In practice, for Windows, the source code is
built by automatically editing the Linux source code lightly by changing slash (ASCII 47) to
backslash (ASCII 92), .hh to .h, and .cc to .cpp for several files.

Most of the steps of building the source code are automated using the Makefile in
utilityComponents/linuxSun. Executables and object files for Linux are stored in
utilityComponents/linuxSun/binLinux and utilityComponents/linuxSun/ofilesLinux,
respectively. Executables and object files for Sun are stored in utilityComponents/linuxSun/
binSun and utilityComponents/linuxSun/ofilesSun.

6.1 Generating the Source Code

By source code we mean Lex (.lex) and YACC (.y) files as well as all C++ files (.cc and .hh). The
procedure for generating source code is shown in Figure 5.
12

Maintainers Manual NIST DMIS Test Suite 2.2.1
dmis.
debnf

dmis.y dmis.lex

debnf2pars

dmis
YACC.hh3

bison flex

dmis
Lex.cc

Figure 5. Automatic Generation of Source Code

dmis.cc dmis.hh2

dmis
YACC.cc

dmis
Conformance

Tester.cc6

dmis
Conformance
Checker.cc1

1. dmisConformanceChecker.cc #includes dmisConformanceCheckerStart.cc, a hand-written file.
2. dmis.hh is #included in dmis.cc, dmisYACC.cc, dmisLex.cc, dmisConformanceChecker.cc (indirectly),

dmisConformanceTester.cc (indirectly), and dmisParser.cc.
3. dmisYACC.hh is #included in dmisLex.cc.
4. allSubAtts.cc is #included in makeLevels.cc.
5. assignMasterSubAtts.cc is #included in dmisConformanceChecker.cc, dmisConformanceTester.cc, and

makeLevels.cc.
6. dmisConformanceTester.cc #includes dmisConformanceCheckerStart.cc, a hand-written file.
7. The 27 copies of allSubAtts.cc (each with a different name) are read by generateMore and #included in

makeLevels.cc, dmisConformanceChecker.cc (indirectly), and dmisConformanceTester.cc (indirectly).
8. assignModuleSubAtts.cc is #included in makeLevels.cc and dmisConformanceChecker.cc.
9. levelsSet.cc is #included in dmisConformanceTester.cc.

insertNamespace

assign
Master

SubAtts.cc5

all
SubAtts.cc4

27 copies of
allSubAtts.cc7

assignModule
SubAtts.cc8

generateMore

copy and hand edit or use changeLists

levelsSet.cc9

makeLevels.cc
(hand-written)

#include

makeLevels

dmis
YACC.hh3

dmis
YACC.cc

dmis
Lex.cc
13

Maintainers Manual NIST DMIS Test Suite 2.2.1
6.1.1 make linuxSource

The action begins by giving a
make linuxSource

command in the utilityComponents/linuxSun directory. This does the following:

• calls dos2unix… to copy dmis.debnf from the ebnf directory into
utilityComponents/linuxSun and ensure it has unix style line endings (not shown on
Figure 5).

• calls binLinux/debnf2pars. This generates the eight files shown coming directly from
dmis.debnf in Figure 5. Details of how debnf2pars works are given in Section 13.

• moves seven of the eight files (excluding allSubAtts.cc) into the utilityComponents/
linuxSun/source directory

• calls flex…, which processes dmis.lex and generates dmisLex.cc (in the
utilityComponents/linuxSun directory). This is shown at the upper left of Figure 5.

• calls bison…, which processes dmis.y and generates dmisYACC.cc and
dmisYACC.hh (in the utilityComponents/linuxSun directory). This is shown at the
upper left of Figure 5.

• calls binLinux/insertNamespace, which makes copies of dmisLex.cc,
dmisYACC.cc and dmisYACC.hh, inserting namespace NDTS declarations while it
copies, and puts the copies in the utilityComponents/linuxSun/source directory. This
is shown at the middle left of Figure 5.

• deletes the copies of dmisLex.cc, dmisYACC.cc, dmisYACC.hh, and dmis.debnf that
are in utilityComponents/linuxSun.

Namespace declarations (NDTS for dmis.hh and dmis.cc, NDTU for the four utilities and their
helper files) are inserted directly in the .cc and .hh files generated by debnf2pars. See Section 3
of the System Builders Manual for a discussion of these two namespaces.

The dmis.hh file is #included directly or indirectly, in all the .cc files shown on Figure 5, plus
dmisParser.cc

The dmisYACC.cc, dmisYACC.hh, dmisLex.cc, and dmis.cc files contain everything needed
for parsing DMIS input files, building a parse tree, printing DMIS input files from a parse tree,
and accessing everything in the parse tree.

The dmisConformanceChecker.cc file contains much of the source code for the
dmisConformanceChecker utility. The dmisConformanceTester.cc file contains much of the
source code for the dmisConformanceTester and the dmisConformanceRecorder utilities.

The allSubAtts.cc and assignMasterSubAtts.cc files contain C++ data describing the
subclasses and attributes of the C++ classes representing DMIS. These two files as well as
assignModuleSubAtts.cc and levelsSet.cc contain only array declarations and array
assignments.

6.1.2 Editing allSubAtts.cc

The allSubAtts.cc file contains declarations of arrays that give either the subclasses of a class or
the attributes of a class (none of the C++ classes for DMIS have both subclasses and attributes).
Examples of both kinds of array declaration from that file are shown in Figure 6.
14

Maintainers Manual NIST DMIS Test Suite 2.2.1
The first time the allSubAtts.cc file was generated, it was copied into the linuxSun/source
directory. Then a copy was made in the linuxSun/source directory for each of the two
application protocols (APs) and seven addenda of the Excel spreadsheet giving the DMIS
conformance classes (a total of 9 copies). The names of the copies are all of the form
<initials>3Lists.cc, where the initials stand for the AP or addendum and the 3 stands for level 3.
For example p3Lists.cc is for level 3 of the prismatic AP.

The p3Lists.cc file was edited by adding one line (const char ** p3Lists[1600] = {0};) and
inserting p3 as the first two characters in the name of every array. For example the array names in
Figure 6 were changed to p3aboveBelowSubs and p3algdefStmAtts. That much was easily
done in emacs using search and replace. The other 8 files were edited in a similar manner.

Then the p3Lists.cc file was edited by commenting out sections of the file. To keep the file very
regular (so that it is amenable to automatic editing and is easily compared with other files), only
comment character lines of the form /* xx3 or */ were inserted. The xx3 just shown is either p3
(indicating that the material being commented out is not in the prismatic AP at level 3 or in any
addendum at any level) or the initials and level of the addendum (rt3, for example) that includes
the commented out material – which is therefore not in prismatic level 3. Doing this editing
required constant study of the Excel spreadsheet defining the conformance modules.

The p2Lists.cc file was created by making a copy of the p3Lists.cc file and then changing p3 to
p2 in the array names and adding the comment character lines /* p2 or */ to comment out
subclasses and attributes that are in prismatic level 3 but not in prismatic level 2. The p1Lists.cc
file was created by making a copy of the p2Lists.cc file and then doing analogous editing.

The tw3Lists.cc, tw2Lists.cc, and tw1Lists.cc files were created for the thin-walled AP by
similar procedures. This completed preparing the 6 files needed for the APs.

const char * aboveBelowSubs[] =
{

"aboveBelowSubs",
"aboveBelow_ABOVE",
"aboveBelow_BELOW",
0

};

const char * algdefStmAtts[] =
{

"algdefStmAtts",
"a_vaLabel",
"a_algdefMinor",
0

};

Figure 6. Sample AllSubAtts.cc Declarations
15

Maintainers Manual NIST DMIS Test Suite 2.2.1
The first addendum file, rt3Lists.cc, was edited by adding one line (const char ** rt3Lists[1600]
= {0};) and inserting rt3 as the first three characters in the name of every array. Then the comment
character lines /* rt3 or */ were inserted on separate lines to comment out everything except what
is explicitly permitted in level 3 of the rotary table addendum. The rt2Lists.cc file was created by
copying rt3Lists.cc, changing rt3 to rt2 at the beginning of array names, and inserting /* rt2 and
*/ to comment out material included at level 3 of the rotary table addendum but not at level 2. The
rt1Lists.cc file was created similarly from rt2Lists.cc. The other 18 files for the addenda were
prepared analogously.

Editing the 27 copies of allSubAtts.cc took about 3 weeks. The file has 9123 lines. Editing adds
lines, so the total number of lines in the copies approaches 270,000.

Since these files are precious and need to be modified if dmis.debnf changes, copies of them
should be saved in a separate directory not part of the normal distribution of the NDTS. The
utilityComponents/linuxSun/saveLists directory has been used for that purpose.

If the dmis.debnf file is edited for any reason, it is necessary to execute make linuxSource
again. This will produce new source code files as described in Section 6.1.1. In particular, the
linuxSun/allSubAtts.cc file will be new. There are 27 edited copies of that file, and all of them
need to be changed when allSubAtts.cc changes. To deal with this, a copy of allSubAtts.cc is
kept in linuxSun/source, the differences between the new and old copies are found using diff,
and the changeLists.cc file is manually edited so that it will make those changes. The file
includes insertLines and deleteLines functions. The calls to those functions are what is
modified when the file is edited. When changeLists is compiled and executed, what it does is
read the 27 xxLists.cc files in the linuxSun/saveLists directory, make the same changes in every
file, and put the new copies in the linuxSun/source directory. After that, it is necessary to check
whether the comment characters in each file are still appropriately placed and change them
manually if not.

6.1.3 More automatic generation

The final step of automatic source code generation is to give the command
make moreLinuxSource

from the from the utilityComponents/linuxSun directory.

The first thing that make command does is to execute binLinux/generateMore.
GenerateMore reads the 27 xxLists.cc files and writes the assignModuleSubAtts.cc file.

Next the make command compiles the (hand-written) file linuxSun/source/makeLevels.cc and
puts the executable into binLinux. MakeLevels.cc is only 541 lines long, but it #includes the
hundreds of thousands of lines of code in the 27 xxLists.cc files, allSubAtts.cc,
assignModuleSubAtts.cc, and assignMasterSubAtts.cc. The executable cannot be compiled
until assignModuleSubAtts.cc has been generated.

Finally, the make command executes binLinux/makeLevels, which generates the
levelsSet.cc file.

6.2 Building the Library

The library file (dmis.a for Linux and Sun, dmis.lib for Windows) is linked in to all the utilities.
The library file combines dmisYACC.cc, dmisLex.cc, dmis.cc, and dmis.hh. Hence, the library
16

Maintainers Manual NIST DMIS Test Suite 2.2.1
includes:
• the parseDmis function that runs the parser and builds a parse tree,
• the printTree function that prints a DMIS input file from a parse tree,
• the constructors and destructors for the C++ classes for DMIS, and
• all the access functions for putting information into the C++ classes or getting it out.

6.2.1 Linux

The libLinux/dmis.a archive file is built by executing
make libLinux/dmis.a

from the utilityComponents/linuxSun directory. The make command calls the compiler to
generate the object files dmisYACC.o, dmisLex.o, and dmis.o and saves them in the
utilityComponents/linuxSun/ofilesLinux directory. Then it uses ar to archive them in dmis.a.

6.2.2 Sun

The libSun/dmis.a archive file is built by executing
make libSun/dmis.a

from the utilityComponents/linuxSun directory. The make command calls the compiler to
generate the object files dmisYACC.o, dmisLex.o, and dmis.o and saves them in the
utilityComponents/linuxSun/ofilesSun directory. Then it uses ar to archive them in dmis.a.

6.2.3 Windows

The utilityComponents\windows\dmisClasses\Release\dmis.lib file was built using the
Microsoft Visual C++ 2008 Express Edition. For instructions on compiling in Windows, see the
System Builders Manual (Section 1.4.3 and Appendix A). The “project name” for the library is
dmisClasses. A difference from the instructions in Appendix A is that the “Application type”
“Static library” should be selected rather than “Console Application”.

6.3 Building the dmisParser

The dmisParser is built from three pieces: dmis.a (or dmis.lib), dmisParser.cc, and
dmisParserDriver.cc. Almost all the work done by the executable is done by the parseDmis
function from dmis.a. The dmisParserDriver.cc file is only 8 lines long, and all it does it call the
runParser function from dmisParser.cc, which is a hand-written166-line file. All that function
does is run parseDmis once if the given file is a DMIS input file, or many times if the given file is
a list of the names of DMIS input files.

6.3.1 Linux

The utilities/linux/bin/dmisParser executable file is built by getting into the utilityComponents/
linuxSun directory and executing

make ../../utilities/linux/bin/dmisParser
The make command calls the compiler to generate utilityComponents/linuxSun/ofilesLinux/
dmisParser.o and utilityComponents/linuxSun/ofilesLinux/dmisParserDriver.o. Then it links
those files with dmis.a and puts the executable file in utilities/linux/bin/dmisParser.

6.3.2 Sun

The utilities/sun/bin/dmisParser executable file is built by getting into the utilityComponents/
linuxSun directory and executing
17

Maintainers Manual NIST DMIS Test Suite 2.2.1
make ../../utilities/sun/bin/dmisParser
The make command calls the compiler to generate utilityComponents/linuxSun/ofilesSun/
dmisParser.o and utilityComponents/linuxSun/ofilesSun/dmisParserDriver.o. Then it links
those files with dmis.a and puts the executable file in utilities/sun/bin/dmisParser.

6.3.3 Windows

The utilities\windows\bin\dmisParser.exe executable file was built in the
utilityComponents\windows\dmisParser\Release directory using the Microsoft Visual C++
2008 Express Edition and then copied to that file. For instructions on compiling in Windows, see
the System Builders Manual (Section 1.4.3 and Appendix A).

6.4 Building the dmisConformanceChecker

The dmisConformanceChecker is built from dmis.a, the 27 xxLists.cc files, and six other files
in utilityComponents/linuxSun/source:

• dmisConformanceCheckerDriver.cc
• dmisConformanceChecker.cc
• dmisConformanceCheckerStart.cc
• dmis.hh
• assignModuleSubAtts.cc
• assignMasterSubAtts.cc

dmisConformanceChecker.cc #includes dmisConformanceCheckerStart.cc,
assignMasterSubAtts.cc, and assignModuleSubAtts.cc.

dmisConformanceCheckerStart.cc #includes the 27 xxLists.cc files and dmis.hh.

6.4.1 Linux

The utilities/linux/bin/dmisConformanceChecker executable file is built by getting into the
utilityComponents/linuxSun directory and executing

make ../../utilities/linux/bin/dmisConformanceChecker
The make command calls the compiler to generate utilityComponents/linuxSun/ofilesLinux/
dmisConformanceChecker.o and utilityComponents/linuxSun/ofilesLinux/
dmisConformanceCheckerDriver.o. Then it links those files with dmis.a and puts the
executable file in utilities/linux/bin/dmisConformanceChecker.

6.4.2 Sun

The utilities/sun/bin/dmisConformanceChecker executable file is built by getting into the
utilityComponents/linuxSun directory and executing

make ../../utilities/sun/bin/dmisConformanceChecker
The make command calls the compiler to generate utilityComponents/linuxSun/ofilesSun/
dmisConformanceChecker.o and utilityComponents/linuxSun/ofilesSun/
dmisConformanceCheckerDriver.o. Then it links those files with dmis.a and puts the
executable file in utilities/sun/bin/dmisConformanceChecker.

6.4.3 Windows

The utilities\windows\bin\dmisConformanceChecker.exe executable file was built in the
utilityComponents\windows\dmisConformanceChecker\Release directory using the
18

Maintainers Manual NIST DMIS Test Suite 2.2.1
Microsoft Visual C++ 2008 Express Edition and then copied to that file. For instructions on
compiling in Windows, see the System Builders Manual (Section 1.4.3 and Appendix A).

6.5 Building the dmisConformanceRecorder

The dmisConformanceRecorder is built from dmis.a, the 27 xxLists.cc files, and six other
files in utilityComponents/linuxSun/source:

• dmisConformanceRecorderDriver.cc
• dmisConformanceTester.cc
• dmisConformanceTesterStart.cc
• dmis.hh
• assignModuleSubAtts.cc
• assignMasterSubAtts.cc

dmisConformanceTester.cc #includes dmisConformanceTesterStart.cc,
assignMasterSubAtts.cc, and assignModuleSubAtts.cc.

dmisConformanceTesterStart.cc #includes the 27 xxLists.cc files and dmis.hh.

6.5.1 Linux

The utilities/linux/bin/dmisConformanceRecorder executable file is built by getting into the
utilityComponents/linuxSun directory and executing

make ../../utilities/linux/bin/dmisConformanceRecorder
The make command calls the compiler to generate utilityComponents/linuxSun/ofilesLinux/
dmisConformanceTester.o and utilityComponents/linuxSun/ofilesLinux/
dmisConformanceRecorderDriver.o. Then it links those files with dmis.a and puts the
executable file in utilities/linux/bin/dmisConformanceRecorder.

6.5.2 Sun

The utilities/sun/bin/dmisConformanceRecorder executable file is built by getting into the
utilityComponents/linuxSun directory and executing

make ../../utilities/sun/bin/dmisConformanceRecorder
The make command calls the compiler to generate utilityComponents/linuxSun/ofilesSun/
dmisConformanceTester.o and utilityComponents/linuxSun/ofilesSun/
dmisConformanceRecorderDriver.o. Then it links those files with dmis.a and puts the
executable file in utilities/sun/bin/dmisConformanceRecorder.

6.5.3 Windows

The utilities\windows\bin\dmisConformanceRecorder.exe executable file was built in the
utilityComponents\windows\dmisConformanceRecorder\Release directory using the
Microsoft Visual C++ 2008 Express Edition and then copied to that file. For instructions on
compiling in Windows, see the System Builders Manual (Section 1.4.3 and Appendix A).

6.6 Building the dmisConformanceTester

The dmisConformanceTester is built from dmis.a, the 27 xxLists.cc files, and six other files in
utilityComponents/linuxSun/source:

• dmisConformanceTesterDriver.cc
• dmisConformanceTester.cc
19

Maintainers Manual NIST DMIS Test Suite 2.2.1
• dmisConformanceTesterStart.cc
• dmis.hh
• assignModuleSubAtts.cc
• assignMasterSubAtts.cc

dmisConformanceTester.cc #includes dmisConformanceTesterStart.cc,
assignMasterSubAtts.cc, and assignModuleSubAtts.cc.

dmisConformanceTesterStart.cc #includes the 27 xxLists.cc files and dmis.hh.

6.6.1 Linux

The utilities/linux/bin/dmisConformanceTester executable file is built by getting into the
utilityComponents/linuxSun directory and executing

make ../../utilities/linux/bin/dmisConformanceTester
The make command calls the compiler to generate utilityComponents/linuxSun/ofilesLinux/
dmisConformanceTester.o and utilityComponents/linuxSun/ofilesLinux/
dmisConformanceTesterDriver.o. Then it links those files with dmis.a and puts the executable
file in utilities/linux/bin/dmisConformanceTester.

6.6.2 Sun

The utilities/sun/bin/dmisConformanceTester executable file is built by getting into the
utilityComponents/linuxSun directory and executing

make ../../utilities/sun/bin/dmisConformanceTester
The make command calls the compiler to generate utilityComponents/linuxSun/ofilesSun/
dmisConformanceTester.o and utilityComponents/linuxSun/ofilesSun/
dmisConformanceTesterDriver.o. Then it links those files with dmis.a and puts the executable
file in utilities/sun/bin/dmisConformanceTester.

6.6.3 Windows

The utilities\windows\bin\dmisConformanceTester.exe executable file was built in the
utilityComponents\windows\dmisConformanceTester\Release directory using the Microsoft
Visual C++ 2008 Express Edition and then copied to that file. For instructions on compiling in
Windows, see the System Builders Manual (Section 1.4.3 and Appendix A).

6.7 Editing the C++ Code in the UtilityComponents Directory

The 27 xxLists.cc files can be edited by inserting or removing comment characters (carefully, so
that the syntax is still correct C++). This would redefine the conformance modules. As long as
generateMore is rerun after the editing is done (as described in Section 6.1) and everything is
recompiled, the utilities should behave as intended.

Parts of the following manually written C++ files in the utilityComponents directory can be
edited with some confidence that the results will be as intended. Wherever that code works with
automatically generated code, it will be important to understand what is going on before making
changes.

• changeLists.cc
• dmisConformanceCheckerDriver.cc
• dmisConformanceCheckerStart.cc
• dmisConformanceRecorderDriver.cc
20

Maintainers Manual NIST DMIS Test Suite 2.2.1
• dmisConformanceTesterDriver.cc
• dmisConformanceTesterStart.cc
• insertNamespace.cc
• makeLevels.cc

Because there are a lot of dependencies in the code, editing any other code in the
utilityComponents directory is likely to produce undesirable results. In particular, the C++ code
generated by flex and bison that does lexical analysis and parsing (dmisLex.cc, dmisYACC.cc,
and dmisYACC.hh) has a lot of giant switch statements and arrays of numbers and names. Hand-
editing that part of the code is effectively impossible and should not be attempted.

7 How the dmisConformanceChecker Works

7.1 Overview

The dmisConformanceChecker takes as arguments the name of a file plus the names of zero to
eight conformance modules. The number of arguments (argc) and the array of arguments (argv)
are passed on to the checkDmis function.

In checkDmis, if any names of conformance modules are given as arguments, the
masterSubAtts array of arrays for evaluating conformance is set up by calling prepareLists as
described in Section 7.2, and the names of DMIS statements allowed by the conformance
modules are found by calling findStatements.

If the file name provided as an argument (call the file argFile) ends in .dmi, checkDmis calls the
checkOneFile function to process the file. If the name of argFile does not end in .dmi, argFile
should be a list of the names of DMIS input files. In this case, checkDmis calls
checkManyFiles, and checkManyFiles calls the checkOneFile function to process each of the
files in the list. In both cases, the number of conformance modules is passed to checkOneFile as
an argument.

The checkOneFile function:
• calls parseDmis to parse the file, which always builds a list of the DMIS statements

found in the file and builds a parse tree if there are no errors.
• reports the number of errors and warnings found by the parser. If there are no errors or

warnings, the file conforms to full DMIS. If there are warnings but no errors, the file
probably does not conform to full DMIS, but it might.

• calls analyzeItems to go through the list of DMIS statements and, for each DMIS
statement, add one to the DMIS statement counter for that kind of statement. There is a
counter for each kind of DMIS statement.

• if the number of conformance modules is non-zero, calls check_inputFile to make a
conformance check as described in Section 7.3.

• reports the number of conformance errors.

Back in the checkDmis function, If argFile is a list of names of DMIS input files, after all the
files have been parsed, a report on the uses of statements is made as described in Section 7.3. If
argFile is a .dmi file, no report on statement uses is made.
21

Maintainers Manual NIST DMIS Test Suite 2.2.1
7.2 Arrays for Conformance Checking

The central actors in the methods used to check the DMIS input file against the named modules
are sets of corresponding arrays of strings. All elements of a set of arrays are for checking the
same C++ class and have the same first string (which is the name of the class followed by either
Subs or Atts). The first string is used to find the arrays belonging to the set. The remaining
elements in each array give the names of either (1) allowed subclasses of the class or (2) allowed
attributes of the class. Each of the 27 files described in Section 6.1.2 representing the
conformance modules defines zero or one member of each set of corresponding arrays. For
example, one set of arrays is those whose first element is "aclratMinorSubs". The p2Lists.cc file
defines one member of that set, an array named p2aclratMinorSubs, which is
{"aclratMinorSubs", "aclratMeas", "aclratPos", "aclratHedRot", "aclratHedMeas", 0}. The
rt3Lists.cc file defines another member of the set, the array rt3aclratMinorSubs, which is
{"aclratMinorSubs", "aclratRot", 0}. The rt2Lists.cc file does not define a member of the set.
The arrays are terminated with zeros so that it is not necessary to keep track of the length of the
arrays.

To prepare to test a DMIS file against a set of conformance modules, the members of each set of
matching arrays from the xxLists.cc files representing those modules are combined in an array
whose name is the first string from the corresponding modules.

For example, if the PM2 (an alias for p2) and RY3 (an alias for rt3) conformance modules are
selected, an array named aclratMinorSubs is created, which is {"aclratMinorSubs",
"aclratMeas", "aclratPos", "aclratHedRot", "aclratHedMeas", "aclratRot", 0}. This array is
declared in dmisConformanceChecker.cc as an empty array big enough to contain all possible
names of subclasses of the alcratMinor class, plus the name of the array at the front and a 0 at the
end. When prepareLists runs with PM2 and RY3 as arguments, it populates the empty
aclratMinorSubs array by inserting in it all the strings in p2aclratMinorSubs and
rt3aclratMinorSubs. The same sort of procedure is used for all other matching sets of arrays.

Matching the members of each set of corresponding arrays is facilitated by putting them into large
arrays in alphabetical order. That is what the assignMasterSubAtts function (defined in
assignMasterSubAtts.cc) and the assignModuleSubAtts function (defined in
assignModuleSubAtts.cc) do. The prepareLists function calls those two functions. Calling
assignMasterSubAtts in the dmisConformanceChecker sets up the array (masterSubAtts)
containing all the almost empty arrays (since they are defined with only a name and terminating
zero in dmisConformanceChecker.cc). Calling assignModuleSubAtts sets up 27 fully
populated arrays of arrays (p1Lists, p2Lists, … , unc3Lists) representing the conformance
modules. Then prepareLists selects the 1 to 8 arrays of arrays to be combined (from the 27) and
calls combineLists to combine them as described above.

The procedures described above are summarized conceptually in Table 1, which diagrams the
situation when two conformance modules (p2 and rt3, for example) are combined. The first two
columns represent the p2Lists and rt3Lists arrays. The third column represents the
masterSubAtts array after prepareLists is finished executing. In each row, the first string in
each array is the same, and the array in the third column contains all the entries from the arrays in
22

Maintainers Manual NIST DMIS Test Suite 2.2.1
the first two columns. The strings in the arrays are not the actual strings that would be used.

It is an oddity of the software that the sets of corresponding arrays of strings (the rows of the
table), which are important, are never built or named, while the alphabetically ordered arrays of
arrays (the columns of the table) are built, named, and processed, even though they exist only to
make it easy to match corresponding arrays.

After the masterSubAtts array is built, it is used in the findStatements function to build the
theStatements array which contains the names of all C++ classes that represent DMIS
statements and are included in the conformance class described by masterSubAtts. See the
documentation of the findStatements function in dmisConformanceCheckerStart.cc for
details. The theStatements array is used in the reportSummary function.

7.3 Checking Conformance

The check_inputFile function is called to start the conformance checking. That function is the
root of a tree of check_xxx functions which traverse the parse tree and check whether the
subclasses and attributes present in the parse tree are allowed in the conformance class. The
dmisConformanceChecker.cc file contains 1632 automatically generated check_xxx functions
– one for every C++ class in dmis.hh that has subclasses or attributes. There are two types of
check_xxx functions, one for classes with attributes and one for classes with subclasses. Classes
which have neither attributes nor subclasses do not need a checking function.

As an example of how the check_xxx functions work, the check_aclratMinor function is shown
in Figure 7. The function will be called if an instance of the aclratMinor class (a_aclratMinor)
has been found in the parse tree. An instance of aclratMinor must be an instance of one of 7
subclasses (aclratMeas, aclratPos, aclratRot, aclratScan, aclratHedRot, aclratHedMeas,
aclratHedScan). The function checks for each of the seven subclasses until the correct one is
found. When the correct subclass is found, the function checks whether the name of that subclass
is included in the aclratMinorSubs array. If not, warnSub is called, which adds one to
numErrors, prints a warning message, and prints a_aclratMinor. If that subclass is allowed and
the subclass has either attributes or subclasses, the checking function for that subclass is called.

The check_xxx functions for classes with attributes work the same way, except they use a get_
function to test each attribute and use warnAtt, rather than warnSub if there is an error. Also, if

Table 1. Combining Conformance Modules

p2Lists rt3Lists masterSubAtts

p2a = {“a”, “a1”, “a2”, 0} a = {“a”, “a1”, a2”, 0}

b = {“b”, 0}

p2c = {“c”, “c1”, “c3”, 0} rt3c = {“c”, “c2”, 0} c = {“c”, “c1”, “c3”, “c2”, 0}

rt3d = {“d”, “d1”, 0} d = {“d”, “d1”, 0}

p2e = {“e”, “e1”, “e2”, 0} rt3e = {“e”, “e1”, 0} e = {“e”, “e1”, “e2”, 0}

f = {“f”, 0}
23

Maintainers Manual NIST DMIS Test Suite 2.2.1
the value of an attribute is a list, a for loop is used to call the checking functions for all elements of
the list. As an example, the check_boundFeat function is shown in Figure 8.

There are two slightly odd things about the check_xxx functions for classes with attributes. First,
checking for a non-zero return value from get_ functions works both for pointers and for
booleans; that feels strange but is convenient. It is also the reason why almost all attributes are
either pointers or booleans. Second, the names of all attributes for which the get_ function returns
a non-zero value are checked against the array of strings for the class regardless of whether or not
an attribute is optional. For required attributes, this is a waste of time since the name must be
present in the array of strings and the get_ function must return non-zero (otherwise, the parser
would have signalled an error). The extra checks have not been eliminated for two reasons. First,
they serve as a check on the correctness of the dmisConformanceChecker; if a required
attribute is signalled as not being allowed in a conformance class, there is a bug somewhere.
Second, eliminating the redundancy would require making debnf2pars more complex.

7.4 Reporting the Results

If argFile is a list of .dmi files and at least one conformance module is used as an argument, then
the reportSummary function is called by checkDmis to report the results. The report written by
reportSummary has separate sections for (1) the number of times each DMIS statement in the
conformance class that was used at least once was used, (2) the names of DMIS statements in the
conformance class that were not used, and (3) the names of DMIS statements not in the
conformance class that were used. It is necessary to know which statements are in the
conformance class in order to produce the report. ReportSummary uses the theStatements
array to determine that.

If argFile is a list of .dmi files but no conformance module is used as an argument, implying that
checking should be done against full DMIS, then the reportSummaryFull function is called by
checkDmis to report the results. There are no DMIS statements not in full DMIS, so
reportSummaryFull reports only (1) the number of times each DMIS statement that was used at
least once was used, (2) the names of DMIS statements that were not used.

Both ReportSummary and reportSummaryFull are generated automatically. They are found at
the end of the dmisConformanceChecker.cc file.
24

Maintainers Manual NIST DMIS Test Suite 2.2.1
void check_aclratMinor(
 aclratMinor * a_aclratMinor)

{
if (isA(a_aclratMinor, aclratMeas))

{
if (!findString("aclratMeas", aclratMinorSubs))

{warnSub("aclratMeas", "aclratMinor", a_aclratMinor);}
else

check_aclratMeas(dynamic_cast<aclratMeas *>(a_aclratMinor));
return;

}
if (isA(a_aclratMinor, aclratPos))

{
if (!findString("aclratPos", aclratMinorSubs))

{warnSub("aclratPos", "aclratMinor", a_aclratMinor);}
else

check_aclratPos(dynamic_cast<aclratPos *>(a_aclratMinor));
return;

}
if (isA(a_aclratMinor, aclratRot))

…
if (isA(a_aclratMinor, aclratScan))

…
if (isA(a_aclratMinor, aclratHedRot))

…
if (isA(a_aclratMinor, aclratHedMeas))

…
if (isA(a_aclratMinor, aclratHedScan))

…
}

Figure 7. check_aclratMinor Function
25

Maintainers Manual NIST DMIS Test Suite 2.2.1
8 How the dmisConformanceTester and dmisConformanceRecorder Work

Descriptions of what the dmisConformanceRecorder and the dmisConformanceTester do
and how to use them are given in Sections 5 and 6 of the Users Manual. Read that first.

The code for both the dmisConformanceTester and the dmisConformanceRecorder is almost
all in the dmisConformanceTesterStart.cc and dmisConformanceTester.cc files in the
utilityComponents/linuxSun/source directory. There are separate drivers for the two utilities,
dmisConformanceTesterDriver.cc and dmisConformanceRecorderDriver.cc, in the same
directory. The driver files are only 8 lines long. The dmisConformanceTesterDriver.cc file calls
the testDmis function defined in dmisConformanceTesterStart.cc., while the
dmisConformanceRecorderDriver.cc file calls the recordConformance function defined in
the same file. Both start by calling parseDmis, and both stop without doing anything more if
there are parse errors.

The heart of both the dmisConformanceTester and the dmisConformanceRecorder is the
check_inputFile function. That function makes extensive use of the levels structs defined in the
levelsSet.cc file.

void check_boundFeat(
boundFeat * a_boundFeat

{
if (a_boundFeat->get_fLabel())

{
if (!findString("a_fLabel", boundFeatAtts))

{warnAtt("a_fLabel", "boundFeat", a_boundFeat);}
else

check_fLabel(a_boundFeat->get_fLabel());
}

if (a_boundFeat->get_featureList())
{

if (!findString("a_featureList", boundFeatAtts))
{warnAtt("a_featureList", "boundFeat", a_boundFeat);}

else
{

std::list<featureLabel *> * theList;
std::list<featureLabel *>::iterator iter;
theList = a_boundFeat->get_featureList();
for (iter = theList->begin(); iter != theList->end(); iter++)

check_featureLabel(*iter);
}

}
}

Figure 8. check_boundFeat Function
26

Maintainers Manual NIST DMIS Test Suite 2.2.1
8.1 LevelsSet.cc

The levelsSet.cc file contains 4231 levels structs, one for each subclass or attribute named in
each array of masterSubAtts.cc as fully populated by allSubAtts.cc. Each of the 9 entries of a
levels struct is an integer representing the level required in a conformance module in order for
the named subclass or attribute to be in conformance. The first two entries are for the prismatic (p
or PM) and thin-walled (tw or TW) APs, and they are alternatives. The rest of the entries in a
levels struct are for the seven addenda in the following order:

• rotary table (rt and RT)
• multi carriage (mc and MC)
• contact scanning (cs and CT)
• in-process verification (ipv and IP)
• quality information systems (qis and QI)
• measurement uncertainty (unc and MU)
• soft gaging (sga and SF).

For example, the first line of levelsSet.cc is
levels aboveBelowSubs_aboveBelow_ABOVE = {3,3,0,0,0,0,0,0,0};

That means that level 3 of the prismatic AP or level 3 of the thin-walled AP is needed in order for
a conforming DMIS input file to have an instance of the aboveBelow_ABOVE subclass named
in the aboveBelowSubs array. The zeros on the line above mean that the subclass is not in any of
the addenda.

If there are non-zero entries for both an AP and an addendum, that means that both are required
(which happens in many cases). There is one exception to that rule:
intFuncPtdataAtts_a_faLabel is allowed at level 2 of CT and at level 3 of PM and TW. In this
case, CT,2 is an alternative to PM,3 or TW,3. Which to use is handled by hard-coding a decision-
making method. See the documentation of the levels struct and the resetCurrentLevels function
in the dmisConformanceTesterStart.cc file for details.

There are a few cases in which the qis and ipv addenda are both non-zero. In these cases, qis and
ipv are alternatives, not both required. In these cases, negative numbers are used in levelsSet.cc.
The methods of making decisions about what to require are described in Section 6 of the Users
Manual. The setLevsArray function makes the decisions. See the documentation of that function
in the dmisConformanceTesterStart.cc file for details.

If the checking of subclasses and attributes were done strictly according to the Excel spreadsheet
for conformance classes, it would often be redundant. For example, macroBlock, macroStm,
and endmacStm are all allowed at level 2 of both APs, but none is allowed at level 1 of either AP.
Hence, going strictly according to the spreadsheet, there would be a 2 in p and tw for both
dmisBlockSubs_macroBlock and macroBlockAtts_a_macroStm. If a MACRO statement is
found in an error-free DMIS file, a macroBlock must also occur, so both the block and the
statement would require level 2.

Two types of problem arose that have been fixed by not making all the entries in levelsSet.cc be
strictly according to the Excel spreadsheet. The redundancies described above enabled this to be
done without compromising the functionality of either the dmisConformanceTester or the
dmisConformanceRecorder. The levelsSet.cc file is generated automatically by the
makeLevels system utility (documented only in the makeLevels.cc source code). To readjust
27

Maintainers Manual NIST DMIS Test Suite 2.2.1
the entries in levelsSet.cc, changes were made in the p1Lists.cc and tw1Lists.cc files which are
#included in levelsSet.cc.

The first type of problem arose because, in the dmisConformanceTester, if a conformance error
is found, printSelf is called for the offending item. This meant, for example, that if a macroBlock
were found at level 1, the entire block would be printed and appear to be non-conforming, even
though only the macroStm line and the endmacStm line are actually the offenders. That would
be confusing to the user. To avoid this, macroBlock and every other type of block are allowed at
level 1 of both the prismatic AP and the thin-walled AP. Since at least level 1 of either of those
APs is required for every conforming DMIS program, no block is ever out of conformance. Since
the statements that start and end a block (macroStm and endmacStm in the case of a
macroBlock) still require the higher level, no out-of-conformance situations will slip through.

The second type of problem arose because in some cases, a class is required by both an AP and an
addendum, even though each subclass of the class is allowed in only one AP or addendum. If a
non-zero entry appears for both the AP and the addendum in the levels struct for such a class, it
will appear that both the AP and the addendum are required. For example, the valueStm_realVar
subclass of valueStm is the parent of 11 subclasses. One of these is valueRt (for the rotary table
addendum). This would normally lead to valueStmSubs_valueStm_realVar being set to
{2,2,1,0,0,0,0,0,0}, which would make it appear that level 1 of rt is always needed in order to use
valueStm_realVar. This has been avoided by using {1,1,0,0,0,0,0,0,0} instead. The testing is
not compromised because the subclasses of valueStm_realVar are all set at the correct levels.

8.2 Check_inputFile

The check_inputFile function is the root of a tree of check_xxx functions which traverse the
parse tree. The dmisConformanceTester.cc file contains 1632 automatically generated
check_xxx functions – one for every C++ class in dmis.hh that has subclasses or attributes.
There are two types of check_xxx functions, one for classes with attributes and one for classes
with subclasses. Classes which have neither attributes nor subclasses do not need a checking
function. That much is the same as for the dmisConformanceChecker. The check_xxx
functions all take a log argument, which is a flag indicating whether the function is working for
the dmisConformanceTester (log set to 1) or the dmisConformanceRecorder (log set to 0).
The check_xxx functions have two kinds of functionality.

First, each top-level block of code in each check_xxx function calls adjustLevels if an instance
of a subclass or attribute is found. AdjustLevels updates two global variables: currentLevels and
levelForcers. CurrentLevels is a levels struct that keeps track of the minimum level of each
conformance module that is required so that the portion of the parse tree that has been traversed is
in conformance. LevelForcers is an array of strings. Each entry in levelForcers is the name of
the class or class-and-attribute that first forced the corresponding entry of currentLevels to have
its current value. For example, suppose currentLevels is {2,1,0,0,0,0,0,0,0} and an instance of a
featElongcylStm is found. AdjustLevels will compare the entries in the levels struct for
dmisFreeStatementSubs_featElongcylStm, which is {2,3,0,0,0,0,0,0,0}, to the entries in
currentLevels. Since the 3 for tw in {2,3,0,0,0,0,0,0,0} is greater than the 1 for tw in
currentLevels, currentLevels will be changed to {2,3,0,0,0,0,0,0,0}, and levelForcers[1] will
be set to "featElongcylStm". See the documentation of adjustLevels in
dmisConformanceTesterStart.cc for more details.
28

Maintainers Manual NIST DMIS Test Suite 2.2.1
Second, if the check_xxx function is working for the dmisConformanceTester (log set to 1),
the user will have specified a conformance class to check against. In this case, the kind of
conformance check performed by the dmisConformanceChecker and described in Section 7.3
will be done.

After the parse tree has been traversed, so that currentLevels and levelForcers have been set, the
testDmis and recordConformance functions behave differently, as described in the next two
sections.

8.3 dmisConformanceTester

In the dmisConformanceTester, it is the checkOneFile function (called by the testDmis
function) that calls parseDmis and check_inputFile. After those functions have finished their
work, checkOneFile calls resetCurrentLevels to deal with the intFuncPtdataAtts_a_faLabel
problem described in Section 8.1. Then checkOneFile calls setLevsArray, which prints a
conformance statement based on the values in currentLevels into a buffer, dealing with user
preferences and the possibly negative entries for ipv and qis while it does so. CheckOneFile then
prints the buffer and calls showLevelForcers to print the level forcer for each conformance
module that is required.

8.4 dmisConformanceRecorder

In recordConformance, after the parse tree has been traversed as described in Section 8.2,
resetCurrentLevels and setLevsArray are called as described in Section 8.3. Finally
recordConformance calls insertConformanceStatement, which makes a backup copy of the
DMIS input file, performs several checks, and inserts a conformance statement in the file.

9 How the dmisTestFileReductor Works

A description of what the dmisTestFileReductor does and how to use it is given in Section 7 of the
Users Manual. Read that first.

The dmisTestFileReductor is less complex than the other utilities. It does not use the DMIS parser
or the C++ classes for DMIS.

9.1 Main function

The main function checks for the following user generated errors and exits if any occur.
• Duplicate APs or Addendums are used in the arguments.
• The third argument is not PM1, PM2, PM3, TW1, TW2, or TW3.
• The fourth and succeeding arguments are not the name of a level of an addendum.
• There are fewer than 4 arguments.
• The incoming file cannot be opened.

If the incoming file ends in .dmi, it is assumed to be a DMIS input file, and it is processed by
processDmisFile. Otherwise, the incoming file is assumed to contain a list of the names of
DMIS input files, and each file in the list is processed by processDmisFile.

9.2 ProcessDmisFile function

The processDmisFile function examines the incoming file, decides whether there should be an
29

Maintainers Manual NIST DMIS Test Suite 2.2.1
outgoing file, and prints the outgoing file if so. The fileRequirements variable used by
processDmisFile is an initially empty character array that becomes filled with information about
the minimum levels of AP and addenda needed to execute the file.

ProcessDmisFile checks the incoming file’s first line to see if it meets the requirements of the
conformanceModules. If a file’s first line fails to meet the requirements of the
conformanceModules, no outgoing file is written.

If an outgoing file is to be written:
• The fileRequirements is updated by calling compareReq.
• Then printInConformed is called to print the new file.

9.3 CompareReq function

The compareReq function reads through the file and keeps track of the maximum level required
by the lines of the file for each of the 9 conformance modules plus the IPQI pseudo conformance
module.

After reading the file, compareReq prints the requirements into the fileRequirements array.

For IP, QI, and IPQI, if ipqi is not 0 after the file has been processed:
• If ip is not 0, the larger of the ipqi and ip values is used for IP.
• If both ip and qi are 0, the value of ipqi is used for IP.
• Otherwise (ip is 0 and qi is not 0), the larger of the ipqi and qi values is used for QI.

9.4 PrintInConformed function

The printInConformed function reads through the incoming file again. As it reads, it checks the
requirements for each DMIS code line against the requirements given in the command to run the
dmisTestFileReductor. If the requirements are met, the comment line giving the requirements and
the DMIS code line that follows are both printed in the outgoing file.

When the DMISMN line of the file is encountered, the fileRequirements are transcribed (with
commas added) to the end of the DMISMN line, replacing the requirements given in the incoming
file.

10 More on EBNF

First read the section on EBNF in the Users Manual.

10.1 DmisStatement

An important convention that has been used in building dmis.debnf is that every production
whose first definition ends with # (the character for ENDLINE), is considered to be a
dmisStatement when it has been parsed into a production. There is one exception to this rule,
and it is hard-coded. Namely, noParseStatement is not a dmisStatement.

DmisStatements are the things whose uses are counted in the dmisConformanceChecker. The
prepareStatementNames function of debnf2pars builds a list of dmisStatements by
checking for an ENDLINE at the end of the first definition of each production. Then when
classes are being printed, every class whose name is on the statementNames list is declared to
be a subclass of dmisStatement. In order to support this method of finding dmisStatements, if
30

Maintainers Manual NIST DMIS Test Suite 2.2.1
the first definition of a production in dmis.debnf ends with #, then all definitions
must end with #. It is up to the maintainer of dmis.debnf to see that this convention is followed.

In order to avoid difficulties in constructing the dmis.debnf, a few things that should be
productions that end with # are not even defined; rather their subtypes are defined and end
with #. If they existed, these undefined productions would be named calibStm,
recallStm, and saveStm, correspondng to CALIB, RECALL, and SAVE in DMIS.

In addition, because there are so many subtypes of FEAT and TOL in DMIS and it is desirable to
count the subtypes separately, EBNF productions for FEAT and TOL are not defined, but their
subtypes are defined and end with #.

It would be desirable to have classes for CALIB, FEAT, RECALL, SAVE, and TOL in order to
make the API for the classes easier to use. This could be done by hard-coding in debnf2pars.y,
but has not been done.

10.2 Naming Conventions

Several naming conventions have been used in dmis.debnf. It is up to the maintainer to see that
they are followed. These include the ones described at the beginning of dmis.debnf plus the
following:

• The names of all productions for DMIS statements and only those productions
end with Stm.

• The names of all productions that are lists and only those productions end with
List.

The structure of EBNF names for DMIS statements and lists is not used in debnf2pars. Other
naming conventions are detected in debnf2pars, such as spelling tokens in all upper case letters
and starting names of primitive types with an upper case letter followed by a lower case letter.

10.3 Token Spelling Structure Conventions

Wherever possible, the spelling of a token name in dmis.debnf is identical to the spelling of the
name in DMIS and dmis.debnf does not include a production giving the spelling. The EBNF
standard, however, does not allow digits or underscores in production names. Some DMIS
token names contain digits and/or underscores. To deal with this, different names (not containing
digits or underscores) are used in the DEBNF file. However, since DMIS input files must use the
DMIS spelling, a method is needed for telling the generator what spellings to look for when it is
reading a DMIS file. This is done by putting the spellings of these irregular token names at the
beginning of the DEBNF file.

It is required in debnf2pars that explicit token spellings be given in terms of expressions that
are either of the form ’x’ or of the form (’X’|’x’). For example, 2RC is a DMIS token. In
the DEBNF file, the token is called TWORC and the line giving its spelling is
TWORC = ’2’, (’R’|’r’), (’C’|’c’).

Where the form (’X’|’x’) is used, the first letter must be upper case, the second letter must be
lower case, and both must be the same letter. In the ’x’ form, the x may be any printable
character as far as debnf2pars is concerned, but in practice, it will never be a letter.
31

Maintainers Manual NIST DMIS Test Suite 2.2.1
10.4 Multiple Optionals

Three distinctly different ways1 to represent a multiple optional are available in EBNF. For
example, zero to three origin specifications (a comma followed by an origin) may be written any
of the following ways.

[c, orig], [c, orig], [c, orig]

3*[c, orig]

[c, orig, [c, orig, [c, orig]]]

The first representation is not used in the test suite because it does not simplify solving the
following problem.

When C++ is generated for a class for a definition with a multiple optional, there will be a
separate attribute of the class for each possible occurrence of the optional. In the example, the
three attributes might be named orig1, orig2, and orig3. Now when a DMIS file is parsed and
there are fewer than the maximum number of occurrences of the optional, it is necessary to decide
which of the attributes are non-zero. In the example, if there are two origin specifications in the
DMIS file, then there are three ways in which the non-zero attributes may be chosen: (orig1,
orig2), (orig1, orig3), or (orig2, orig3). To make life easy for the application programmer, who
does not want to have to test for all possibilities, the parser should choose one of them. The
obvious correct choice is to use the first N attributes when there are N non-zero values. That is
what the test suite implements. In the example, that is (orig1, orig2).

The second representation is the most compact and does lend itself to solving the problem. With
the second representation, however, there is no easy way to assign meaningful names to the
attributes. An automatic name assignment method is easy to program but makes poor names. In an
earlier version of the test suite, before manual name assignment was implemented, the second
representation was used exclusively in dmis.debnf. Code for dealing with multiple optionals
represented that way was written and is still included in debnf2pars. That code might be
removed to reduce the complexity of debnf2pars.

The third representation both lends itself to solving the problem and allows manual name
assignment, so in this version of the test suite, debnf2pars includes code for dealing with that
representation, and that representation is used exclusively in dmis.debnf.

11 More on C++ Classes for DMIS

Read section 2 of the System Builders Manual before reading this section. That section describes
the C++ classes for DMIS. This section deals with important abstractions concerning the classes.

The automatically generated C++ classes for DMIS are more regular and more verbose than one
would write manually. The regularity is a tremendous advantage for implementing automatic
generation of conformance checking code (or any other type of code). The regularity also reduces
the variety of types of code one must write when using the C++ classes, which is another
advantage. The verbosity is not a drawback for the automatic generation of code. The generator is
screamingly fast. If the verbosity increases the time it take to generate the code from 10 seconds

1. If the multiplicity of the optional is three or more, they could be mixed to make even more ways to do it.
32

Maintainers Manual NIST DMIS Test Suite 2.2.1
to 20, it is not a problem. All the applications that have been built using the C++ classes are also
screamingly fast, so the verbosity does not seem to slow down applications significantly.

The classes form a hierarchy that is several levels deep. For example, the threads through the
inheritance hierarchy with intConst at the bottom and cppBase at the top (i.e. intConst and all
its ancestors) is shown in Figure 9.

Many classes are parent classes and many classes have attributes, but no parent class has
attributes. In the code, the suffix atts is used with classes that have attributes, and the suffix subs
is used with classes that have subclasses.

There are frequent instances of multiple inheritance in the C++ classes. The cases of multiple
inheritance arise from two sources. First, the classes are designed to make it easy to count
instances of DMIS statements (dmisStatement class). Hence, many classes have both
dmisStatement and dmisFreeStatement as parents. Declaring that a class is a subclass of
dmisStatement is hard-coded in debnf2pars.y. Second, some classes may be used for more
than one purpose. An integer variable (intVar class), for example, can be used as an integer value
(intVal class), as a variable in a READ or WRITE command (rwVar class), or in a PROMPT
command (promptVar class), so that intVar has intVal, rwVar, and promptVar as parents.

Some object-oriented theorists might object that “can be used as” and “is a subclass of” are
different concepts, and Figure 9 is actually showing a “can be used as” hierarchy. Some object-
oriented languages, EXPRESS for example, have a construct for “can be used as”. In EXPRESS,
it’s the select type. Making a distinction between “can be used as” and “is a subclass of” would be
required if any of the ancestors of a class had attributes. In Figure 9, for example, if param had an
attribute such as name, it would be inherited by intConst, which has no use for a name. Then, a
different modeling method would need to be used indicating that, although intConst is not a
subclass of param, an instance of it can be used wherever an instance of a param is required.
Since no ancestor of any C++ class for DMIS built by the test suite has any attributes, this is never
a problem. As long as there are no attributes, there really is no conceptual distinction between
“can be used as” and “is a subclass of”.

There are no enumerations in the C++ classes for DMIS. Instead, where a human would normally
program an enumeration with N values, debnf2pars programs a parent class with N subclasses.
For example, the scope of a variable, which might be represented by an enumeration declScope

intConst

snslctTipData

anyVal param cppBaseintVal

rentVal
angle

Figure 9. Ancestors of intConst
33

Maintainers Manual NIST DMIS Test Suite 2.2.1
with values COMMON, LOCAL, and GLOBAL, is represented instead by the class declScope
with subclasses declScope_COMMON, declScope_GLOBAL, and declScope_LOCAL. The
subclasses have neither attributes nor subclasses of their own. In manual programming, testing the
type of a class takes no more code than testing the value of an enumeration constant. In size of
executable, enumerations would almost certainly be smaller, but the C++ class system fits in less
than 10 Mb of an executable, which is not large relative to the size of modern computer memories.
In terms of speed, if there is a penalty at all, it cannot be much, since the executables built on the
C++ class system are so fast.

12 Building Code Generators

12.1 Pros and Cons of Code Generators

Using a code generator has several pros and a few cons.

This section compares a programmer building and using a code generator with the same
programmer manually generating code with the same functionality. In the case of large
application such as the utilities in the test suite, a realistic alternative to using a code generator
would be to have a team of programmers rather than a single programmer. Keeping the team
coordinated would require a substantial portion of programmer time and would give using a code
generator relatively more advantage.

12.1.1 Pros:

An upper-end personal computer can write code roughly 100,000,000 times as fast as a human.
This means an entire lifetime of work by a human (50 years at 2000 hours per year) can be done in
less than a minute by a computer.

Once a computer knows how to write a particular kind of code (i.e. the generator code includes
debugged functions that write the code), the computer will write any number of functions of the
same kind without making any errors. The computer will not get bored doing that. Humans make
a lot of errors and get bored, leading to taking more time and making more errors.

Once the code formatting rules are programmed into the generator, they will be followed entirely
consistently. Humans are unable to be completely consistent. Since compilers do not care about
formatting, human-made inconsistencies persist in finished code, ready to confuse whoever is
maintaining the code.

Using a computer to generate code provides the human programmer with more time for perfecting
code or developing new types of code.

Automatically generated code is data-driven. In the test suite, the data is the DEBNF file that is
input to the generators. When the input data changes, if a generator has been built, thousands of
lines of code can be updated in a few seconds.

12.1.2 Cons:

Where there is a lot of variety in the input to a generator, it is often necessary to hard-code the
generator to write specific code for specific input. This takes more time than writing the code
directly.

Because the usefulness of a generator is maximized when many functions or classes of the same
34

Maintainers Manual NIST DMIS Test Suite 2.2.1
kind are generated, the programmer building the generator will strive to design the output of the
generator to have little variety. This may lead to generating code that is more verbose and/or less
efficient than code that a human would write.

12.2 Development Technique

To develop any code that generates code, one useful technique is to write samples of the code that
should be generated from some specific inputs. If possible, compile, test and debug the hand-
written code. When the generator is ready to be tested, feed it the same inputs. The inputs should
be diverse enough to cause the generator to generate all the varieties of code it can generate. Then
check that the generated code is identical to the hand-written code. In Linux or Unix, this may be
done using diff. Of course the hand-written and automatically generated versions of the code are
never identical the first time they are compared. Modify the generator (or the hand-written code),
regenerate the code, and compare again until there are no differences.

The technique just described has been used throughout the development of the generators in the
test suite.

12.3 Generating Code Automatically

There are two distinct approaches to generating code automatically in a C++ program, either:
• generate code text directly with print statements, or
• define structures that represent code, write functions that print code from the structures,

build the structures in your program, and call the print functions to print code text.

Which approach to use depends on the situation. If structures are required for other reasons or
there are many instances of each kind of structure, it may be best to use the structures approach. If
only one function of a given type is to be generated, it will probably be best to print code text
directly. It is often convenient to mix the two approaches.

• In the test suite, structures representing EBNF are required for parsing and manipulating
EBNF, so the dmis.y, dmis.hh, and dmis.cc files for full DMIS are printed primarily
from structures.

• The dmisConformanceChecker.cc and dmisConformanceTester.cc files in the test
suite print code directly.

• The dmis.hh and dmis.cc files define printSelf functions that generate code from
structures. The generate tutorial in the System Builders Manual shows how to write a
DMIS program by building structures and then calling the structure printer.

When text is printed directly, any variability in what is printed results from using arguments to the
functions that do the printing.

Regardless of how printing is done, if code is being printed that a human might want to read, the
code should be pretty-printed. That is, line length should be controlled, code sections should be
arranged appropriately and consistently, and lines should be indented appropriately and
consistently. All of the code produced by the test suite is pretty printed. Controlling line length
often requires first printing to a buffer and then counting characters while printing to a file from
the buffer. Controlling line length also requires avoiding constructing long names. Except for
controlling line length, the code needed to pretty print code is brief and easy to write. The
maximum line length the test suite tries to maintain is 80 characters. Keeping under that limit is
largely successful but fails in some cases where there are long names.
35

Maintainers Manual NIST DMIS Test Suite 2.2.1
12.4 Printing Directly

In C++, there are two very different methods that may be used for printing: the C printf function
(and its variants) or the << notation. The printf method is horribly ugly to look at and awkward to
use. The << method is less ugly to look at but has massive hidden ugliness in the overloading of
<< that is required. It is easier to exert fine control using the printf method. The printf method is
used exclusively in the test suite.

There are so many different things one might want to print, there is no easy way to implement the
functionality that is required. That is the reason there is no civilized set of printing functions. Just
learn to live with that.

When the code printers in the test suite have long sections of hard-coded material to print, that is
done by using a single fprintf function call with an argument that is a long string split over several
lines. This is a very useful technique. Here is a short example:

fprintf(yaccFile,
"char warningMessage[256];\n"
"extern FILE * yyin;\n"
"extern int yylex();\n");

In a few cases, the test suite inserts large sections of documentation in automatically generated
code. This is done using the technique just described.

12.5 Combining Manually Written and Automatically Generated Code

Where a program has both one-of-a-kind functions and many-of-a-kind functions, and there is no
need to intersperse the two types, it may be simpler to write the fixed code in a file than to have a
generator regurgitate it. This is done for the dmisConformanceTester. The automatically
generated dmisConformanceTester.cc file defines over a thousand check_xxx functions and
#includes the hand-written dmisConformanceTesterStart.cc file, which has 16 one-of-a-kind
functions. Similarly, the automatically generated dmisConformanceChecker.cc file #includes
the hand-written dmisConformanceCheckerStart.cc file.

12.6 An Alternative - Generate and Execute

An alternative to generating source code automatically, compiling it, and executing it is to
generate and execute the code in the same process. This may be done three ways. First, if you are
working with a language that includes a real-time compiler, you don’t need to change much. Just
put a compile step between the generate and execute steps. Second, if you are working with an
interpretable language such as Lisp, you don’t need to compile, so just go directly from
generation to execution. In Lisp, you can either generate an executable structure and then execute
it, or you can write out a file and then load it back in and execute it. Third, you can write
extremely generic data driven code with a lot of function pointers.

Although these approaches might make maintaining several hundred thousand lines of code
unnecessary, for dealing with DMIS, those alternative approaches seem inferior for several
reasons. First, the automatically generated code in the test suite is quasi-static. That is, unless
DMIS changes, the conformance classes change, or a bug is fixed, there is no reason to change the
code. It is a waste of time and effort to regenerate the code. The code will run more slowly if has
to be regenerated and then executed. Second, it may be necessary to do some hand-editing of
36

Maintainers Manual NIST DMIS Test Suite 2.2.1
automatically generated code (as in the 27 xxLists.cc files) before it is ready to use. Third, it
makes development harder because there is no chance to debug between generation and
execution. Fourth, if either Lisp backquote notation or extremely generic code is used, it becomes
nearly impossible by studying the code to see what the code is going to do when it executes.

13 How debnf2pars Works

13.1 Introduction

The debnf2pars code generator is very complex. This section only gives an overview of how
debnf2pars works and focuses on some special features. The debnf2pars.y file includes about
125 pages of in-line documentation. To get a deep understanding of debnf2pars, first read this
section, and then study the in-line documentation.

One capability built into debnf2pars is the ability to deal with DEBNF constructs that can cause
shift/reduce conflicts in dmis.y. The journal article cited in Section 1.3 describes the constructs
that cause conflicts, why the conflicts arise, and what the replacement constructs are. The article
does not explain how a parser is built that parses in terms of the replacement constructs while
building a parse tree using C++ classes derived from the original constructs. An explanation of
how that is done in one case is given in Section 13.9.1. See the in-line documentation in
debnf2pars.y for additional explanations.

As shown in Figure 5, debnf2pars reads a file written in DEBNF and writes eight files:
• a YACC file (dmis.y) for a parser of the language described in the DEBNF file,
• a Lex file (dmis.lex) for the lexical analyzer used by the parser,
• a C++ header file (dmis.hh) defining classes for representing DMIS,
• a C++ code file (dmis.cc) implementing the functions and methods declared in the

header file,
• a C++ code file (dmisConformanceChecker.cc) containing most of the functions

required for the dmisConformanceChecker,
• a C++ code file (dmisConformanceTester.cc) containing most of the functions

required for the dmisConformanceRecorder and the dmisConformanceTester,
• a C++ code file (allSubAtts.cc) defining arrays that give either the subclasses or the

attributes of every class that has either subclasses or attributes,
• a C++ code file (assignMasterSubAtts.cc) that assigns values by name to the entries of

the masterSubAtts array.

13.2 Data Structures Used in debnf2pars

Most of the data structures used in debnf2pars are instances of the C++ classes for EBNF
described in Section 4.1.

In addition, the attCell class and the classData class defined in debnf2pars.y are used to hold
data about the C++ classes for DMIS. An attCell has the data for one attribute of a class and a
next pointer so that lists of attCells can be constructed (even though no attList class is defined).
A classData has the data for one class. The classDatas array, a global variable in
debnf2pars.y, is an alphabetically ordered array of pointers to classData instances. Ordering is
done by class name. The dmisConformanceChecker.cc and dmisConformanceTester.cc files
are printed using the classDatas array.
37

Maintainers Manual NIST DMIS Test Suite 2.2.1
The debnf2pars.y file declares and uses the global variables:
• productions (a prodList of all the productions in the DEBNF file)
• statementNames (a stringCell, the head of list)
• tokenNames (an array of strings giving the names of tokens, alphabetically arranged)
• tokenLexes (an array of strings giving the spellings of some tokens, alphabetically

arranged)
• terminalNames (an array of strings giving the names of terminal symbols).

The debnf2pars.y file also declares and uses five global variables, each of which is a unique
expression. These are used to simplify testing for equality. CommaExp is used during parsing
EBNF and in many other activities. The rest are used only for fixing shift/reduce conflicts and
printing dmis.y.

• commaExp (represents a comma)
• nullExp (represents a null pointer)
• trueExp (represents boolean true)
• falseExp (represents boolean false)
• equalSignExp (represents an equal sign)

13.3 The Main Function

The main function in debnf2pars.y goes through the following steps.
• Initialize the classDatas, tokenNames, and tokenLexes arrays with zeros.
• Call yyparse to parse in the DEBNF file dmis.debnf, causing the productions list to be

built and populating the tokenNames and terminalNames arrays. For each
production a list of definitions is built, and it is determined if the production represents
a list.

• Call prepareStatementNames to go through the productions and make a list,
statementNames, of the names of those that are DMIS statements.

• Call reviseSpelling to set up the tokenLexes array that will be used to generate correct
spellings when dmis.lex is written. The function first makes tokenLexes be a copy of
tokenNames. Then it goes through the productions, and if a production gives a
spelling for a token name, the name is changed in the tokenLexes.

• Call productions.findUsedIn to set the usedIn list of each production, P. The usedIn
list of a production P is a list of other productions that use P. To set the usedIn list, it is
necessary to go through every expression of every definition of every production. In
the process of doing that, a second job is done. Namely, in every expression
representing P, the prodValue attribute of the expression is set to point to P.

• Call addData to find the class names for every definition of every production and to
determine which productions will have classes that are parent classes or subclasses of
classes for other productions.

• Call selectProductions to select those productions for which classes should be printed.
• Call recordClasses to put pointers to classData instances into the classDatas array.
• Call printCppClasses to print dmis.hh and dmis.cc.
• Call printConfAllSubAtts to print allSubAtts.cc.
• Call printConfAssignMaster to print assignMasterSubAtts.cc.
• Call printConfChecker to print dmisConformanceChecker.cc.
• Call printConfTester to print dmisConformanceTester.cc.
38

Maintainers Manual NIST DMIS Test Suite 2.2.1
• Call fixConflicts1 to modify the list of productions by detecting and fixing constructs
of one simple type that will cause shift/reduce conflicts if translated directly into YACC.

• Call fixConflicts2 to modify the list of productions by detecting and fixing more
complex constructs that will cause shift/reduce conflicts if translated directly into YACC.

• Call printYacc to print dmis.y.
• Call printLex to print dmis.lex.

13.4 DEBNF Parser

The DEBNF parser in the debnf2pars.y file (not the DMIS parser built by debnf2pars) consists
of a hand-written debnf2pars.lex file and about 150 lines of YACC. The parser parses DEBNF
into a parse tree using the DEBNF classes. In the current version of DEBNF, comments of the
form (*A=name*) and (*C=name*) in the DEBNF file are parsed into names for attributes
and classes, respectively. If an attribute name for an expression that will become an attribute
is not given in the DEBNF file, an attribute name will be assigned by the findAttributeNames
function in debnf2pars.y. If a class name for a definition is not given in the DEBNF file, a
class name will be assigned by the findClassNames function.

13.5 Generating dmis.hh and dmis.cc

Read Section 2 of the System Builders manual and Section 11 of this manual before continuing
this section.

Printing the dmis.hh and dmis.cc files is done by printCppClasses and 20 printCppXxx
functions (plus their subordinates) in a hierarchy below that. Most of these functions are
straightforward and easy to understand. Seven of them print in both files. The hierarchy of
functions headed by printCppClasses is shown in Figure 10. Each level of indentation in the
figure indicates that the less indented function above calls the more indented function below. On
the figure, subordinates of functions not named print<Something> are omitted, and if a
print<Something> function appears more than once, the hierarchy under it is only shown the first
time.

The remainder of this section describes the printCppClasses function and discusses issues of
printing dmis.hh and dmis.cc. For details, see the in-line documentation of the printCppXxx
functions in debnf2pars.y.
39

Maintainers Manual NIST DMIS Test Suite 2.2.1
printCppClasses
printCppBaseClass

printCppClassStart
printCppDocumentation
printCppNames
printCppProductionClasses

findClassData
makeClassDataSubs
printCppClassDerived

findAttributeNames
flattenOpts
makeClassDataAtts
printCppClassConstructors

printCppClassConstructorArgs
printCppClassData
printCppClassDestructor
printCppClassDoc (calls itself recursively)
printCppClassMethods
printCppClassPrinter

printCppClassPrinterListNo
printCppClassPrinterListYes
printCppClassPrinterOpt

printCppClassPrinterOpt1 (calls printCppClassPrinterOpt)
printCppClassPrinterListNo
printCppClassPrinterListYes

printCppClassPrinterOpt2
printCppClassStart

printCppClassParent
printCppClassDestructor
printCppClassStart

printCppClassTop (subordinates identical to those of printCppClassDerived)
findAttributeNames
flattenOpts
makeClassDataAtts
printCppClassConstructors
printCppClassData
printCppClassDestructor
printCppClassDoc
printCppClassMethods
printCppClassPrinter
printCppClassStart

printStarLine

Figure 10. Hierarchy of Functions Headed by printCppClasses
40

Maintainers Manual NIST DMIS Test Suite 2.2.1
13.5.1 printCppClasses

At the head of the hierarchy, printCppClasses does the following:
• Open dmis.hh and dmis.cc for writing and print #includes and namespace declarations.
• Call printCppDocumentation to print (entirely hard coded) documentation in dmis.hh.
• Call printCppNames to print the declaration of all classes in dmis.hh.
• Call printCppBaseClass to print the definition and implementation of the base class in

dmis.hh and dmis.cc.
• Go through the productions list repeatedly, keeping track of which ones have already

been used for printing classes. Each time a not-yet-used production is found all of
whose supertype classes have already been printed, call printCppProductionClasses to
print one or more C++ classes to represent that production. Class definitions for them
are printed in dmis.hh and class implementations in dmis.cc.

• Close the namespace declarations and close the files.

It would be nice simply to print the classes in alphabetical order, but C++ compilers complain
when a class is made a subclass of a class that has not yet been defined. Hence the procedure of
looping repeatedly through the productions is used.

If a production has more than one definition, a parent class is printed for the production and a
class is printed for each definition. A parent class is very minimal. It has only a constructor that
does nothing, a destructor that does nothing, and a printSelf function with no definition. Because
a class is printed for every definition, it is important for keeping the number of classes down that
optionals be represented in the DEBNF file using square bracket notation, not by writing multiple
definitions.

13.5.2 Flattening Optionals

For several purposes, the foremost of which is printing classes, it is useful to pretend temporarily
that the optional items in a definition (with one type of exception) are not optional.

For example, if the original EBNF definition is:

 ifStm, [calibSens], [elseStm, [calibSens]], endifStm

then the definition with optionals appearing to be required is:

 ifStm, calibSens, elseStm, calibSens, endifStm

The process of making optionals appear to be required has been called flattening optionals. The
function that does the work is called flattenOpts. Other debnf2pars activities that use
flattenOpts are printing dmis.y (see Figure 18) and fixing shift/reduce conflicts (see Figure 14
and Figure 15).

The one exception made by flattenOpts is that an optional consisting entirely of constant terms
and containing at least one keyword ([EXTERN, c, DMIS, c], for example) is left
unchanged. The exception is made because a single boolean attribute (has_EXTERN in the
example) will be used to represent the entire optional in the C++ class derived from the
definition. Keeping the optional unchanged makes it easy to treat it as a single item.

13.5.3 Printing printSelf

The printSelf functions in dmis.cc print DMIS code, and they are moderately complex. Hence
41

Maintainers Manual NIST DMIS Test Suite 2.2.1
printing the printSelf functions in debnf2pars.y is complex. It is done by the hierarchy of
printCppClassPrinterXxx functions shown in Figure 10. Since optionals may be nested,
printCppClassPrinterOpt1 may call its superior, printCppClassPrinterOpt.

13.6 Generating dmisConformanceChecker.cc

The dmisConformanceChecker.cc file is generated by the hierarchy of functions headed by
printConfChecker shown in Figure 11.

PrintConfArrays prints an array declaration for each entry in classDatas that has either
subclasses or attributes. For example:

const char * evalStmAtts[3] = {"evalStmAtts", 0};
const char * extensMinorSubs[4] = {"extensMinorSubs", 0};

PrintConfFunctions prints the functions that test conformance. There are four types of them for:
blocks with attributes, blocks with subclasses, statements with attributes, and statements with
subclasses. Each type has its own print function subordinate to printConfFunctions.

The printConfAnalyzeItems subordinate of printConfFunctions prints the analyzeItems
function that counts uses of dmisStatements.

While the printConfChecker function and its subordinates have the ugliness that characterizes
code printers, and understanding the placement of characters such as backslashes requires some

printConfChecker
printConfArrays
printConfFunctions

printConfAnalyzeItems
printConfAttChecker

findClassData
printStarLine

printConfBlockAttChecker
findClassData
printStarLine

printConfBlockSubChecker
findClassData
printStarLine

printConfSubChecker
findClassData
printStarLine

printStarLine
printConfReportSummary
printConfReportSummaryFull
printConfStart
printStarLine

Figure 11. Hierarchy of Functions Headed by printConfChecker
42

Maintainers Manual NIST DMIS Test Suite 2.2.1
study, there are no deep or complex issues associated with printing the
dmisConformanceChecker.cc file or the dmisConformanceTester.cc file, which is next.

13.7 Generating dmisConformanceTester.cc

The dmisConformanceTester.cc file is generated by the hierarchy of functions headed by
printConfTester shown in Figure 12. The functions subordinate to printConfTester are very
similar to those subordinate to printConfChecker.

13.8 Generating allSubAtts.cc and MasterSubAtts.cc

The allSubAtts.cc file is printed in a straightforward manner by printConfAllSubAtts, which
goes through the classDatas array in alphabetical order. For each entry in classDatas, the
function prints either an array naming the subclasses of a class or an array naming the attributes of
a class.

The masterSubAtts.cc file is printed in a straightforward manner by printConfAssignMaster,
which goes through the classDatas array in alphabetical order while incrementing a counter. For
each entry in classDatas, the function prints either

masterSubAtts[<count>] = <name>Subs; or
masterSubAtts[<count>] = <name>Atts;

according to whether the classData indicates subclasses or attributes. The <name> is the name
given in the classData, and <count> is the current value of the counter.

printConfTester
printConfArrays
printTestFunctions

printTestAttChecker
findClassData
printStarLine

printTestBlockAttChecker
findClassData
printStarLine

printTestBlockSubChecker
findClassData
printStarLine

printTestSubChecker
findClassData
printStarLine

printTestStart
printStarLine

Figure 12. Hierarchy of Functions Headed by printConfTester
43

Maintainers Manual NIST DMIS Test Suite 2.2.1
13.9 Modifying the C++ Class Instances for EBNF to Avoid Shift/Reduce Conflicts

The paper “Automatic detection…” cited in Section 1.3 describes the EBNF constructs that cause
conflicts, why the conflicts occur, and what the constructs are that replace the problematic
constructs. It does not describe how the replacements are made; this section gets into that.

The main function calls both fixConflicts1 and fixConflicts2. These functions and their
subordinates detect problematic constructs and do most of the work of replacing them. In some
cases, constructs modified by fixConflicts1 will be further modified by fixConflicts2.

fixConflicts1
alwaysFollowedByComma

alwaysFollowedByCommaInExps (also calls itself)
expIsComma
expIsProd

removeCommaInExps (also calls itself)
expIsComma
expIsProd

Figure 13. Hierarchy of Functions Headed by fixConflicts1

fixConflicts2
fixConflictList

expIsComma
fixConflictListNested

alwaysFollowedByComma
alwaysFollowedByNewline (also calls itself)

expIsNewline
expIsProd

expIsComma
fixConflictListNested1

insertItemAndCommaInList
fixConflictListNested2

insertItemInList
findProdSet

replaceOptsInDefinitions
checkDuplicates

expListsSame
replaceOptInDefinition

replaceOptMulti
removeCommaInExps

fixConflictListOptional
flattenOpts

fixConflictListOptional
insertItemInList

fixConflictsUsers (see Figure 15)

Figure 14. Hierarchy of Functions Headed by fixConflicts2
44

Maintainers Manual NIST DMIS Test Suite 2.2.1
The hierarchy of functions headed by fixConflicts1 is shown in Figure 13. The hierarchy of
functions headed by fixConflicts2 is shown in Figure 14 and Figure 15. The figures do not
include member functions of EBNF classes, which are used profusely.

As may be gathered from the figures, fixConflicts2 is substantially more complex than
fixConflicts1. The nature of the functions subordinate to the two fixers, however, is similar.

13.9.1 An example

The remainder of this section is devoted to a full explanation of one example of a shift/reduce
conflict, how it is detected, and how it is fixed. The example involves productions used in the
DMIS PAMEAS statement. It is handled by fixConflicts1. It has been simplified by removing
additional definitions that are not part of the problem. The EBNF productions involved
from dmis.debnf that form a problematic construct are shown in Figure 16. The changed
productions (as they would be if they were printed) are shown in Figure 17.

fixConflictsUsers (from Figure 14)
fixConflictOther

alwaysFollowedByNewline
expIsComma
expIsNewline
expIsProd
fixConflictOther1

makeNewDefs
makeProdC

findProdSet (see Figure 14)
makeNewDefs
prepareDefsForPlain

findOptType
flattenOpts (also calls itself)

findOptType
prepareDefsForPlain
replaceProdC

expIsComma
fixConflictOther2

expIsComma
expIsProd
makeNewDefs
makeProdC
prepareDefsForPlain
replaceProdC

replaceOptsInDefinitions (see Figure 14)

Figure 15. Hierarchy of Functions Headed by fixConflictsUsers
45

Maintainers Manual NIST DMIS Test Suite 2.2.1
This is an example of the following problem type, which is fixable.

There is a production P, such that (1) P has at least one definition with an optional at the
end starting with a comma and (2) the name of P is followed by a comma, c, wherever it appears
in a definition.

In the example, P is pameasDetail. The optional at the end of a definition is [c,
PITCH, c, realVal]. The only place pameasDetail is used is in the one definition
of pameasVar2ListItem, and in that place it is followed by a comma, c. Therefore,
pameasDetail is always followed by a comma.

The problem is best understood by playing the role of parser. As parser, you get tokens (words,
punctuation, numbers, etc.) from a lexer. Each time you get a token, you need to decide whether to
shift (add the token to a list of tokens that form the beginning of a definition) or reduce
(change a sequence of tokens that form a complete definition of a production to the
name of the production). You can look one token ahead (at the “lookahead token”). You
remember what you are doing based on what you have already processed.

The example crops up when you are reading a pameasVar2ListItem. You get to the point
where you have seen the sequence SCNVEL, c, fedratLinear and have c as the
lookahead token. You know you are working on the first definition of a pameasDetail,
but you cannot tell whether the c is (1) the first c in the optional part of pameasDetail or (2)
the c in the definition of pameasVar2ListItem. In the first case, there are more terms
in the pameasDetail, so you should shift the c. In the second case, you have seen a whole
pameasDetail, so you should reduce the sequence to a pameasDetail.

The general rule for fixing a conflict of this type is to change the EBNF by (1) inserting a comma
after every definition of P, and (2) removing the comma that follows the name of P
everywhere that P is used. For the example, that changes the EBNF as shown in Figure 17. Now
when you see the c following fedratLinear, it has to be part of the pameasDetail. You
cannot tell whether it is the c at the beginning of the optional or the c at the end of the
definition, but it does not matter, because you must shift it in either case. If the next token
received from the lexer is PITCH, you will know that you are in the optional and will shift. If the
next token is pLabel, you will know that you have seen an entire pameasDetail that did not
include an optional and you will reduce.

pameasDetail =
 SCNVEL, c, fedratLinear, [c, PITCH, c, realVal]
| PITCH, c, realVal
;

pameasVar2ListItem =
 pameasDetail, c, pLabel
;

Figure 16. EBNF Construct Before Fixing
46

Maintainers Manual NIST DMIS Test Suite 2.2.1
The chain of events in debnf2pars that does the work starts while the EBNF is being parsed.
Each time an EBNF production is parsed, an instance P of the C++ production class is built,
and then the findEndsInOptional function is called to examine the last expression in each of the
definitions of P. If that expression is an optional and the first expression in the optional is a
comma, then the endsInOptional attribute of P is set to true. Otherwise, the endsInOptional
attribute of P is set to false. For pameasDetail, endsInOptional is set to true.

After the EBNF file has been parsed, main calls the findUsedIn function of the prodList named
productions. That function calls the findUsedIn function of every production. The findUsedIn
function of a production P looks through every expression of every definition of every other
production Q. If the itemName of an expression in Q is the name of P, and Q is not already at
the end of the usedIn list of P, a pointer to Q is added to the end of the usedIn list of P. As a result
of this process, the usedIn list of the production for pameasDetail ends up with one element,
a pointer to the production for pameasVar2ListItem.

Next, when main calls fixConflicts1, the function looks at every production P in order to
determine if P is involved in the kind of problematic construct described above. Eventually,
fixConflicts1 gets to pameasDetail. Since the endsInOptional attribute of pameasDetail
is set to true, the first requirement for being a problem is satisfied. FixConflicts1 therefore calls
alwaysFollowedByComma to determine whether pameasDetail is always followed by a
comma, the second requirement. To determine whether a production P is always followed by a
comma, alwaysFollowedByComma (with the help of alwaysFollowedByCommaInExps)
hunts through every expression of every definition of every production in the usedIn list of P
(including digging into optionals) looking for P. If every time P is found it is followed by a
comma, then alwaysFollowedByComma returns true. For pameasDetail, the only member
of usedIn is pameasVar2ListItem, which has only one definition, and in that definition
pameasDetail is followed by a comma the one time it appears. Hence,
alwaysFollowedByComma returns true for pameasDetail.

Now fixConflicts1 knows that it has found a problematic construct it knows how to fix, so it sets
about fixing it. To fix the problem, two steps are needed.

First, fixConflicts1 goes through all the definitions of all the productions in the usedIn list of
the problem production P and calls removeCommaInExps for the expression list of each
definition. Each time removeCommaInExps finds an expression in the list whose prodValue
is P, it checks that the next expression is a comma and then calls the removeCell function of the
expList class to remove the comma expression from the list of expressions. Each time

pameasDetail =
 SCNVEL, c, fedratLinear, [c, PITCH, c, realVal], c
| PITCH, c, realVal, c
;

pameasVar2ListItem =
 pameasDetail, pLabel
;

Figure 17. EBNF Construct After Fixing
47

Maintainers Manual NIST DMIS Test Suite 2.2.1
removeCommaInExps finds an expression in the list that has an optValue, it calls itself
recursively to act on the expressions in the optional to which the optValue points. For
pameasDetail, the result is that the comma after pameasDetail in the one definition of
pameasVar2ListItem is removed.

Second (and finally), fixConflicts1 goes through the definitions of the problem production P
(pameasDetail) and adds a comma at the end of the expressions list of each definition.

This example is the simplest possible real example of how fixConflicts1 works. FixConflicts2 is
more complex. However, the example illustrates several recurring themes. First, much of the work
is done by functions that execute during and immediately after parsing and fill in values for the
attributes of productions and expressions. If those attributes did not exist, all the work that is
currently done to fill them in would have to be done more than once – in fixConflicts1,
fixConflicts2, and other functions. Second, fixing one type of problem is done by looking at all
the productions, seeing if any production P has the problem, and immediately fixing the
problem for P. Third, fixing the problem is usually done by some sort of list surgery (adding an
expression to an expList or removing one from it, removing a definition, adding a definition,
etc.). Most of the list surgery functions are member functions of the EBNF classes; a few are
defined in debnf2pars.y.

One important difference between fixConflicts1 and fixConflicts2 is that fixConflicts2 sets the
fixType of productions it modifies but fixConflicts1 does not. The fixType is used in the process
of printing dmis.y. Changes made by fixConflicts1 do not need any special handling during that
process.

All of the functions that participate in fixing conflicts are heavily documented, so it should be
possible to understand what is going on in throughout the conflict fixing process.

13.10 Generating dmis.y

The first two subsections of this section discuss the overarching issues of building dmis.y. The
remaining subsections discuss specific issues and how they are handled.

13.10.1 Parser Functionality

The dmis.y file defines the parser that will be built by the bison processor and the C++ compiler.
The functionality required of the parser, therefore, must be built into dmis.y. The following
functionalities are desirable in the parser:

• Be able to parse all error-free DMIS input files.
• Be able to continue through errors.
• Be able to handle CALLs to MACROs defined in the file.
• Wherever there is a parse error, describe it and print the section of DMIS code that

caused it with the line number from the input file.
• While parsing, build a parse tree in terms of C++ classes for DMIS. Make the parse tree

available for use after parsing is complete.
• Wherever an undefined label is used or a label is defined more than once that should not

be, print an error message and the section of code containing the label.
• Wherever an undefined variable is used or a variable is declared more than once, print an

error message and the section of code containing the variable.

Most of those desirable functionalities are built into dmis.y by debnf2pars. The ideal is not quite
48

Maintainers Manual NIST DMIS Test Suite 2.2.1
reached. First, some errors will confuse the parser so that it will be unable to continue. Second, if
there is an error, the parser will not make the parse tree available for use. Third, because the parser
parses the DMIS file sequentially, but the file might not execute sequentially (because of flow of
control statements such as JUMPTO or IF), the parser cannot be sure that its judgement of
undefined and multiply defined labels and variables is accurate, so it issues only warning
messages (not error messages) in most of those cases.

Each kind of functionality that is implemented must be embodied in dmis.y. This makes dmis.y
more complex, requiring debnf2pars to be more complex. In some cases, implementing one kind
of functionality interferes with implementing another.

The primary example of this is the combination of having an error-free parser and building a parse
tree in terms of C++ classes. In order to have the C++ classes form a usable application
programming interface, the C++ classes are built from “natural” EBNF. If the rules in dmis.y are
built directly from the natural EBNF, however, they will lead to many shift/reduce conflicts,
leading to a parser that will not always parse correctly. To deal with this, before writing YACC
rules, debnf2pars changes its internal representation of the EBNF productions so that the
YACC rules built directly from them recognizes the same grammar but does not have conflicts.
This is complex. After that, there is the even more complex task of getting debnf2pars to build
parse trees in terms of the C++ classes while parsing in terms of the modified EBNF.

13.10.2 General approach

The general approach to building dmis.y in debnf2pars is:
• Parse the DEBNF file and build a parse tree in terms of C++ structures for EBNF

(defined in ebnf.hh),
• Convert all C++ structures for extensions to BNF (the E part of EBNF) to C++ structures

for BNF.
• Modify the BNF structures to avoid shift/reduce conflicts.
• Print YACC from the modified BNF C++ structures.

The convert step above is possible because the extensions to BNF which are used in DEBNF can
all be replaced by more verbose but equivalent BNF statements. The extensions to be removed are
the optionals. debnf2pars replaces most of the optionals in the parse tree with their BNF
equivalents by using multiple definitions, so that the parse tree becomes a BNF parse tree.

YACC rules are equivalent to BNF productions, so the rules in the YACC file would be
relatively straightforward to print from the BNF parse tree if there were no actions following the
rules. However, there are actions after all rules. Since the actions build a parse tree in terms of
C++ classes generated from the unmodified EBNF productions while the rules are for the
modified productions, generating the YACC file is very complex. The steps of the general
approach become somewhat interleaved, not fully sequential.

The function call hierarchy in debnf2pars.y headed by printYacc is shown in Figure 18 and
Figure 19. Functions belonging to classes are omitted from the hierarchy, and if a function
appears more than once, its subordinates are shown only the first time it appears.
49

Maintainers Manual NIST DMIS Test Suite 2.2.1
printYacc
printYaccMiddle

printYaccUnionAndTypes
findToken

printYaccProductions
printYaccFirstProduction

makeNewDefs
prepareDefsForPlain

prepareDefForPlain
flattenOpts

printYaccFirstAction
printYaccActionItem

printYaccRule
printYaccExpression

printYaccProduction
printYaccDatMinor

printYaccExpression
printYaccForFixList1

prepareDefsForPlain
printYaccActionItem
printYaccRule

printYaccForFixList2
printYaccForFixDef1

prepareDefsForPlain
printYaccActionItem
printYaccRule

printYaccForFixDef2
prepareDefsForPlain
printYaccActionItem
printYaccRule

printYaccForListDefault
printYaccForNewDefs

findProd
printYaccRule
printYaccAction

printYaccForPlain
printYaccForSupertype
printYaccLabelDefinition
prodIsLabel

printYaccProductionsStart
findProd

printYaccStart (see Figure 19)

Figure 18. Hierarchy of Functions Headed by printYaccProductions
50

Maintainers Manual NIST DMIS Test Suite 2.2.1
In addition to generating a lot of YACC code, debnf2pars writes C++ code in dmis.y for 5
classes, 16 auxiliary functions, and 23 global variable declarations. All of that, except for one
declaration, is hard-coded1 in the subordinates of printYaccStart shown in Figure 19.

The classes are:
• macroList
• macroListCell
• macroRep
• stringList
• stringListCell

The functions are:
• doCall (returns int)
• doLabel (returns nothing)
• doMacro (returns nothing)

1. It might be a good idea to move the hard-coded material from dmis.y into a dmisStart.cc file and have
dmis.y #include dmisStart.cc (as has been done with dmisConformanceTester.cc and
dmisConformanceChecker.cc). Then all the functions that print the hard-coded material could be removed
from debnf2pars.y.

printYaccStart
printStarLine
printYaccDoCall
printYaccDoLabel
printYaccDoMacro
printYaccFindCallArgs
printYaccFindMacro
printYaccFindMacroArgs
printYaccGetStatement
printYaccGlobals
printYaccHandleLabel
printYaccIncDefs
printYaccInsertCalledMacro
printYaccIsCall
printYaccIsEndmac
printYaccIsMacro
printYaccMacroClass
printYaccParseDmis
printYaccPreprocess
printYaccResetParser
printYaccStringClasses
printYaccWarn
printYaccYyerror

Figure 19. Hierarchy of Functions Headed by printYaccStart
51

Maintainers Manual NIST DMIS Test Suite 2.2.1
• findCallArgs (returns int)
• findMacro (returns macroRep *)
• findMacroArgs (returns int)
• getStatement (returns bool)
• handleLabel (returns nothing)
• insertCalledMacro (returns nothing)
• isCall (returns int)
• isMacro (returns int)
• parseDmis (returns nothing)
• preprocess (returns nothing)
• resetParser (returns nothing)
• warn (returns nothing)
• yyerror (returns int)

The functions that deal with MACROs and CALLs are all subordinate to the preprocess function,
which is described in Section 3.4.1 of the Users Manual.

While most YACC rules are printed into dmis.y from productions without taking special actions
based on the production name or fixType, there are dozens of special cases. The amount of code
in debnf2pars.y for handling the special cases is large, probably larger than the code for non-
special cases. There are enough special cases that some general approaches to types of special
case have been developed. One of these is described in Section 13.10.7.

13.10.3 Printing YACC Rules

You won’t understand this section unless you are familiar with YACC. Refer to “lex & yacc” as
needed.

The standard terminology for talking about YACC is deficient because it talks about actions
corresponding to rules. This is inappropriate because a rule includes everything starting with the
name on the left hand side and ending with a semicolon and may include many definition/action
pairs. In most of what is written about YACC, “rule” sometimes means the entire rule, and
sometimes means only the definition part of the rule. In the following discussion, to avoid
confusion, rule means the whole thing, and definition means a sequence of tokens to be
recognized.

The principal job of debnf2pars in printing the dmis.y file is to write it so that the parser built
from it parses correctly and builds a parse tree as it parses. Most of the rules dmis.y are devoted to
that task. Whenever a definition, D, is matched by the parser, a value which is an instance, K, of a
C++ class, k, is assigned to the left side of the rule, and a pointer to K is passed to some other rule
closer to the root of the tree. K is built by calling the constructor for k. The arguments to the k
constructor are selected from the values for the components of D.

13.10.3.1 Writing basic rules

Consider, for example, the rule shown in Figure 20. The definition in the rule (second line) is all
YACC. The action in the rule (third line) is all C++ except for the terms starting with $, which are
YACC. The $$ is the value for intFuncIndx that will be passed up to some other rule. The $3
stands for the value of the third expression in the definition, which is a stringVal. The $5 stands for
the value of the fifth expression in the definition, which is another stringVal. Thus, this rule is
recognizing the sequence of 6 tokens in the definition and building an instance of the intFuncIndx
52

Maintainers Manual NIST DMIS Test Suite 2.2.1
class from them. Note that the constructor does not need any information from the other terms in
the definition. They are the same in every case of a call to INDX in a DMIS file, so there is no
point in recording them1.

The name of the constructor to use in the action (intFuncIndx) is the value of the className
attribute of the production, which has been assigned previously.

The arguments to the constructor must also be found. All of the class constructors take as
arguments the values of the attributes of the class in the order in which they occur in the class. The
attributes of a class represent the non-constants in the EBNF definition from which the class
was generated, in the order in which they appear in the EBNF (after optionals have been
flattened). The definition in the YACC rule is the same as that EBNF, except for format. As a
result of those facts, in the example of Figure 20, it is easy to determine what the arguments to the
constructor should be. Just count expressions in the definition, and, if the nth expression is not
a constant, use $n as an argument.

There are no functions in debnf2pars.y that implement this default case. The behavior just
described is what the functions described in the next section do when there are no optionals in a
production.

13.10.3.2 Writing rules for productions containing optionals

The descriptions in this section are complex because the code is (necessarily) complex. You might
want to look at the examples in before tackling the text.

Unlike EBNF, YACC does not have special notation for an optional. To represent a simple
optional, it is necessary to write two YACC definitions, one with the optional, and one without it.
In the action following the definition in which the optional is not used, the constructor still
requires an argument value for the optional, and that value must be 0 (a null pointer). Each top-
level optional in an EBNF definition doubles the number of YACC definitions required to
represent the same thing. For nested optionals the factor is 1.5 rather than 2 since the inner
optional has no effect unless the outer optional is used. Dmis.y has rules with as many as 48
definitions where the EBNF has one definition with six optionals.

In order to print YACC rules, a data representation is needed that will support the following three
activities:

• generating multiple YACC definitions to replace EBNF definitions with optionals,
• printing YACC definitions,

1. To reprint DMIS, the functions that do the printing must know about the constants. In the test suite, the
printSelf functions know about them. In some other systems that generate parsers automatically, the print
functions do not know about the constants, so the constants must be recorded in the C++ classes, making the
classes unwieldy.

intFuncIndx :
 INDX LPAREN stringVal C stringVal RPAREN
 { $$ = new intFuncIndx($3, $5); }
;

Figure 20. YACC Rule for intFuncIndx
53

Maintainers Manual NIST DMIS Test Suite 2.2.1
• printing YACC actions.

Since the EBNF definitions are represented in C++ as lists of expressions (expLists), the
obvious way to handle the problem is to make modified copies of the expLists. The modified
expLists must support:

• representing true and false for optionals containing only constants,
• representing null pointers for other optionals,
• generating correct values of N for the $N arguments to class constructors.

That method has been implemented. When the fixType of the production is fixTypeNone, it is
implemented by printYaccForPlain and four subordinates: makeNewDefs,
prepareDefsForPlain, printYaccRule, and printYaccAction. PrintYaccForPlain prints the
YACC rule for one production.

PrintYaccForPlain first calls makeNewDefs, which makes the newDefs of each definition of
the production. It initializes the newDefs list of a definition D by putting a copy of D at the
beginning of the list.

PrintYaccForPlain then goes through the definitions of the production. For each definition, D,
it calls prepareDefsForPlain, which acts on the newDefs of D.

PrepareDefsForPlain goes through the definitions in the newDefs of D (which may grow). It
keeps calling prepareDefForPlain as long as prepareDefForPlain makes any changes to the
newDefs list. After that, prepareDefsForPlain goes on to the next definition.
PrepareDefForPlain acts only on the first optional it finds in the expressions of the definition.
Since a definition may contain several optionals, it may be necessary to call
prepareDefForPlain several times before no optionals remain in the definition on which it is
acting. See the in-line documentation of prepareDefForPlain for details.

PrepareDefForPlain deals with an optional by making a copy of the definition containing the
optional and inserting the copy in the newDefs list immediately after the original. In the original,
it removes the optional completely and substitutes either a single falseExp (if the expressions
of the optional are all constants) or one or more nullExps (otherwise). In the copy, it replaces the
optional with the expressions of the optional. If the expressions of the optional are all
constants, trueExp is inserted immediately before the expressions.

For each definition d in the newDefs of D, printYaccForPlain does the following:
• To help with checking labels as described in Section 13.10.7, possibly change some

expressions in d.
• Call printYaccRule to print the YACC definition corresponding to d.
• If any expressions were changed to help with label checking, change them back to they

way they were.
• Call printYaccAction to print the action for d.

PrintYaccRule goes through the expressions of d. It calls printYaccExpression to print each of
them except for any occurrences of nullExp, trueExp, and falseExp. It does not print nullExp
and falseExp because they represent expressions that do not appear in the rule. It does not print
trueExp because trueExp refers to the constant expressions that follow it that used to be part of
an optional, which will be printed.

PrintYaccAction also goes through the expressions of d. It uses a counter to count positions in
54

Maintainers Manual NIST DMIS Test Suite 2.2.1
the expressions. PrintYaccAction sets the position counter to 1, prints the beginning of a call to
a class constructor, and then for each expression in d calls printYaccActionItem to possibly
print an argument of the constructor and possibly update the position counter. For each
expression E in d:

• If E is nullExp, 0 is printed in the constructor arguments representing a null pointer
argument. The position counter is not incremented because nothing was printed for
nullExp in the YACC definition.

• If E is falseExp, false is printed in the constructor arguments representing a false
boolean argument. The position counter is not incremented because nothing was printed
for falseExp in the YACC definition.

• If E is trueExp, true is printed in the constructor arguments representing a true boolean
argument. The position counter is not incremented because nothing was printed for
trueExp in the YACC definition.

• If E is a TERMINAL or NONTERMINAL (a non-constant item) $N is printed in the
constructor arguments, where the value of N is the current value of the position counter,
and then the counter is incremented.

• If E is anything else, it is a constant, so no constructor argument is printed, but the
position counter is incremented because the constants were printed in the YACC
definition.

The steps in the progression from EBNF production to YACC rule for
rmeasSpecVecbldOrient are shown in Figure 21. This is the simplest possible example in
which an optional containing only constants is used1.

In Figure 21, the single definition in the EBNF production at the top is processed to give the two
EBNF definitions in the middle, which are the newDefs of the definition at the top. This is done
in printYaccForPlain which first calls makeNewDefs then calls prepareDefsForPlain, which
calls prepareDefForPlain three times.

The definitions in the middle of Figure 21 are then processed to give the YACC rule at the bottom.
• The second line of YACC is printed from the upper middle definition by printYaccRule.
• The third line of YACC is printed from the upper middle definition by printYaccAction.
• The fourth line of YACC is printed from the lower middle definition by printYaccRule.
• The fifth line of YACC is printed from the lower middle definition by printYaccAction.

1. Of course debnf2pars is acting on the C++ representation of the EBNF production, but there is no print
representation of that. The font for C++ is used in the discussion.
55

Maintainers Manual NIST DMIS Test Suite 2.2.1
An example involving nested optionals that are not all constants is shown in Figure 22. The steps
in the progression from EBNF production to YACC rule for promptIntEnd are shown in the
figure. The first definition in the EBNF production at the top is processed to give the first three
EBNF definitions in the middle (which are the newDefs of the first definition at the top). The
second definition at the top is processed to give the fourth definition in the middle (which is the
newDefs of the second definition at the top). The same functions are involved as in Figure 21,
but here prepareDefsForPlain is called twice (once for each definition at the top), and
prepareDefForPlain is called six times (five to make the first three definitions in the middle, and
once for the fourth definition).

The eight lines in the middle of the YACC rule are built by processing the four definitions in the
middle. For each definition, first printYaccRule is called and then printYaccAction is called.

rmeasSpecVecbldOrient =
 rmeasSpecVecbld, [c, ORIENT]
;

 rmeasSpecVecbld, falseExp
 rmeasSpecVecbld, trueExp, c, ORIENT

rmeasSpecVecbldOrient :
 rmeasSpecVecbld
 { $$ = new rmeasSpecVecbldOrient($1, false); }
| rmeasSpecVecbld C ORIENT
 { $$ = new rmeasSpecVecbldOrient($1, true); }
;

Figure 21. EBNF Production to YACC Rule for rmeasSpecVecbldOrient
56

Maintainers Manual NIST DMIS Test Suite 2.2.1
13.10.3.3 Writing rules for productions that are lists in default form

If the isList attribute of a production is true and its fixType is fixNone, then it is a list in default
form, and printYaccProduction calls printYaccForListDefault to print the rule. The default form
of the EBNF for a comma-separated list is shown at the top of Figure 23. The YACC rule that
would be printed by printYaccForListDefault is shown at the bottom of the figure. In the first
definition and action of the rule, the thing is the first item on the list, so a new list of thing is made,
and the thing is put at the end of the list (which is also the front, since there is only one element).
In the second definition and action of the rule, the beginning of the list already exists and thing
comes after that, so the thing is inserted at the end of the list.

For a list that is not comma-separated, everything is the same except that the , c in the EBNF at
the top is not there, and the C in the second definition of the rule is not there.

promptIntEnd =
 stringVal, [c, intVal, [c, intVal]]
| promptItemList
;

 stringVal, nullExp, nullExp
 stringVal, c, intVal, nullExp
 stringVal, c, intVal, c, intVal

 promptItemList

promptIntEnd :
 stringVal
 { $$ = new promptIntEnd_stringVal($1, 0, 0); }
| stringVal C intVal
 { $$ = new promptIntEnd_stringVal($1, $3, 0); }
| stringVal C intVal C intVal
 { $$ = new promptIntEnd_stringVal($1, $3, $5); }
| promptItemList
 { $$ = new promptIntEnd_promptItemList($1); }
;

Figure 22. EBNF Production to YACC Rule for promptIntEnd
57

Maintainers Manual NIST DMIS Test Suite 2.2.1
13.10.3.4 Writing rules for productions in which shift/reduce conflicts are fixed

If a production has had a shift/reduce conflict that is not the simplest type, the value of its fixType
attribute will be one of those shown in the first column of Table 2, and the rule for it will be
printed by the function in the second column. The third column gives an example of a production
that has the given fixType. The fourth column gives the number of productions in dmis.debnf
with that fixType. In the case of fixListItemDeleted, the production is not printed at all.

If a production has any of the last four fixTypes in the first column, it will have been modified
before printing YACC begins. In order to print the YACC rule’s actions in terms of the C++
classes derived from the unmodified productions while the rule’s definitions are printed from the
modified productions, the functions in the second column are necessarily complex. They are all
heavily documented in debnf2pars.y. The documentation includes examples.

Here we describe only printYaccForFixList2, its subordinate printYaccForFixDef2, and its

Table 2. Printing Productions with Shift/Reduce Conflicts

fixType
top printing

function
example

production
productions
with fixType

fixListItemDeleted NA displySpecItem 16

fixListItemsInserted1 printYaccForFixList1 snslctWristAngleList 1

fixListItemsInserted2 printYaccForFixList2 displySpecList 16

fixProdC printYaccForNewDefs datsetSpecC 5

fixProdCUser printYaccForNewDefs datsetDats 13

thingList =
 [thingList, c], thing

;

thingList :
thing

{ $$ = new std::list<thing *>;
$$->push_back($1); }

| thingList C thing
{ $$ = $1;

$$->push_back($3); }
;

Figure 23. EBNF Production to YACC Rule for List
58

Maintainers Manual NIST DMIS Test Suite 2.2.1
precursor insertItemInList. The other three functions listed in Table 2 are of the same general
nature. Read the in-line documentation to get the details.

PrintYaccProduction will call printYaccForFixList2 to print the YACC rule for a production if
the fixType of the production is fixListItemsInserted2. That fixType is assigned only in
insertItemInList, which may have been called by any of three conflict-fixing functions.

InsertItemInList takes three arguments:
• listItem - a pointer to a production for the list item
• theList - a pointer to a production that is a list of the listItem
• commaInside - a boolean that is

true if there should be a comma inside the recursive use of the list and
false if there should be a comma outside the recursive use of the list.

InsertItemInList makes new definitions for the (only) definition of a list. The new definitions are
right recursive with the comma inside the recursion if commaInside is true and outside (before)
the recursion if commaInside is false, i.e. each new definition follows one of the following
patterns:

• aListItem, [c, theList]
• aListItem, c, [theList]

Call the old definition of the list oldDef and the first new definition of the list neoDef. Call
oldDef->newDefs newDefs.

InsertItemInList:
• creates neoDef by copying oldDef then removing the list item and reassembling what is

left so the neoDef is in one of two forms: [c, theList] or c, [theList]
• creates the newDefs
• inserts neoDef as the first member of the newDefs
• puts as many copies of neoDef into newDefs as there are definitions of listItem.
• copies the expressions from each definition in listItem->defs onto the beginning of the

corresponding definition in the newDefs
• sets the className of each definition in the newDefs to the className of the

corresponding definition in listItem->defs. This is needed so that the correct class of list
item can be instantiated in the actions.

• sets the fixType of theList to fixListItemsInserted2
• makes a prodList called prodSet of all the productions used in newDefs
• changes the usedIn list of each production in prodSet by adding theList
• removes theList from listItem->usedIn
• if listItem->usedIn is then empty: (1) sets fixType of listItem to fixListItemDeleted

and (2) removes listItem from the usedIn list of each production in prodSet.

Figure 24 shows, as an example, the action of insertItemInList on displySpecList.
59

Maintainers Manual NIST DMIS Test Suite 2.2.1
Note that when insertItemInList is done, the newDefs of the one definition of theList have been
set.

PrintYaccForFixList2 goes through the newDefs and, for each of them, calls either
printYaccForFixDef2 (15 of the 16 times it is called) or printYaccForFixDef1 (1 of the 16
times). Only printYaccForFixDef2 is described here.

The most important argument to printYaccForFixDef2 is one definition D of a list (D is any of
the newDefs mentioned above). PrintYaccForFixDef2 makes the newDefs for D by calling
prepareDefsForPlain. Then it goes through the newDefs of D and prints a YACC definition (by
calling printYaccRule) and a YACC action for each one (call it d). The actions differ according to
whether d has the recursive list (which will be at the end of the expressions of d in that case) or
not.

What printYaccForFixDef2 prints for the first definition in the “After” production shown in
Figure 24 is shown in Figure 25. Since that definition has two optionals, four definition/action
pairs are printed.

So that printYaccForFixDef2 knows what type of list to make, the class name of the production
that is the list item (displySpecItem in Figure 25) is passed to it as an argument. The class name of
D (displySpecItem_1 in Figure 25) is also passed in so that the function will know what kind of
item to make and add to the list.

Before:

 displySpecList =
 [displySpecList, c], displySpecItem
;

 displySpecItem =
 device, c, DMIS, [c, vLabel]
| device, c, vLabel
;

After

 displySpecList =
 device, c, DMIS, [c, vLabel], [c, displySpecList]
| device, c, vLabel, [c, displySpecList]
;

Figure 24. Example of Effect of InsertItemInList
60

Maintainers Manual NIST DMIS Test Suite 2.2.1
13.10.4 Reporting errors

Section 3.6 of the Users Manual describes what the parser’s error and warning messages mean;
read that first.

Error reporting in dmis.y is handled using the built-in facilities provided by YACC. If a YACC
parser receives an input token from the lexer that does not match any rule:

• It calls the yyerror function.
• It discards any partially parsed rules until it returns to a state in which it could shift the

special “error” symbol.
• It resumes parsing, starting by shifting an “error” token. YACC rules are included in

dmis.y as described in Section 13.10.5 that match the “error” token.

The yyerror function defined in dmis.y reports the lexer message in lexMessage buffer if there
is one and reports the error message generated automatically by the parser if not. Then it prints the
line of text on which the error occurred, up to the point at which the error occurred. The text is
found in the lineText buffer where the lexer has stored it.

The lexer and the parser collaborate in implementing error reporting. Many errors are detected by
the lexer defined in dmis.lex. Whenever the lexer detects an error, it puts an error message in the
lexMessage buffer and returns BAD. When the parser gets the BAD token, it finds that no YACC
rule uses it and goes through the steps in the bullets above.

The only role of debnf2pars in this is to print the hard-coded text in dmis.y that makes it happen.

13.10.5 Continuing through errors

See the “lex & yacc” book regarding error and yyerrok in YACC.

To continue through errors, the parser looks for any parser error followed by the end of a
statement. If that is found, the parser is reset by the code shown in Figure 26, which consists of a
YACC definition using the special YACC symbol error and an action in C++ code. The action

 device, c, DMIS
{ $$ = new std::list<displySpecItem *>;

$$->push_front(new displySpecItem_1($1, 0)); }
| device C DMIS C displySpecList

{ $$ = $5;
$$->push_front(new displySpecItem_1($1, 0)); }

| device C DMIS C vLabel
{ $$ = new std::list<displySpecItem *>;

$$->push_front(new displySpecItem_1($1, $5)); }
| device C DMIS C vLabel C displySpecList

{ $$ = $7;
$$->push_front(new displySpecItem_1($1, $5)); }

Figure 25. Example of What printYaccForFixDef2 Prints
61

Maintainers Manual NIST DMIS Test Suite 2.2.1
adds one to numErrors, resets global variables aLabelFound and setLabelType to what they
need to be at the beginning of a line, and uses yyerrok. After that action, the parser is ready to
continue at the beginning of the next line of DMIS code.

The code shown in the figure is inserted by debnf2pars at the end of the YACC code for the
following YACC rules: dmisFirstStatement, dmisFreeStatement (which covers 179 types of DMIS
statement), endfilStm, endgoStm, endmesStm, endselStm, endsimreqtStm, and endxtnStm. It would
be good if that code were inserted at the end of the rule for every DMIS statement, but for the
following rules, inserting the code shown in the figure produces a reduce/reduce conflict with
dmisFreeStatement, so the code is not inserted: caseStm, dftcasStm, endcasStm, doStm, enddoStm,
ifStm, endifStm, endmacStm, and extfilStm1.

13.10.6 Checking labels

The parser defined in dmis.y checks for undefined and multiply defined labels in DMIS input
files.

In DMIS, most labels are defined by a DMIS statement that sets a label equal to something. The
label being defined is on the left side of an equal sign, and its definition is on the right side. The
items on the right side may include labels, and these must have been defined previously. The label
on the left side is not defined until the end of the right side is reached. Except for feature labels, a
label may not be defined more than once in a DMIS input file. Labels are used in many DMIS
statements that do not define labels, and any label used in those statements must already have
been defined. There is one exception to this. That is in the DMIS EXIST function which tests
whether a label is defined. It is not a parse error if a label being tested in an EXIST function is not
defined. This exception is dealt with using the handleLabel function in dmis.y.

The doLabel function and the YACC actions in dmis.y that deal with labels use the global
variables aLabel, aLabelFound, aLabelType, setLabel, and setLabelType. The name of a
label that needs to be remembered is placed in aLabel and the type of the label is placed in
aLabelType.

The doLabel function is called by the actions for all rules that read labels. The action that calls
doLabel places the type of the label in the labelType argument of doLabel and the name of the

1. It should be possible to eliminate the reduce/reduce conflict problem by inserting the code after every
statement that is a dmisFreeStatement rather than at the end of dmisFreeStatement. However, there are nearly
200 kinds of dmisFreeStatement, so that would be a big pain.

error ENDLINE
{
 numErrors++;
 yyerrok;
 aLabelFound = 1;
 setLabelType = 0;
}

Figure 26. Error Handling Code in YACC
62

Maintainers Manual NIST DMIS Test Suite 2.2.1
label in the labelName argument. At the time doLabel is called, if aLabelFound is set to 0, that
indicates a label error has already occurred in the DMIS statement being parsed. In this case
doLabel does nothing so that the existing error will be remembered.

If there is no previous label error in a statement, then doLabel sets aLabelType to the labelType
argument and sets aLabel to the labelName argument. Also, aLabelFound is reset to 1 if a label
of the given labelType and labelName has already been recorded and to 0 if not. ALabelFound
being set to 0 does not indicate an error at this point.

If an equal sign is encountered after a label, the value of aLabelFound should be 0, since the
equal sign indicates that the label is being defined. If the value is 0, setLabel is set to aLabel,
setLabelType is set to aLabelType, and aLabelFound is set to 1. If the value is not 0 and the
definition is not for a feature, a warning message is issued indicating the label may be multiply
defined.

When the end of line is reached, if setLabelType is not 0, that indicates a label has been defined,
so the setLabel is recorded, and setLabelType is set back to 0. Also, if aLabelFound is 0, a
warning message is issued indicating an undefined label may have been used, and aLabelFound
is reset to 1.

Some labels in DMIS are not defined using an equal sign but by some other construction. This
includes labels defined by CONST/SGAGE, CONST/SPART, DATDEF, or DATTRGDEF. For
those statements, special actions for label checking are triggered by a comma rather than an equal
sign.

13.10.7 A YACC technique used for label checking

The label checking described in the previous section requires that global variables be set and reset
in the process of parsing part of a DMIS statement represented by a single YACC rule (call the
rule R). It is possible to do this using mid-rule actions, but that is cumbersome. A better method
used in debnf2pars is to print a new rule in dmis.y that is an alias for the expression at which an
action should occur, attach the action to the new rule, and substitute the alias for the expression in
R at which the action should be taken.

For example, the expected YACC rule for the DMIS OPERID statement would be:
opLabel EQUALS OPERID SLASH stringVal ENDLINE

but a label checking action should be taken immediately after the EQUALS is parsed, and another
label checking action should be taken after ENDLINE.

To handle the situation, two YACC rules are printed that are not in the EBNF: equalSign as an
alias for EQUALS and endOfLine for ENDLINE. Then the YACC rule for the OPERID statement
is written using the aliases:

opLabel equalSign OPERID SLASH stringVal endOfLine

The rules for equalSign and endOfLine are followed by actions that issue warning messages if
there is a problem and then reset the global variables used in label checking.

Using aliases this way does not confuse the YACC processor. The YACC processor would signal a
reduce/reduce conflict if there were two aliases for the same thing (such as EQUALS : ‘=’ and
equalSign : ‘=’), but since the aliases are in series (EQUALS : ‘=’ and equalSign : EQUALS), not
in parallel, no conflict arises.

The following rules, all of which are used for label checking, are printed by debnf2pars at the
63

Maintainers Manual NIST DMIS Test Suite 2.2.1
beginning of the YACC rules in dmis.y.
• endOfLine (an alias for ENDLINE)
• equalSign (an alias for EQUALS)
• defCheckComma (an alias for a comma)
• undefCheckComma (an alias for a comma)
• existLParen (an alias for a left parenthesis)
• existRParen (an alias for a right parenthesis)

See the documentation of printYaccProductionsStart in debnf2pars.y for more details.

13.11 Generating dmis.lex

Much of the printing of dmis.lex is hard coded. That is, most of the text that ends up in dmis.lex
may be found as strings in debnf2pars.y. The top level printLex function in debnf2pars.y:

• calls printLexStart
• calls printLexMiddle
• calls printLexToken for every entry in the tokenNames array
• calls printLexEnd

Several issues lead to complexity in dmis.lex. Descriptions of the issues and how they are
handled in the printing of dmis.lex follow. The handling of several of the issues is done by using
states in dmis.lex. In total, 12 states are used. They are printed into dmis.lex near the end of
printLexMiddle. Line continuations and comments in DMIS files will be removed by the
preprocessor, so dmis.lex does not have to handle them.

13.11.1 Using the pre-processed DMIS file

The lexer built from dmis.lex reads the pre-processed DMIS file, not the original. The pre-
processed file has a line number at the beginning of each line. The line numbers need to be read
(and stored in lineNo). That is handled in dmis.lex by code printed by printLexEnd. The
preprocessor also handles MACRO and CALL specially; see Section 13.11.4.

13.11.2 Strings in DMIS

Strings in DMIS start and end with a single quote character, but if there are two single quote
characters together inside a string, that represents a single quote that is part of the string. The
INSTRING state is used in dmis.lex for handling strings. The code for reading strings is printed
by printLexEnd.

13.11.3 Communication between dmis.y and dmis.lex

There is a fair amount of interplay between the parser built from dmis.y and the lexer built from
dmis.lex. This is implemented by 8 shared variables (resetLex, lexMessage, lexWarning,
lineText, lineNo, getCallArgs, inDecl, macroIsReal). These variables are set, tested, and used
in dmis.y and dmis.lex1. They are declared as extern in dmis.lex. Printing those declarations is
done near the beginning of printLexMiddle.

1. One of them, macroIsReal, seems to have been made obsolete as a variable in dmis.y and dmis.lex (it is set in
both but neither uses it). The name macroIsReal, however, has migrated to dmis.cc where it is still needed, so
getting rid of its obsolete uses must be done carefully.
64

Maintainers Manual NIST DMIS Test Suite 2.2.1
13.11.4 MACROs

When the lexer built from dmis.lex encounters a MACRO statement in a preprocessed DMIS input
file, it treats the lines of the MACRO as strings until it hits the ENDMAC line that ends the MACRO.
So that the lines of the MACRO can be used without case confusion when the MACRO is CALLed,
they are converted to upper case (except in quoted strings) and saved. The preprocessor has
inserted a line number before each line, and that also needs to be handled. MACRO, ENDMAC, and
the lines in between are handled in dmis.lex by code printed by printLexEnd. Three states are
involved: MACROIN, MACROLINE, and MACROLINENUM.

13.11.5 Scope of variables

A DMIS MACRO may include DECL statements that declare variables. The preprocessor puts the
text of a MACRO into every CALL to the MACRO with the arguments to the MACRO replaced by the
arguments to the CALL. The lexer built from dmis.lex treats the lines of CALL blocks as normal
DMIS. For the purposes of checking for multiply declared and undeclared variables, it is
necessary to keep track of the scope of variables inside of CALLs. Since a CALL block may
include another CALL, a stack of scopes must be maintained. The code for this in dmis.lex is
written by printLexMiddle. It includes defining three classes (varAndType, scope, and
scopeList) and using a scopeStack global variable.

13.11.6 Label names

Dealing with labels in dmis.lex is a big problem. There is a 2-page discussion of this in the
documentation of printLexToken. Three states are involved in handling labels in dmis.lex:
READLABEL, READ2, and AT2. The text for handling labels is printed by printLexEnd.

13.11.7 DMIS/OFF

When a DMIS/OFF command is read by the lexer built from dmis.lex, all the lines following that
in the original DMIS input file are uninterpretable strings, up to a DMIS/ON command. The
strings need to be saved so they can be reprinted. However, the preprocessor has inserted a line
number before each line which is not part of the string, and that needs to be handled. DMIS/OFF
and DMIS/ON and the lines in between are handled by code printed by printLexEnd. Three states
are involved: DMISOFFIN, DMISOFFLINE, and DMISOFFLINENUM.

13.11.8 Arguments to CALL

The arguments to a CALL statement (which have already been inserted in the text of the CALLed
MACRO by the preprocessor) are treated as a string in the lexer built from dmis.lex. To enable this,
the CALLARGS state is used in dmis.lex. The text using CALLARGS is printed by
printLexEnd.

14 Building the Generators

Source code for the generator is in the generator directory. The structure of that directory is
shown in Figure 27. There is no binLinux or binSun because the executables that would go in
those directories are built directly in the subdirectories with those names in the
utilityComponents/linuxSun directory.
65

Maintainers Manual NIST DMIS Test Suite 2.2.1
14.1 Building debnf2pars

The debnf2pars executable is built starting with the following hand-written files found in
generator/linuxSun/source or generator\windows\source:

• debnf2pars.y
• debnf2pars.lex
• ebnfClasses.hh (.h for windows)
• ebnfClasses.cc (.cpp for windows)

The first two are not C++ files, but C++ files are created from them. This may be done the same
way in Linux and Sun. Windows is the same except for using backslashes instead of slashes and
working from a Windows directory.

To build debnf2parsYACC.cc and debnf2parsYACC.hh from debnf2pars.y, get into the
generator/linuxSun directory and give the command:

bison -d -l -o source/debnf2parsYACC.cc source/debnf2pars.y

To build debnf2parsLex.cc from debnf2pars.lex, get into the generator/linuxSun directory
and give the command:

flex -L -t source/debnf2pars.lex > source/debnf2parsLex.cc

14.1.1 Linux

The utilityComponents/linuxSun/binLinux/debnf2pars executable file is built by getting into
the generator/linuxSun directory and executing

make ../../utilityComponents/linuxSun/binLinux/debnf2pars

If debnf2parsYACC.cc (and debnf2parsYACC.hh) or debnf2parsLex.cc does not yet exist,
the make command starts by calling bison and/or flex as described above. Once those files exist,
the make command calls the compiler to:

generator
linuxSun

ofilesLinux
ofilesSun
source

windows
debnf2pars

debnf2pars
Debug
Release

generateMore
Debug
generateMore
Release

source

Figure 27. Generator Directory Structure
66

Maintainers Manual NIST DMIS Test Suite 2.2.1
• compile debnf2parsYACC.cc into debnf2parsYACC.o,
• compile debnf2parsLex.cc into debnf2parsLex.o,
• compile ebnfClasses.cc into ebnfClasses.o,

Those files are put into the generator/linuxSun/ofilesLinux directory.

Then the make command calls the linker to link the three object files into the debnf2pars
executable and puts it in the utilityComponents/linuxSun/binLinux directory.

14.1.2 Sun

The utilityComponents/linuxSun/binSun/debnf2pars executable file is built by getting into the
generator/linuxSun directory and executing

make ../../utilityComponents/linuxSun/binSun/debnf2pars

If debnf2parsYACC.cc (and debnf2parsYACC.hh) or debnf2parsLex.cc does not yet exist,
the make command starts by calling bison and/or flex as described above. Once those files exist,
the make command calls the compiler to:

• compile debnf2parsYACC.cc into debnf2parsYACC.o,
• compile debnf2parsLex.cc into debnf2parsLex.o,
• compile ebnfClasses.cc into ebnfClasses.o,

Those files are put into the generator/linuxSun/ofilesSun directory.

Then the make command calls the linker to link the three object files into the debnf2pars
executable and puts it in the utilityComponents/linuxSun/binSun directory.

14.1.3 Windows

The utilityComponents\windows\bin\debnf2pars.exe executable file was built in the
generator\windows\debnf2pars\Release directory using the Microsoft Visual C++ 2008
Express Edition and then copied to that file. For instructions on compiling in Windows, see the
System Builders Manual (Section 1.4.3 and Appendix A).

14.2 Building generateMore

The generateMore executable is built starting with generator/linuxSun/source/
generateMore.cc or generator\windows\source\generateMore.cpp.

14.2.1 Linux

The utilityComponents/linuxSun/binLinux/generateMore executable file is built by getting
into the generator/linuxSun directory and executing

make ../../utilityComponents/linuxSun/binLinux/generateMore

The make command calls the compiler to compile generateMore.cc into generator/linuxSun/
ofilesLinux/generateMore.o, and then calls the linker to link the object file into the
generateMore executable and puts it in the utilityComponents/linuxSun/binLinux directory.

14.2.2 Sun

The utilityComponents/linuxSun/binSun/generateMore executable file is built by getting into
the generator/linuxSun directory and executing

make ../../utilityComponents/linuxSun/binSun/generateMore
67

Maintainers Manual NIST DMIS Test Suite 2.2.1
The make command calls the compiler to compile generateMore.cc into generator/linuxSun/
ofilesSun/generateMore.o, and then calls the linker to link the object file into the
generateMore executable and puts it in the utilityComponents/linuxSun/binSun directory.

14.2.3 Windows

The utilityComponents\windows\bin\generateMore.exe executable file was built in the
generator\windows\generateMore\Release directory using the Microsoft Visual C++ 2008
Express Edition and then copied to that file. For instructions on compiling in Windows, see the
System Builders Manual (Section 1.4.3 and Appendix A).
68

	Maintainers Manual for Version 2.2.1 of the NIST DMIS Test Suite (for DMIS 5.2)
	1 Introduction
	1.1 Overview
	1.2 How the Test Suite is Made Available
	1.3 Documentation
	1.4 Terminology
	1.5 Use of Fonts and a Warning
	1.5.1 Fonts
	1.5.2 Warning

	1.6 Compilers

	2 The Big Ideas
	3 In-line Documentation of Code
	3.1 Documentation in Automatically Generated Source Code
	Figure 1. Automatically Generated Documentation - Parent Class
	Figure 2. Automatically Generated Documentation - Single Definition
	Figure 3. Automatically Generated Documentation - Multiple Definitions

	3.2 Documentation of Hand-written Source Code
	3.2.1 C++ source code documentation.
	Figure 4. Hand-written In-Line Documentation

	3.2.2 EBNF documentation

	4 DEBNF C++ Classes and Parser
	4.1 DEBNF C++ Classes
	4.1.1 Production class attributes
	4.1.2 Definition class attributes
	4.1.3 Expression class attributes
	4.1.4 Optional class attributes

	4.2 DEBNF Parser

	5 Test Suite Quality Control
	5.1 Introduction
	5.2 DMIS Input Test Files
	5.2.1 Parser test files vs. system test files
	5.2.2 Parser test files
	5.2.3 System test files
	5.2.4 Other test files

	5.3 Testing Conformance Information
	5.3.1 Testing without the dmisTestFileReductor
	5.3.2 Testing with the dmisTestFileReductor

	5.4 Testing the C++ Classes and the Parser

	6 Building Utility Components and Utilities
	6.1 Generating the Source Code
	Figure 5. Automatic Generation of Source Code
	6.1.1 make linuxSource
	6.1.2 Editing allSubAtts.cc
	Figure 6. Sample AllSubAtts.cc Declarations

	6.1.3 More automatic generation

	6.2 Building the Library
	6.2.1 Linux
	6.2.2 Sun
	6.2.3 Windows

	6.3 Building the dmisParser
	6.3.1 Linux
	6.3.2 Sun
	6.3.3 Windows

	6.4 Building the dmisConformanceChecker
	6.4.1 Linux
	6.4.2 Sun
	6.4.3 Windows

	6.5 Building the dmisConformanceRecorder
	6.5.1 Linux
	6.5.2 Sun
	6.5.3 Windows

	6.6 Building the dmisConformanceTester
	6.6.1 Linux
	6.6.2 Sun
	6.6.3 Windows

	6.7 Editing the C++ Code in the UtilityComponents Directory

	7 How the dmisConformanceChecker Works
	7.1 Overview
	7.2 Arrays for Conformance Checking
	Table 1. Combining Conformance Modules

	7.3 Checking Conformance
	7.4 Reporting the Results
	Figure 7. check_aclratMinor Function
	Figure 8. check_boundFeat Function

	8 How the dmisConformanceTester and dmisConformanceRecorder Work
	8.1 LevelsSet.cc
	8.2 Check_inputFile
	8.3 dmisConformanceTester
	8.4 dmisConformanceRecorder

	9 How the dmisTestFileReductor Works
	9.1 Main function
	9.2 ProcessDmisFile function
	9.3 CompareReq function
	9.4 PrintInConformed function

	10 More on EBNF
	10.1 DmisStatement
	10.2 Naming Conventions
	10.3 Token Spelling Structure Conventions
	10.4 Multiple Optionals

	11 More on C++ Classes for DMIS
	Figure 9. Ancestors of intConst

	12 Building Code Generators
	12.1 Pros and Cons of Code Generators
	12.1.1 Pros:
	12.1.2 Cons:

	12.2 Development Technique
	12.3 Generating Code Automatically
	12.4 Printing Directly
	12.5 Combining Manually Written and Automatically Generated Code
	12.6 An Alternative - Generate and Execute

	13 How debnf2pars Works
	13.1 Introduction
	13.2 Data Structures Used in debnf2pars
	13.3 The Main Function
	13.4 DEBNF Parser
	13.5 Generating dmis.hh and dmis.cc
	Figure 10. Hierarchy of Functions Headed by printCppClasses
	13.5.1 printCppClasses
	13.5.2 Flattening Optionals
	13.5.3 Printing printSelf

	13.6 Generating dmisConformanceChecker.cc
	Figure 11. Hierarchy of Functions Headed by printConfChecker

	13.7 Generating dmisConformanceTester.cc
	Figure 12. Hierarchy of Functions Headed by printConfTester

	13.8 Generating allSubAtts.cc and MasterSubAtts.cc
	13.9 Modifying the C++ Class Instances for EBNF to Avoid Shift/Reduce Conflicts
	Figure 13. Hierarchy of Functions Headed by fixConflicts1
	Figure 14. Hierarchy of Functions Headed by fixConflicts2
	Figure 15. Hierarchy of Functions Headed by fixConflictsUsers
	13.9.1 An example
	pameasDetail =
	SCNVEL, c, fedratLinear, [c, PITCH, c, realVal]
	| PITCH, c, realVal
	pameasVar2ListItem =
	pameasDetail, c, pLabel
	Figure 16. EBNF Construct Before Fixing

	pameasDetail =
	SCNVEL, c, fedratLinear, [c, PITCH, c, realVal], c
	| PITCH, c, realVal, c
	pameasVar2ListItem =
	pameasDetail, pLabel
	Figure 17. EBNF Construct After Fixing

	13.10 Generating dmis.y
	13.10.1 Parser Functionality
	13.10.2 General approach
	Figure 18. Hierarchy of Functions Headed by printYaccProductions
	Figure 19. Hierarchy of Functions Headed by printYaccStart

	13.10.3 Printing YACC Rules
	13.10.3.1 Writing basic rules
	intFuncIndx :
	INDX LPAREN stringVal C stringVal RPAREN
	{ $$ = new intFuncIndx($3, $5); }
	Figure 20. YACC Rule for intFuncIndx

	13.10.3.2 Writing rules for productions containing optionals
	rmeasSpecVecbldOrient =
	rmeasSpecVecbld, [c, ORIENT]
	rmeasSpecVecbld, falseExp
	rmeasSpecVecbld, trueExp, c, ORIENT
	rmeasSpecVecbldOrient :
	rmeasSpecVecbld
	{ $$ = new rmeasSpecVecbldOrient($1, false); }
	| rmeasSpecVecbld C ORIENT
	{ $$ = new rmeasSpecVecbldOrient($1, true); }
	Figure 21. EBNF Production to YACC Rule for rmeasSpecVecbldOrient

	promptIntEnd =
	stringVal, [c, intVal, [c, intVal]]
	| promptItemList
	stringVal, nullExp, nullExp
	stringVal, c, intVal, nullExp
	stringVal, c, intVal, c, intVal
	promptItemList
	promptIntEnd :
	stringVal
	{ $$ = new promptIntEnd_stringVal($1, 0, 0); }
	| stringVal C intVal
	{ $$ = new promptIntEnd_stringVal($1, $3, 0); }
	| stringVal C intVal C intVal
	{ $$ = new promptIntEnd_stringVal($1, $3, $5); }
	| promptItemList
	{ $$ = new promptIntEnd_promptItemList($1); }
	Figure 22. EBNF Production to YACC Rule for promptIntEnd

	13.10.3.3 Writing rules for productions that are lists in default form
	thingList =
	[thingList, c], thing
	thingList :
	thing
	{ $$ = new std::list<thing *>;
	$$->push_back($1); }
	| thingList C thing
	{ $$ = $1;
	$$->push_back($3); }
	Figure 23. EBNF Production to YACC Rule for List

	13.10.3.4 Writing rules for productions in which shift/reduce conflicts are fixed
	Table 2. Printing Productions with Shift/Reduce Conflicts
	Before:
	displySpecList =
	[displySpecList, c], displySpecItem
	;
	displySpecItem =
	device, c, DMIS, [c, vLabel]
	| device, c, vLabel
	After
	displySpecList =
	device, c, DMIS, [c, vLabel], [c, displySpecList]
	| device, c, vLabel, [c, displySpecList]
	Figure 24. Example of Effect of InsertItemInList

	device, c, DMIS
	{ $$ = new std::list<displySpecItem *>;
	$$->push_front(new displySpecItem_1($1, 0)); }
	| device C DMIS C displySpecList
	{ $$ = $5;
	$$->push_front(new displySpecItem_1($1, 0)); }
	| device C DMIS C vLabel
	{ $$ = new std::list<displySpecItem *>;
	$$->push_front(new displySpecItem_1($1, $5)); }
	| device C DMIS C vLabel C displySpecList
	{ $$ = $7;
	$$->push_front(new displySpecItem_1($1, $5)); }
	Figure 25. Example of What printYaccForFixDef2 Prints

	13.10.4 Reporting errors
	13.10.5 Continuing through errors
	Figure 26. Error Handling Code in YACC

	13.10.6 Checking labels
	13.10.7 A YACC technique used for label checking

	13.11 Generating dmis.lex
	13.11.1 Using the pre-processed DMIS file
	13.11.2 Strings in DMIS
	13.11.3 Communication between dmis.y and dmis.lex
	13.11.4 MACROs
	13.11.5 Scope of variables
	13.11.6 Label names
	13.11.7 DMIS/OFF
	13.11.8 Arguments to CALL

	14 Building the Generators
	Figure 27. Generator Directory Structure
	14.1 Building debnf2pars
	14.1.1 Linux
	14.1.2 Sun
	14.1.3 Windows

	14.2 Building generateMore
	14.2.1 Linux
	14.2.2 Sun
	14.2.3 Windows

