
 
 
 
 

A RESTful Web Service for Virtual 
Supply Chain Time Management 

 
 
 
 

Guillaume Radde 
 

NISTIR 7680 



 
 
 
 

NISTIR 7680 

A RESTful Web Service for Virtual 
Supply Chain Time Management 

  
 
 

Guillaume Radde 
Manufacturing Systems Integration Division 

Manufacturing Engineering Laboratory 
 

February 2010 

U.S. Department of Commerce 
Gary Locke, Secretary 

 
National Institute of Standards and Technology 

Patrick D. Gallagher, Director 



Table of Contents
Abstract...........................................................................................................................................................................................4
1 Introduction..................................................................................................................................................................................4
2 Background..................................................................................................................................................................................5

2.1 The High Level Architecture..............................................................................................................................................5
2.2 The Representational State Transfer architecture...............................................................................................................5

3 Conceptual Model and Usage......................................................................................................................................................5
4 Software Architecture..................................................................................................................................................................6
5 Time Synchronization Algorithm................................................................................................................................................7

5.1 Overview.............................................................................................................................................................................7
5.2 Example...............................................................................................................................................................................8

6 Java Application Programming Interface....................................................................................................................................9
6.1 The SimSync interface........................................................................................................................................................9
6.2 The SimulationGroup interface.........................................................................................................................................10
6.3 The GroupMember interface.............................................................................................................................................12
6.4 The ObservableBean interface..........................................................................................................................................13
6.5 The RunningState enumeration.........................................................................................................................................13

7 The REST Web Service API......................................................................................................................................................14
7.1 Resources..........................................................................................................................................................................14
7.2 Representations.................................................................................................................................................................15

8 Graphical User Interface............................................................................................................................................................17
9 Conclusion.................................................................................................................................................................................18
Acknowledgments and Disclaimer...............................................................................................................................................18
References.....................................................................................................................................................................................19

3



Abstract
A common issue when building distributed simulations is the issue of time management. Each discrete event simulation has 
its own notion of time, and a mechanism needs to be set up to allow each simulation to run at the same pace.  Different 
architectures  exist to perform time synchronization and are usually optimized for a certain  scenario and certain types of 
simulations. The requirements for the type of data the simulations will be exchanging, the performance of the system used, the 
quality and latency of the network that will be used to run the distributed simulation, and the level of collaboration between 
the authors of the different individual simulations lead to different design decisions for the architecture of the distributed 
simulation.
This paper  describes  a time management mechanism,  based on a Service Oriented Architecture,  that  can be used in the 
construction of a virtual supply chain simulation.

Keywords: simulation, architecture, design, integration, REST, web, SOA

1  Introduction
Discrete Event Simulation (DES) is commonly used to optimize the profitability of a manufacturing company. By 

modeling the processes used to create products, engineers can find bottlenecks and experiment with different solutions for 
lowering costs. DES is commonly used to optimize the processes inside a company, but the performance and profitability of 
retailers and manufacturers don't solely depend on their internal processes. Each retailer depends on several manufacturers, 
that,  in  turn,  depend  on  several  suppliers.  Hence,  the  performance  of  one  actor  in  the  supply  chain  depends  on  the 
performance of the other actors in the supply chain. 

If  each actor  in the supply chain can use simulation to optimize its  internal  processes,  it  makes sense to try to 
optimize the whole supply chain by connecting the individual simulations together. However, modeling the whole supply 
chain crosses the boundaries of a single company and cannot be done easily by a single person. Engineers can easily model 
the processes of a company since they know the internal processes of their company. However, they can hardly be expected to 
model the processes of other companies since often that information is confidential. This is a common problem in the area of 
integration  of  heterogeneous  systems,  which  can  be  solved  by  designing  the  distributed  system  as  a  Service  Oriented 
Architecture (SOA) [1].

Using SOA, businesses that would like their systems to be integrated with the systems of other businesses expose the 
features of their systems as Web Services defined in an Application Programming Interface (API). They can then provide this 
API to their partners. Web Services allow for loose integration of systems since the internal behavior of each system is hidden 
behind an API. Several standards and commonly used protocols exist to design such applications, such as the Simple Object 
Access Protocol (SOAP) [2] or the Representational State Transfer (REST) architecture [3].

 In a traditional Service Oriented Architecture, each actor defines an API to provide services to its partners, and 
connects  to  its  partners  using their  APIs.   Once  the different  systems  are  integrated,  each  actor  can  run its  system and 
exchange data with its partners.

Using SOA to integrate  simulations involves an extra  level  of difficulty compared with using SOA to integrate 
traditional systems. Each simulation has its own notion of time and advances time at its own pace. In a distributed simulation, 
the advancement of time for all of the simulations must be coordinated in some way, so that a common notion of time is 
maintained. One approach to solving the time management problem in a service-oriented way is to create a service that will 
be in charge of managing the time. This forces all simulations of a group to run at the same pace.

Using  this  concept,  a  Simulation  Synchronization  (SimSync)  Web  Service  has  been  developed  to  support  the 
integration of supply chain simulations by providing time management functions.

This  paper  provides  a  detailed  description  of  the  SimSync  Web  Service.  Section  2  presents  The  High  Level
Architecture and  The Representational State Transfer architecture. Section  3 introduces the conceptual model and explains 
how SimSync can  be used.  SimSync's  architecture  is  described  in  Section  4,  and  the  time synchronization  algorithm is 
explained in Section 5. Sections 6 and 7 detail the Java and Web Service Application Programing Interface, and Section 8 
shows the graphical user interface. Section 9 presents a conclusion and proposes directions for future research.

4



2  Background

2.1  The High Level Architecture
SimSync borrows concepts from the High Level Architecture (HLA) [4]. HLA is an architecture for the development 

of distributed simulation from the Department of Defense. HLA makes use of a central bus called the Run Time Infrastructure 
(RTI) that offers time management functionality. HLA's RTI, however, was designed prior to the standardization of today's 
Web Services  technologies  and  hence  doesn't  support  them.  Efforts  to  support  SOAP-based  Web Services  in  HLA are 
currently underway in the HLA-Evolved specification [5].

 In the HLA terminology, each simulation component part of a distributed simulation is referred to as a federate. The 
set of simulation components forming the distributed simulation is referred to as a federation. SimSync reuses those concepts 
but refers to a federation as a Simulation Group and to a federate as a GroupMember.

2.2  The Representational State Transfer architecture
The  Web  Service  API  provided  by  SimSync  follows  the  Representational  State  Transfer  (REST)  architecture 

paradigm. REST is an architecture style for integrating heterogeneous systems by managing the creation and exchange of 
resources  that  define  information  about  those  systems.  Each  application  exposes  its  state  as  a  resource,  and  different 
applications  communicate  by  exchanging  representations  of  those  resources  through  a  constrained  set  of  operations. 
Resources are identified uniquely on a network using Uniform Resource Locators (URLs)  [6]. An architecture defined in 
terms of the REST paradigm is referred to as a RESTful architecture.  The REST architecture offers great scalability and is 
considered to be the architecture that made the World Wide Web successful. The different resources exposed by SimSync in 
its REST Application Programming Interface are detailed in Section 7 . 

3  Conceptual Model and Usage
SimSync provides a Web Service that allows simulations that are intended to be a part of a distributed simulation to 

run at the same pace.  First, when a distributed simulation is to begin,  SimSync is used to create  a Simulation Group. A 
Simulation Group represents a group of simulations that should run at the same pace. Next, each simulation participating in a 
run of the distributed simulation registers itself as a Member of this Simulation Group. Each Member will then periodically 
ask SimSync for permission to advance its local time, and SimSync will grant permission to advance to the Members in a 
manner such that a common notion of time is created and maintained.

SimSync by itself  doesn't  provide a  way for simulators  to  exchange data.  In  an effort  to  apply the concepts  of 
RESTful architecture to distributed simulations,  SimSync focuses on providing the time synchronization service.  Existing 
data standards and communication protocols such as the Core Manufacturing Simulation Data (CMSD)  [7] and the Hyper 
Text Transfer Protocol (HTTP) [8] can be used to perform data transfer. Tools to facilitate data transfer using those standards 
are being developed in another project and are not the focus of this paper.

5



4  Software Architecture
The SimSync framework has been implemented in the Java programming language. The framework is implemented 

in terms of several  software components that  can be configured to provide different  functional  capabilities.  Some of the 
components implement functionality that allows the creation of Simulation Groups, the joining of simulation Members to 
those  groups,  and the  coordination  of time advancement  of the  group.  This  is  referred  to  as  the  server  functionality of 
SimSync. Other components provide the client functionality of SimSync that allows simulations to access and interact with 
the functionality provided by the server. The relationships between components are described in Figure 1. Components may 
be  configured  in  different  ways,  allowing SimSync to  be run as  a  stand-alone  server  or  be embedded as  a  library in a  
simulation application.
 The role of each component is as follows:

• The  SimSync-API component defines the application programming interface. Any application that wants to make 
use of SimSync as a library should use this API instead of a specific implementation. Developers who need to change 
the time synchronization algorithm used by SimSync can implement the interfaces defined in this component. The 
details of the API are explained in Section 6 .

• The SimSync-Impl component is the main implementation of the services defined by SimSync-API. It implements 
the time synchronization algorithm and is the component that contains most of the business logic for the functionality 
of SimSync. See Section 5 for a detailed explanation of the implemented algorithm.

• The SimSync-Rest component provides a Web Service API for SimSync. SimSync-Rest embeds a mini web server 
called Jetty [9] and can be started as a standalone application or used as a library. See section 7 for details on using 
SimSync-Rest.  

• The SimSync-Rest-Client component is a client library that can be used to connect to the REST Web Service API of 
SimSync. This component also provides an implementation of the SimSync-API, and hence can be used as a local 
proxy for a SimSync server.

• The SimSync-GUI component contains a graphical user interface (GUI) to SimSync. It is a standalone application 
that can be used to either start a local SimSync server or to monitor a remote SimSync server. See Section 8 for more 
details on SimSync-GUI.

6

Figure 1: SimSync Components



5  Time Synchronization Algorithm

5.1  Overview
A Discrete Event Simulation (DES) consists of a list of events that are scheduled at a given time. During a run, the 

simulator processes each event in chronological order. The simulator also updates the clock each time it starts processing an 
event. Figure 2 shows the algorithm of a DES engine in pseudo code.

In a distributed simulation, each simulation has its own list of events that are 
scheduled at different times. Also, the time it takes to process each event can differ in 
each simulation. This creates an issue when two simulations of a distributed simulation 
need to communicate, since each simulation might have different local time during the 
communication, leading to incoherent processing of messages. 

Several well known approaches exist to solve this issue, such as those present 
in the High Level Architecture (HLA)  [10]. Each approach has benefits and trade offs 
and is suitable for a certain scenario. Criteria to select a time synchronization algorithm 
include  the  latency  of  the  network,  the  maximum  allowed  time  difference  between 
simulators, and the ability of simulators to go back in time.

SimSync is designed specifically with the goal of connecting simulations of the 
different  links  of  a  supply  chain.  In  order  to  choose  the  most  appropriate  time 
synchronization algorithms, the following assumptions have been made:

• Most communications between links of the supply chains are orders and orders deliveries. Since a real company 
might take hours to process an order and take days to deliver the order, it is acceptable if the simulated time of 
different simulations are off by a few hours.

• Simulations will be exchanging messages over the Internet. A round-trip message between two simulators over the 
Internet  takes  approximately between 30 ms and  300 ms (this is  obtained  empirically by pinging computers  at 
different locations over the Internet).

• The resulting distributed simulations will be used to simulate several years of production of a company.
• Simulating a year of production should take less than 10 minutes.
• Commercial off-the-shelf (COTS) simulation packages do not necessarily have the ability to perform a rollback (i.e. 

go back in time).

Based on those assumptions, the time synchronization algorithm implemented in SimSync is as follows:

Simulators periodically ask permission to SimSync to move their clock forward. SimSync will receive a query and  
will only reply once it is approved. Finally, a simulator Si will be granted permission to move its clock to the simulated time ti 

once all other simulations have requested to move time past or at ti.

This algorithm is non-optimistic, since each simulation has to wait for SimSync's approval at the end of a simulation 
cycle. In an optimistic time synchronization algorithm, simulators don't wait for an approval to move their clock forward and 
rewind their clock when they receive a message that was supposed to be processed beforehand. These algorithms generally 
offer  better  performance,  especially  on  a  high  latency  network  such  as  the  internet.  However,  the  implementation  of 
optimistic algorithms is sometimes impossible in COTS simulation packages that do not have the ability to move their clock 
backward in time.

In the algorithm presented above, performances of the distributed simulation are mainly affected by the frequency 
with which each simulator communicates with SimSync. This is due to the fact that communications over the Internet are 
very slow and are the main bottleneck of the system. Therefore,  it  is important  for simulation implementers  to define a 
frequency of synchronization that is as low as possible but appropriate for their models.

Finally, it is important to notice that as previously stated in Section 4, the time synchronization algorithm in SimSync 
can be replaced. Developers who would like to experiment with other time synchronization algorithms can provide their own 
algorithm by implementing the SimSync API and replacing the SimSync-Impl component.

7

Figure 2: Typical  
algorithm of a Discrete  

Event Simulation engine

EventList={e1 ,... , en}
CurrentTime=0
for i=0. . n

[CurrentTime=e i .time
process e i



5.2  Example
Figure  3 is  a  UML  sequence  diagram  that  shows  an  example  of  the  messages  exchanged  to  perform  time 

synchronization during a run. In this example, two simulations, called sim1 and sim2, are advancing at different paces and ask 
SimSync permission to advance their local time. This example doesn't show the messages exchanged during the initialization 
of the distributed simulation and only shows messages exchanged during a small time period.

On the left side of the diagram, the two vertical time lines represent the two simulations sim1 and sim2. On the right 
side of the diagram, the two vertical time lines represent the two group-member resources that represent sim1 and sim2 inside 
SimSync. For more details on the GroupMember Application Programing Interface, see Section 7.1.3.

At the beginning of this example, both sim1 and sim2 are simulating locally (messages 1 & 2). Sim1's local time is  
going from 10 to 20 while sim2's local time is going from 12 to 18. When sim2's local time reaches 18, it asks SimSync 
permission to set its local time to 18 (message 3). SimSync doesn't reply right away since it is waiting for other simulations of 
the group to arrive at the same point in time. When sim1's local time reaches 20, it asks SimSync permission to set its local 
time to 20 (message 4). This tells SimSync that both sim1 and sim2 have a local time past or at 18. SimSync then sends sim2 
authorization to move its local time to 18 (message 5). 

Sim2 then starts simulating again, until its local time reaches 24 (message 6). It then asks SimSync permission to set 
its local time to 24 (message 7). This notifies SimSync that sim2's local time is past 20 and SimSync sends authorization to 
sim1 to move its local time up to 30 (message 8). Sim1 then starts simulating again until its local time reaches 30 (message 
9).

8

Figure 3: Example of messages sent during a run with 2 simulations.



6  Java Application Programming Interface
The SimSync API has 3 main interfaces: SimSync, SimulationGroup, and GroupMember. The main class, called 

SimSync contains Simulation Groups. A Simulation Group represents a group of simulations that would like to advance at the 
same pace. A Simulation Group itself is then composed of Group Members, representing each individual simulation. Each 
class in SimSync follows the JavaBean convention [11] and implements the ObservableBean interface. The ObservableBean 
interface represents a JavaBean whose properties can be monitored by registering PropertyChangeListeners.  Figure 4 shows 
SimSync's interfaces and their relationships.

The following sections describe each method of the different interfaces of the Java API.

6.1  The SimSync interface
void addGroup(SimulationGroup group)

Add a group to this SimSync instance. 

Parameters:
group - The Group that will be added to this instance of SimSync.

SimulationGroup getGroup(java.lang.String name)

Get the simulation group that has the specified name. 

Parameters:
name - The name of the simulation group. 

Returns:
The SimulationGroup with the specified name, or null if no SimulationGroup has the given name.

9

Figure 4: SimSync's main classes

file:///C:/Documents and Settings/guiradde.MELAD/My Documents/NetBeansProjects/SimSync/SimSync/dist/javadoc/gov/nist/mel/simsync/SimulationGroup.html
file:///C:/Documents and Settings/guiradde.MELAD/My Documents/NetBeansProjects/SimSync/SimSync/dist/javadoc/gov/nist/mel/simsync/SimulationGroup.html


java.util.Collection<SimulationGroup> getGroups()

Get a collection of the groups that are registered in this instance of SimSync. 

Returns:
A collection containing all the groups registered in this instance of SimSync.

void removeGroup(java.lang.String name)

Unregister the group with the specified group name.

Parameters:
name - The name of the group.

6.2  The SimulationGroup interface
boolean isFull()

Returns a 'true' value if the group has reached his expected number of members, otherwise return a 'false' value. 

Returns:
true if the capacity equals the number of members of the group.

int getCapacity()

Get the capacity of this group. The capacity is the number of members that are expected in a group for the group to be 
full. 

Returns:
The capacity of the group.

void setCapacity(int capacity)

Set the capacity of the group. 

Parameters:
capacity - The capacity of the group.

GroupMember getMember(java.lang.String memberName)

Return a group member that has a specified member name. 

Parameters:
memberName - The name of the group member. 

Returns:
The GroupMember registered with the given name.

java.util.Collection<GroupMember> getMembers()

Return a collection containing all the members of this group. 

Returns:
A collection containing all the members of this group.

10

file:///C:/Documents and Settings/guiradde.MELAD/My Documents/NetBeansProjects/SimSync/SimSync/dist/javadoc/gov/nist/mel/simsync/GroupMember.html
file:///C:/Documents and Settings/guiradde.MELAD/My Documents/NetBeansProjects/SimSync/SimSync/dist/javadoc/gov/nist/mel/simsync/GroupMember.html
file:///C:/Documents and Settings/guiradde.MELAD/My Documents/NetBeansProjects/SimSync/SimSync/dist/javadoc/gov/nist/mel/simsync/SimulationGroup.html


void addMember(GroupMember member)

Add the given member to this group. 

Parameters:
member - The member that needs to be added to this group.

java.lang.String getName()

Get the name of this group. 

Returns:
The name of this group.

void setName(java.lang.String name)

Set the name of this group. 

Parameters:
name - The name of this group.

RunningState getState()

Get the current state of this group. 

Returns:
The current state of this group.

void setState(RunningState state)

Set the current state of this group. 

Parameters:
state - The new state of this group.

int getTime()

Get the current time of this group. Note that the time of a group might be calculated in different ways depending on the 
algorithm being used. Also, the time of a group doesn't necessary match the local time of any of its members. 

Returns:
The current time of this group.

void pause()

Put the group in the Paused state. 

void resume() throws java.lang.Exception
Put the group in the Running state. This method will throw an exception if the group hasn't reached its full capacity. 

Throws: 
java.lang.Exception - If the group hasn't reached its full capacity.

11

file:///C:/Documents and Settings/guiradde.MELAD/My Documents/NetBeansProjects/SimSync/SimSync/dist/javadoc/gov/nist/mel/simsync/RunningState.html
file:///C:/Documents and Settings/guiradde.MELAD/My Documents/NetBeansProjects/SimSync/SimSync/dist/javadoc/gov/nist/mel/simsync/RunningState.html
file:///C:/Documents and Settings/guiradde.MELAD/My Documents/NetBeansProjects/SimSync/SimSync/dist/javadoc/gov/nist/mel/simsync/GroupMember.html


6.3  The GroupMember interface
SimulationGroup getGroup()

Get the group that this member belongs to. 

Returns:
The group that this member belongs to.

int getLocalTime()

Get the current local time of this group member. The local time of a member can be different from its requested time if 
the member is currently trying to advance time (by calling setTime(int time)). 

Returns:
The local time of this member.

int getRequestedTime()

Get the requested time of this member. The requested time is different from the local time if the method setTime(int  
time) was called and hasn't returned yet.

Returns:
The current requested time of this group member.

java.lang.String getName()

Get the name of the group member. 

Returns:
The name of the group member.

long getTotalWaitingTime()

Get the total time this member spent on waiting for other members. This method can be used to find out which 
member of a group slows down other simulations. 

Returns:
The total time this member spent waiting for other members.

int getWaitingCount()

Get the total times this member has been asked to wait for other simulators before it gets approval to move forward in 
time. This method can be used to find out which simulator slows down the group. 

Returns:
An integer indicating how many times this member has been asked to wait for other simulators before it gets 
approval to move forward in time.

void leaveGroup()

Remove the group member from its group. This will put the group in the Terminating state. 

12

file:///C:/Documents and Settings/guiradde.MELAD/My Documents/NetBeansProjects/SimSync/SimSync/dist/javadoc/gov/nist/mel/simsync/SimulationGroup.html


void setGroup(SimulationGroup group)

Set the group that this member belongs to. This method can be called only once. 

Parameters:
group - The group that this member belongs to.

void setLocalTime(int localTime)

Set the group member's local time. When SimSync decides to authorize the member to move to its new local time, the 
requested time of the group member is changed instantly, otherwise this method is blocked.

Parameters:
localTime - The new local time of this group member.

void setName(java.lang.String name)

Set the name of this member. 

Parameters:
name - The name of this member.

6.4  The ObservableBean interface
void addPropertyChangeListener(java.beans.PropertyChangeListener l)

Add a property listener to this bean. The listener is notified when the value of a property changes. 

Parameters:
l – The listener that will be notified when any property of this bean changes.

void removePropertyChangeListener(java.beans.PropertyChangeListener l)

Unregister the given listener from this bean. The listener will no longer be notified when a property of this bean 
changes. 

Parameters:
l – The listener that will be removed from this bean.

6.5  The RunningState enumeration
public static final RunningState Running

Indicates that the simulation is currently running. 

public static final RunningState Paused

Indicates that the simulation group is paused. All calls to move the time forward will be blocked until the simulation 
group gets to running state. 

public static final RunningState Terminating

13

file:///C:/Documents and Settings/guiradde.MELAD/My Documents/NetBeansProjects/SimSync/SimSync/dist/javadoc/gov/nist/mel/simsync/RunningState.html
file:///C:/Documents and Settings/guiradde.MELAD/My Documents/NetBeansProjects/SimSync/SimSync/dist/javadoc/gov/nist/mel/simsync/RunningState.html
file:///C:/Documents and Settings/guiradde.MELAD/My Documents/NetBeansProjects/SimSync/SimSync/dist/javadoc/gov/nist/mel/simsync/RunningState.html
file:///C:/Documents and Settings/guiradde.MELAD/My Documents/NetBeansProjects/SimSync/SimSync/dist/javadoc/gov/nist/mel/simsync/SimulationGroup.html


Indicates that a member of the simulation group asked to leave the group. Simulations are not allowed to move their 
time forward while the group is in the Terminating state and should leave the group.

7  The REST Web Service API
This  section  describes  the  Web Service  API  of  SimSync.  The  API follows  the  REST architectural  style.  Each 

resource has a uniform interface based on the methods present in the HyperText Transfer Protocol (HTTP):
• The HTTP GET method is used to obtain a representation of a resource.
• The HTTP PUT method is used to create a new resource or update the value of a resource.
• The HTTP DELETE method is used to remove a resource.

The Uniform Resource Locators (URL) which are used to identify SimSync's resources as well as the methods and 
available  representations,  are  described  in  Section  7.1  ,  while  Section  7.2   provides  a  detailed  description  of  each 
representation.

7.1  Resources
Below  is  a  description  of  each  resource  available  in  SimSync.  For  each  resource,  accepted  methods,  available 

representations, the status code returned and a short description are specified. Parameters in Urls are shown between braces. 
The methods used on those resources are standard HTTP methods and the status codes returned by those methods are standard 
HTTP status codes.

7.1.1  SimulationGroups
URL: /simgroups/

The root of the API. Each resource used by SimSync has a Url that starts with the prefix /simgroups/.

Method Available/Acceptable
Representations

Status Code Description

GET text/plain (SimulationGroups) HTTP_200(OK)
HTTP_404(Not Found)

Provide a list of the groups that are registered 
in this instance of SimSync.

7.1.2  SimulationGroup
URL: /simgroups/{groupName}

The group of simulations. The parameter {groupName} is the name of the simulation group.

Method Available/Acceptable
Representations

Status Code Description

GET text/plain (SimulationGroup)
application/json (SimulationGroup)

HTTP_200(OK)
HTTP_404(Not Found)

Obtain a representation of a simulation group.

PUT application/json (SimulationGroup) HTTP_201(Created)
HTTP_200(OK)
HTTP_404(Not Found)

Create  a  new  simulation  group  or  update 
information of an existing group.

DELETE HTTP_204(No Content)
HTTP_404(Not Found)

Delete the group with the name specified in the 
URL.

7.1.3  GroupMember
URL: /simgroups/{groupName}/members/{memberName}

14



The simulation, that is a member of a particular group. The parameter {groupName} is the name of the group and the 
parameter {memberName} is the name of the simulation in this group.

Method Available/Acceptable
Representations

Status Code Description

GET application/json (GroupMember) HTTP_200(OK)
HTTP_404(Not Found)

Obtain a representation of a Group Member.

PUT application/json (GroupMember) HTTP_201(Created)
HTTP_200(OK)
HTTP_404(Not Found)

Put  a  simulation  in  a  group  or  update 
information  on  an  existing  simulation.  This 
method is most frequently used to update  the 
local time of a simulation. When a simulation 
wants  to  move  forward  in  time,  it  SHOULD 
ask  SymSync  permission  to  change  its  local 
time. To do so, the simulation should call the 
PUT  method  with  its  new  local  time  as  a 
parameter.  The  PUT method  will  return  only 
when  SimSync  approves  to  update  the  local 
time.

DELETE HTTP_204(No Content)
HTTP_404(Not Found)

Remove this group member from its group. The 
group will be placed in the 'Terminating' state. 

7.2  Representations
In  a REST architecture,  the state of resources is communicated by means of representations.  SimSync currently 

supports the JavaScript Object Notation (JSON) [12] as representations of resources. Plain text representations also exist for 
some resources but are only useful for debugging purpose. Other types of representations such as XML will be added later on 
if needed. Each type of representation is identified using Multipurpose Internet Mail Extensions (MIME) type [13].

text/plain (Simgroups)
Provide a textual description of the content of the SimSync instance.

text/plain (SimulationGroup)
A textual representation of the content of the simulation.

application/json (SimulationGroup)
A JSON representation of the simulation Group.

Example: {"full":true,"name":"group1","state":"Running","capacity":2}

Parameters:
Parameter Value Description

name (required) The name of the group.

capacity The maximum number of members in the group.

state One of:

• Running
• Paused

The current state of the simulation group. Can be one of:

Running

15



• Terminating

Indicates that the group of simulations is currently running.

Paused

Indicates that the group of simulations is currently paused.

Terminating

Indicates that the group is currently terminating. No action can be 
performed on the group and all remaining members should leave the 
group.

full Boolean indicating whether the group has reached its maximum capacity. 
This parameter is read-only.

application/json (GroupMember)
A JSON representation of a simulation who is a member of a particular group.

Example: {"groupName":"group1","name":"member1","localTime":0}

Parameters:
Parameter Value Description

groupName The name of the group that this simulation is member of.

name The name of the simulation.

localTime The local time of the simulation.

16



8  Graphical User Interface
SimSync has a graphical user interface called SimSync-GUI. It can be used to monitor the state of a running instance 

of SimSync, or to start a new SimSync server. The GUI is a standalone desktop application that has been developed using the 
Swing framework [14]. 

Figure 5 shows the main window of SimSync-GUI. The content of each simulation group is displayed in a separate 
tab. The current estimated time of the group and the number of members in the group are shown at the top of the tab. In the 
top right corner, a panel called “Execution” shows the current state of the group and provides two controls: a “play” button to 
set the group in the Running state, and a “pause” button to set the group in the Paused state. The central part of the window 
shows the time advancement of each simulation. A blue bar shows the current time of a simulation and a gray bar shows the 
requested time of a simulation. 

When  SimSync-GUI is  used  to  start  a  local  server,  the  graphical  user  interface  is  updated  in  real  time.  New 
simulations appear in the central component as soon as they get connected, and the blue and gray bars expand as the time of 
each simulation evolves. This feature is not available when monitoring the state of a remote SimSync server, since this would 
have a significant impact on the underlying server's performance.

17

Figure 5: SimSync Graphical User Interface



9  Conclusion
In this paper, we presented a first piece of software that can be used to leverage RESTful Web Services in distributed 

simulations.  No  official  release  of  SimSync  has  been  done  so  far,  but  the  source  code  can  be  downloaded  at 
http://sourceforge.net/projects/simrest/ . SimSync is being developed as a “proof of concept” software in an effort to improve 
interoperability between simulation packages. As such, it shouldn't be used in a production environment.

Future work will  include  the development  of integration  components  for  Commercial  Off The Shelf  simulation 
packages such as Rockwell Arena and Delmia Quest. Those components will use SimSync for time synchronization and will 
make use of REST Web Services to perform data transfer. The set of tools will then be used to create a real test case of virtual 
supply chain integration that will be detailed in another paper.

Acknowledgments and Disclaimer
The work described in this paper was sponsored by the National Institute of Standards and Technology (NIST) and is 

not  subject  to  copyright.  Other  participants  in  the  project  include  Damien  Bertot  and  Benjamin  Raverdy.  Mention  of 
commercial products or services in this paper does not imply approval or endorsement by NIST, nor does it imply that such 
products or services are necessarily the best available for the purpose.

18

http://sourceforge.net/projects/simrest/


References
[1] OASIS SOA-RM TC, Reference Model for Service Oriented Architecture 1.0, 2006
[2] W3C, SOAP Version 1.2 Part 1: Messaging Framework (Second Edition), 2007
[3] Roy Thomas Fielding, Architectural Styles and the Design of Network-based Software Architectures, 2000
[4] F. Kuhl, R. Weatherly, J. Dahmann, Creating Computer Simulation systems: An Introduction to the High Level 
Architecture, 1999
[5] B. Moller, K. Morse, M. Lightner, R. Little, R. Lutz, HLA Evolved - A Summary of Major Technical Improvements, 
[6] Tim Berners-Lee, Uniform Resource Locators (URL), 1994
[7] SISO, Standard for: Core Manufacturing Simulation Data - UML Model, 2009
[8] R. Fielding et al., Hypertext Transfer Protocol -- HTTP/1.1, 1999
[9] Jetty - Quick Start Guide (http://wiki.eclipse.org/Jetty/Starting/Quick_Start_Guide)
[10] C. Carothers, R. Fujimoto, R. Weatherly, A. Wilson, Design and Implementation of HLA Time Management in the RTI 
Version F.0, 1997
[11] Sun Microsystems, JavaBeans (TM) Specification, 1997
[12] D. Crockford, The application/json Media Type for JavaScript Object Notation (JSON), 2006
[13] N. Borenstein, Bellcore, N.Freed, RFC 1521: MIME (Multipurpose Internet Mail extensions) Part One: Mechanisms for 
Specifying and Describing the Format of Internet Message Bodies, 1993
[14] John Zukowski, The definitive guide to Java Swing, 2005

19


	cover-title-ir.pdf
	A RESTful Web Service for Virtual Supply Chain Time Management
	A RESTful Web Service for Virtual Supply Chain Time Management
	U.S. Department of Commerce





