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This paper presents a product modeling language for collaborative design that has the 
benefits of ontology and expanded capabilities in conventional product modeling.  The 
proposed approach uses ontology to increase flexibility and accuracy in combining, 
refining, and checking consistency of requirements and designs from multiple, disparate 
sources, and model-based approaches to develop more powerful, engineering-friendly 
languages for using ontology.  It can capture partial and high-level models in early stages 
of design, as well as more complete and detailed models in later stages, and supports 
reliable interpretation of models across the product lifecycle.  Examples are given in a 
proof-of-concept implementation. 

1 Introduction 
 
Collaborative product development increases efficiency, reliability, and innovation by 
ensuring the right knowledge is available at the right time [Sriram 2002] [Szykman 
2001a,b].  It avoids backtracking and rework due to miscommunication, and delays due 
to unnecessary dependencies between designers.  Integrated and concurrent design 
enables engineers to interact and reach agreement by sharing product information and 
knowledge.  This reduces the cost of design, increases reliability, opens opportunities for 
innovation, and provides stronger competition in the international marketplace. 
 
Collaborative product development is hampered by at least two factors:1 
 
 Partial product descriptions developed independently by different designers 

cannot be reliably and consistently refined and combined.  Significant effort is 
needed to create a complete description, because separate contributions rarely fit 
together and are often overlapping.  This prevents teams of designers from 
contributing to the same product independently, and from building on existing 
products. 

 
 Engineers and product design tools have only loose alignment on how to interpret 

different languages and terminologies.  Engineers and tools interpret the same 
product description in different ways.  This results in significant cost overruns due 
to rework when discrepancies are discovered, often after implementation and 
testing are already underway. 

                                                           
1 These are issues in shared representation, one of several areas affecting collaborative engineering, 
including long term knowledge retention, coordination and transaction management,  negotiation and 
conflict mitigation, organizational issues, virtual reality, and decision techniques [Sriram 2006]. 



 
 

Designers distributed geographically and organizationally in global economies worsen 
the above problems [Sriram 2006].  Multiple firms coordinate to develop and exchange 
product descriptions.  In these situations, designers cannot rely on informal discussion to 
combine separate contributions to the same product definition, or resolve differences in 
how product models are interpreted.  Product information assets become fragile and 
return less on investment. 
 

This paper addresses the challenges above by applying ontological and model-based 
techniques to expanded capabilities in product modeling languages.  Ontologies bring an 
“open world” approach that enables independently developed product models to partially 
describe the same products, with the precision needed to check consistency when the 
models are combined, and to ensure uniform interpretation.  Model-based techniques 
provide engineering-friendly languages, freeing engineers from learning the specifics of 
ontology languages, while still having their benefits.  This paper applies these techniques 
to expanded capabilities in product modeling, such as capturing the environment in which 
engineered devices are to be used, supporting taxonomies of products and behaviors, and 
giving interconnection of subassemblies and parts the same capabilities as subassemblies 
and parts.  These improvements enable different or overlapping aspects of product 
information to be developed separately, or built on each other, then assembled rapidly 
and flexibly with the aid of automated consistency checking.  They achieve this by 
bringing more relevant information about the product together in a uniform 
representation.  The results are closer to engineering intention and applicable to a wider 
range of engineering tasks than earlier approaches. 
 

Previous work in product modeling takes either an ontological or model-based approach, 
but usually not both.  Those using only model-based techniques do not support 
independently developed product models for the same product (open world), or the 
precision needed to check consistency when the models are combined, while those taking 
only an ontological approach do not provide engineering-friendly modeling languages.  
In addition, previous work with ontology in product modeling does not take full 
advantage of ontology, such as open world semantics, while previous work using model-
based techniques does not support many of the needed capabilities, such as 
interconnection of subassemblies and parts with the same capabilities as subassemblies 
and parts.  The few previous combinations of ontology and model-based techniques 
support only some of their potential synergies. 
 

The paper covers the most general aspects of product modeling within the above scope, 
such as product taxonomies, interconnections of parts and subassemblies, and relating 
behavior to structure.  It does not address or restrict: 
 Processes by which product models are developed, or representing such 

processes (“design” as a verb). 
 More detailed topics such as kinematics, tolerances, and detailed behavior, 

geometry, and material models.  
 Other stages of the product lifecycle besides design, such as fabrication, 

maintenance, and disposal. 
The approaches of this paper will be applied to the above topics in future work, see 
Section .  6
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Section  2 gives requirements on product models and the proposed language.  Section  3 
covers previous work on these requirements.  Section  4 covers the language with brief 
introductions to ontology and model-based architecture.  Section  5 describes a proof-of-
concept implementation of the language.  Section  6 gives future work and Section  7 
concludes the paper. 

2 Requirements on Product Models and Languages for 
Collaboration 

 
Product modeling languages are engineered just as products are.  Languages have 
requirements and alternative ways of satisfying them.  Language requirements are 
naturally intertwined with the kinds of models expected to be constructed by engineers or 
other stakeholders.  This section takes scenario of collaborative design described in 
Section  1 to determine characteristics of typical product models, and requirements on 
product modeling languages.  Section  2.1 discusses product models as they are 
constructed by engineers or other stakeholders in a collaborative way, while Section  2.2 
addresses requirements on languages used to construct these models.  The requirements 
are addressed by the language proposed in Section  4, where ontological techniques are 
applied to satisfy the concerns of Section  2.1, and model-based approaches to satisfy 
those of Section  2.2. 

2.1 Collaboration-enabled Product Models 
 
The ultimate goal of collaborative product modeling is to produce a consistent and 
complete model of a product, drawn from a wide variety of sources.  The sources will 
necessarily be incomplete and potentially conflicting.  This section gives several 
characteristics typical of product models created in this scenario.  These are 
characteristics of product models as they are created by engineers or other stakeholders, 
rather than requirements on the languages used to create them, see Section  2.2. 
 
Product models developed collaboratively can be intentionally incomplete.  They can 
describe any aspect of a product, no matter how small.  For example, a product model for 
a car might only give limits on how much pollution it may emit, perhaps determined by 
the manufacturer or a regulating government agency.2  Models might only describe the 
materials used in the car.  Or they might only give the overall shape of the car for 
marketing and aerodynamic analysis.  All these are product models, they are just 
incomplete. 
 
Multiple incomplete product models can exist for the same product at the same time.  
Product development typically has many engineers and stakeholders, each having 
something to say about the product, but none saying everything.  For example, regulators 
might establish limits on pollution for cars, marketing departments might be concerned 
with their shape, and engineering departments with the materials to use.  Each of these 
descriptions of the product is a product model in its own right. 
                                                           
2 Requirements are part of product models, see Section  2.2. 
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Incomplete product models can be combined into more complete models, assuming they 
are not contradictory.  For example, if one stakeholder requires the car to have a certain 
shape for marketing purposes, but another requires a different shape to meet mileage 
requirements, then the models cannot be immediately combined.  The ultimate goal is to 
produce a set of models of the same product that are consistent and cover all aspects of 
the product. 
 
Product models developed collaboratively can be about the physical product itself 
(device), or the things surrounding the product when it is operated (environment), or both.  
For example, a model of a car might describe the kinds of roads on which it can be 
driven, perhaps the altitudes and speeds at which it can be driven, and how much 
pollution it is expected to emit.  A product model without these would tell us about the 
car itself, rather than about the requirements on it or how the car satisfies those 
requirements. 
 
Product models developed collaboratively can be about structure, behavior, or both.  
Structure describes individual physical objects, such as a particular car with an 
identification number.  Structural models describe some aspect of individual physical 
objects, which some objects might fit and others not.  For example, a structural model 
might describe cars weighing less than 2000 kg.  A particular car with an identification 
number weighing 1500 kg fits this description, while another car weighing 2500 kg does 
not.  Behaviors describe changes in individual physical objects, or lack thereof, occurring 
during particular time intervals (behavior occurrences).3  For example, a commuting 
behavior might be describe travel between workplace and home.  The occurrence of John 
going to work in his car on March 3, 2007 between 8:05am and 8:30am Eastern U.S. 
Time would fit this description if John left from home, otherwise it would not.  Behavior 
occurrences involve individual physical objects, for example, John, his car, and the road 
on which he is driving that particular day.  The same object can be involved in many 
behavior occurrences.  For example, John’s car is involved in an occurrence of 
commuting on many days. 
 
Since product models can be incomplete, they can be about portions of the device, 
environment, structure, or behavior, in any combination (total system).  To cover all these 
cases, total systems are defined in the paper as behavior occurrences involving individual 
physical devices and objects in the environment when the device is used.  Product models 
describe some aspect of total systems, which might be the interactions of the environment 
and the device, or how the device should be used.  A product model might describe only 
a portion of the total system behavior, for example, only the objects in the environment, 
only their behavior, only the structure of the device, or only its behavior.  A complete 
product model combines all these into a consistent description of all the relevant objects 
and behavior occurrences of the total system. 
 
 

                                                           
3 The term “occurrence” is borrowed from the Process Specification Language (PSL), a constraint language 
for processes [ISO 2006]. 
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Figure 1 illustrates the above approach.  The rectangles are contributions of different 
engineers and stakeholders to specify the same product, each rectangle being a partially 
specified product model from one source.  The dashed lines and ovals show which 
portion of the total systems each product model describes.  Each model describes some 
aspect of structure or behavior, or both, of the environment or device, or both.  Some of 
the models only describe the environment (Product Model 1 in the figure), some only the 
device (Models 3 and 4), and others describe both (Model 2).  Models can describe 
overlapping portions of the total system (Models 1 and 3, 2 and 3), but must not be 
contradictory.  In all cases product models describe some aspect of the total system.  The 
final product model must incorporate these contributions in a consistent way. 

Environment

Total Systems

Product Model 1

Product Model 4

Product Model 3Product Model 2

Device

 

Figure 1: Multiple Incomplete Product Models of the Same Product 

2.2 Requirements for Collaboration-enabled Product Modeling 
Languages 

 

This section describes the capabilities of product modeling languages following the 
principles of Section  1.  These capabilities enable designers to express portions of a 
product model, and combine them with contributions of other designers, see Section  2.1.  
The capabilities fall into several categories: 
 Generalization (taxonomies, refinement). 
 Interconnections as components (reuse, inheritance, decomposition, 

interconnections between interconnections). 
 Behavior as relations and interconnections. 
 Models of device and environment (designs and requirements, total systems). 

 

Generalization is a technique for combining product models by specifying that everything 
fitting the description of one product model also fits the description of another.  Figure 2 
illustrates this with a model of a car generalizing a model of a small car (generalization is 
notated by the hollow-headed arrow).4  The models are only concerned with the weight 
of the car.  The general model describes products weighing less than 2000 kg, and in the 
special model less than 1000 kg.  All objects fitting the description of small cars will fit 
the description of cars in general. 
                                                           
4 The hollow-headed arrow notation for generalization is borrowed from the Unified Modeling Language 
(UML) [OMG 2009b], where it has the same meaning as in this paper. 
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Generalization

Car Product Model
(device weighs less

than 2000 kg)

Small Car Product Model
(device weighs less

than 1000 kg)

Figure 2: Product Model Generalization 
 

Another technique for combining product models is interconnection of other models, 
according to roles those other models play in the new product, sometimes called 
“composition” or “assembly.”  Figure 3 illustrates this in a simplified car model that uses 
the wheel model multiple times in different ways.  The colon notation specifies the 
reused subassembly to the right of the colon, and the way it is used to the left.5  Two 
wheel usages are powered by the engine and two are not, as shown by the lines between 
the engine and two of the wheels.  One of the lines connects the engine and a wheel 
directly, and the other connects them through subassemblies of the engine and wheel (the 
connection directly between engine and wheels is composed of other subassemblies, see 
Figure 5 and following).  The resulting product will have four subassemblies specified by 
the wheel model, two of which will be connected to a subassembly specified by the 
engine model.6 
 

Car, 2WD

e : Engine

rf : Wheellf : WheelEngine

p: Piston

c: Crankshaft

h: Hub

c : Crankshaft

rr : Wheellr : Wheel

Interconnection

role name : Reused 
Composite Name

Composite Name Composite /
Assembly

Role / Usage
Reused Composite

Wheel

t: Tire

h : Hub

 
Figure 3: Interconnected Elements in a Composite 

 
Generalization applies to refinement of interconnections and subassemblies, as illustrated 
in Figure 4 (role names omitted for brevity).  Vehicles generalize cars and boats.  
Anything described by the car or boat models must also be described by the vehicle 
model, by the definition of generalization.  Vehicles include an element that exerts force 
outside the vehicle (the impeller), which generalizes wheels and propellers, as shown in 
the upper right of Figure 4.  Similarly, frames, which are used in vehicles, generalize 
                                                           
5 This notation is adapted from the UML composite structure diagram [OMG 2009b] [Bock 2004]. 
6 The environment can have interconnections also.  The examples here are just for devices. 
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chasses and hulls, used in cars and boats, respectively.  Boats add an element for 
representing the rudder with an additional connection to the hull.  The interconnections 
can also be generalized.  For example, a wheel attaches to a chassis differently from a 
propeller to a hull, but these are generalized by the common characteristic of limiting the 
movement between the frame and impeller. 

Vehicle

Engine Impeller

Frame  

Boat

Engine Propeller

Hull Rudder  

Car

Engine Wheel

Chassis

Impeller

Wheel Propeller

Frame

Chasis Hull

 

Figure 4: Generalization of Composites 
 

Interconnections within an assembly or composed product model can be specified as a 
composition of other interconnected elements, as illustrated in Figure 5 .  The connection 
between engine and wheel decomposes into a separately specified set of interconnected 
elements that includes a clutch and gearbox for manual transmissions.  Things described 
by the car model will have individual clutches and gearboxes linked between the engine 
and wheels.  The same connection decomposition might be reused many times, for 
example in chemical plant might have the same piping patterns between tanks used many 
times.  This enables product designers to reuse complex interconnections defined by 
others. 

Car

Engine

Wheel

Wheel

Clutch

Engine

Gearbox

Hub

Crankshaft

Figure 5: Decomposition of Interconnections 
 

Alternative product model refinements using generalization and interconnection 
composition are illustrated in Figure 6.  The car model generalizes two others that 
decompose the connection between engine and wheel in different ways.  One 
decomposes it with a manual transmission, the other with an automatic transmission.  The 
things described by the specialized product models are also described by the car model, 
by the definition of generalization, including any characteristics of the interconnection of 
engines and wheels, such as power delivery requirements, see example in Figure 8. 
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Car

Engine

Wheel

Automatic 
Transmission

Car, manual

Engine

Car, automatic

Engine

Wheel

Wheel

Wheel

Clutch

Engine

Gearbox

Hub

Crankshaft

Wheel

Engine

Hub

Crankshaft

 
Figure 6: Product Generalization and Interconnection Decomposition 

 

Interconnections can be interconnected in a product model, as illustrated in Figure 7.  
Two interconnections that decompose into piping elements are themselves 
interconnected.  The individual physical devices described by the assembly will have two 
individual pipes between which there is heat transfer also described by the product 
model.  This can be combined with generalization, for example, to specify fluid is 
transferred between the units, without specifying it is achieved with piping.  Then the 
thermal connection applies to specializations of the assembly that transfer fluid in 
different ways. 

A

Unit 1

Unit 2

Pipe

Fitting

Unit

Unit

Fitting

Thermal
conduction

 
Figure 7: Interconnections of Interconnections 

 
Behaviors can be taken as relations between the objects involved in them, enabling 
behaviors to interconnect elements in a composite or assembly.7  For example, a behavior 
might specify that the objects involved in them have no relative movement.  Figure 8 
shows a model for this on the lower left, used by an interconnection in an assembly just 
above it.  The result is an assembly that constrains a plate and bracket to remain in a fixed 

                                                           
7 Some behaviors might appear to involve only one object, but even these are relative to other objects.  For 
example, a rotating or moving object is only doing so in relation to other objects.  The expansion of metal 
by heating is relative the environment in which heating occurs, which might prevent expansion. 

 8



 
 

relative position.  The model generalizes two others in which the interconnection is 
decomposed in ways that are consistent with the general behavioral constraint of no 
relative movement.  One specialization uses a bolt and nut to maintain the relative 
position of the bracket and plate, the other uses a rivet.  These decompositions satisfy the 
general behavioral constraint, because the products described  by the specialized models 
are also described by the general one, according to the definition of generalization.  This 
example is elaborated in the proof-of-concept implementation in Section  5. 

Bolt

r2 :

r1 :

Nut

A 1.1

Plate

Bracket

A 1.2

Plate

Bracket
r2 :

r1 :

Rivet

A

Plate

Bracket

No Relative 
Movement

 

Figure 8:  Behavior Relations 
 
At least two kinds of product models are useful for modeling languages to identify.  Since 
models can be about any aspect of a device or the environment in which is operates (and 
the structure or behavior of either one, see total system in Section  2.1), it is helpful if the 
language distinguishes at least these kinds of models:    
 

1) Designs are product models that describe only engineered devices, which might 
include  their intended behavior. 

 

2) Requirements are product models that describe the environment in which the 
device is to be used [Zave 1997], including: 
a) The objects in the environment of the device when it is used, and the effect of 

the device on them. 
b) The behavior of the environment in the presence of the device, including the 

interactions of the environment and the device, for example, how the device 
should be used. 

 

The definitions of design and requirement above are for exposition in this paper, and can 
be changed or adapted as needed.  In particular, some communities use the term 
“requirement” to include descriptions of devices developed at early stages.  For example, 
a marketing requirement might constrain the weight of lawn mowers, or the color.  In the 
terminology of this paper, such constraints are part of design of the lawn mower.  The 
requirement is to be able to lift the device or that it is pleasing to look at.  Requirements 
in this paper are “operational” or “usage” requirements.  The terminology can be adapted 
or changed as needed when the language is applied in particular communities. 
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3 Previous Work 
 

Previous work in product modeling takes either a model-based or ontological approach, 
but usually not both, as needed to satisfy the requirements in Section  2.  Those using only 
model-based techniques do not support independently developed product models for the 
same product (open world), or the precision needed to check consistency when the 
models are combined, as required in Section  2.1, while those taking only an ontological 
approach do not provide engineering-friendly modeling languages, as described in 
Section  2.2.  In addition, previous work with ontology in product modeling does not take 
full advantage of it as described in Section  2.1, such as open world semantics, while 
previous work using model-based techniques does not support many of the capabilities 
described in Section  2.2, such as giving interconnection of subassemblies and parts the 
same capabilities as subassemblies and parts.  The few previous combinations of 
ontology and model-based techniques support only some of the synergies described in 
Section  2.  This section reviews these two areas of previous work in product modeling, 
with model-based approaches in Section  3.1, and ontologies in Section  3.2. 

3.1 Model-based Product Information 
 
Model-based approaches to product information were used long before ontological 
techniques.  They provide engineering-oriented languages with some of the capabilities in 
Section  2.2, but specify their meaning informally, and lack the benefits of ontology 
described in Section  2.1.  These languages include ISO 10303 (STEP, STandard for the 
Exchange of Product model data [Owen 1993]), the Unified Modeling Language (UML) 
[OMG 2009b] and its extensions in the Systems Modeling Language (SysML) [OMG 
2008a], the U.S. National Institute of Standards and Technology (NIST) Core Product 
Model (CPM) [Fenves 2008] and its extension in the Open Assembly Model (OAM) 
[Rachuri 2006], and Methodology and tools Oriented to Knowledge-based engineering 
Applications (MOKA) [Stokes 2001].  Table 1 summarizes their support for the 
capabilities described in Section  2.2, see details given in the rest of this section.  The last 
column (OPML, Ontological Product Modeling Language) is the language proposed in 
this paper. 
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SXXX+XTotal system  ( device / environment )

SXXXXBehaviors as relations / connectors

X

X+

v1: X
v2 : S-

S-

X

CPM 2 /
OAM 2

SXSS-Interconnection of elements

SXSX+Multiple usages of the same kind

SX
UML 2 : X
SysML : S-

XInterconnections of interconnections

UML 2 : X
SysML : S-

S

UML 2 / 
SysML

SXX+Relation / connector decomposition

Composition / assembly

SX+X+Generalization / refinement

OPMLMOKASTEP

SXXX+XTotal system  ( device / environment )

SXXXXBehaviors as relations / connectors

X

X+

v1: X
v2 : S-

S-

X

CPM 2 /
OAM 2

SXSS-Interconnection of elements

SXSX+Multiple usages of the same kind

SX
UML 2 : X
SysML : S-

XInterconnections of interconnections

UML 2 : X
SysML : S-

S

UML 2 / 
SysML

SXX+Relation / connector decomposition

Composition / assembly

SX+X+Generalization / refinement

OPMLMOKASTEP

S : Full support
S- : Support with exceptions
X+ : Does not support, with exceptions 
X : Does not support

 

Table 1: Support for Capabilities of Section  2.2 
 
STEP is a comprehensive standard, covering a wide range of manufacturing product data, 
some crossing subdomains (generic and integrated resources) and some specific to 
subdomains, such as electrical amid mechanical products (application protocols).  STEP 
gives a standard terminology for product management system vendors [Gu 1995].8  STEP 
models have assembly support within some of the application protocols, but limited 
assembly representations across subdomains.  For example, ISO 10303-44 [ISO 2000] 
specifies the assembly structure of a product and manages its configuration during its 
lifecycle.  One of its primary features is that it provides a mechanism to generate and 
maintain various kinds of product data structures, such as bills of material and parts lists, 
using the same primitive entities, such as components.  ISO 10303-109 [ISO 2004] 
defines kinematic and geometric constraints for mechanical assemblies, including 
assembly feature relationships and constraint schemas.  ISO 10303-239 [ISO 2003b] 
provides capabilities for product life cycle support, including product lifecycle activity 
management, product description, operational feedback, and support solution and 
environment.  The Organization for the Advancement of Structured Information 
Standards Product Life Cycle Support Technical Committee is currently developing Data 
Exchange Specifications using ISO 10303-239.  This includes product breakdown for 
support, fault states, task specification, maintenance plan, operational feedback, product 
as individual, requirements, core models, and infrastructure maintenance. 
 
STEP currently does not adequately address the capabilities of Section  2.2, in some cases 
only in particular application protocols.  ISO 10303-109 supports hierarchical relations 
and interconnections among components via part properties such as assembly features, 
but it does not cover assembly generalization and relation decomposition for 
configuration management of assemblies and components, nor behaviors as relations and 

                                                           
8 STEP uses EXPRESS as a metalanguage, see footnote 17 in Section  4.3. 
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interconnections.  Extensions or STEP-compatible models have been proposed to address 
some of the missing capabilities in STEP assembly models [Liu 1992] [Zha 2002], for 
example, introducing entities such as assembly, subassembly, part, and connector for 
integrated assembly design and process planning, and also to combine EXPRESS [ISO 
2003a] and Extensible Markup Language [W3C 2006] [Zha 2006].  In addition, ISO 
working group TC184/SC4/WG12 is updating STEP's assembly representations.  
However, these proposals are not currently adopted into STEP. 
 
UML is a standardized, general-purpose, wide lifecycle modeling language defined at the 
Object Management Group (OMG), under their Model-driven Architecture [OMG 
2009c].  It is designed for visualizing and interchanging models of many kinds of systems 
and the entities in their environment.  It is used for business processes, organizational 
structures, and hardware.  It covers both structural and dynamic models, including 
composite objects and multiple behavior models.  UML provides two extension 
mechanisms, profiles and metamodel specialization.  SysML extends UML to a modeling 
language for manufactured systems engineering, which is a concerned with the accurate 
capture of customer requirements and reliable translation of these to high-level designs 
for hardware, software, and organizations.  SysML is defined as a UML 2 profile by the 
OMG, in cooperation with the International Council on Systems Engineering (INCOSE).  
UML and SysML fully support generalization, composition and assemblies, except only 
SysML supports relation decomposition and connectors between connectors.  Neither 
supports behavior as relations or interconnections.  SysML and UML do support total 
system modeling very well, because of the limited nature of requirements in SysML and 
use cases in UML. 
 
The NIST research effort on foundations for next generation CAD and product 
development systems suggests a core representation for product information, CPM, and 
extensions to this model, such as OAM, and Design-Analysis Integration [Fenves 2003].  
Heterogeneous Material Model [Biswas 2007], Mechatronic Device Model [Xu 2005], 
the Product Family Evolution Model [Wang 2003], and the Embedded System Model 
[Zha 2005a].  CPM is intended to unify and integrate product and assembly information, 
providing a base-level, knowledge-oriented model that is open and non-proprietary, 
extensible, independent of product development process, and capturing engineering 
context most commonly shared in product development activities.  It focuses on artifact 
representation including function, form (including geometry and material), behavior, 
physical and functional decompositions, and relationships among these concepts.  OAM 
extends CPM to include assembly, tolerance and propagation, kinematics, and 
engineering analysis at the system level.  OAM is integrated with the EXPRESS/XML 
schema based assembly model [Zha 2002] to completely capture the detailed geometric 
information using XML schema [Zha 2006].  Thus, the STEP-based integrated product 
information model comprises not only geometry but also function, behavior, form feature 
and product structure information. 
 
CPM and OAM currently do not adequately address the capabilities of Section  2.2.  
OAM supports interconnections between parts, but not involving elements of the same 
kind (except in version 2), and only ports for assembly.  It also does not support 
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generalization, decomposition of relations and connectors between connectors, or 
behavior relations and connectors.  CPM does not clearly distinguish behavior of the 
device and environment, though some work exists in this area [Zha 2005b] [Xu 2005].  
 
MOKA is perhaps the most powerful and widely known methodology for product design 
modeling and development of knowledge-based engineering applications, including 
process knowledge.  It is intended for routine design tasks, rather than conceptual design 
that includes requirements.  The MOKA product model supports five views or 
perspectives on the underlying product model.  Structure is the hierarchical 
decomposition of a product into parts, assemblies, and features (structures).  It can be 
physical or logical.  Function is the functional decomposition of the product and 
principles of solution.  Behavior includes a state model of the various states of a product 
and of the transition from one state to another.  Technology includes materials and 
manufacturing process information.  User-defined technological information includes 
alternate representations of the physical structure.  MOKA provides a kernel for various 
kinds of applications, using base classes as the key integration elements.  MOKA is based 
on UML 1.0 class modeling, and applies UML stereotypes. 
 
MOKA shares the same theme as the approach proposed in this paper, but many of the 
potential capabilities are not drawn out in the documentation and articles.  For example, 
MOKA has the potential to support generalization and relation decomposition, but this is 
largely unexplored in the documentation.  In many cases, it is unclear how the semantics 
of the stereotype applies to the MOKA concepts.  For example, state and transition in 
MOKA behaviors are stereotypes of UML Class, but it is not explained what they 
classify (what the instances of states and transitions are).  MOKA does not consider the 
environment of devices (total system modeling), or requirements modeling generally.  
This makes it difficult to apply MOKA during conceptual design.  MOKA supports 
interconnection of elements in a composition, but not behavior as relations, connectors 
between connectors, multiple usages of the same kind. 

3.2 Product Ontologies 
 
Ontology has been recently applied to product modeling, usually to improve the precision 
of modeling languages, such as those in Section  3.1 [Metzger  1996].  Some of the 
applications follow the typical definition of ontology as being about real world things, or 
things intended for the real world, rather than linguistic constructions such as modeling 
languages.  This approach gives more precise meaning to product models by interpreting 
them as physical things, satisfying some of the requirements in Section  2.1, but does not 
tie ontologies to modeling languages for ease of use in the engineering community, as 
required in Section  2.2.  Other work applies ontology languages to the syntax of existing 
or new modeling languages, which improves the specification of how those languages 
appear to the engineer, but does not give them ontological meaning in terms of 
individual, physical objects or occurrences of behavior.  The few efforts that combine 
ontology and modeling languages do not take advantage of the open world semantics of 
ontology for collaboration, and provide only a portion of the expressiveness needed in 
modeling languages. 

 13



 
 

Some of the previous work applying ontology to product modeling classifies physical 
objects or occurrences of behavior, for example, built products with serial numbers, or 
the operation of a particular pump on a particular day.  Some of the work identifies 
general concepts for individual physical objects, such as relations between parts and 
wholes, and integrity within physical objects, and congruence, with higher-level concepts 
are built on the fundamental ones, such as convexity and perpendicularity [Guarino 
1997].  Other work extends these general physical concepts to include dynamics, then 
relates dynamics to mathematical equations for use in simulation [Borst 1997].  Some 
work standardizes taxonomies of physical objects in particular manufacturing domains, 
such as pumps and heat exchangers, specialized further into classes defined by industry 
associations, all specialized from generic classes supporting assembly of physical things 
and how they are involved in occurrences of behavior [Leal 2005].  Some research 
explores how these product taxonomies can be used in knowledge management and 
configuration systems [Chan 2007] [Yang 2008], while another effort gives a 
methodology for defining product family ontologies [Nanda 2006].  All these lines of 
work can describe individual physical things, such as a particular car with an 
identification number, but do not provide a modeling language for engineers.  For 
example, these approaches can classify physical things, such as pumps, but an engineer 
cannot specify which models are about the environment of a product as it is operated 
(requirements), and which are about the product itself (designs). 
 
Other previous work applies ontology to elements of existing or new product modeling 
languages, rather than classifying physical objects or occurrences of behaviors.9  Some 
research gives taxonomies of functions, such as providing material, preventing a side-
effect, or driving a process [Kitamura 2002].  These classify domain-specific functions 
that appear in a product model, such as heating and generating torque, rather than 
occurrences of these functions that happen at particular times.  Other research gives a 
taxonomy of requirements and their relations, such as explicit and derived requirements, 
and requirement decomposition [Lin 1996].  Other research uses ontology to formalize an 
assembly language that was defined in UML, and integrate it into design tools [Kim 
2006].  Some research formalizes the syntax of CPM using ontology languages [Patil 
2005] [Fiorentini 2008].  These lines of work precisely specify how to use a modeling 
language properly, but do not have the benefits of ontologies of physical objects and 
occurrences, such as checking consistency of requirements and designs. 
 
A few previous efforts combine ontology and modeling languages, using the same or 
related architectural techniques as in this paper, and applying them in product lifecycles 
[Ackermann 2004] [Lee 2008].  These efforts do not draw out the implications of 
ontology for collaborative design (partial and refined product models combined and 
checked for consistency), and their modeling languages do not integrate interconnected 
elements with generalization, decomposable relations, and behaviors. 

                                                           
9 This work uses ontology to describe linguistic entities rather than real things (syntax rather than 
semantics), see metalanguages in footnote 21 in Section  4.3.  Sometimes these linguistic entities are treated 
as real things, for example, a model of a car is given a particular weight, such as 1000 kg, but this is a 
shorthand for specifying that actual cars built according to the model will have a particular weight. 
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4 An Ontological Product Modeling Language 
 
This section describes a product modeling language for the capabilities described in 
Section  2, addressing those of Section  2.1 with ontological techniques, and those of 
Section  2.2 with model-based approaches.  Section  4.1 briefly introduces ontology in 
general.  Section  4.2 shows how ontology applies to product modeling.  Section  4.3 
introduces a technique for making ontology more accessible to engineers, by integrating 
modeling languages with ontology.  Section  4.4 explains the benefits of this technique to 
product modeling.  Section  4.5 covers models of generic concepts of the language 
proposed in this paper, such as relations, while Section  4.6 covers extensions for 
engineering concepts.  Together these last two sections describe the Ontological Product 
Model Language (OPML), which uses the technique of Section  4.3 to combine ontology 
and modeling languages and satisfy the requirements of Section  2. 

4.1 Introduction to Ontology 
 

Ontology focuses on descriptions of real or intended things, especially partial 
descriptions that can be combined and checked for consistency separately from the many 
real or intended things being described.10  In this paper, engineers and stakeholders 
provide descriptions of intended products that are ultimately manifested in individual 
physical things and their behavior.  Ontology enables product engineers and stakeholders 
to independently develop partial descriptions of the same product and check consistency 
when the descriptions are combined.11 
 
Ontology is usually formalized with set theory, where members of the sets are actual or 
intended things, and rules for membership (called classes) capture expert knowledge and 
specifications.  In product modeling, the members of the sets might be individual 
physical products or their behavior occurrences, and membership rules are engineering 
and stakeholder specifications about the product.  Classes only characterize the members 
of sets, they do not identify the sets or individual members directly.  For example, a class 
might require the members of a set to be all and only cars weighing less than 2000 kg.  
The set described by this class will have individual cars in it, each with particular 
identification number, but the class will not identify any of the cars directly.  Sets are 
defined just by listing their members (extension).  Classes are defined by rules 
determining members of sets (intension).12  The members of the set are said to conform 
to the class, be classified by the class, be consistent with the class, or informally, be 
“described” by the class.  Classes are sometimes informally called “categories” or 
“types.” 
                                                           
10 See footnote 21 in Section  4.3 regarding ontologies of linguistic rather than real world entities. 
11 This is analogous to a merging style of change management in document systems, where multiple 
developers can edit copies of the same document, and merge them together with conflict checking.  It is an 
alternative to the check-in/out style of document management, where only one developer can edit a 
document at a time. 
12 Membership rules can determine that individuals are members (sufficient conditions) or are not members 
(necessary conditions).  For example, a membership rule for small cars is that they are cars, which is a 
necessary condition.  The rule would determine that a truck is not a small car, but could not determine 
whether a sports car is a small car, because not all cars are small cars. 
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Classes are very expressive because they are only rules for set membership, rather than 
actual members of sets.  Classes can describe: 
 one, some, or all aspects of things (open world).  
 things from the past, present, future. 
 intended things that are actually built or imagined things that are never realized. 
 physically possible or impossible things. 
 things with very little in common, or things that are very similar. 

This expressiveness arises from separating classes from the sets of things they describe.  
Membership rules exist independently of sets, which may be empty or contain only things 
that do not or cannot exist in reality, such as perpetual motion machines.  The goal of the 
engineering process is for these sets to contain real and useful things, but classes provide 
a way to capture engineering knowledge at stages before and after the members of the 
sets become real or useful. 
 

Ontological reasoning examines classes to determine results of operations on the 
corresponding sets, without using the members of the sets directly.13,14  For example, 
Figure 9 on the upper right shows a class for cars weighing less than 2000 kg, and on the 
upper left a class for cars weighing more than 2000 kg.  Example members of the sets 
described by these classes are shown at the bottom.  Ontological reasoning applied to 
these classes reveals whether they can be consistently combined into a single class.  In 
this example, reasoning shows the sets corresponding to the combination of classes will 
never have any members in common, because an individual car cannot weigh more and 
less than 2000 kg at the same time.  The classes being combined are inconsistent.  
Reasoning determines this using only the class descriptions (weighing more and less than 
2000 kg), not by intersecting the sets conforming to the classes.  This enables ontological 
reasoning to operate without enumerating all possible members of the sets described by 
classes.  

Classes

Sets
(only example

members shown)

Car with
serial# 56678,

weighing 2500 kg.

Cars weighing
more than 2000 kg

Conform
to both classes

Conform
only to above

class

Conform
only to above

class

John’s car,
weighing 1000 kg

Joe’s car,
weighing 2200 kg 

Cars weighing
less than 2000 kg

Cars weighing
more and less 
than 2000 kg

Car with
serial# 7398

weighing 1000 kg.

Mary’s’s car,
weighing 3000 kg 

Car with
serial# 3756

weighing 1000 kg.

Figure 9: Classes and Sets 
                                                           
13 This distinguishes ontological reasoning from rule systems, which require instances to perform inference, 
due to closed world semantics. 
14 Ontological reasoning can also determine whether an individual is in the sets described by classes 
(instance checking), but this is not as applicable to engineering design, because the products do not usually 
exist before the models. 
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4.2 Ontological Product Modeling 
 
Product models can be represented as ontological classes because product models 
describe: 
 existing or potentially existing things, and occurrences of behavior of those 

things.  For example, a product model for a car describes actual cars with 
identification numbers, or occurrences of behavior, such as a car being driven on 
a particular day by a particular person, or simulated versions of these.  Product 
models do not describe documents or other engineering data recording 
requirements and designs for cars.  These documents and data are the product 
models, and product models do not describe themselves.15 

 some aspects of the same product (open world).  For example, two product 
models can describe the same car, where one specifies the elevations at which is 
can be operated, while another specifies its weight limit.  Partial product models 
can be combined into a more complete ones, until a model is reached that is 
complete enough for manufacturing. 

 
Sets described by product models (as classes) must have members that are the same kind 
of thing, to enable their descriptions to be combined into one model and tested for 
consistency.  Otherwise, a model might describe members that are ruled out by other 
models, even if the models are consistent in every other way.  For example, if the 
members of sets described by product models are taken to be either physical objects or 
behavior occurrences, the intersections might be missing some members just because 
they are objects, or just because they are behavior occurrences, even if the objects are 
involved in the occurrences in a consistent way.  Product models that describe sets of the 
same kind of things can support logical operations on models developed independently in 
a collaborative setting, regardless of their source. 
 
One option is to take product models as classes of physical objects, for example, cars 
with vehicle identification numbers, or simulated versions of these.  Requirements and 
designs could describe individual cars and be tested for consistency.  However, cars 
behave in many different ways at different times, in part because of variations in how 
they are operated and in what environment.  The description of just the objects 
themselves cannot capture the variety of these situations. 
 
Another option, used in this paper, is to take product models as classes of behavior 
occurrences in which objects are involved, for example, the driving of a car during a 
particular timeframe, as shown at the bottom of Figure 10.  The product model on the 
upper left limits operation of the car to below 5000 m.  This describes the set of behavior 
occurrences encircled in the lower left ellipse, each an operation of an individual car.  
Physical objects are involved in these occurrences, because there must be something that 
is behaving.  A product model might describe only objects involved in the occurrences, as 
much product data does, is illustrated on the upper right of  Figure 10.  This model limits 
the weight of the car involved in the occurrence to less than 2000 kg.  This is just an 

                                                           
15 This avoids well-known paradoxes caused by of sets containing themselves. 
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intentionally incomplete model that does not cover the dynamic aspects of occurrences.  
It describes the occurrences encircled in the lower right ellipse.  The two original models 
describe occurrences involving the engineered device (design) and the environment in 
which it is operating (requirement), respectively (total system behavior occurrences, see 
Section  2.1), while the combined model covers both. 
 
Since these two product models describe sets of the same kinds of things (behavior 
occurrences) logical operations can apply to them, as shown in Figure 10.  Classes 
descriptions are combined to cover sets of occurrences described by both models at the 
same time.  In this example, these are occurrences of using a car weighing under 2000 kg 
at an elevation under 5000 m.  The set described by this combined model is illustrated in 
the intersection of the two ellipses (only examples are shown for brevity).  The 
occurrences not in this set involve a car under the weight limit, but used at an unintended 
elevation, as shown by the occurrences on the far lower right, or involve a car over the 
weight limit, but used at a proper elevation, as shown on the far lower left. 
 

Product
Models

All Total System
Behavior Occurrences

(only examples shown)

Using car with
serial# 56678,

weighing 2500 kg,
at 2000 m.

Operating at 
elevation below

5000 m
(Requirement)

Conform
to both

Conform
only to design 

Conform
only to

requirements 

Involves device
weighing less
than 2000 kg
(Design)

Using car with serial# 2345,
weighing 1500 kg, at 2000 m.

Using John’s car, weighing
1000 kg  at 3000 m. 

Using Mary’s car, weighing
1800 kg, at 1000 m

Using John’s car,
weighing 1000 kg,

at 6000 m. 

Using Joe’s car,
weighing 1500 kg,

at 7000 m. 

 
Figure 10: Product Models Describing Behavior Occurrences 

 

4.3 Languages for Ontological Product Modeling 
 
A barrier to adoption of ontological product modeling is ontology languages are not 
specific to engineering.  Ontology languages take time to learn and relate to engineering 
applications.  For example, the Web Ontology Language (OWL) uses the terms “class”, 
“property”, “restriction”, “subclass”, “domain”, “range”, all with set-theoretic meanings 
not familiar to engineers [W3C 2004a].  This is illustrated under the left box in Figure 11, 
with one ontology language element, Class, shown at the at the M2 level, which is where 
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languages are defined.16,17  Product models are shown at the M1 level, such as a model of 
cars.  This is where engineers and other stakeholders define products.  Product models 
describe members of sets at the M0 level, such as using a particular car with a particular 
identification number.  These are the total systems that product models are ultimately 
about, see Section  2.1.18  
 
Using only ontology languages at M2, as under the left box of Figure 11, the engineer 
must know to use CLASS at M2 and other ontological concepts when defining product 
models.  This enables product models to generalize each other, for example CAR being 
more general than SMALL CAR,19 and to classify actual cars at M0 (notated with a dashed 
arrow),20 and to be checked for consistency when combined.  However, these benefits 
would only be available to engineers trained in ontology.  Also engineering information 
about the models cannot be recorded, such as the engineers responsible for them, or 
which models are requirements and which designs, because CLASS cannot define these 
properties.  CLASS is part of the ontology language, rather than an engineering language.  
One attempt to address this might be to introduce PRODUCT at M1, as a generalization of 
all product models.  This would give some guidance to engineers, but does not support 
information about product models, as in the examples above. 
 
Engineering modeling languages typically do not have the benefits of ontology described 
earlier.  For example, under the middle box of Figure 11, the M2 level has an engineering 
term, PRODUCT MODEL, which is used to specify particular product models at M1, such 
as CAR and SMALL CAR.  This enables engineering information about the models to be 
recorded, such as the engineers responsible for them, or which models are requirements 
and which designs, because PRODUCT MODEL is part of an engineering language.  
However, the M1 product models are not ontological classes, because they are not 
specified with CLASS at M2.21  This prevents CAR from generalizing SMALL CAR, from 
classifying actual cars at M0, and from being checked for consistency when combined.  
 
The approach of this paper combines the ones above to provide the capabilities of 
ontology and the ease of use of modeling languages, as illustrated under the right box in 

                                                           
16 The levels in Figure 11 are numbered by the Object Management Group’s (OMG) Model-Driven 
Architecture (MDA) [OMG 2009a,c], inherited from the Electronic Industries Alliance's Computer-Aided 
Software Engineering Data Interchange Format [Flatscher 2002]. 
17 Modeling languages are specified in metalanguages, which appear at an M3 level.  These languages are 
not shown for brevity, but are usually a small subset of domain-independent M2 modeling languages, such 
as UML class diagrams.  See footnote 21. 
18 From a software viewpoint, the M0 level is divided into physical objects or behavior occurrences, and 
measurements made on those recorded in a manufacturing information system.  This paper treats these as 
the same for brevity, and to reflect the engineering design viewpoint that is not concerned with 
manufacturing information. 
19 See footnote 4 in Section  2.2 about notation. 
20 The conformance link from CAR and SMALL CAR to CLASS is omitted for brevity. 
21 Ontology languages can be used as metalanguages (M3 level, see footnote 17), describing language 
elements at M2 such as PRODUCT MODEL, rather than models such as CAR at M1.  This ensures precise 
specification of modeling languages, as in this paper and some previous work, but does not provide the 
benefits of ontology to modelers working at M1, as in the techniques on the left and right of Figure 11, 
because ontology at M3 only enables classes to be specified at M2. 
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Figure 11.  It includes CLASS as a generalization of PRODUCT MODEL in the modeling 
language at M2.22  Engineers can use a term they know to define product models at M1, 
and record engineering information on product models, while still having the benefits of 
ontology.  Product models can generalize each other, classify actual cars at M0, be 
checked for consistency when combined, and carry information such as which engineers 
are responsible for them, or which product models are requirements and which are 
designs. 
 

Modeling
Language
(M2)

Small Car

Model
(M1)

Individuals
(M0)

Using John’s car, 
weighing 900 kg,

at 2000 m, 

Class

Product Model

Car
Car

Product Model

Small Car

Using John’s car, 
weighing 900 kg,

at 2000 m, 

Class

Modeling 
Language,

No Ontology

Ontology,
No Modeling 

Language

Modeling 
Language and 

Ontology

Small Car

Car

 
Figure 11: Ontology and Product Modeling Languages 

 

The modeling technique illustrated on the right of Figure 11 does not dictate or restrict 
design processes.  In particular, the hollow-headed arrow notates generalization, rather 
than a sequence of steps in a design process.  For example, the model for small cars 
might be developed before the model of cars in general.  The design process might also 
proceed the other way, from cars to small cars.  Or the individual M0 elements might 
exist before the model is developed, as occurs when the documentation is lost for long-
lived products such as ships, and must be regenerated from real world artifacts, or in 
prototype-based design processes. 
 

The language modeling techniques in Figure 11 cover the terminology (abstract syntax) 
of the language, but not concrete syntax, such as punctuation and graphical shapes.  This 
enables multiple concrete syntaxes to be described a single language specification.  
Developing concrete syntax involves many issues of visual ergonomics and conventions 
that are not addressed by abstract syntax.  In the rest of this paper, “language” will refer 
to abstract syntax, as in the M2 level of Figure 11, and the implication of M1 models for 
M0 individuals (semantics). 
 

                                                           
22 Generalization can be used at M2 when ontology languages are used as metalanguages, see footnote 21. 
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4.4 Benefits of Ontological Product Modeling Languages 
 
Product modeling languages using the technique of Section  4.3 support partial, refinable, 
and combinable product models.  For example, generalization can refine requirements 
with alternative designs, as illustrated in Figure 12.  The most general model at M1 only 
requires that water is moved somehow, without specifying the device achieving this.  For 
example, the MOVING WATER model might specify a minimum rate at water should be 
moved.  The two specialized models introduce devices, a pump and Archimedes screw, 
respectively.23  They must meet the requirement of moving water at a minimum rate, 
because all of their conforming total systems also conform to the model of moving water, 
by the definition of generalization, see Section  2.2. 

Class

Product Model

Moving Water

Moving Water
with Pump    

Moving Water
with Screw    

Moving 10 liters of water
with Pump #132

May 1, 2007, 12:10-20pmET

Moving 20 liters of water
with Screw #789

April 30, 2007, 3:44-47pmET

Modeling
Language
(M2)

Model
(M1)

Individuals
(M0)

 
Figure 12: Alternative Designs for the Same Requirement 

 

Requirements and designs are kinds of product models, as shown at the M2 level in 
Figure 13.  Requirements are models that describe the environment of devices as they are 
operated, including the proper use and expected effect of the device, while designs are 
models that constrain the devices being operated, see Section  2.2.  The taxonomy of 
requirements and designs at M1 describes narrower sets of individuals in the more 
specialized classes.  For example, vehicles are described as weighing less than 10000 kg, 
and small vehicles as less than 2000 kg.  The individual total system at the lower right 
conforms to the small vehicle design, because the operated car weighs 1500 kg, while the 
total system at the lower left does not, though it meets the safety requirement for small 
vehicles.  The same model can describe both environment and device, whereupon it is 
both a requirement and a design, and the same M0 total system can conform to multiple 
M1 models, which might be requirements and designs, see Figure 10 in Section  4.2. 
 
The technique of Section  4.3 facilitates cross-checking of requirements and designs at 
multiple levels of abstraction, to identify potential errors early in the design cycle and 

                                                           
23 Conformance links from the specialized M1 models to PRODUCT MODEL are omitted for brevity. 
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increase the accuracy and completeness of testing built products against requirements.  
Figure 13 illustrates this with safety requirements generalized on the left, designs on the 
right, and generalizations between them in the middle.  Descriptions are added in the 
specialized classes.  For example, safe, small, dry land vehicles have a traction 
requirement that is not present for all safe, small vehicles.  Analysis can be applied to 
check that specialized models imply the more general ones when requirements and 
designs are combined [Shooter 2000].24  For example, analysis can predict whether the 
traction requirement for safe, small, dry land vehicle designs will produce the required 
stopping distance for safe small vehicles.  This determines whether it is possible for M0 
elements to conform to the design for safe, small, dry land vehicles, because these must 
conform to the more general requirements also, by the definition of generalization.  Tests 
can be developed to verify generalizations in practice.  For example, tests on the 
produced vehicle might verify traction is within the specified limits, and that this results 
in the specified stopping distance. 

Modeling
Language
(M2)

Safe Small Vehicle Req.
(Stopping: less than half the

length of vehicle per 10 km/h)
Model
(M1)

Class

Product Model

Safe Vehicle Req.
(Less than 10 deaths per 

100 million km/yr)

Requirement Design

Small Dry
Vehicle Design

Small Vehicle Des.
(involves device weighing

less than 2000 kg)

Safe Small
Land Vehicle Req.

(Traction: Slip no more than
1% of each meter travelled)

Safe Small Car Req.
(Wheel traction: Slip no more
than 1% of any 360O rotation)

Small Car
Design Wheel

Individuals
(M0)

Using car with serial# 566,
weighing 3000 kg,

slipping .07%

Using Mary’s car,
weighing 1500 kg,

slipping .05%

Vehicle Des.
(involves device weighing

less than 10000 kg)

 
Figure 13: Requirements and Designs 

 

                                                           
24 This assumes requirements only describe the expected effects under proper operation of the device.  This 
prevents contradictions caused by total systems conforming to designs and not the operational 
requirements.  These total systems are not of concern to requirements, which only capture that the device 
behaves properly when operated properly.  
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4.5 Modeling Language for Relations, Interconnections, and Behavior 
 
This section gives abstract syntax for a language covering basic concepts such as 
relations, behaviors, compositions, and combinations of these (see end of Section  4.3 
about abstract syntax).25  Conformance between M0 and M1 levels is specified to provide 
semantics.  The base modeling language of this section is used as the foundation for 
engineering terminology in Section  4.6. 
 
Relations are introduced into the modeling language (M2) as a specialization of CLASS.  
This enables M1 relations to be generalized at M1, and to have conforming links at M0.  
For example, in Figure 14, LINKAGE has conforming links at M0 that are categorized into 
fixed and moving.26  Relations are always between other things, modeled at M2 with 
RELATES to identify the kinds of things being related.  There are at least two of these, as 
indicated by the minimum multiplicity of two.  For example, LINKAGE is defined at M1 
as relating one LINKED THING to another, which is introduced just to categorize M0 
individuals that can be linked. 

Class

Relation

Fixed    Moving    

relates

2..*

Linkage Linked
Thing

Link between
Plate #2343 and
Bracket #4567

Link between Crank #456
and Piston Head #6789

Modeling
Language
(M2)

Model
(M1)

Individuals
(M0)

 
Figure 14: Relations 

 

Relations by themselves are insufficient for capturing the composition of interconnected 
elements, for example, the interconnections between engines and wheels in cars in Figure 
3 in Section  2.2 [Bock 2004].  A relation between the ENGINE and WHEEL classes is not 
restricted to the context in which it is used, for example, it would allow an engine in one 
car to power the wheels in another, or a propeller in a boat, a spare wheel in the same car.  
Defining specialized classes for interconnections, for example car and boat engines, and 
for powered and spare wheels, is cumbersome (introducing classes for every “role” 
played by engines and wheels), and still allows the engine in one car to power the wheels 
in another.  The only way to capture designer intent fully is to define classes for the 
individual engine in every individual car, for example, classes for John's car engine, 
Mary's car wheel, to separate the engines and wheels in John's and Mary's cars.  This of 
                                                           
25 This syntax is extended from the full level of [Bock 2009] and has the same semantics. 
26 Rectangles are used at M1 in the rest of the paper to distinguish it from the other levels. 
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course is unacceptably burdensome for the designer, in part because it is not usually 
known at design time what the individual M0 elements are.  These problems suggest the 
modeling language should be extended to support interconnection between elements of 
composition and assembly. 
 
A solution to the above problems is illustrated in Figure 15, notated with an adapted form 
of UML class diagrams,27 with some of the conformance links shown in Figure 16.  The 
primary aspects of the solution are: 

1. Identify connected elements by relations between a composite and the elements 
inside it.  For example, identify the engine and wheels in each individual car using 
the relations ENGINEINCAR and POWEREDWHEELINCAR, between cars and their 
engines and powered wheels, respectively.  This ensures the POWERS relation is 
applied only with each individual car, not between cars, see next item. 

2. Treat interconnections like any other element of the composite, with the 
additional capability of connecting the relations in the previous item (between a 
composite and its elements).  For example, the powers relation between a car's 
engine and wheels is treated like an element of the car, just like the engines and 
wheels.  It is given a relation to the composite, just like the relations for engines 
and wheels in the first item above.  In Figure 15 and Figure 16 this is the 
POWERSINCAR relation between CAR and POWERS conforming to CONNECTOR, a 
new element at M2.  The POWERSINCAR relation identifies M0 powers links 
between the engines and wheels in each individual car.  This enables 
interconnections to be generalized, like any other element of the composite, as in 
Figure 4 in Section  2.2, as well as connected by other connectors, as in Figure 7. 

Boat

Propeller Engine Wheel

Car

powered
wheelInCar

engine
InCar

engine
InBoat

propeller
InBoat powerspowers

powers
InCar

powers
InBoat

Model
(M1)

Figure 15: Interconnected Elements (M1)  

                                                           
27 UML composite structure diagrams are a compact and scalable notation for this, see Figure 3 in Section 
 2.2 [OMG 2009b] [Bock 2004].  The large rectangle is the class CAR, while the smaller, nested rectangles 
are relations from the class CAR to elements inside it.  The names of the relations are shown to the left of 
the colon.  The interconnections are shown as lines between the rectangles inside the class. 
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John’s Car

RelationClass

relates

2..*
Connector

connects { list }
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John’s Car

Wheel in
John’s Car
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InCar

powers link

Modeling
Language
(M2)

Model
(M1)

Individuals
(M0)

Engine Wheel

Car

powered
wheelInCar

engine
InCar powers

powers
InCar

powered
wheelInCar

engine
InCar

2..*

Figure 16: Interconnected Elements (Three Levels) 
 
Interconnections can be specified between subassemblies of subassemblies, for example, 
connecting hubs within wheels of a car to the crankshaft in its engine, as illustrated in 
Figure 3 in Section  2.2.  It is not sufficient to model this with a connector between the 
hubs and the crankshaft, because not all the hubs are in powered wheels, and not all 
engines are in cars.  The modeling language (M2) specifies the ends of connectors with a 
series of relations from the whole, as shown in Figure 16 with the “{list}” annotation on 
CONNECTS.  In this example, one end of the connector refers to a list of 
POWEREDWHEELINCAR and HUBINWHEEL to power only the hubs in powered wheels, 
while the other end refers to a list of ENGINEINCAR and CRANKSHAFTINENGINE to limit 
the connection to crankshafts in car engines, rather than boat engines. 
 

Relations between a composite and its elements can include elements that are “outside” 
the composite.  For example, a car model might have a relation for the owner.  Relations 
like these can tie device models to models of their environments.  For example, a car 
model can have a relation for the roads on which it is supposed to be operated, and the 
operator.  Elements of the environment and device can be interconnected as needed for 
the intended use, for example, the wheels of the car are on the road, and the hands of the 
operator are on the steering wheel.  An alternative is to model the total system of car and 
its environment.  In this approach, the car model does not refer directly to road and 
driver, so all its relations between cars and their elements are to things contained in cars. 
 
Relations can be composed of interconnected elements, like classes in general.  For 
example, the powers relation between engines and wheels might be composed of a clutch 
and gearbox that are related to each other and to the engines and wheels.  The model for 
this example is similar to Figure 16, except the composite element is a relation, as 
illustrated in Figure 17.  The POWERS relation has four elements, each identified by its 
own relation, for example, the E relation to ENGINE, and the GB relation to GEARBOX 
(impellers generalize wheels and propellers, see Figure 4 in Section  2.2).  The relations 
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identifying the linked objects do not have a diamond because they are not contained in 
POWERS.  The four elements are interconnected by other relations, such as EPOWERSC and 
CPOWERSGB, as specified by the connectors (relations from POWERS to the connectors are 
omitted for brevity).  Individual links at M0 conform to POWERS by having interlinked 
elements, such as the engine and clutch in John's car linked in conformance to 
EPOWERSC.  Individual M0 links for composite relations can be established by M1 
connectors.  For example, the powers link in Figure 17 is established by the connector at 
M1 in Figure 16. 

Model
(M1)

Individuals
(M0)

Engine Impeller

powers

ie

Clutch Gearbox

c gb
ePowersC cPowersGB gbPowersI

Engine in 
John’s Car

powers link in John’s Car

ie c gb

ePowersC cPowersGB gbPowersI

Clutch in 
John’s Car

Wheel in 
John’s Car

Gearbox in 
John’s Car

 
Figure 17: Relation Decomposition 

 
Relations can generalize others that have alternative decompositions, like classes in 
general.  For example, the POWERS relation of Figure 17 might actually be just for manual 
transmissions, and another relation might have a decomposition for automatic 
transmissions, as illustrated in Figure 6 in Section  2.2.  The alternatives can be 
generalized by an abstract version of the POWERS relations that does not have any 
connectors between the engine and wheels, as shown in Figure 18 (M2 and M0 omitted 
for brevity).  The relations between ABSTRACTPOWERS and its elements, E and I, are 
available in the specializations AUTOMATICPOWERS and MANUALPOWERS (was POWERS in 
Figure 17), because M0 links conforming to AUTOMATICPOWERS or MANUALPOWERS also 
conform to ABSTRACTPOWERS, by the definition of generalization.  The specialized 
relations each have their own way of interconnecting the engine and wheels. 
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Figure 18: Relation Generalization with Alternative Decompositions 

 
Specialized relations can be used to specialize interconnections, for example, the 
connector between engines and wheels in Figure 6 in Section  2.2.  The model for this is 
shown in Figure 19.  Cars in general use the abstract powers relation, while specialized 
cars use the manual and automatic powers relations.  The POWERSINCAR connector is also 
generalized in cars from the specialized connectors in manual and automatic cars, 
AUTOMATICPOWERSINCAR and MANUALPOWERSINCAR, as shown in the upper right of  
Figure 19.  This means M0 links conforming to AUTOMATICPOWERSINCAR and 
MANUALPOWERSINCAR also conform to POWERSINCAR.  For example, if John's car is a 
manual, then the link between the engine and wheels in it will conform to 
MANUALPOWERS and ABSTRACTPOWERS, and the link will be identified by both 
MANUALPOWERSINCAR and ABSTRACTPOWERSINCAR. 
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wheelInCar
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Figure 19: Generalization of Interconnected Elements using Relation Generalization 
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Interconnections can be interconnected, for example, the connector between the pipes in 
Figure 7 in Section  2.2.  The model for this is shown in Figure 20.  The assembly A has 
four elements, two of which are connectors using the PLUMBING relation.  Since 
connectors are relations between a composite and its elements, they can be also 
connected (in this example by a connector using THERMAL relation).  Portions of this 
model can generalized, for example, to specify fluid is transferred between the units, 
without specifying it is achieved with piping.  The interconnections would apply to 
specialized assemblies, which specialize the connectors between the units for the various 
ways to achieve fluid transfer.  The thermal connection would inherit to the specialized 
assemblies also, like the rest of the elements, and apply to the specialized kinds of fluid 
transfer between the units. 

plumbing

p2

p1

plumbing

thermal

t

u2u1

Unit Unit

A

Model
(M1)

 
Figure 20: Interconnection of Interconnections 

 

Behaviors are introduced into the modeling language (M2) as a specialization of CLASS, 
as shown in Figure 21.  This enables M1 behavior models to be generalized at M1, and to 
have conforming behavior occurrences at M0.  For example, in Figure 21 the rotation 
behavior has conforming occurrences at M0 that are categorized into fast and slow 
rotations.  Behaviors always have at least one element that is behaving, modeled at M2 
with INVOLVES, to identify the kinds of things involved in the behavior.  For example, the 
M1 ROTATION element is defined involves ROTATING THING, which is introduced just to 
categorize those M0 individuals that can rotate. 
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Behavior
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involves

Rotation Rotating
Thing

Fast rotation of Axle #5467
April 3, 2007, 3:15-3:30pmET

Slow rotation of Axle #5467
Dec. 16, 2006, 11:56-12:39amET

Modeling
Language
(M2)

Model
(M1)

Individuals
(M0)

1..*

Figure 21: Behaviors 
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Behaviors can generalize others involving additional interconnected elements in the 
behavior, like classes in general.  For example, a behavior specifying that two things do 
not move in relation to each other generalizes other behaviors that achieve this in 
different ways, as shown Figure 22.  The NO RELATIVE MOVEMENT behavior involves 
two things, identified by two relations, F1 and F2 (without diamonds, because the fixed 
things are not contained by the behavior).  The behavior generalizes two others, one 
involving a rivet and the other a bolt and nut.  The specialized behaviors have 
interconnections between the fixed things and the other elements involved in achieving 
that.  The specialized behaviors must prevent relative movement, because their M0 
occurrences are also occurrences NO RELATIVE MOVEMENT, by the definition of 
generalization. 
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Figure 22: Behavior Generalization 

 
Behaviors can be modeled as relating the things involved in them.  For example, a 
relative rotation behavior can be modeled as a relation between the things rotating 
relative to each other.  This enables behaviors to be used as connectors in assemblies to 
capture functional requirements (shown next).  This is introduced into the modeling 
language (M2) with RELATION generalizing BEHAVIOR, and RELATES generalizing 
INVOLVES, as shown in Figure 23. 28,29  This means things involved in behaviors are also 
in relations with each other due to the behaviors.  For example, the two axles at M0 in 
Figure 23 are linked in relative rotation, in conformance with RELATIVE ROTATION. 

                                                           
28 In UML this is called “property subsetting,” notated with a textual annotation rather than graphically as 
in Figure 23. 
29 Behaviors have at least one thing involved, whereas relations have at least two related things.  This is 
resolved by introducing another class for behavior relations that is generalized by both behaviors and 
relations, see Section  5.1. 
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Figure 23: Behavior Relations 

 
Behaviors as relations can be used to interconnect elements, as illustrated on the left of 
Figure 8 in Section  2.2.  Connectors of this kind can be specialized in taxonomies, as 
illustrated on the right of that figure.  The model for this is shown in Figure 24.  The 
assembly A specifies that a plate and bracket do not move relative to each other, using 
the behavior defined in Figure 22.  This generalizes two other assemblies, A1.1 and A1.2, 
which achieve the behavior in the different ways.  The connectors are also generalized, as 
shown in the upper right. 
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Figure 24: Generalization of Interconnected Elements Using Behavior 

Generalization 
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4.6 Engineering Modeling Language 
 
This section builds on the models of Section  4.5 to capture common engineering 
concepts, such as product models, requirements, artifacts, and form.  Most of these are 
special cases of the modeling elements of Section  4.5, while some are top-level 
categories.  They provide a framework for development of more specialized engineering 
concepts. 
 
Product models as defined in Section  2.1 describe behaviors and objects involved in 
them, where the: 
 involved objects are the devices being specified and objects in their intended 

environment. 
 behaviors are those of the above objects, including their interaction. 

Product models might place many constraints on the above or very few, or might place 
many constraints on some aspects and few on others.  For example, a model might only 
describe the structure of devices and environmental objects, but not the behavior.  The 
model still describes total systems, but only the structural aspects of them.  Other models 
might focus only on the dynamic aspects, rather than structure. 
 
The modeling language of Section  4.5 is extended for product models as shown in Figure 
25.  Models identify the device among the involved objects with the SPECIFIES relation.  
Other things involved in the model are either inside the device or in the environment of 
its use.  Artifacts are devices specified by product models, as indicated by the minimum 
multiplicity of one on the product model end of the relation.  Things not specified by 
product models are not artifacts.  For example, the moon is not an artifact, because its 
orbiting behavior is not specified by a product model.  Product models generalize 
requirements and designs.  Designs describe the artifact, requirements describe the 
environment in which they are used, see Section  2.2.  M1 product models must fall into 
one of these categories, and fall into both if they describe both environment and device.  
The same M0 total system can conform to multiple M1 models, as in Figure 13.  Other 
specializations of product models can be defined, for example, for those only about 
dynamics, versus those that are only about structure.30  These specializations can be 
combined with requirements and designs, for example, to classify some models as only 
describing the dynamics of the environment (sometimes called “function”). 

Modeling
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(M2)

Behavior
involves

Class

Product Model
specifies

Artifact

1..*

1..*

Requirement Design

1..*

 
Figure 25: Product Model 

                                                           
30 Requirements can be specialized into those concerning the operation of the device and those concerning 
its effect, see footnote 24 in Section  4.4.  
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Artifacts can contain other artifacts, as modeled in Figure 26.  Containment is a kind of 
relation between exactly two artifacts.  The notion of containment has various definitions, 
such as the boundary of the contained artifacts are within the boundaries of the container 
(topological), or that the contained artifacts contribute to the function of the container 
(integral), or that some operations on the container apply to the contents, such as 
movement or destruction (operation propagation).  These definitions and others can be 
modeled as specializations of CONTAINMENT RELATION in Figure 26, but this paper does 
not propose a more detailed categorization [Winston 1987] [Odell 1994]. 
 

Assemblies depend on assembly relations between their contained artifacts, also modeled 
in Figure 26.  Assembly relations are a kind of relation between artifacts.  The notion of 
assembly relation has various definitions, such as contents of the related artifacts are not 
significantly modified in shape when they are brought together.  For example, a table is 
assembled from its top, legs, and fasteners, but a silicon wafer is not assembled from the 
materials contained in it.31 These definitions and others can be modeled as specializations 
of Figure 26, but this paper does not propose a more detailed categorization [Rachuri 
2006].  Assemblies are artifacts composed of interconnected elements (see Section  4.5) 
where at least one connector uses an assembly relation.  Parts are artifacts where no 
connectors use assembly relations.  Individual M0 artifacts are either assemblies or parts, 
but not both (artifacts are a disjoint union of assemblies and parts).  Compound parts have 
containment relations, such as layers on a silicon wafer, while simple parts do not have 
containment relations, such as a piece of steel.  Individual M0 parts are either simple or 
compound, but not both (parts are a disjoint union of simple and compound parts).  The 
model for these categories is shown on the lower right of Figure 26 (omitting the disjoint 
union notations for brevity). 
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relates

Modeling
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Artifact
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2..*

Assembly Relation
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2
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Figure 26: Containment and Assembly Relations, Artifact Taxonomy 
 
 
 
 
 

                                                           
31 Assembly relations are a point of integration with production models, for example to capture 
manufacturing operations [Zha 2006] and tolerancing [Rachuri 2006]. 
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Forms include materials and geometries [Fenves 2008].  They are introduced into the 
modeling language as a specialization of CLASS, to enable generalization at M1, and 
categorization of M0 individuals, as shown in Figure 27.  Individuals conforming to an 
M1 material are objects made only of that material, while individuals conforming to an 
M1 geometry are objects that have a specified shape.  For example, an ingot of steel 
conforms to the M1 STEEL material, while a cylindrically shaped piece of wood conforms 
to the M1 CYLINDER geometry.  The same M0 individual can conform to both a material 
and geometry (the classes are not disjoint), for example, a cylindrically shaped piece of 
steel conforms to both STEEL and CYLINDER.  Taxonomies of materials and geometries 
can be defined, for example, Figure 27 has STAINLESS STEEL and RIGHT CYLINDER 
generalized by STEEL and CYLINDER, respectively.  Other taxonomies might include 
materials that are alloys of other materials, or geometries that apply to both hollow and 
solid objects, but these are not proposed in this paper.  
 
Forms of artifacts are specified by generalization, as shown at the M1 level in Figure 27.  
All pipes are cylindrical, with two kinds, one made of plastic, another of copper.  The M0 
individuals conforming to these also conform to the generalizations, for example, an 
individual stainless steel pipe conforms to both CYLINDER and STAINLESS STEEL.  
Materials at M1 can generalize any artifact that is made completely of a single material, 
including assemblies of parts all made of the same material.  Geometries at M1 can 
generalize any kind of artifact, including assemblies, because geometry is concerned only 
with surfaces, regardless of the composition of the artifact. 
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Figure 27: Form and Artifact 
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Another way for modeling languages to make ontology more familiar to engineers is 
derived relations, for example in assembly and form, as shown in Figure 28. The relations 
are based on (derived from) other information in the M1 model, and notated with a slash 
at the beginning of the name:32 
 
 /ASSEMBLYOF, /SUBARTIFACTOF: Subartifacts in an assembly are derived from 

containment relations.  For example, in Figure 28 CAR is an assembly of ENGINE 
and WHEEL (only one derive link shown at M1 for brevity). 

 
 /MADEOF: The materials in an assembly are the material generalizations of the 

assembly or its components.  For example, in Figure 28 CAR is made of STEEL 
and ALUMINUM (only one derived link shown for brevity). 

 
 /SHAPEDLIKE: The geometries of an artifact are the geometry generalizations.  For 

example, in Figure 28 the geometry of LIGHT HUB is HUB BREP. 
 
Derived relations such as the ones above provide engineers with a familiar view of the 
M1 model while preserving capabilities depending on M0 individuals (M1 generalization  
and categorization of M0 individuals).  They can be added as necessary to tie 
engineering-friendly modeling languages at M2 to product ontologies at M1. 
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Figure 28: Derived Relations 

 
 

                                                           
32 The slash notation is borrowed from derived relations in UML [OMG 2009b]. 
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5 Proof of Concept 
 
This section describes a proof-of-concept implementation of the models in Sections  4.5 
and  4.6, to show they translate reliably to software implementations.    Section  5.1 
discusses the architecture and issues in implementation, and Section  5.2 gives an 
example. 

5.1 Implementation 
 
The proof-of-concept implementation uses the Web Ontology Language (OWL) as a 
modeling language, because of OWL focuses on ontology modeling and has a rigorous 
mapping from M1 to M0 to support reasoning [W3C 2004a].33  OWL enables reliable 
refinement and combination of product models, including consistency checking and 
validation.  OWL does not have composition and behavior models, or explicit metalevels, 
which are added as extensions in the implementation.  UML has these capabilities, but its 
M1 to M0 mapping is not defined well enough to support automated reasoning. 
EXPRESS was not chosen because of its reduced expressiveness and lack of rigorous M1 
to M0 mapping. 
 
The proof-of-concept implementation was developed in Eclipse [Eclipse 2009], on the 
JENA API [SourceForge 2009].  Eclipse and JENA are widely used open source 
platforms for Java and OWL respectively.  The JENA API supports specializations of 
OWL (M2 generalizations), as needed by OPML.  The implementation includes a 
modeling platform API to support modeling levels as described in Section  4.3 and 
composition as described in Sections  2.2 and  4.5 [Liang 2008].34  The modeling level 
support enables access to both the class and individual aspects of M1 elements.  
Composition support includes automatic maintenance of consistency based on modeling 
language rules.  The rest of the models in Sections  4.5 and  4.6 are layered on the 
modeling platform API. 
 
The modeling platform as used in this implementation contains three model spaces, each 
of which holds modeling elements and constraints for a particular modeling level (M2, 
M1, and M0).35  Access to the three modeling spaces is through a programming API or 
OWL files.  Each modeling space in the platform provides operations appropriate to it, 
for example, to define elements in the spaces, and conformance relations between 
elements in different spaces.  Invocations of these operations activate policies registered 
for the elements in the model spaces to maintain consistency.  The policies in the 
implementation are written in JENA rules.  The modeling platform can save the model 
spaces in separate files to facilitate reasoning limited to less than all three spaces. 
 

                                                           
33 OWL is also used a language for specifying the modeling language (metalanguage, see footnote 21 in 
Section  4.3). 
34 The platform supports the composition model of [Bock 2007].  Only the Full level is used in this paper. 
35 The modeling platform supports any number of modeling levels.  The implementation of this paper only 
used three. 
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The steps in developing the implementation were: 
 

1. Construct the base and engineering models and their policies (Jena rules) on the 
modeling platform at the M2 modeling space. 

2. Construct the example product models at in the M1 modeling space. 
3. Construct example individuals conforming to the product models in the M0 

modeling space. 
4. Generate three OWL files for the three model spaces, M2, M1, and M0. 

 

Some aspects of the modeling language were not mentioned for brevity in Sections  4.5 
and  4.6: 
 

 The classes of a relation are specified in sequence.  This gives the proper roles to 
the participants in links conforming to the relation.  For example, in the 
containment relation the container class is first in the sequence. 

 

 The relations specified by a connector are assumed to have the container as the 
first related class (DOMAIN in OWL), even if they are not containment relations.  
Connectors specify relations in the same sequence as the classes of the relation 
that is the contained class of the connector (RANGE in OWL). 

 

 An M2 element is introduced to classify M1 relations for behavior involvement, 
INVOLVEMENTRELATION.  M1 involvement relations classify M0 links between 
occurrences of behaviors and the individuals involved in them.  The first related 
class is the behavior (DOMAIN in OWL, see previous bullet), while the second is 
the involved class (RANGE in OWL).  The range classes must be the same as the 
classes identified by the M2 INVOLVES relation for the behavior.  A corresponding 
M2 element is introduced for SPECIFIES on product models. 

 

 Behavior relations are introduced in the modeling language generalized by 
behaviors and relations.  Behavior relations involve at least two things, which is 
more restrictive than behaviors in general.  Everything involved in behavior 
relations are also related by them.  The elements of the INVOLVES list for behavior 
relations always include the M1 RELATES classes at the beginning of the list.  The 
range classes of the involvement relations must be same as this list, including 
duplicates. 

 

Classes and generalization in the model of Section  4.5 translate directly to OWL classes, 
and relations in the model translate to OWL properties, with some accommodations: 
 

 OWL properties are binary, whereas OPML relations are n-ary.  This is addressed 
by subclassing RELATION from OWL PROPERTY, with the convention that the first 
two elements in the list of classes related by an M1 relation are the same as the 
domain and range as an OWL property. 

 

 Some of the relations in OPML can link to the same element twice, for example, 
RELATES, see Figure 14 in Section  4.5, which OWL properties do not support.  
This is addressed by using lists as the ranges of OWL properties in these cases, 
with the convention that the elements of the list are of the type specified in OPML 
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(for RELATES this is OWL CLASS).  Multiplicities translate to limitations on the 
length of the list.  Lists are also needed to specify sequences of classes, as 
described in the previous bullet. 

 The M0 instances of relations in OPML are “tuples” of the related objects, 
whereas OWL only supports statements (see Resource Description Framework, 
RDF [W3C 2004b]), which combine relation and tuple.  The implementation uses 
statements as M0 instances of M1 relations (M1 relations are subclasses of OWL 
STATEMENT), with the convention that all the statements conforming to an M1 
relation (OWL property) have the relation or one of its specializations as 
predicate.  For behavior relations, two of the involvement relations must be 
subproperties of OWL SUBJECT and OBJECT.   

 

 Subclassing of relations in Section  4.5 translates to subproperties in OWL, except 
when the range is a list, whereupon the elements in the list of a subrelation are in 
the list of the superrelation. 

5.2 Example 
 
This section gives an example using the implementation outlined in Section  5.1.  It is a 
model of fasteners for specific kinds of plates, as shown in Figure 29 (some links 
between M1 and M2 omitted for brevity).  The specified artifact is a fastener, within an 
environment involving two plates.  The requirement is that the two plates must be held in 
fixed a relative position (the requirement and design for the plates is assumed to be 
specified elsewhere).  Two alternative designs satisfy the requirement, one using a bolt 
and the other a rivet.  The M2 level shows some of the modeling language from Sections 
 4.5 and  4.6.  The inset on the right sketches the requirement portion of the M1 model in 
notation from Section  4.5, and the corresponding engineering drawings. 
 
The M1 model centers on PLATE FASTENING REQUIREMENT.  It involves two plates, by 
being the domain of two relations INVOLVESPLATE1 and INVOLVESPLATE2 (behavior 
involvement relations, not shown for brevity).  These are connected with a behavior 
relation, FIXES, ensuring the plates do not move in relation to each other (also shown in 
an M1 notation in the upper right inset).  A fastener is also involved as the specified 
artifact, PLATE FASTENER, but requirements do not constrain artifacts, so it is not 
generalized or elaborated. 
 
The engineer introduces designs to meet the requirement in PLATES FASTENING WITH 

RIVET and PLATES FASTENING WITH BOLT ONLY.  These are generalized by PLATE 

FASTENING REQUIREMENT, to ensure they meet the requirements.  They add design 
constraints on the artifact by: 
 specifying special kinds of rivets and bolts for this application, PLATE RIVET and 

PLATE BOLT. 
 establishing a connection between one of the plates and the fastener (not shown 

on the rivet design for brevity).  These connections use behavior relations 
INTERFERENCEFIT and SCREWFIT, which are generalized by FIXES (generalization 
not shown for brevity). 
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 restricting INVOLVESPLATE1 to RIVETED PLATE and BOLTED PLATE, for the 
domains of INTERFERENCEFIT and SCREWFIT. 

At M0, the total systems FIXED PLATES WITH SMALL RIVET #1 and FIXED PLATES WITH 

SMALL BOLT ONLY #1 conform to the designs for fixing plates by rivet and bolt-only, 
respectively.  Together these involve four individual plates, a bolt and a rivet, conforming 
to the M1 classes of the requirements and designs. 
 
Ontological product modeling enables requirements and designs about the same product 
to be independently specified, and checked for consistency when combined (open world).  
In this example, generalization combines a requirement with a design.  The design can be 
checked for consistency with the requirement, because every M0 individual satisfying the 
subclass (design) also satisfies the superclass (requirement), by the definition of 
generalization, see Section  2.2.  Generalization also enables other designs to be specified 
independently and checked against requirements, because a separate generalization is 
used for each design. 
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Figure 29: Example Implementation of Fastener Requirement and Designs 



 
 

With the above models, three model spaces are constructed at M2, M1, and M0.  OWL 
files are generated using the proof-of-concept implementation.  Figure 30 shows the 
portions of generated M2, M1, and M0 OWL files.36  

M2

M1

M0

<opmbase:Relation rdf:about="http://www.nist.gov/comp/opmeg1#involvesPlate1">
<rdfs:domain>

<opmeng:Requirement rdf:about=
"http://www.nist.gov/comp/opmeg1#PlateFasteningRequirement">

<opmeng:specifies rdf:resource="http://www.nist.gov/comp/opmeg1#PlateFastener"/>
</opmeng:Requirement>

</rdfs:domain>
<rdfs:range rdf:resource="http://www.nist.gov/comp/opmeg1#Plate"/>

</opmbase:Relation>
<opmbase:BehaviorRelation rdf:about="http://www.nist.gov/comp/opmeg1#Fixes">

<rdfs:range>
<opmeng:Part rdf:about="http://www.nist.gov/comp/opmeg1#FixableThing"/>

</rdfs:range>
<rdfs:domain rdf:resource="http://www.nist.gov/comp/opmeg1#FixableThing"/>
<rdfs:subClassOf rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/>

</opmbase:BehaviorRelation>

<owl:Class rdf:about="http://www.nist.gov/comp/opmbase#Connector">
<rdfs:subClassOf>

<owl:Class rdf:about="http://www.nist.gov/comp/opmbase#Relation"/>
<owl:Class rdf:about="http://www.nist.gov/comp/opmeng#ContainmentRelation"/>

</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:about="http://www.nist.gov/comp/opmeng#Artifact">
<rdfs:label>Artifact</rdfs:label>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
<rdfs:equivalentClass>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="http://www.nist.gov/comp/opmeng#Assembly"/>
<owl:Class rdf:about="http://www.nist.gov/comp/opmeng#Part"/>

</owl:unionOf>
</owl:Class>

</rdfs:equivalentClass>
</owl:Class>

<opmeg1:PlateBolt rdf:about="http://www.nist.gov/comp/opmeg0#PlateBoltIndiv1"/>
<opmeg1:PlateRivet rdf:about="http://www.nist.gov/comp/opmeg0#PlateRivetIndiv1"/>
<opmeg1:PlatesFasteningwithBoltOnly

rdf:about="http://www.nist.gov/comp/opmeg0#FixedPlateswithBoltOnly1">
<opmeg1:involvesBolt rdf:resource="http://www.nist.gov/comp/opmeg0#PlateBoltIndiv1"/>
<opmeg1:involvesPlate2 rdf:resource="http://www.nist.gov/comp/opmeg0#BoltedPlate2Indiv">
<opmeg1:involvesPlate1 rdf:resource="http://www.nist.gov/comp/opmeg0#BoltedPlate1Indiv"/>

</opmeg1:PlatesFasteningwithBoltOnly>
<opmeg1:BoltedPlate rdf:about="http://www.nist.gov/comp/opmeg0#BoltedPlate2Indiv">

<opmbase:screwFit rdf:resource="http://www.nist.gov/comp/opmeg0#PlateBoltIndiv1"/>
</opmeng:BoltedPlate>
<opmeg1:PlatesFasteningwithRivet

rdf:about="http://www.nist.gov/comp/opmeg0#FixedPlateswithSmallRivet1">
<opmeg1:involvesRivet rdf:resource="http://www.nist.gov/comp/opmeg0#PlateRivetIndiv1"/>
<opmeg1:involvesPlate2 rdf:resource="http://www.nist.gov/comp/opmeg0#RivetedPlate2Indiv"/>
<opmeg1:involvesPlate1 rdf:resource="http://www.nist.gov/comp/opmeg0#RivetedPlate1Indiv"/>

</opmeg1:PlatesFasteningwithRivet>
<opmeg1:RivetedPlate rdf:about="http://www.nist.gov/comp/opmeg0#RivetedPlate1Indiv">

<opmeg1:interferenceFit rdf:resource="http://www.nist.gov/comp/opmeg0#PlateRivetIndiv1"/>
</opmeg1:RivetedPlate>

Figure 30: Example OWL in Modeling Spaces 
                                                           
36 The M0 level assumes physical behavior occurrences are observed or simulated, then recorded in OWL. 
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6 Future Work 
 
The modeling language described in this paper has a number of limitations to be 
addressed in future work, including: 
 
 Kinematics and tolerances [Rachuri 2006]. 
 Product line modeling, such series, families, versions, and platforms [Wang 2003] 

[Callahan 2006]. 
 More detailed behavior modeling [ISO 2006] [OMG 2008b]. 
 Additional product modeling concepts typically used in engineering. 
 Implementation in other metalanguages, as needed, such as EXPRESS, for 

integration with STEP standards. 
 
The language can be applied in a number of ways: 
 
 Design process specifications require classifications of product models, for 

example, those that are ready for manufacturing.  Classification of product models 
is captured at the M2 level, as are design processes generally. 

 
 Reasoning applications can leverage the relation of M1 and M0 given in this 

paper.  These can provide automated deduction of new information about 
products. 

 
 Other stages of the product lifecycle besides design can benefit form the approach 

of this paper, for example, fabrication, maintenance, and disposal.  These can be 
based on models of the device and its environment for the different areas, such as 
fabrication-of-devices, maintenance-of-devices, and disposal-of-devices. 

 
Benefits of the language can be demonstrated in additional proofs-of-concept: 
 
 Federation of disparate product data sources. 
 Improved management of complex products. 
 Expanded collaboration from engineering to the broader business. 
 Automatic validation of the product knowledge base. 
 Product knowledge capture with increased expressiveness.  
 Enhanced interoperability and maintainability and more effective reuse of 

assembly knowledge. 
 Facilitating function-based conceptual design. 

 

7 Conclusion 
 
This paper describes a product modeling language combining ontology with expanded 
capabilities in conventional product modeling languages to improve support for 
collaborative design over earlier approaches.  The language treats product models as 
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ontological classifications of total systems, including behavior of the environment of 
engineered devices, within a model-based architecture that provides engineer-friendly 
terminology.  It is flexible and accurate in refining, combining, and checking consistency 
of models of the same product from multiple, disparate sources.  The language captures 
partial and high-level product descriptions, and supports reliable interpretation before and 
after model interchange.  Examples are given in a proof-of-concept implementation.  
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