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BOCHNER SUBORDINATION, LOGARITHMIC DIFFUSION

EQUATIONS, AND BLIND DECONVOLUTION OF HUBBLE SPACE

TELESCOPE IMAGERY AND OTHER SCIENTIFIC DATA

ALFRED S. CARASSO∗

Abstract. Generalized Linnik processes and associated logarithmic diffusion equations can be
constructed by appropriate Bochner randomization of the time variable in Brownian motion and the
related heat conduction equation. Remarkably, over a large but finite frequency range, generalized
Linnik characteristic functions can exhibit almost Gaussian behavior near the origin, while behaving
like low exponent isotropic Lévy stable laws away from the origin. Such behavior matches Fourier
domain behavior in a large class of real blurred images of considerable scientific interest, including
Hubble space telescope imagery and scanning electron micrographs. This paper develops a powerful
blind deconvolution procedure based on postulating system optical transfer functions (otf) in the
form of generalized Linnik characteristic functions. The system otf and ‘true’ sharp image are
then reconstructed by solving a related logarithmic diffusion equation backwards in time, using the
blurred image as data at time t = 1. The present methodology significantly improves upon previous
work based on system otfs in the form of Lévy stable characteristic functions. Such improvement
is validated by the substantially smaller image Lipschitz exponents that ensue, confirming increased
fine structure recovery. These results resolve the unexplained appearance of exceptionally low Lévy
stable exponents in previous work on the same class of images. The paper is illustrated with striking
enhancements of gray scale and colored images.

Key words. image deblurring; blind deconvolution; Bochner subordination; generalized Linnik
laws; low exponent Lévy stable laws; fractional and logarithmic diffusion equations; Lipschitz expo-
nents; Hubble space telescope; scanning electron microscope; Whirlpool galaxy; Starburst galaxy.
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1. Introduction. This paper deals with blind deconvolution of a class of real
blurred images of considerable scientific interest, as opposed to synthetically degraded
phantoms. A preselected class of trial optical transfer functions (otfs), not previously
known in image analysis, is shown to produce striking enhancements of Hubble space
telescope images and other astronomical data, as well as useful sharpening of scanning
electron micrographs of interest in Nanotechnology. Such improvements may not be
apparent in the reduced size images in the printed issue of this journal. However,
significant enhancement becomes evident when the on-line version of this paper is
viewed at full size on a modern high resolution device, such as a wide screen, active
matrix, liquid crystal display (LCD) monitor. As noted below, this degree of fine
structure reconstruction is difficult to achieve with existing techniques.

Blind deconvolution seeks to deblur an image without knowing the cause of the
blur. The methodology used here is based on identifying a plausible blurring otf from
within a restricted class of candidate blurs. The choice of trial otfs is governed by the
Fourier domain behavior in the blurred imagery under consideration. Previous work
on the above class of problems [10], [11], was based on candidate otfs in the form
of isotropic Lévy stable characteristic functions [18], [27], [31], and the use of time-
reversed diffusion equations involving fractional powers of the negative Laplacian. An
important observation in [7], [10], [11], is that the successful deblurring otfs are char-
acterized by low Lévy exponents, with typical values less than 0.5, while Gaussian otfs
have exponent 2. Such low values are quite exceptional in applications where Lévy
stable laws appear. The physical origin, if any, of such exponent values is not known.

∗Computing and Mathematical Sciences Laboratory, National Institute of Standards and Tech-
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The present method is based on otfs in the form of generalized Linnik characteristic
functions [16], [26], [32], and the use of time-reversed diffusion equations involving
the logarithm of the negative Laplacian plus the identity. We show that this results
in higher quality reconstructions than previously obtained. This improvement is val-
idated by the substantially smaller image Lipschitz exponents that ensue, confirming
increased fine structure recovery [8], [13]. Moreover, the high frequency behavior in
the successful Linnik deblurring otfs resolves the unexplained appearance of low Lévy
exponents in [10] and [11].

While Linnik otfs have distinctly different behavior near the origin than do Lévy
stable otfs, there is a close connection between these two classes of objects. This con-
nection centers on the notion of Bochner subordination of stochastic processes [5], [6],
[18], [32], whereby a given Markov process X(t), t > 0, is observed in new stochastic
‘operational time’ S(t), rather than in standard clock time t, resulting in the process
X(S(t)). This concept has found fruitful application in several branches of science,
engineering, and finance [1], [15], [19], [20], [35]. In that context, generalized Linnik
characteristic functions describe the family of processes obtained when isotropic Lévy
stable motions are observed in the randomized operational time Γ(t), where for each
t > 0, Γ(t) obeys a Gamma distribution on u ≥ 0. The important special case
of Brownian motion observed in stochastic time Γ(t) is called the Variance Gamma
Process [28], [29]. This has been used successfully in option pricing.

Bochner subordination also plays a role in operator semigroup theory and evo-
lutionary partial differential equations. By combining subordination with the Hille-
Yosida theorem, a functional calculus for semigroup generators is developed in [30],
whereby entirely new semigroups can be created by randomizing the time variable. In
[12], it is shown that the subordinator Γ(t) discussed above is one of a large family of
stochastic time changes with the remarkable property of converting all C0 semigroups
on a given complex Banach space B, into holomorphic semigroups on B.

In this paper, the use of generalized Linnik densities as trial blurring kernels is
primarily motivated by their mathematical properties. The semigroup property of
infinite divisibility [18], [27], [32], the Fourier domain Gaussian-like behavior near the
origin, together with the monotone convex high frequency behavior which imitates
the blurred image data, all play essential roles. We do not claim an actual physical
basis for Linnik otfs, and the significance of this paper ultimately rests on the quality
of the reconstructions. However, our results strongly suggest a possible physical basis
for such Linnik otfs, mediated by subordination as in previously mentioned applica-
tions. While Gaussian otfs, synonymous with Brownian motion, are a standard first
choice in image reconstruction, image acquisition involves the interaction of several
interfacing optical and electronic devices, each producing a small distortion of the
input signal. Additional aberrations may result from the scattering properties of the
medium through which radiation propagates. A significant empirical discovery [21],
[22], [23], is that a large variety of electro-optical imaging devices have otfs given by
Lévy stable characteristic functions. Very recently [3], an optical material was created
with a specific kind of inhomogeneity, in which the scattering of light waves results
in Lévy flights rather than Brownian motion. A prescribed Lévy exponent for this
scattering process can be engineered by proper synthesis of the inhomogeneity. As
is well-known, Lévy stable motions are related to Brownian motion through Bochner
subordination. A second subordination, involving the Γ(t) process, would result in
generalized Linnik otfs. Conceivably, Linnik otfs may play an unsuspected role in
many imaging situations.
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The blind deconvolution procedure presented here is fundamentally different from
such variational blind formulations as [14] and [24]. These methods aim to solve the
blind deconvolution problem in full generality, by minimizing an appropriate cost
functional. Such techniques do not appear useful for the present class of problems.
The method in [14] is primarily intended for ‘blocky’ images, and point spread func-
tions with edges. Other promising approaches such as [2], exploit prior knowledge
of the edge map in the unknown image. Astronomical images are typically diffuse
and partly amorphous, and are very far from being of bounded variation. Use of [14]
tends to eliminate individual star clusters and other localized bright areas, which are
interpreted as unwanted noise. The method in [24] requires a prior guess for the sys-
tem otf. However, even with a good guess, this method often returns a questionable
sharp image associated with a new, but physically impossible otf [9]. If and when
comprehensive blind deconvolution methods become available, the methodology pre-
sented here is likely to remain useful. It can provide independent reconstructions for
comparison, and it can provide valuable initial guesses that might be refined by more
elaborate procedures.

2. Imagery with monotone convex Fourier decay. All images in this paper
are 8-bit images, with pixel values scaled from 0 to 255. Given an image g(x, y), we
define its Fourier transform by

ĝ(ξ, η) ≡
∫

R2

g(x, y)e−2πi(ξx+ηy)dxdy,(1)

and we denote by ‖ g ‖r the Lr(R2) norm of g(x, y). Typically, r = 1 or 2. We also
use the ‘total variation’ seminorm

‖ g ‖TV≡‖ ∇g ‖1 .(2)

In general, a real blurred image g(x, y) contains noise n(x, y) which may be multi-
plicative,

g(x, y) = ge(x, y) + n(x, y), ‖ n ‖r≪‖ ge ‖r, r = 1, 2,(3)

where ge(x, y) denotes the exact blurred image that would have been recorded in the
absence of any errors or noise. Neither ge(x, y) nor n(x, y) are known, only their sum
g(x, y).

The example in Figure 1 is illustrative of a large class of images of galaxies and
other astronomical objects. An original 512×512 pixels Pleiades (M45) image g(x, y),
is shown on the left hand side of Figure 1. Of particular interest is the plot of
log |ĝ(ξ, 0)| vs |ξ|, shown as the dashed curve immediately below. While that trace
is locally highly oscilllatory, it is globally monotone decreasing and convex. The
solid curve p(ξ) captures the gross behavior in log |ĝ(ξ, 0)| away from the origin. The
deblurred image on the right hand side is a good representation of a sharp Pleiades
image f(x, y), and we shall consider f(x, y) to be the ‘true’ Pleiades image for the

purpose of this discussion. We note that log |f̂(ξ, 0)| exhibits a very similar globally
monotone convex trace, whose gross behavior is captured by the solid curve q(ξ).
The curve p decays faster than the curve q. Both p and q were chosen so as to have
a maximum value of 0, attained at ξ = 0. In addition, as shown in the bottom
drawing in Figure 1, the curves log |ĝ(ξ, 0)| and log |f̂(ξ, 0)| are such that away from
the origin, the ratio of these two quantities remains fairly constant, fluctuating around
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 Original   M45      True  M45 ?

Original Pleiades (M45)    True  Pleiades ?

p q

original

true

original/true

Behavior in Fourier transform domain

Fig. 1. Above Pleiades Fourier transform behavior is representative of a large class of images.

Away from the origin, blurred image data log |ĝ(ξ, 0)| on left, and ‘true’ image data log |f̂(ξ, 0)| on

right, exhibit similar highly oscillatory globally convex monotone behavior, but left hand data decays

faster. Moreover, the ratio log|ĝ(ξ, 0)|/ log |f̂(ξ, 0)| remains fairly constant, fluctuating around some

mean value larger than unity.
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some mean value larger than 1. Accordingly,

log |ĝ(ξ, 0)|/ log |f̂(ξ, 0)| ≈ Constant > 1, |ξ| ≫ 1,

p(ξ)/q(ξ) ≈ Constant > 1, |ξ| ≫ 1.

(4)

A comparison of the left and right hand sides in Figure 1 invites the following,
possibly naive, interpretation. Assume that the original image g(x, y) on the left is a
blurred version of the true image f(x, y) on the right, and results from the convolution
of f(x, y) with an isotropic, shift invariant, point spread function h(x, y). Note that
h(x, y) is a 2D probability density function since it is non-negative and integrates to

unity. The Fourier transform of h(x, y) is the optical transfer function ĥ(ξ, η). That
object is necessarily a 2D characteristic function and must obey Bochner’s theorem
on positive definite functions [4], [17]. Since h(x, y) is isotropic, so is ĥ(ξ, η), and we
write

ĥ(ξ, η) = ĥ(ρ), ρ =
√

ξ2 + η2.(5)

Assume further that the characteristic function ĥ(ρ) is positive and monotone decreas-
ing. This is the case for a large class of isotropic otfs, based on Schoenberg’s theorem
on completely monotone functions [17], [33]. With ⊗ denoting convolution in L1(R2),
we have

ge(x, y) + n(x, y) ≡ g(x, y) = h(x, y) ⊗ f(x, y),

log |ĝ(ξ, η)| = log ĥ(ρ) + log |f̂(ξ, η)|,

log |ĝ(ξ, 0)| ∼ p(ξ), log |f̂(ξ, 0)| ∼ q(ξ), |ξ| ≫ 1,

log ĥ(ρ) ∼ p(ρ) − q(ρ), ρ≫ 1.

(6)

Thus, under the preceding assumptions, behavior in ĥ(ρ) away from the origin can be
inferred from that in p− q. In practice, given an original image g(x, y) with Fourier
domain behavior similar to that on the left in Figure 1, we may find p(ξ) but not q(ξ).
However, for a large class of blurred images g(x, y), the a-priori assumption that the
corresponding true image f(x, y) has Fourier behavior similar to that on the right of
Figure 1, and obeys (4), is found to lead to useful reconstructions. Accordingly, using
(4) and (6), we postulate that with some unknown positive constant c < 1

log ĥ(ρ) ∼ (1 − c)p(ρ), ρ≫ 1.(7)

This paper seeks to identify the system otf by a least squares fit to the data log |ĝ(ξ, 0)|
with a suitable monotone decreasing function p(ξ) as above, with p(0) = 0. That
function must be such that for any constant b with 0 < b < 1, the function bp(ρ) is
the logarithm of a characteristic function. This is the case if and only if exp{p(ρ)}
is an infinitely divisible characteristic function [18], [27].

3. Infinitely divisible otfs and subordinated diffusion equations. In the
deconvolution problem h(x, y) ⊗ f(x, y) = g(x, y) to be analyzed below, the targeted
class of images directs attention to the following three types of infinitely divisible
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isotropic otf

ĥ(ρ) = exp(−σρ2), σ > 0, ρ =
√

ξ2 + η2, Gaussian

ĥ(ρ) = exp(−σρα), σ > 0, 0 < α ≤ 2, Lévy stable

ĥ(ρ) = (1 + σρα)
−λ

, σ, λ > 0, 0 < α ≤ 2. Generalized Linnik

(8)

Each of these three types is associated with a diffusion equation. The Gaussian
case, representing Brownian motion, corresponds to the heat equation as is well-
known. The other two types involve stochastic processes and corresponding diffusion
equations that result from randomizing the time variable in Brownian motion. We
show this by introducing the notion of subordinated semigroup [12], [30], [32].

Consider a family of functions {pt(u)} indexed by t ≥ 0 and defined on u ≥ 0,
and such that for each fixed t > 0, pt(u) is a probability density function on u ≥ 0.
Assume that pt(u) ∗ ∗ps(u) = pt+s(u), where ∗ ∗ denotes convolution on u ≥ 0, and
that pt(u) → δ(u) as t ↓ 0. For fixed t > 0, the Laplace transform of pt(u) is defined
by

L(pt) =

∫ ∞

0

pt(u)e
−uzdu, Re z > 0.(9)

Definition 1. A Bochner subordinator is a family {pt(u)} as defined above, such
that L(pt) = exp{−tψ(z)}, where ψ(z) is holomorphic for Re z > 0 and continuous
for Re z ≥ 0, with Re ψ(z) ≥ 0. Moreover, ψ(0) = 0, and ψ′(x) is completely
monotone on x > 0. The function ψ(z) is called the Bernstein function.

The following two subordinator examples, involving the Gamma and Inverse
Gaussian families respectively, yield closed form expressions.

pt(u) = {Γ(λt)}−1σ−λtuλt−1e−u/σ, σ, λ > 0, L(pt) = (1 + σz)−λt,

pt(u) = {te−t2/4u}/
√

4πu3, L(pt) = e−t
√
z .

(10)

The Inverse Gaussian is the special case β = 1/2 of the important Lévy subordinator
family of index β, where 0 < β ≤ 1. For β 6= 1/2, this subordinator is not known in
closed form and is defined implicitly by

pt(u) = L−1(e−tz
β

), Re z > 0.(11)

In the above, whenever multivalued Bernstein functions ψ(z) appear, the particular
branch of ψ(z) such that Re ψ(z) > 0 on Re z > 0, is always understood.

Let U(t) be the operator semigroup e−tA associated with the well-posed linear
evolution equation wt = −Aw, t > 0, w(0) = f , in a Banach space B. Bochner
subordination involves randomizing the time variable in U(t) as follows. Let {pt(u)}
be a Bochner subordinator with Bernstein function ψ(z), and define a new semigroup
T (t) by

T (t)f =

∫ ∞

0

pt(s)U(s)fds, f ∈ B(12)

Formally, T (t) is the semigroup e−tψ(A) associated with the well-posed linear evolution
equation wt = −ψ(A)w, t > 0, w(0) = f . See [12], [30], [32].
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Next, let A be a linear partial differential operator in the space variables in R2,
with constant coefficients. Let ĥ(ξ, η, t) denote the Fourier transform of the Green’s

function for the linear evolution equation wt = −Aw. The Green’s function ĥψ(ξ, η, t)

for wt = −ψ(A)w can be obtained from ĥ(ξ, η, t), using the composition law for
subordinated characteristic functions [32, Chapter 6],

ĥψ(ξ, η, t) = exp
[

−tψ(− log{ĥ(ξ, η, 1)})
]

.(13)

We may now apply the foregoing analysis to discover the diffusion equations associated
with (8). We begin with the well-posed forward heat equation and its Gaussian
Green’s function

wt = a∆w, t > 0, a > 0,

ĥ(ξ, η, t) = exp(−tσρ2), σ = 4aπ2, ρ =
√

ξ2 + η2.
(14)

Lévy subordination with ψ(z) = zβ in (14), leads to a well-posed forward fractional
diffusion equation, with a Lévy stable Green’s function

wt = −
[

b(−∆)β
]

w, t > 0, b > 0, 0 < β ≤ 1,

ĥ(ξ, η, t) = exp(−tδρ2β), δ = b(4π2)β , ρ =
√

ξ2 + η2.

(15)

Next, Gamma subordination with ψ(z) = λ log{1+σz} in (15), results in a well-posed
forward logarithmic diffusion equation, with a generalized Linnik Green’s function

wt = −
[

λ log{1 + c(−∆)β}
]

w, t > 0, c > 0, 0 < β ≤ 1,

ĥ(ξ, η, t) = (1 + γρ2β)−λt, γ = c(4π2)β , ρ =
√

ξ2 + η2.

(16)

The generalized Linnik process may also be viewed as resulting from a single subor-
dination of Brownian motion with the Bernstein function ψ(z) = λ log(1 + σzβ).

Given the deconvolution problem h(x, y) ⊗ f(x, y) = g(x, y), with a known otf

ĥ(ξ, η) in the form of one the three types in (8), we view ĥ(ξ, η) as the Green’s

function ĥ(ξ, η, t) at time t = 1, in the corresponding forward evolution equation
wt = −Lw, in one of (14), (15), or (16). Deconvolution is mathematically equivalent
to solving wt = −Lw backwards in time, given the noisy blurred image g(x, y) as data
at time t = 1. For 0 < t < 1, w(x, y, t) is a partially deblurred image. The fully
deblurred image f(x, y) is the solution at time t = 0.

Such backwards continuation in diffusion equations is notoriously ill-posed. The
SECB method, (see [25] for an up to date discussion), is a well-regularized continuation
procedure that takes into account the presence of noise in g(x, y) at t = 1. With n(x, y)
as in (3), let constants ǫ, M, be given such that

‖ w(0) ‖2≡‖ f ‖2≤M, ‖ w(1) − g ‖2≡‖ n ‖2≤ ǫ, ǫ≪M.(17)

For any constant K > 0 such that K ≪M/ǫ define s∗ by

s∗ = log {M/(M −Kǫ)} / log(M/ǫ).(18)

The slow evolution constraint applied to the backwards solution of wt = −Lw requires
that there exist a known small constant K > 0 and a known fixed s≫ s∗, such that

‖ w(s) − w(0) ‖2≤ Kǫ.(19)
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Given the regularization parameters K and s, the SECB solution is that initial value
w†(x, y, 0) = f †(x, y) which minimizes

‖ w(1) − g ‖2
2 +K−2 ‖ w(s) − w(0) ‖2

2,(20)

over all choices of initial values w(x, y, 0) in L2.
We may find the SECB deblurred image f †(x, y) in closed form in the Fourier

transform domain. We have, with z denoting the complex conjugate of z,

f̂ †(ξ, η) =
ĥ(ξ, η, 1) ĝ(ξ, η)

|ĥ(ξ, η, 1)|2 +K−2|1 − ĥs(ξ, η, 1)|2
,(21)

leading to f †(x, y) upon inverse transforming. Of particular interest is the partially
deblurred image w†(x, y, t) defined by

ŵ†(ξ, η, t) =
ĥ(ξ, η, t) ĥ(ξ, η, 1) ĝ(ξ, η)

|ĥ(ξ, η, 1)|2 +K−2|1 − ĥs(ξ, η, 1)|2
, 0 ≤ t < 1.(22)

This can be efficiently implemented using FFT algorithms.

4. Blind deconvolution by marching backwards in time. As indicated in
Section 2, given an image g(x, y), we seek to identify the system otf by a least squares
fit to the data log |ĝ(ξ, 0)| with a suitable monotone decreasing function p(ξ) with
p(0) = 0, as in Figure 1. The function p(ρ) is chosen so that exp{p(ρ)} is one of the
three characteristic function types in (8). We then define

ĥ(ξ, η, t) = exp{tp(ρ)}, 0 ≤ t ≤ 1, ρ =
√

ξ2 + η2.(23)

where ĥ(ξ, η, t) is the Green’s function for the corresponding diffusion equation in
one of (14), (15), or (16). Using this in (22), together with g(x, y) as data at t = 1,
great benefit derives from the ability to perform the deconvolution in slow motion by
marching backwards in time in the diffusion equation wt = −Lw. Recall that from
(7), the system otf satisfies log ĥ(ρ) ∼ (1−c)p(ρ), ρ≫ 1, for some unknown positive

constant c < 1. Continuation all the way to t = 0 in (22), with ĥ(ξ, η, t) as in (23), is
equivalent to falsely setting c = 0 in (7). This necessarily produces oversharpening.
Displaying the evolution of w†(x, y, t) as t decreases from 1 to 0, allows for monitoring
the deblurring process. At first, the partially deblurred images w†(x, y, t) become
sharper and slightly noisier as t decreases. However, as expected, ringing, noise,
and other artifacts begin to appear, indicating that continuation has proceeded too
far. Diagnostic statistical information about w†(x, y, t) can also be calculated for
selected values of t, as t decreases. Of particular interest are the discrete L1 norm
‖ w†(., t) ‖1, and the discrete TV norm ‖ ∇w†(., t) ‖1. In well-behaved deconvolution,
image flux is conserved, and ‖ w†(., t) ‖1 remains constant as t ↓ 0. At the same time,
‖ ∇w†(., t) ‖1 increases monotonically, reflecting the gradual sharpening of edges and
other localized singularities. Such visual and statistical monitoring enable selection of
an optimal image w†(x, y, t), which is found at some t > 0. Terminating continuation
at t > 0, is equivalent to redefining p(ρ) in (23) to be p(ρ) = (1 − t)p(ρ), and
then selecting the image at t = 0 as optimal. Clearly, t corresponds to the unknown
constant c in (7).

In practice, the true system otf is seldom found, and the image L1 norm may
show a modest increase as t decreases from t = 1 to t = t. Conservation of L1 norm
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Levy fit

Linnik
      fit

Linnik

Levy

Behavior near the origin

Least squares fit in M51

Fig. 2. Blurred M51 image data log |ĝ(ξ, 0)| can be well-fitted with a Lévy stable otf, as well

as with a generalized Linnik otf. Both otfs have similar behavior away from the origin, but differ

fundamentally near the origin. This difference will play a crucial role.
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Original M51 Levy deblur Linnik deblur

Lipschitz exponents in Whirlpool image

Fig. 3. Logarithmic diffusion equation produces higher quality reconstruction of Whirlpool

galaxy image than does fractional diffusion equation. Such differences in quality are reflected in the

smallness of the image Lipschitz exponent, which equals twice the slope of the corresponding Σ line.

Here, Original image has Lip α = 0.39, Lévy image has Lip α = 0.21, and Linnik image has Lip

α = 0.13.

in w†(x, y, t) can be enforced for any desired t, by rescaling w†(x, y, t) to the value
‖ g ‖1. Moreover, as emphasized in [7, Figure 1], given a blurred g(x, y), there may

be infinitely many distinct otfs ĥ(ξ, η) that can competently deblur that image.

5. Logarithmic vs fractional diffusion in Whirlpool galaxy image. We
shall now demonstrate the significance of the preceding developments by applying
them to sharpen real blurred images with unknown blurs, subject to real but un-
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known noise processes. Our first example is a 1024× 1024 pixels image g(x, y) of the
Whirlpool galaxy (M51), taken by Travis Rector and Monica Ramirez at the Kitt
Peak National Observatory (NOAO/AURA/NSF), (National Optical Astronomy Ob-
servatory/Associated Universities for Research in Astronomy/National Science Foun-
dation).

In Figure 2, we examine the data log |ĝ(ξ, 0)|. With ρ =
√

ξ2 + η2, we first con-

sider a Lévy stable fit using ĥ(ρ) = exp(−δρ2β), δ > 0, 0 < β ≤ 1. While a Gaussian
otf (β = 1.0) is an allowed possiblity, the monotone convexity property in log |ĝ(ξ, 0)|
results in a least squares fit with δ = 1.07, β = 0.15. Next, with w(x, y, 1) = g(x, y),
we solve the fractional diffusion equation wt = −

[

b(−∆)β
]

w, 0 ≤ t ≤ 1, b =
δ(4π2)−β , backwards in time, using an FFT implementation of (22). With the regu-
larization parameters K = 40.0, s = 0.001, the optimal image was found at t = 0.75.
The L1 norm was conserved on t ≤ t ≤ 1.0, while the TV norm increased almost
fourfold. The reconstructed image is the middle image at the top of Figure 3. The
value β = 0.15 for the Lévy exponent, is much lower than what is typically found in
most physical applications of Lévy stable laws.

The analysis in Section 2 emphasizes the behavior of ĥ(ρ) away from the origin,
and makes it plausible that the system otf might be identifiable from that behavior.
For blurred imagery with monotone convex Fourier decay, low exponent Lévy stable
laws are natural candidate otfs in blind deconvolution. The fundamental observation
of this paper is that there exist otfs with behavior away from the origin that is
almost identical to that in low exponent Lévy stable laws, yet with behavior near
the origin that is almost Gaussian. Indeed, consider a generalized Linnik fit to the
same M51 data log |ĝ(ξ, 0)|, using ĥ(ρ) = (1 + γρ2σ)−λ, γ, λ > 0, 0 < σ ≤ 1,
as shown in Figure 2. This results in σ = 0.86, γ = 0.09, λ = 0.821. The bottom
drawing in Figure 2 illustrates the major difference between Levy and Linnik otfs
near the origin. We next solve the backwards in time logarithmic diffusion problem,
wt = − [λ log{1 + c(−∆)σ}]w, c = γ(4π2)−σ, 0 ≤ t ≤ 1, w(x, y, 1) = g(x, y).
Here, with K = 40.0, s = 0.001 in (22), we now find the optimal image at t = 0.65.
Again the L1 norm was conserved on t ≤ t ≤ 1.0, but the TV norm increased almost
sevenfold. The reconstructed image is the rightmost image at the top of Figure 3.

Clearly, while the Lévy deblurred image significantly sharpens the original, the
Linnik deblurred image provides higher quality reconstructions of the spiral arms,
dustlanes, and galactic cores. The image Lipschitz exponent, discussed below, is a
valuable image metrology tool that can measure the extent of fine structure recovery
in deblurring, and can quantify any improvement produced using logarithmic rather
than fractional diffusion equations. This tool will be used throughout this paper.

6. Fine structure recovery and image Lipschitz exponents. An image
f(x, y) has L1 Lipschitz exponent α, if and only if

∫

R2

|f(x+ h1, y + h2) − f(x, y)|dxdy ≤ Const |h|α, |h| → 0,(24)

where |h| = (h2
1+h2

2)
1/2, and α is fixed with 0 < α ≤ 1. Most images are not smoothly

differentiable functions of x and y, but display edges, localized sharp features, and
other significant fine scale details or texture. The Lipschitz exponent measures the fine
structure content of an image, provided that image is relatively noise free. The value
of α decreases with increasing fine structure. An image that is of bounded variation,
or smoother, has α = 1. Most natural images have α < 0.6, and are not of bounded
variation. Images of starfields, galaxies, and clusters of galaxies, often have α < 0.3.
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In [8], [13], an effective method for estimating image Lipschitz exponents is de-
veloped, based on a major theorem in [34]. For fixed τ > 0, define the linear operator
Gτ by means of the Fourier series

Gτf =

∞
∑

ξ,η=−∞
exp{−τ(ξ2 + η2)}f̂(ξ, η) exp{2πi(xξ + yη)}.(25)

Let µ(τ) =‖ Gτf − f ‖1 / ‖ f ‖1, be the L1 relative error in approximating f with
Gτf . An image f(x, y) has Lipschitz exponent α if and only if µ(τ) = O(τα/2) as
τ ↓ 0. Using FFT algorithms, (25) can be evaluated for each fixed τn > 0 in a sequence
{τn} tending to zero, together with µ(τn). By plotting µ(τn) vs τn on a log-log scale,
positive constants C and α can be located such that µ(τ) ≤ C τα/2 as τ ↓ 0.

The three solid curves in the bottom drawing in Figure 3, are plots of µ(τ) vs τ
for each image in Figure 3. Each plot is majorized by a dashed straight line Σ. The
Lipschitz exponent α of each image is equal to twice the slope of the corresponding
Σ line. Accordingly, the original M51 image has Lip α = 0.39. The Lévy deblurred
image has Lip α = 0.21, indicating significant sharpening of the original. However,
the Linnik deblurred image has Lip α = 0.13, a striking improvement.

7. Tail behavior in physical space and mysterious Lévy exponents. The
improved reconstruction of M51 using the Linnik otf, is directly traceable to the
difference in behavior near the origin in the bottom drawing in Figure 2. As can
be inferred from that drawing, selecting the Lévy otf rather than the Linnik otf,
implicitly declares the low frequencies in the blurred image g(x, y) to be significantly
more attenuated than would be implied by the Linnik otf. Consequently, in deblurring
with the fractional diffusion equation, such low frequencies are necessarily amplified
to a larger extent than would occur using the logarithmic diffusion equation. Such
spurious overamplification causes saturation and loss of resolution in the galactic cores
and spiral arms in the Lévy image. To mitigate this effect, the exit point t in the
Lévy case must generally be chosen larger than in the Linnik case, which leads to less
sharpening. As shown in Figure 4, such Lévy image saturation phenomena near the
galactic cores are fairly common. As will be seen below, Linnik otf behavior near the
origin plays a beneficial role in all the blind deconvolution experiments in this paper.

In physical (x, y) space, both the isotropic 2D Lévy stable and generalized Linnik
probability densities are heavy-tailed densities. However, although the corresponding
characteristic functions can have the almost identical high frequency behavior shown
in Figure 2, the tail behavior in physical (x, y) space is distinctly different. Indeed,
such tail behavior is directly related to the smoothness of the characteristic function
near the origin in Fourier (ξ, η) space. The following important results may be found
in [26].

ĥLevy(ξ, η) = exp(−δρ2β), δ > 0, 0 < β < 1, ρ =
√

(ξ2 + η2),

hLevy(x, y) = O
(

R−2−2β
)

, R ↑ ∞, R =
√

(x2 + y2).

(26)

ĥLinn(ξ, η) = (1 + γρ2σ)−λ, γ, λ > 0, 0 < σ < 1, ρ =
√

(ξ2 + η2),

hLinn(x, y) = O
(

R−2−2σ
)

, R ↑ ∞, R =
√

(x2 + y2).

(27)
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Levy deblur

Orig NGC3310Orig M61

Levy deblur

Linnik deblur Linnik deblur

Fig. 4. Fractional diffusion processing generally causes saturation and loss of resolution near

galactic cores, due to the behavior of Lévy stable otfs near the origin, as shown in Figure 2. The

use of logarithmic diffusion avoids this difficulty.
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Applied to the M51 image in Figure 3, where δ = 1.07, β = 0.15, σ = 0.86, γ = 0.09,
and λ = 0.821, this leads to

hLevy(x, y) = O
(

R−2.3
)

, hLinn(x, y) = O
(

R−3.72
)

, R ↑ ∞.(28)

Thus, the Linnik density has a much thinner tail than the Lévy density in physical
space. In summary, in the Whirlpool galaxy image in Figure 3, the successful gen-
eralized Linnik point spread function has the tail behavior of a Lévy stable density
with exponent β = 0.86 in physical (x, y) space, but the high-frequency behavior of
a stable density with β = 0.15 in Fourier (ξ, η) space. Similar behavior character-
izes the successful Linnik otfs in other blind deconvolution experiments in this paper.
This result resolves the unexplained appearance of exceptionally low Lévy exponents
in the detected successful Lévy otfs in [10] and [11]. Clearly, such low exponents
are not physically meaningful, but stem from choosing Lévy stable otfs, rather than
generalized Linnik otfs, to match the blurred image data in [10] and [11].

8. Logarithmic diffusion and Hubble space telescope imagery. It is re-
markable that the seemingly naive methodology developed in the previous sections
can be useful in improving Hubble imagery. However, in many cases, faint background
objects can be made more visible, and the structure of foreground objects can become
more clearly defined. This appears to be possible for the third-generation instrument
known as the Advanced Camera for Surveys (ACS), recently repaired in May 2009, as
well as for the ‘workhorse’ Wide Field and Planetary Camera 2, (WFPC2), replaced
with WFPC3 in May 2009. Access to the on-line version of this paper will be helpful
in the subsequent discussion. Credit for the three images to be deconvolved below
includes NASA, (National Aeronautics and Space Administration), ESA, (European
Space Agency), the Hubble Heritage Team (STScI/AURA), (Space Telescope Science
Institute/Association of Universities for Research in Astronomy), A. Riess (STScI),
and K. Noll (STScI).

1. Pinwheel galaxy NGC 1309. The example at the top of Figure 5 is a February
2006 Hubble telescope image of the spiral galaxy NGC 1309. The image was taken
with Hubble’s most powerful camera, the Advanced Camera for Surveys. NASA de-
scribes this image as featuring bright bluish clusters of star formation, together with
dust lanes spiraling into a yellowish central core of older-population stars. The im-
age is complemented by far-off background galaxies. This galaxy is also home to a
supernova that can help astronomers measure the expansion rate of the universe.

Considerable enhancement of these features is possible using logarithmic diffu-
sion. The color image was broken up into its constituent red, green, and blue com-
ponent images (RGB), and each component was treated in turn. For each compo-

nent, log |ĝ(ξ, 0)| was best-fitted with the generalized Linnik otf expression ĥ(ρ) =
(1 + γρ2σ)−λ, γ, λ > 0, 0 < σ ≤ 1. For the blue component, this results in
γ = 0.174, λ = 0.653, and σ = 0.88. Otfs for the other two components were found to
differ only slightly from the blue component otf. The latter was therefore used for all
three components. We next solve the backwards in time logarithmic diffusion problem,
wt = − [λ log{1 + c(−∆)σ}]w, c = γ(4π2)−σ, 0 ≤ t ≤ 1, w(x, y, 1) = g(x, y), using
(22). In all three cases, with the regularization parameters K = 40.0, s = 0.001, and
with t = 0.7, the L1 norm was conserved on 1 ≤ t ≤ t, while the TV norm increased
fivefold.

The Linnik deblurred image is shown at the bottom of Figure 5. At the outskirts
of that image, several far-off galaxies have become more visible, and the scythe-shaped
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Original HST NGC1309

  Linnik deblur

Fig. 5. Successful blind deconvolution of Hubble space telescope NGC 1309 image. Original

blue component image has Lip α = 0.25. Linnik blue component has Lip α = 0.09.
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Linnik  deblur

Original HST NGC6050

Fig. 6. Successful blind deconvolution of Hubble space telescope NGC 6050 image. Original

blue component image has Lip α = 0.28. Linnik blue component has Lip α = 0.15.
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Original HST NGC3310

   Linnik deblur

Fig. 7. Successful blind deconvolution of Hubble space telescope NGC 3310 image. Original red

component image has Lip α = 0.26. Linnik red component has Lip α = 0.14.
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Original SEM

Linnik deblur

Fig. 8. Blind deconvolution of scanning electron micrograph of complex crystalline structure

recovers numerous surface particles and other fine detail. Original image has Lip α = 0.37. Linnik

image has Lip α = 0.20.
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Original SEM

Linnik deblur

Fig. 9. Blind deconvolution of scanning electron micrograph of slab like crystalline structure

recovers fine scale detail. Note improvement in corner structures. Original image has Lip α = 0.48.
Linnik image has Lip α = 0.25.
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structure at eleven o’clock is now brighter and more clearly defined. Previously barely
visible outer spiral arms have been recovered, along with a multitude of previously
faint stars. Within the galaxy’s main body, the bluish star clusters along the spiral
arms, and the dust lanes, are now much better resolved.

Evidently, significant fine-structure reconstruction was achieved, and this is re-
flected in Lipschitz exponents. For the blue component, the original image has Lip
α = 0.25, while the Linnik image has Lip α = 0.09. Lévy deblurring of the blue
component required termination at t = 0.8, and displayed loss of resolution due to
saturation. That image had Lip α = 0.12.

2. Colliding galaxies NGC 6050. The example at the top of Figure 6 involves
a spectacular collision between two spiral galaxies. That image is part of a large col-
lection of similar images released by NASA in April 2008. Acquired using Hubble’s
Wide Field and Planetary Camera 2, the image represents a rarely observed snapshot
of a galactic merger thought to require several hundred million years to complete.
It is believed that the Milky Way and Andromeda galaxies will eventually merge in
similar fashion.

In applying logarithmic diffusion to this image, distinct generalized Linnik otfs
ĥ(ρ) = (1+ γρ2σ)−λ, γ, λ > 0, 0 < σ ≤ 1, were obtained for each RGB component.
The (γ, λ, σ) triplet for each component was as follows: red = (0.195, 0.692, 0.85);
green = (0.201, 0.643, 0.88); and blue= (0.151, 0.684, 0.83). We next solve the
backwards in time logarithmic diffusion problem, wt = − [λ log{1 + c(−∆)σ}]w, c =
γ(4π2)−σ, 0 ≤ t ≤ 1, w(x, y, 1) = g(x, y), using (22). In all three cases, with
K = 100, s = 0.001, and t = 0.75, the L1 norm was conserved on 1 ≤ t ≤ t, while
the TV norm increased by a factor of about 3.5.

The Linnik image at the bottom of Figure 6 is noticeably brighter, and displays
better resolution of the structural details in the two galaxies. Bluish young star clus-
ters along spiral arms are better defined, together with dust lanes spiraling around the
three cores of older stars. Background galaxies have become more visible. As a result,
significant reduction in Lipschitz exponents was recorded. For the blue component,
the original image has Lip α = 0.28, while the Linnik image has Lip α = 0.15. Lévy
deblurring of the blue image resulted in Lip α = 0.18.

3. Starburst galaxy NGC 3310. The example at the top of Figure 7 is a September
2001 Hubble telescope image of the Starburst galaxy NGC 3310, acquired using the
Wide Field and Planetary Camera 2. That galaxy is of great interest to astronomers
as it is known to produce clusters of new stars at a prodigious rate. Several hundred
such clusters are visible as bright blue diffuse objects around the galaxy’s spiral arms,
each cluster representing up to a million stars.

In applying logarithmic diffusion to this image, the Linnik otf parameters for the
red component were found to be γ = 0.328, λ = 0.557, and σ = 0.92. The red and
blue otfs almost coincided, while the green otf differed slightly. Accordingly, the red
image otf was used for all three components. We next solve the backwards in time
logarithmic diffusion problem, wt = − [λ log{1 + c(−∆)σ}]w, c = γ(4π2)−σ, 0 ≤ t ≤
1, w(x, y, 1) = g(x, y), using (22). In all three cases, with K = 40.0, s = 0.001, and
t = 0.75, the L1 norm increased by about 3% on 1 ≤ t ≤ t, with a threefold increase
in TV norm.

The Linnik deblurred image at the bottom of Figure 7 shows significant recovery
of blue clusters of young stars at the periphery of the image; also, there is noticeable
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enhancement of structural detail in the main body of the galaxy, and in the surround-
ing dust lanes. In contrast, Lévy deblurring tends to produce saturation and loss of
resolution near the core, as previously shown in Figure 4. For the red component, the
original image has Lip α = 0.26, while the Linnik image has Lip α = 0.14. The Lévy
image has Lip α = 0.16.

9. Scanning electron micrographs. There are other important classes of im-
ages which display the monotone convex behavior described in section 2, and for
which logarithmic diffusion deconvolution may be useful. One such class is scanning
electron micrographs. In this section, we revisit experiments previously described in
[11], and we verify that Linnik otfs can improve substantially on previous results. The
two images considered here were taken by John Small at NIST. They are micrographs
of a complex multiform crystalline compound of mercury. The author expresses his
gratitude to Dr. David S. Bright (NIST) for making these images available.

The example at the top of Figure 8 has complex crystalline structure and fine scale
surface detail that are of interest. The Linnik otf parameters for log |ĝ(ξ, 0)| were found
to be γ = 0.0266, λ = 0.5496, and σ = 0.89. We next solve the backwards in time
logarithmic diffusion problem, wt = − [λ log{1 + c(−∆)σ}]w, c = γ(4π2)−σ, 0 ≤
t ≤ 1, w(x, y, 1) = g(x, y), using (22). With K = 50.0, s = 0.001, and t = 0.6, the
L1 norm was conserved on 1 ≤ t ≤ t, with a threefold increase in TV norm. The
Linnik image at the bottom of Figure 8 shows recovery of numerous surface particles
and other detail, and the complex morphology has become better defined. Deblurred
image quality is particularly noticeable in this example. The original image has Lip
α = 0.37, and the Linnik image has Lip α = 0.20. The Lévy image was terminated at
t = 0.7 and had Lip α = 0.25.

The slab like structure at the top of Figure 9 also exhibits interesting surface
detail. The Linnik otf parameters were found to be γ = 0.022, λ = 0.776, and
σ = 0.86. With K = 50.0, s = 0.001, and t = 0.7, the L1 norm was conserved on
1 ≤ t ≤ t, with a threefold increase in TV norm. Here again, slab surface details are
well-recovered, and the two corner structures reveal interesting small scale granularity.
The original image has Lip α = 0.48, and the Linnik image has α = 0.25. The Lévy
image was terminated at t = 0.75 and had Lip α = 0.34.

Table 1 below summarizes the changes in image Lipschitz exponents recorded in
each of the six deconvolution experiments in this paper. Linnik deblurring consistently
produces smaller Lipschitz exponents than does Lévy deblurring. The last column in
Table 1 is especially noteworthy.

TABLE 1

Lipschitz exponents before and after deconvolution

Image Original Lip Lévy Lip Linnik Lip Linnik/Orig
M 51 α = 0.39 α = 0.21 α = 0.13 33 %

NGC 1309 α = 0.25 α = 0.12 α = 0.09 36 %
NGC 6050 α = 0.28 α = 0.18 α = 0.15 53 %
NGC 3310 α = 0.26 α = 0.16 α = 0.14 54 %

SEM Crystal α = 0.37 α = 0.25 α = 0.20 54 %
SEM Slab α = 0.48 α = 0.34 α = 0.25 52 %
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10. Concluding remarks. A priori knowledge about the solution is an essential
element in the successful computation of ill-posed inverse problems. Such knowledge
informs the construction of the blind deconvolution procedure discussed in this paper.
This methodology was shown to be capable of producing credible reconstructions in
two distinct classes of real blurred images with real noise, one at the nanoscale, and
the other at the cosmological scale. These two classes are acquired using distinct
imaging modalities and are of considerable scientific interest. The accompanying
sizeable reduction in Lipschitz exponents is highly significant.

This work substantially improves on previous work on the same classes of images
[10], [11], based on isotropic Lévy stable otfs. Low Lévy exponents were found nec-
essary to accomodate the Fourier behavior in the blurred image data. As shown in
section 3, Lévy stable motions are related to Brownian motion through subordination.
The present work is based on a new class of otfs that have the same high frequency
behavior as low exponent stable otfs, but behave like high exponent stable laws near
the origin. Such generalized Linnik otfs result from subordination of Lévy stable mo-
tions by the Gamma process, and their behavior near the origin was shown to play a
vital role in fine structure recovery. The compelling quality of the new reconstructions
strongly suggests that the detected generalized Linnik otfs that produce these results,
must emulate essential aspects of the true system otfs in the two classes of images.
Linnik otfs are not currently known in image analysis.

Sixty years after its introduction in [5], Bochner’s seminal mathematical idea con-
tinues to yield a rich harvest of important applications.
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