
 NISTIR 7626

Formal Representation of Product
Design Specifications for Validating

Product Designs

Alex Weissman
Satyandra K. Gupta

Xenia Fiorentini
Rachuri Sudarsan

Ram D. Sriram

NISTIR 7626

Formal Representation of Product
Design Specifications for Validating

Product Designs

Alex Weissman
Satyandra K. Gupta

Xenia Fiorentini
Rachuri Sudarsan

Ram D. Sriram
Manufacturing Systems Integration Division

Manufacturing Engineering Laboratory

August 2009

U.S. Department of Commerce
Gary Locke, Secretary

National Institute of Standards and Technology

Patrick D. Gallagher, Deputy Director

Abstract
Large scale distributed design projects increasingly result in designs that do not fully

conform to the stated design goals or specifications. Hence, there is a need to validate these
designs against various requirements. For projects with a large set of requirements and design
features, this can be difficult to do manually. Formalizing the representation of requirements and
the design solution will allow software tools to be developed that can automate the validation
process.

In this report, we propose a formal approach for relating product requirements to the design
solution of electro-mechanical products. First, we present a formal model for representing
product requirements. Then, we introduce the Core Product Model (CPM) and the Open
Assembly Model (OAM) for representing the design solution. Finally, we link these models
formally and provide an example with an actual consumer device.

Table of Contents

Table of Contents .. 3

Index of Figures .. 4

1 Introduction ... 1

2 Literature review.. 3

3 Formalizing the Product Design Specification .. 5

3.1 Overview .. 6

3.2 Requirement Categories and Definition Templates ... 9

3.3 Taxonomies of Statement Words ... 12

3.4 Validation ... 14

3.5 Formalized PDS for the Automatic Pot Stirrer .. 15

4 Core Product Model and Open Assembly Model .. 16

4.1 Description of CPM and OAM .. 17

4.2 CPM and OAM for representing the Automatic Pot Stirrer ... 19

5 Tracing Design Elements to Requirement Statements .. 23

5.1 Linking and Labeling Criteria .. 23

5.2 A formal approach for linking requirements to design elements 24

5.3 Application of Tracing Statements ... 28

6 Conclusions and Future Work ... 28

Disclaimer ... 30

7 References ... 30

Appendix A: State Transition Diagram of lifecycle categories. .. i

Appendix B: Taxonomy of Attributes. ... ii

Appendix C: Taxonomy of Verbs .. iii

Appendix D: Sample XML Representation of Product Requirement ... vi

Appendix E: Full Formalized PDS for Automatic Pot Stirrer .. vii

Index of Figures

Figure 1: Overview of the project ... 3

Figure 2: Sample requirements statements from PDS for Drywall Taping System [12] 6

Figure 3: Tagging components of a requirement statement .. 7

Figure 4: A sample taxonomy of kitchen appliances based on primary working principle. 8

Figure 5: Product lifecycle categories for requirement statements. .. 10

Figure 6: A sample object taxonomy typically encountered by kitchen appliances. 13

Figure 7: Taxonomy of units associated with subset of attributes .. 14

Figure 8: Sample requirements from PDS for Automatic Pot Stirrer ... 16

Figure 9: CPM and OAM classes relevant to PDS linking ... 18

Figure 10: Automatic Pot Stirrer components .. 19

Figure 11: Assemblies and Functions of the Automatic Pot Stirrer ... 20

Figure 12: Assembly decomposition and function decomposition of the Pot 21

Figure 13: Form of the Container and form of its feature ... 21

Figure 14: Assembly relationships between the Lid and the Container 22

Figure 15: Complete taxonomy of trace statement linking verbs ... 24

Figure 16: Use case overview ... 29

 1

1 Introduction
The process of designing an electro-mechanical device generally begins with generating a

product design specification (PDS) document1. The PDS document describes the intended
function of the device being designed, and the environment in which it will be used. It also
specifies certain high-level requirements related to global constraints such as safety, shipping,
and manufacturing. A properly written PDS document is solution neutral and does not specify
design details; i.e., it describes what the product should do and not how it does it. This is crucial
to ensure that the creative control of the designers is not stifled, and that changes to the design
details will not necessarily require a change to the PDS. Furthermore, with regard to
communication within large design teams, the PDS serves to ensure that every member of the
team is working towards the same overall goals [1].

Once the PDS has been completed, the engineering design team can begin work on a
solution which meets all of the requirements and specifications described in the PDS. To create
a detailed model of the product, concepts are generated, refined, and elaborated until the final
design is determined. This model includes information about the components and assembly and
how they function together to realize the stipulations provided by the PDS.

Currently, most PDS are written in English, with little standardization. PDS written in
natural language was sufficient when design teams were small and all members were in constant
contact with one another. However, as the complexity of products has increased, it has
necessitated much larger teams composed of individuals from a wide variety of backgrounds,
who may be both physically and temporally distributed well apart from one another. Information
exchange among design team members can easily degrade under these circumstances and can
lead to the following two problems. First, a statement written as a part of a PDS might lead to
two different interpretations, and consequently to two conflicting design choices, by two
different team members. Second, levels of detail in a PDS may vary significantly based on the
experience and style of the individual writing it. The PDS may thus be either incomplete or
overly verbose. Such PDS documents may lead to confusion during design, and may require
significant revisions that might delay the design process.

Because most design processes are iterative in nature, both the PDS and product models
may go through many revisions. The product model evolves over time. During this time various
alternatives may be designed and evaluated. Although the PDS is intended to be as independent
from the design solution as possible, there are instances in which substantial changes to the
design process itself may necessitate a change in the PDS. For example, initially the PDS may
be too restrictive and the design process may reveal that the design specifications must be altered
to meet other constraints, such as cost. In this case, we say that the specifications are over-
constrained. It is also possible for the specifications to be under-constrained, in which case the
PDS is not sufficiently rigorous to provide the desired information. For this reason, it is
necessary that the PDS record a history of the changes made along with detailed explanations of
these changes. This history is important for keeping every design team member well apprised of
the changes to ensure that they are working with the most up-to-date version of the PDS.

1 In this paper we use the terms PDS document and requirements document interchangeably.

 2

Currently, design teams consult the PDS document during the design process. However,
as the design evolves no formal approach is used to ensure that various design elements, such as
specific features and materials, support the requirements in the PDS document. Hence
discrepancies between the PDS and a product model may be discovered during the design
process. In some situations, design features that do not support any stated requirements (e.g.,
very high surface finish in the interior of the housing with no requirement calling for it) may be
added. There may be design requirements that can not be satisfied by any design. Even when the
design meets all the requirements, after a few months it may not be possible to reconstruct the
rationale behind design decisions. A proactive approach to linking the PDS and product model
can identify these problems much earlier in the design process.

Ideally, when validating a design solution against a set of requirements, one should be
able to trace every design element to one or more requirements [2]. In order to establish this
accountability, every decision made during the design process must have some relationship to the
goals originally outlined in the PDS. Accountability can be formally represented as tracing
statements (links) which map one or more elements of the design solution to one or more
requirements. In our proposed approach, after an element is created in the product model, it will
be linked to the relevant requirements. A successful design process will generate solutions in
which all elements in the design can be traced to the PDS. In other words, the product design
will not contain any element that is not needed to meet the requirements in the PDS. On the
other hand, all aspects of the PDS must be addressed by some design feature. These links
between the PDS and the product model provide the design rationale and also ensure that the
design is complete (i.e., does not have any missing features) and is not redundant (i.e., does not
contain any unnecessary features).

In order to represent links between the PDS and product models formally, the PDS and
product models must both have formal representations. Currently, there is no formal and
convenient framework to represent a PDS. To address this need, we have developed a
framework for representing PDS, which will be described in Section 3. Fortunately, significant
progress has been made in formally representing product models. NIST’s Core Product Model
(CPM) and Open Assembly Model (OAM) are comprehensive models for representing the
relevant aspects of a design solution, and are summarized in Section 4. These models will serve
as our means for linking a PDS to a design solution. Section 5 provides a formal model for the
connections between elements of a PDS and elements of product models at an appropriate level
of granularity. These links describe what roles are played by various elements of the design
solution in meeting the requirements. Figure 1 represents these relationships between a PDS and
a design solution. Section 6 concludes the paper and suggests future directions.

A case study is also presented in the paper both to demonstrate an application and to test
the viability of our model. Our case study - the Automatic Pot Stirrer - consists of the design of a
new system to automatically stir the food contained and cooked in a pot. The implementation of
this case study includes: 1) using our framework to represent the PDS for the system, 2) using
CPM and OAM to model a design solution for the Automatic Pot Stirrer, and 3) using the linking
criteria to connect the product design to the PDS.

 3

D
ev

ic
e

Ta
xo

no
m

y

Design Solution

CPM and OAMRequirement
Definition
Template

Product
Requirements

Linking
Statement 3

•1 Design
•Req 1.1

•Req1.1.1
•2 Usage

•Req 2.1
•2.1 Function

•Req 2.1.1
•2.2 Safety

•Req 2.2.1
….
….

O
bj

ec
t

Ta
xo

no
m

y
A

ttr
ib

ut
e

Ta
xo

no
m

y
A

ct
io

n
Ta

xo
no

m
y

Artifact 1

Function 1

Feature 1

Function 1.1

Form 1

Geometry 1

Material 1

Linking
Statement 2

Linking
Statement 1

D
ev

ic
e

Ta
xo

no
m

y

Design Solution

CPM and OAMRequirement
Definition
Template

Product
Requirements

Linking
Statement 3

•1 Design
•Req 1.1

•Req1.1.1
•2 Usage

•Req 2.1
•2.1 Function

•Req 2.1.1
•2.2 Safety

•Req 2.2.1
….
….

O
bj

ec
t

Ta
xo

no
m

y
A

ttr
ib

ut
e

Ta
xo

no
m

y
A

ct
io

n
Ta

xo
no

m
y

Artifact 1

Function 1

Feature 1

Function 1.1

Form 1

Geometry 1

Material 1

Linking
Statement 2

Linking
Statement 1

Figure 1: Overview of the project

2 Literature review
In comparison with software engineering, there have been limited efforts towards any

formal modeling of requirement statements in the field of electro-mechanical products. Models
for software requirements are well developed, but these models are extremely specialized and
cannot easily be ported to the electro-mechanical domain [3] [4].

Currently, most work on requirements formalization for electro-mechanical products
focuses on requirements management [5] [6]. Requirements management techniques seek to first
analyze the processes of requirements generation and propagation and then provide constraints
and rules for these processes with the goal of guaranteeing ownership, prioritization, agreement
and communication of the requirements. However, they do not attempt to provide constraints and
rules for the actual PDS document. To date, most efforts have largely been carried out within the
field of system engineering: the requirements are generated at the level of product system and
subsequently refined for product design. In this section we provide a brief overview of these
efforts.

 4

 The EIA-632 [7] standard describes two fundamental processes for system
engineering: requirements definition and solution definition. In the requirements definition
process, system technical requirements are derived from stakeholders requirements. In the
solution definition process, a logical and physical representation of the system solution is
presented and system technical requirements are refined at the subsystems level. EIA-632
defines requirements as “Something that governs what, how well, and under what conditions a
product will achieve a given purpose” and classifies them into operational, performance and
enabling requirements. Operational requirements focus on the goals, objectives, and general
desired capabilities of the system without indicating how the system can be implemented.
Performance requirements focus on how well the system is suited to perform a function, along
with the conditions under which the function is performed. Enabling requirements include
technology constraints, product design constraints and requirements associated with the
processes of the product lifecycle. The EIA-632 also lists the desirable characteristics of each
requirement statement: clarity, correctness, feasibility, focus, implementability, modifiability,
certainty, singularity, testability and verifiability. This standard provides a definition for each of
these characteristics but it does not suggest any means to achieve them.

Similarly, the IEEE 15288 [8] standard presents a framework for describing the system
lifecycle processes. This standard recommends a process for requirements derivation that is
similar to the one of EIA-632. First, stakeholders requirements are translated into system
requirements. Second, the system is characterized with its functions, the performance of its
functions and the conditions under which the functions will be performed. Third, the system
architecture is developed and the subsystems requirements are specified. Once again, the IEEE
15288 lists the characteristics required for each requirement statement but it does not describe
how to achieve them.

The landscape of the standards within the field of systems engineering includes not only
process standards (such as IEA-632 and IEEE 15288) but also modeling standards. The System
Modeling Language (SysML) [9] is a standard language that provides a means to capture the
system modeling information, which includes system requirements. The requirements categories
proposed in SysML closely follow the other standards: requirements are divided into functional,
interface, performance, physical and design constraint categories. In SysML, the requirements
are expressed in plain text and connected to the system model in a requirements diagram. In this
diagram, requirements, design elements and test cases are connected to each other through pre-
defined properties (derive, satisfy, verify, refine, trace, copy, and contain). SysML provides a
text-based definition for each of these properties. Although SysML allows tracing of
relationships between requirements and design elements, it does not enable an efficient keyword-
based search of them; the usage of plain text to express requirements remains one of the major
drawbacks of SysML.

The AeroSpace and Defence Industries Association of Europe proposes - in the ASD-
STE100 [10] standard - to adopt a controlled form of English, called Simplified Technical
English, to write technical documentation. ASD-STE100 was originally developed to avoid
lexical ambiguity and sentence complexity in aircraft maintenance documents. Today, it is used
in many other industries and for all kinds of technical documentation including PDS. The
Simplified Technical English is composed of a dictionary of controlled vocabulary and a set of
writing rules.

 5

In the STE dictionary, all synonyms words are grouped together and only one word can
be used to express them. Moreover, for each word a unique and precise definition is given,
together with the part of the speech it can represent. As an example, according to the
specification: 1) the words “dull” and “faint” should be avoided and replaced with the word
“dim;” 2) the word “dim” can be used only as an adjective and its meaning is “not bright,” rather
than “hopeless;” 3) using the word “dim” as a verb is prohibited: the verb “decrease” should be
used instead. The usage of this controlled vocabulary is regulated by “writing rules.” The goal of
these rules is to help readers to understand a technical document. The writing rules impose, for
example, usage of the active form of verbs when possible, prohibition of noun clusters of more
than three nouns, a limitation of at most 25 words in each sentence, and expression of only one
topic in each sentence. The writing rules also provide some indications on how to integrate
proprietary taxonomies (called Technical Names and Technical Verbs) into the controlled
vocabulary. For this purpose, they list all the technical categories to which the proprietary words
should belong.

Several tools and software have been developed to assist authors to write technical
documents in simplified English conforming to ASD-STE100. Unfortunately, these tools and
software can only check simple rules, such as sentence lengths and noun clusters, but they can
not check other rules, such as number of topics in each sentence and content meaning. As
declared by the ASD association, even with the help of these tools, “training is the first essential
step for a technical author to be able to apply ASD-STE100 correctly”[11]. To adopt the ASD-
STE100 standard, companies are thus required to devote a considerable amount of time and
resources to training.

The ASD-STE100 standard imposes a standard list of words with predefined meanings
for using in requirement statements while leaving the user free to choose the statement structure.
In our approach, instead, we give the user flexibility in word choice while allowing him/her to
tag those words using elements from a standard taxonomy. We then prompt the user to define
semantic relationships by tagging the grammatical phrases that make up each statement. In this
way, we develop a formal model which can be adopted quickly and with minimum author
training.

3 Formalizing the Product Design Specification
A PDS document is made up of a series of discrete pieces of information, known as

requirement statements, which outline the design goals. A requirement statement is a complete
English sentence that expresses a rule with which the final design solution must comply. For
example, “The product must be able to function underwater” is a requirement statement. In
addition to intended functionality, a PDS will also include statements which describe information
on how the device will be marketed, produced, and distributed, how the device should be
maintained and disposed of, and the standards and regulations that apply to each of these areas.
According to Magrab [12], “the PDS contains all the facts relating to the product’s outcome. It
is a statement of what the product has to do and is the fundamental control mechanism and basic
reference source for the entire product development activity.” All decisions made during the
design process must be carefully made with respect to the PDS.

The traditional PDS is written in natural English as a series of paragraphs or sections
logically organized by the various facets of the product’s performance and lifecycle. Sometimes,

 6

tables are included as well to list design parameters and map them to values, ranges of values, or
qualitative statements.

An abridged example of a traditional PDS is given in Figure 2 [12].

Performance
• Tape inside corners.
• Tape joints in any orientation.
• Tape joints without leaking joint compound.
• Taped joints will require no additional smoothing.
• Tape will not break prematurely.

Shipping
• Will be shock, vibration, and weather resistant for

shipping by any means: vibration environment from
4-33Hz at 0.06 inch (1.5 mm) amplitude; shock
environment simulated with an 8 foot (2.4 m) drop
test. Insensitive to temperature and humidity.

• Will be packaged in a rectangular cardboard box
that can be stacked up to 8 ft (2.5 m).

Aesthetics
• Product will have a durable finish.
• Colors will be green and black.
• Product will convey ruggedness.

Maintenance
• All fasteners will be standard.
• All components subject to wear to be inexpensively

and easily replaceable with standard tools and no
special skills.

• Design will be modular for easy repair and cleaning.
• Joint compound removed after each day’s work.
• No or very few lubrication points.

Disposal and Recycling
• Product will not contain any environmentally

hazardous materials.
• Easily disassembled for component recycling and

reuse.
Product Environment
• Product must operate in the following environment:
- Temperatures between 40 and 120°F (4 and

50°C)
- Atmospheric pressure from sea level to 7,000 ft

(2.1 km)
- Relative humidity to 100%
- Concentration of solid or liquid particulate

smaller than 500μm.

Figure 2: Sample requirements statements from PDS for Drywall Taping System [12]
This example provides the requirements for an automated device that simultaneously

applies tape and joint compound to drywall seams. These requirements are categorized under the
author’s own headings (e.g., performance, shipping and aesthetics). Although this document is
fairly well-organized, and uses a proper level of detail, it is still not sufficient for automated
processing. For example, the terminology is not strictly formalized, which could pose challenges
in archiving requirement statements in a database and retrieving those statements via a keyword
search. Even if the author were to apply a systematic method of organizing the statements, and
possibly even a formalized technical vocabulary, there is no guarantee that the author’s system
will be consistently applied from PDS to PDS or even between versions edited by different
authors.

Ideally, a formal model for requirements should minimize ambiguity and information loss
while maximizing expressiveness. Furthermore, it is desirable that the model be flexible,
customizable and extensible.

3.1 Overview
We have identified four main goals for the requirements model, which together aim to

increase its usability and relevance to the standards discussed earlier.

• Flexibility: The model should not impose excessive constraints which would require the user
to conform to a rigid and unnatural way of writing. It should simply propose a toolbox for

 7

categorizing traditionally written requirement statements, and attaching metadata to words or
phrases in those statements (see Figure 3).

• Customizability: The model should be modular to allow users to discard some components of
the model and replace them with their own.

• Extendibility: Similarly, users should be able to add their own vocabulary to the model in a
controlled fashion.

• Formality: Statements generated using the formal model should be processed in a reliable
and automated way. This is crucial for developing computerized tools such as search engines
and design validation software.

Figure 3: Tagging components of a requirement statement

Formalization of a product design specification begins with determining the way in which
the product’s name is identified. The name of the product should be consistent within the PDS,
as well as in the PDS of the product’s components and accessories. This is accomplished through
the use of a device taxonomy, which creates a hierarchical association of similar devices.
Representative keywords which name the devices are classified according to certain criteria,
such as their primary working principle. The taxonomy is represented as a tree, and devices
which are closely related are placed close in the tree. This taxonomy must be specific to a very
small subset of engineering design – it would be virtually impossible to construct a complete
taxonomy of all possible engineering devices. As such, individual device taxonomies are to be
constructed by each company or organization to meet the needs of its industry. However,
different device taxonomies from different authors may be aggregated or harmonized as the
model becomes more widely adopted, for example in the form of a public Internet database [13].
Once a taxonomy has been built for a class of devices, the elements of the taxonomy can be used
to tag references to the product in every requirement statement [14].

A sample device taxonomy for kitchen appliances, based on their primary working
principles, is shown in Figure 4. The working principle criterion was chosen because most
appliances have only one or two primary working principles (e.g., cooking and mixing), which
thus minimizes the number of tags necessary to categorize a given device name. As an example
of how this taxonomy can be useful, consider the device “Automatic Pot Stirrer,” an appliance

 8

which is meant to simultaneously stir and cook food. Virtually every requirement statement for
the Automatic Pot Stirrer will contain a reference to this device, so it would be useful to
associate some standard terms with the device in each statement. In this case, appropriate terms
would be “Mixer” and “Cooker → Water Cooker” or “Cooker → Conduction Cooker.” This
connection is extremely useful for comparing the device with other products that might have a
similar purpose but a different name. No matter how the specific instance of the product is
labeled (e.g., Automatic Pot Stirrer vs. “Mix-n-Cook”), it will always be linked to one or more of
these labels in the device taxonomy.

If the device taxonomy is built in such a way that each level of the tree represents a more
specific type of device than its parent, then the notion of requirement inheritance can be
introduced. Each type of device can inherit some or all of the requirements associated with its
parent on the taxonomy tree. For example, in the kitchen appliance taxonomy, the device
“Slicer” might have a safety requirement “must not allow operator to directly access the blade
during use.” This requirement clearly applies to every device which is a child of the device
Slicer. An approach based on inheritance makes it convenient to reuse requirements defined for
a product class.

Working Principle Taxonomy for Kitchen Devices

Devices may map to:
• A single keyword

– Coffee Maker (Cooker->Water Cooker->Percolator)
– Electric Knife (Cutter->Slicer->Reciprocating)

• Multiple keywords
– Blender (Mixer, Cutter->Grinder)
– Bread Machine (Mixer, Shaper, Cooker->Oven->Radiation Oven)
– Waffle Iron (Shaper, Cooker->Conduction Cooker->Direct Cooker->Press)

Microwave
Oven

Direct
Cooker

Cooker Refrigerator Cleaner Cutter

Dishwasher

Range

Press

Boiler

Percolator

Electric Can Opener

Grill

Convection
Oven

Steamer

ReciprocatingRotaryPressure
Cooker

Garbage
Disposal

Deep FryerOven Conduction
Cooker

Water Cooker

Radiation
Oven

Slicers

Grinder

Mixer Shaper

Microwave
Oven

Direct
Cooker

Cooker Refrigerator Cleaner Cutter

Dishwasher

Range

Press

Boiler

Percolator

Electric Can Opener

Grill

Convection
Oven

Steamer

ReciprocatingRotaryPressure
Cooker

Garbage
Disposal

Deep FryerOven Conduction
Cooker

Water Cooker

Radiation
Oven

Slicers

Grinder

Mixer Shaper

Figure 4: A sample taxonomy of kitchen appliances based on primary working principle.

In Section 3.2, we propose two different schemes which will both be applied to each
requirement statement within a PDS. Together, they constitute a flexible model for PDS

 9

documents. The first scheme - Requirement Categories - places every statement in a particular
phase of the product’s design and deployment lifecycle. This mode of organization is useful for
a development team member who is only concerned with a specific aspect of the product’s life
cycle. For example, a marketing manager may want to reference the aspects of the PDS that are
relevant to marketing the product, without seeing the details on the manufacturing constraints.
The second scheme - Requirement Definition Templates - attempts to capture the syntactic
structure of each requirements statement, based on their component parts of speech. In this
scheme, phrases within a requirements statement are tagged according to their role in the
statement, such as the subject phrase, the verb phrase, or an object or modifying phrase. This
allows each statement to be automatically parsed and broken down into logical units of data that
can be indexed and compared. Once the parts of speech and their organization within a
statement have been identified, tools can be developed which match statements based on
structural patterns rather than on specific words. In the kitchen appliance example, we might
want to determine which requirements refer the device performing some action on a piece of
food. Rather than simply querying requirements based on keywords alone, we query
requirements which contain the relationship between the device and the food as defined by the
grammatical tags assigned to the phrases in the statement.

Our model also includes a specialized taxonomy of verbs, attributes, units, and use-
environment objects, which can be applied as tags on requirements statements. The purpose is
similar to that of the device taxonomy; it allows non-standard vocabulary to be used by the PDS
author, and yet remain linked with a standard lexicon. These taxonomies are described in
Section 3.3. Finally, in Section 3.4 we test our model with several PDSs taken from external
sources, and demonstrate that our model satisfies the four primary desired goals outlined in
Section 3.1.

3.2 Requirement Categories and Definition Templates
The first scheme of our formal model for requirement statements allows the author to

assign each statement to one or more categories based on its content. The hierarchy of categories
has been constructed based on a state-transition diagram of the product lifecycle (see Appendix
A).

This decision was made for the sake of completeness: a product only exists within its
lifecycle, and therefore any requirements related to the product can be mapped to at least one
stage of its lifecycle. Many of the subcategory names, such as “Geometry” and “Kinematics”
have been taken from the categories given in Pahl and Beitz [15]. Other categorization schemes
have been suggested, but none of these cover the entire lifecycle [16].

Notice that requirement categories are not simply represented as a list, but rather a
hierarchical tree structure. This is useful for organizing requirements based on how closely they
are related to one another. For example, according to the hierarchy given in Figure 5, a
statement tagged with the category “Structure” is more closely related to a statement tagged with
“Interface” than one tagged with “Cost.” Authors may also extend the requirement categories in
Figure 5 with their own sub-categories when a finer distinction is required.

 10

• Conduct Market Research
─ Patent Infringement
─ Public Relations
─ Competitive positioning
─ Cost
─ Timeline
─ Production volume

• Design
• Procure
• Manufacture/Assembly
• Test/Inspect
• Ship/Transport
• Warehouse
• Display
• Install

• Use/Operate
─ Function

 Motion
 Structure
 Energy
 Interface

─ Environmental Conditions
─ Safety
─ Ergonomics

 Ease of use
 Accessibility

─ Reliability
─ Aesthetics

• Store
• Service/Repair
• Upgrade
• Dismantle
• Recycle
• Dispose

Figure 5: Product lifecycle categories for requirement statements.
The second scheme deals with establishing a connection between the syntactic form of a

statement and its meaning. In the English language, it is evident that there is some disjunction
between a piece of information, and the manner in which it is represented. Various controlled
languages, such as Simplified Technical English, have been implemented, but none of these give
a level of expressiveness suitable for daily use in the broader field of mechanical design.

In order to help establish a stricter correspondence between the syntactic form of a
statement and its meaning, we introduce a method of tagging the phrases that make up
requirement statements. We call these Requirement Definition Templates (RDTs). Each
template specifies a grammatical part of a sentence such as the subject, verb, or object [17].
These parts of speech are in turn composed of lexical primitives: verbs, nouns, adjectives,
prepositions, and adverbs, conjunctions, interjections, and articles. Many of these lexical
primitives can be tagged with keywords from the taxonomies presented in Section 3.3.

Because RDTs are designed to capture the essential elements of a statement and its
relationships, statements can be parsed in a consistent manner. Minor variations in the wording
of each statement may exist, such as with the use of prepositions, but none of these variations are
able to dramatically change the way in which the statement will be parsed. We now define the
parts of speech which are defined using an RDT. It is assumed that the reader is already familiar
with these primitives and so they will not be discussed here.

The subject-phrase is used to identify the subject of a statement, which is usually the
first phrase of the sentence. The subject can contain entities, such as the device, components, or
use-environment entities, attributes, and verbs (in nominal form). “The pot,” “The gear
mechanism,” “The color of the surface,” and “Use of a DC power source” are all valid subject
phrases.

A verb-phrase consists of a core verb, plus any auxiliary verbs, negations, and infinitive
or participle words. For example, “operate,” “not be operated,” “be able to operate,” “be able to
be operated,” and “be able to continue operating” are all valid verb phrases. Since every
requirement statement – every statement, for that matter – must contain a verb, it makes sense to
classify statements based on the verb phrases that they use.

 11

Object phrases include what-phrases and who-phrases. Like subject phrases, object
phrases can contain entities, components, use-environment entities, attributes, quantities, and
nominally formed verbs. The distinction between what-phrase and who-phrase RDTs is
determined by whether the object is inanimate or animate. Object phrases are always the object
of a transitive action in the verb phrase.

Modifying phrases are used to augment or specify more details for other phrases in a
statement. A modifying phrase can be a when-phrase, where-phrase, how-much-phrase,
what-kind-phrase, what-state-phrase, how-phrase, or why-phrase. When-phrases can be
used to specify a definite or indefinite period of time, or absolute date such as “2-3 years,” “after
January 14th,” or “in approximately 18 seconds.” When-phrases apply globally to the entire
statement. Where-phrases specify a definite or indefinite location such as “next to the electrical
outlet” or “10 cm from the inlet valve.” Like when-phrases, they reference the entire statement.

How-much phrases are wrapper phrases for quantities; in other words, they specify an
amount or range of quantities using exactly one quantity element such as “between 10 and 20
kilojoules” or “8 pieces.” Unlike when-phrases and where-phrases, how-much phrases are not
global modifiers. Instead, each quantity element within this phrase can optionally have a
reference to an attribute or entity.

What-kind phrases are used to create an adjectival element that modifies an entity in the
statement. In the statement “Units will not be sold that do not pass quality assurance,” “that do
not pass quality assurance” is a valid what-kind phrase that references the entity “units.” Like
how-much phrases, what-kind phrases can have a reference to an attribute or entity.

What-state phrases indicate the passive state or status of an entity in the requirement
statement. “Under normal loads” and “without interference” are examples of what-state phrases.
Once again, they can reference attributes or entities in the statement.

Why-phrases are used to characterize the purpose of an entity or action within a
statement. For example “in order to provide power” and “to simulate five years service” are
valid why-phrases. Unlike other modifying phrases, why-phrases can reference verbs and even
quantities in addition to attributes and entities.

How-phrases, such as “by increasing the hydraulic pressure,” indicate the manner in
which an action is to be performed, or a means by which the action is to be performed. They are
similar to why-phrases but emphasize method rather than purpose. Therefore, how-phrases can
only reference verb elements in a statement since method only has meaning in the context of an
action. As mentioned earlier, the PDS should never propose specific design elements which
would satisfy the requirement. Thus, the how-phrase must not be used in this manner. Rather,
the how-phrase may be used to specify some general constraint on the action being performed.

By assembling these grammatical units, a requirement statement can be formed. In other
words, Requirement Definition Templates (RDTs) allow for requirement statements to be
hierarchically encoded as a grammatical derivation tree. This derivation tree can then be stored
in an XML format (see Appendix D for an example).

In accordance with the principles of good requirements generation, “run-on” requirement
statements should be avoided – an ideal requirement should be limited to a single aspect of the
design [18]. Any statement which violates this granularity condition should be decomposed into
two separate statements. As a simple case, consider the statement “The motor shall supply

 12

50Nm of torque and produce no more than 40dB of sound.” This statement can be split into
“The motor shall supply 50Nm of torque,” and “The motor shall produce no more than 40dB of
sound,” without any semantic loss. Granularity of statements is especially important when
linking elements of the product model to requirements; otherwise it could be unclear which part
of the requirement a design feature satisfies.

Once a requirements statement has been rewritten and various grammatical units have
been tagged, additional metadata can be applied to each grammatical unit. For example, verb
phrases can be tagged as transitive or intransitive, positive or negative, or potential (i.e., “able
to”). Quantities can be marked as cardinal or ordinal (e.g., “2” vs “2nd”), and entities can be
marked as singular or plural. By default, verbs are positive and transitive, quantities are cardinal,
and entities are singular. These tags help to provide more refined details about the role of each
phrase in the statement.

Of course, it is impractical to expect the requirements author to explicitly identify and
select grammatical tags for every statement. This would be counterproductive to a major goal of
this exposition, which is to provide as “natural” a model as possible for writing requirement
statements. To alleviate the tedium of tagging every single phrase and element of every
statement, a tool could be developed that predicts the appropriate RDT and taxonomic tags, and
prompts the author for feedback when necessary.

3.3 Taxonomies of Statement Words
Just as we tag each phrase in a requirement statement, individual words in a phrase can

be tagged as well to further improve statement matching. Authors can use their own
terminology, and then map it to one or more words in a standard lexicon in which each word has
a precise, predetermined, and unique definition. Therefore, the meaning of each statement can
be conveyed in the wording of the statement without fear of ambiguity in the form of synonyms
and homographs. This lexicon should be represented as a hierarchy or taxonomy, and it should
be common to all requirements documents within a particular domain. In addition to the sample
device taxonomy discussed in Section 3.1, sample taxonomies for use-environment objects,
attributes, units, and verbs have been developed and are presented here. Words which have little
value in keyword searches, such as prepositions and adverbs, do not have associated taxonomies.

For each type of device, such as kitchen appliances, there is an associated use-
environment. Kitchen appliances are used primarily in the kitchen, automobiles are used on
roadways, and battle tanks are used in combat zones. It therefore makes sense to form a standard
taxonomy of objects within the use-environment to supplement each device taxonomy. Just as
with device taxonomies, object taxonomies can be aggregated into larger hierarchies. A sample
object taxonomy for use-environment objects is given in Figure 6.

 13

Hazards Food Cleaning OperatorEnergy

Object Taxonomy for Kitchen Environment

Electricity Fire

Liquid Solid Mixture

Dishwasher

(machine)

Water Sink

Surfaces

Chef Dishwasher

(person)

Counter

Kitchen

Figure 6: A sample object taxonomy typically encountered by kitchen appliances.

Attributes, also known as properties, are defined to be global to all devices and objects.

Although many attributes (e.g., Reynold’s number) are relevant to only a handful of devices,
other attributes such as mass, length, and cost are applicable to virtually any device. Therefore
for the purpose of providing a simple, consistent lexicon of attributes, we declare every attribute
global as applied to all devices and objects. Based on the ‘property’ taxonomy in Ira Golden’s
thesis [13], and the material library at the websites CustomPartNet [19] and MatWeb [20], we
have constructed an exemplar hierarchy of device and object attributes. In the attribute
taxonomy, attributes are intuitively categorized based on the application field. For example, the
properties “Reynold’s number” and “Viscosity” are both relevant to devices that work with a
fluid medium. Thus “Material->Fluidic” is the category of the attribute taxonomy that contains
these two properties. This is shown in the taxonomy of attributes included as Appendix B.

In order to quantify attributes, for example in “how-much phrases,” it is necessary to
declare units such as millimeters, dollars, or pounds. Therefore, a taxonomy of units which
parallels the structure of the attributes taxonomy is useful (see Figure 7).

Based on the hierarchy of the attributes taxonomy, a custom units taxonomy can be
constructed in which the attributes at the leaf nodes of the taxonomy are replaced with the units
used in the design. An optional expression can be associated with the author’s units to convert to
SI units. This allows automated tools to perform comparisons in different units for a given
attribute [21].

 14

Time IdentificationMechanics Electricity Money

Units Taxonomy for Kitchen Devices

Cost (dollars)

Duration
(years)

Distance
(feet)

Material

Power (watts)Instance
(units)

Density
(pounds_per_in_3)

Units

Geometry

Mass
(pounds)

Distance
(inches)

Auditory

Loudness
(decibels)

Price (dollars)

Figure 7: Taxonomy of units associated with subset of attributes

As we mentioned before, every requirement statement has a verb phrase, and every verb
phrase has one core verb. Therefore, a taxonomy of core verbs is crucial to this model. Like
attributes, core verbs are global to all requirements documents. There are very few verbs that are
unique to a particular field of design, and those that are can generally be mapped to a more
general verb in the global taxonomy. Our proposed core verb taxonomy is taken directly from
Ira Golden’s thesis [13], with the addition of the copula “to be.” It contains a total of 827 verbs
in a two-level tree, and was developed over the course of a year via extensive study of actual
requirement documents. In this taxonomy, generalized hypernyms are chosen for the first level
of verbs. Below each hypernym, several hyponyms, or more specific synonyms, are aggregated
at the second level. This aggregation principle allows for advanced search queries to be
performed on requirement statements; queries that contain a particular verb would find
requirements that contain that verb’s synonyms. For brevity’s sake, it will not be shown here.

3.4 Validation
To accurately assess the efficacy of our proposed PDS model, we have taken several

examples of real requirements documents and manually tagged each one using RDTs, statement
categories, and lexical taxonomies. We then measured information loss by counting the number
of discrete concepts in the original requirements document and subtracting the total number of
discrete concepts in the formalized version. In this case, a discrete concept refers to a piece of
information that can be represented by a single noun phrase, verb phrase, object phrase, or
modifying phrase. Studied examples include the Drywall Taping System [12], the Sliding
Attachment for Flatbed Trucks by a member of the Capstone Design Class at the University of
Maryland, and the Carton Assembly Machine by Pahl and Beitz [15].

Almost (>95%) of all statements in these documents were easily and meaningfully
encoded using our proposed scheme. However, because our model is designed to capture the
interactions between the device and its environment, data outside this scope could not be easily
encoded. This includes information that does not qualify as a requirement such as comments
“Project conference minutes 16/70” [15], and information that lies outside of the use-
environment such as “Customer will be asked to complete a questionnaire” [12]. We do not
believe that it constitutes any significant loss by excluding statements such as these from our
model.

 15

The studied examples support our claims of flexibility, customizability, extendibility, and
formality as outlined in Section 3.1. Flexibility has been verified through the broad range of
statements which can be expressed using RDTs and metadata taxonomies. Our model also
provides for modular customizability: a user can choose whether or not to use a particular
element of the model at the expense of reduced formality and compatibility. Our model also
allows for the user to scale the system by extending these elements, provided that the extension
does not contradict any existing elements of our model. This is crucial towards ensuring
backwards compatibility of a PDS with the model. Finally, our model is formal in the sense that
every statement, every phrase, and most words with significance to the meaning of the statement,
can be tagged with one or more pieces of metadata.

3.5 Formalized PDS for the Automatic Pot Stirrer
To show the applicability, benefits and limitations of our model, we take as a case study

the design of an Automatic Pot Stirrer. This case study is loosely adapted from a students’
project during the Capstone Design Class at the University of Maryland. In this project, using a
set of requirements specified by the teacher, the students had to explore different design
solutions with the help of engineering tools and techniques. The delivery of the project included
a detailed description of the finally adopted design solution, along with an explanation of the
motivation for choosing that solution.

We believe this case study to be appropriate for the purpose of this paper for its
simplicity and completeness. Our case study is a representative example of a real enterprise-wide
design process; a set of requirements is given as input in the form of a document written in
natural English, and a design solution is delivered as output in the form of CAD files and
technical documents. Because this is a relatively simple device, it was possible for us to
retroactively link the design solution to the requirements, and thus accomplish the goal that we
have set for this research.

We have already provided taxonomies for the kitchen appliance device category (Figure
4), the corresponding use-environment objects (Figure 6), and the attributes (Appendix B) units
(Figure 7), and verbs (Appendix C).

The requirement statements have been decomposed into their constituent words and
phrases, tagged using keywords from the taxonomy and RDT phrase tags, and categorized
according to their relevance within the product’s lifecycle.

The full set of requirements is 14 pages long and is provided in Appendix E. In Figure 8
we present a representative set that exemplifies the diverse range of statements that can be
meaningfully tagged using RDTs and taxonomies.
R10.1.1.X: Use/Operate Function Motion

R10.1.1.1: The pot shall be able to automatically stir the food after activation.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall be able to automatically stir”
 Verb: “stir” (verb::mix::stir, potential)
 What-phrase: “the food”
 Entity: “the food” (use_environment::food::mixture)
 What-state-phrase: “after activation”
 Reference: “pot”

R10.1.3.X: Use/Operate Function Energy

R10.4.2.X: Use/Operate Ergonomics Accessibility

R10.4.2.1: The pot shall be able to be operated by one person.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall be able to be operated”
 Verb: “operate” (attribute::start::operate, passive)
 Who-phrase: “by one person”
 Entity: “person” (use_environment::operator)
 Quantity: “one” (1, units::instances)
 Reference: “person”

R10.6.X: Use/Operate Aesthetics

 16

R10.1.3.1: The power for the pot shall be transmitted through an electrical
cable.
 Subject phrase: “The power for the pot”
 Attribute: “power”
(attribute::material::electrical::power)
 Reference: “pot”

Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall be transmitted”
 Verb: “transmitted” (verb::move::transmit,
intransitive)
 How-phrase: “through an electrical cable”
 Entity: “electrical cable” (use_environment::cable)
 Reference: “transmitted”

R10.6.1: The pot shall not absorb odors.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “absorb”
 Verb: “absorb” (verb::acquire::absorb, negative)
 What-phrase: “odors”
 Attribute: “odor” (attribute::material::chemical::odor)

R10.6.2: The acoustic noise of the pot shall be less than 110 dBA.

Subject phrase: “The acoustic noise of the pot”
Attribute: “acoustic noise”
(attribute::auditory::loudness)
 Reference: “pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall be”
 Verb: “be” (verb::copula)
 How-much-phrase “less than 110 dBA”
 Quantity: “less than 110 dBA” (0-110,
 units::auditory::decibel)
 Reference: “acoustic noise”

Figure 8: Sample requirements from PDS for Automatic Pot Stirrer
The lifecycle categories proposed in Figure 5 were sufficient to contain all of the

requirement statements in the PDS. Furthermore, we found that although some statements were
relevant to multiple categories, there was always a single, primary category which was much
more strongly associated with each statement than any other category. To associate additional
categories with a requirement statement, another tagging scheme can be implemented in which
the entire statement is tagged with references to the other categories. Some categories were left
empty, either as “not applicable,” such as Public Relations, or “to be determined,” such as
Installation. This reflects the dynamic nature of the PDS as the design progresses.

Each statement was effectively decomposed using the RDTs proposed in Section 3.2.
Some statements had to be rewritten to match our templates. For example, “Transmission of
power shall be via an electrical cable” was rewritten as “The power for the pot shall be
transmitted through an electrical cable.” This was done to make “power” the subject of the
statement rather than “transmission,” which is better modeled in a verb phrase. Ultimately,
applying an appropriate form to requirement statements is the responsibility of the requirements
author.

4 Core Product Model and Open Assembly Model
A design process begins with the identification of product requirements and ends with the

delivery of a design solution. During this process there is a two way interaction between the
product requirements and the design solution. The requirements are updated, refined and
decomposed during the generation of the design solution; the design solution is continuously
checked against the requirements for validation.

Based on this interaction, we want to enable searching the products that correspond to
some specific requirements or identifying the product characteristics affected by those
requirements. To enable this search, both a model for requirements representation and a model
for products representation are needed. We proposed, in the previous section, the Requirement

 17

Definition Templates (RDTs) as a model to formalize requirements. In this section, we discuss
the applicability of the Core Product Model (CPM) and the Open Assembly Model (OAM) as
models to formalize the design solution of electro-mechanical products. These models have been
developed at the National Institute of Standards and Technology (NIST); they were originally
created in UML and subsequently implemented in XML and OWL. Ongoing research activities
at NIST focus on adapting these models to new areas, such as sustainability, and on enhancing
them with semantics [22].

4.1 Description of CPM and OAM
We choose CPM and OAM for three reasons. First, we consider CPM and OAM as

sufficiently complete and detailed models for the purpose of this work. Second, we are very
familiar with them. Third, we regard this work as an occasion to test CPM and OAM in the area
of requirements engineering. The following is a brief description of the aspects of CPM and
OAM relevant for our purpose; for a detailed description of them, please, refer to [23].

CPM is intended to form an open, non-proprietary, generic and extensible product model,
capable of capturing the engineering context commonly shared throughout the product lifecycle,
from the earliest ideation to manufacturing, operation and disposal. OAM is the CPM extension
for assembly and tolerances representation.

 In CPM, the model of a generic product contains requirements (the desired quality
and performance of the product), function (what the product is supposed to do), form (the shape
and material of the product) and behavior (how the product implements its function). In OAM,
an assembly is modeled through assembly relationships (components and the relationships
between them), kinematics (kinematic constraints and motion) and tolerances (the allowed
variability of dimension and geometry). In the early design stage, the geometry and the parts of a
product are not yet defined. In this stage, CPM and OAM allow for modeling the product with its
functions and subassemblies. In the final design stage, the model of the product is completed
with the information relative to its geometry, behavior, feature associations and tolerances.

The classes of CPM and OAM that are of major interest for the purpose of this work are
Specification, Requirement, Artifact, Feature, Material, Geometry, and Form, from CPM;
Assembly, Part, AssemblyFeature, ArtifactAssociation, and AssemblyFeatureAssociation
from OAM. Figure 9 shows, in UML format, the portion of the models that concern these
classes.

The design of a product begins with the definition of its specification. Specification in
CPM is the collection of information relevant to a product deriving from customer needs and/or
engineering requirements; it is a container for the specific Requirements that the product must
satisfy. The requirements statements generated with the RDTs become instances of the class
Requirement. The class Requirement, the function of which is to contain all the requirements
that apply to the product to be designed, can then be specialized, depending on the application
context. Each subclass could represent the requirements belonging to a particular lifecycle stage
of the product, as previously explained in Section 3.2.

 18

Figure 9: CPM and OAM classes relevant to PDS linking

After defining the requirements, the instances that represent the product itself are created.
Artifact is the class in CPM that serves this purpose: it represents a distinct product, whether
that product is a component, part, subassembly or assembly. Artifacts can be represented and
interrelated through the subArtifactOf containment hierarchy. To each artifact one or more
functions can be associated. Function in CPM represents what the artifact is supposed to do. The
artifact satisfies customer needs and/or engineering requirements largely through its function.
During the detailed design the artifact is characterized with its features; functions are then
typically associated with the features. Feature is defined in CPM as a portion of the artifact that
has some specific function assigned to it. Thus, an artifact may have design features, analysis
features, manufacturing features, etc. Feature has its own containment hierarchy, so that
compound features can be created out of other features.

Both artifacts and features can then be defined with their forms. The Form of the artifact
or feature is the design solution adopted to realize the function. In CPM, the artifact’s or
feature’s physical characteristics are represented by two distinct classes: Geometry and
Material. Geometry is the spatial description of an artifact or feature while Material is the
material composition of an artifact or feature. Requirements can apply not only to Functions
but also to Form, Material and Geometry. CoreProperty is the parent class of all of them and
all CoreProperties have their own containment hierarchy. For the purpose of this paper the
relationship between CoreProperty and Requirements can be of the kind “satisfies” or “ensures,”
as will be explained in the next section.

In most cases, electro-mechanical products are assemblies, i.e., they are products
constituted of other sub-assemblies and parts. Each component of an assembly (whether a sub-
assembly or part) is represented in CPM with its requirements, functions, forms and behaviors,
and the assembly relationships between components are represented in OAM.

In OAM the Assembly and Part classes are sub-classes of the CPM Artifact class. A
Part is defined as the lowest level component of the assembly. When the features of the assembly

 19

components are in a mating relationship, e.g., a pin and a hole, they belong in OAM to the class
AssemblyFeature, sub-class of the CPM Feature class. The class
AssemblyFeatureAssociation represents the association between mating assembly features
through which relevant artifacts are associated. The class ArtifactAssociation is the aggregation
of AssemblyFeatureAssociation and represents the assembly relationship between one or more
artifacts. Both ArtifactAssociation and AssemblyFeatureAssociation are children of the CPM
abstract class EntityAssociation. Since associated artifacts can have multiple feature-level
associations when assembled, one artifact association may have several assembly features
associations at the same time. Any assembly feature association relates in general to two or more
assembly features.

For the purpose of this paper, we use CPM and OAM to model the final design solution.
That is, we represent the designed product by instantiating the classes and relationships described
in this section. We call these instances “design elements”. For example, instances of Material or
Function would be considered design elements.

4.2 CPM and OAM for representing the Automatic Pot Stirrer
The design solution proposed to meet the requirements for the Automatic Pot Stirrer (see

Section 3.5) consists of a normal pot containing an inverted T-shaped stirring shaft. The shaft is
activated by a motor located in the top of the pot lid. The motor power is transmitted through an
electrical cable and the motor speed can be regulated by the user. Figure 10 represents a drawing
of the pot and its components.

Pot Assembly

Container

Handle

Handle

Lid Assembly

Cable Support

Lid

Stirring Assembly

Motor Assembly

Motor Housing Case

Motor Assembly

Pot Assembly

Container

Handle

Handle

Lid Assembly

Cable Support

Lid

Stirring Assembly

Motor Assembly

Motor Housing Case

Motor Assembly

Figure 10: Automatic Pot Stirrer components [24]

Figure 11 represents in UML the object diagram of the Automatic Pot Stirrer. The
diagram shows the instantiation of the CPM and OAM models of the pot assemblies, sub-
assemblies and parts and their main functions. In this report, for brevity sake, we do not show the
full instantiation of the Automatic Pot Stirrer. Instead, we present a few object diagrams, each
dedicated to the representation of a particular aspect of the product design.

 20

Figure 11: Assemblies and Functions of the Automatic Pot Stirrer

 21

The Automatic Pot Stirrer is composed of three main assemblies: a Pot, a LidAssembly
and a Connect/ReleaseMechanism. The Pot is composed of a Container and two Handles
belonging to the class Part in OAM: its detailed representation is reported in Figure 12.

Figure 12: Assembly decomposition and function decomposition of the Pot

The generic function of the Pot, i.e., allowingCooking, contains three sub-functions:
transmittingHeatToFood and holdingFood are associated with the Container while beingHeld is
associated with the Handles. Two ArtifactAssociations exist between the two handles and the
pot. As an example, we provide in Figure 13 the CPM representation of the Form, Geometry,
Material and Features of the Container. This example partially shows the instantiation of the
CPM for the Container and is not intended as a full representation.

Figure 13: Form of the Container and form of its feature

 22

At the top of the Container some Cutouts are designed: they are represented as Feature
elements in CPM. Their form and, consequently, their geometry are part of respectively the form
and geometry of the Container. Aluminum and Teflon are the Materials composing the
Container.

The LidAssembly contains a Lid, a CableSupport, a MotorAssembly, a StirringAssembly
and a ControlAssembly. The connections between the Pot and the LidAssembly are realized by
the Lid and the StirringAssembly, both which are in contact with the Container. Figure 14 shows
how the Lid and the Container are connected.

Figure 14: Assembly relationships between the Lid and the Container

The Lid and the Container are linked through the ArtifactAssociation Lid2Container.
This artifact association is realized by an AssemblyFeatureAssociation that involves the
Cutouts of the Container and the SecuringTabs of the Lid, both of which are Features of Parts
involved in the two connected Assemblies.

The remaining product design representation follows the same principles adopted to draw
the object diagrams illustrated here. The MotorAssembly contains a MotorHousingCase that
accomplishes the function of avoidingContactWithElectricalComponents, a MotorMount with
the function of reducingVibrations and a DCElectricalMotor, with the function of
transformingEnergy. The StirringAssembly is composed of a StirringShaft and a Seal, which
have the function, respectively, of stirringFood and assuringContactWithContainer. The
ControlAssembly is composed of a SpeedController for modifyingSpeed and a Cable for
connectingMotorWithElectricity. Finally, the Cable is supported by a CableSupport, itself part of
the LidAssembly. Sub-functions, features, form, geometry, material and assembly relationships of
all these design elements are also represented.

Next, we link the design elements of the Automatic Pot Stirrer to the requirements
statements formalized through RDTs. The following section describes how we realize the links
between various design elements and the requirements statements.

 23

5 Tracing Design Elements to Requirement Statements
During the first round of product development, when engineers make decisions regarding

the design solution, the justification for each decision may seem fairly obvious, and thus no
attempt is made to record it. However, when a product is upgraded or redesigned years later,
even if the same people are working on the new design, the motivation for each decision may
have been forgotten [18]. This could lead to difficulties when a change is made to either the
PDS or the design solution. For example, if the requirements in the PDS have been changed in
some way, the designer will need to know which elements of the design have been affected so
that they can be reassessed. If, on the other hand, the designer makes a change to the design
solution, some requirements may no longer be met. Although the designer could manually
compare every design element to every requirement, this becomes highly time-consuming for
complex designs with hundreds of requirements and thousands of design elements. To help track
which design elements are relevant to which requirements, we introduce the concept of a tracing
statement, or “link,” which maps from the solution domain (CPM/OAM) to the requirements
domain (PDS). A link consists of references to some design elements from the solution domain,
references to some statements from the requirements domain, and a description of how the
referenced design elements support the references requirements.

5.1 Linking and Labeling Criteria
In Section 3 we presented a formal model for requirement statements, and in Section 4

we presented a formal model for the product design solution. In this section we present a formal
model for linking these two domains. By formalizing the way in which links are represented,
automated tools can be developed to help the designer to ensure that design solution elements are
consistent with the requirements. Tools that depend on a formal linking model can be used, for
example, to perform coverage analysis; every requirement and every design element must be
connected to at least one tracing statement [18]. Coverage analysis is similar to, but distinct
from the concepts of impact and derivation analysis. Coverage analysis looks at the relationship
between the requirements and the design solution, while impact and derivation analysis looks at
the relationships among the requirements. Once coverage has been established, the design
element dependency can be summarized. A list of which design elements are dependent on
which requirements can be dynamically generated as design elements/requirements are added or
removed. Finally, bottleneck analysis can be performed on these links. Bottleneck analysis
measures how sensitive the requirements are to changes in the design, or vice-versa. If a
particular design element is linked to many requirements, then it can be deduced that changing or
removing this design element could have disastrous results in the requirements domain. As such,
changes to this element must be made with special care to avoid violating requirements. A
formal model for tracing statements is required to support the quantitative measures of coverage,
dependency, and bottleneck analysis.

Tracing statements are valuable for the purpose of capturing design intent. Decisions
with regard to the design solution may have arisen from many iterations of trial-and-error; it is
important that other designers who wish to upgrade the product should be able to access this
information. By understanding that a particular possibility was chosen over others for a reason,
the new designer can avoid repeating these errors. As another example, consider procurement
personnel who might be looking to cut costs. It might make sense to them to replace a particular
type of plastic with a cheaper plastic in the design. However, if the more expensive plastic was

 24

chosen because it won’t melt when exposed to the temperatures of a microwave oven, then a
proper tracing statement can ensure that the procurement personnel understand the problems
associated with choosing the cheaper plastic.

5.2 A formal approach for linking requirements to design elements
Tracing statements can map one or more design solution elements to one or more

requirements. The simplest tracing statements are one-to-one; they map one design solution
element to one requirement. However, it may be necessary to link many related design elements
or many related requirements (i.e., many-to-one, one-to-many, and many-to-many). We call
these related design elements or requirements “groups.” Grouping is useful, for example, when
we wish to aggregate many one-to-one links into a single many-to-one or one-to-many link. This
is done purely as a matter of convenience, to avoid repeating links that all refer to elements of
the same group. In other words, this type of requirement grouping is necessary only from the
practical standpoint of quickly creating large numbers of similar links. On other occasions, we
wish to link a group of design elements or requirements as a whole, when no individual design
element directly supports a requirement, or when no individual requirement is directly supported
by a design element. This is necessary from a theoretical standpoint; if this type of grouping
mechanism did not exist, then it might not be possible for certain requirements or design
elements to be meaningfully linked.

Like requirement statements, tracing statements are constructed using a subset of English,
according to predefined templates. The semantics of tracing statements is further improved by
mapping their components to a standard taxonomy, as with the taxonomies of Section 3.3. The
templates developed for tracing statements are considerably more restrictive than requirement
definition templates. Tracing statements typically do not contain a lot of information that is
external to the requirements and design solution elements to which they refer. Therefore, it is
unlikely that an author might encounter a situation where he would be unable to encode a trace
statement using these templates. Furthermore, a restricted set of trace templates enables tools for
the automated checking of design elements against requirement statements to be more easily
constructed.

 In these templates, a <design_element_group> is a group of units from CPM/OAM,
and a <requirement_group> is an index to a requirement statement or group of statements in
the requirement document. A <trace_verb_clause> is a verb clause constructed from one of the
core trace verbs specified in Figure 15. It can be prefixed with “jointly” or “independently” to
specify whether the design elements (in the case of a group) individually trace to the
requirements or only realize the requirements as a group.

Satisfies
(incidentally fulfills requirement)
• Allows
• Fulfills
• Supports
• Facilitates
• Provides for
• Suffices for

Ensures
(purposely fulfills requirement “by design”)
• Is imposed by
• Assures
• Certifies
• Determines
• Is established by
• Resolves
• Guarantees

Figure 15: Complete taxonomy of trace statement linking verbs

 25

Similarly, the <justification_mode_clause> specifies how the requirements are justified
by the design element(s), and whether or not they are satisfied individually or jointly. A
<justification> is a grammatically and lexically unconstrained term that is intended to simply
explain or justify the connection made in the statement to the end-user. It is not intended to be
used as a search parameter, but rather to simply contribute information regarding design intent.

 The verbs in the trace taxonomy are grouped such that a distinction is made between
design elements that “naturally” fulfill a requirement, and those that fulfill a requirement “by
design.” This type of classification is largely up to the discretion of the designer. For example,
the design element DCElectricalMotor might “naturally” fulfill the requirement “components
shall be easily and inexpensively replaceable.” That particular motor might have been chosen
for a reason other than how easily it can be replaced, which would simply be an incidental effect
that happened to fulfill the requirement. Or, the designer might have chosen that motor
specifically because it fulfills the requirement “components shall be easily and inexpensively
replaceable,” and so would choose a descriptive verb from the “by design” group of verbs for the
trace statement. Either way, future designers will be aware of the decision to use the motor, and
the reasoning behind it.

A simple trace statement involving a one-to-one relationship between a design element
and a requirement statement is the following: FunctionOfLid guarantees R10.3.1.1 by
disallowing the food to escape the pot, where R10.3.1.1 is “ The pot shall prevent splattering of
the food on the operator.” For the following examples we will omit the details of the justification
for the trace statement.

In order to implement grouping in the requirements domain, it is necessary to construct a
hierarchical tree of requirements and sub-requirements. In Section 3.5, the PDS of the Automatic
Pot Stirrer has already been represented as a hierarchical tree (see Figure 8). The predefined
lifecycle categories of Figure 5, as well as user-defined subcategories, are ideally suited to
defining groups of requirements. However, this imposes the limitation that a statement can only
be a sub-requirement of other requirements in the same category. Requirements can be indexed
within these groups according to the needs of the author. For example, “R1.1.1: The pot shall
not infringe on US Patent 5863121” is placed in the “R1.1.X: Patent Infringement” category,
which is a subcategory of “R1.X: Conduct Market Research.” “R10.4.1.2.1: The weight of the
pot shall be less than 12 pounds,” is a sub-requirement of “R10.4.1.2: The pot shall be able to be
lifted easily.” This makes linking easier to use for tracking design decisions and modifications at
a given stage of the product’s lifecycle.

Once a hierarchical grouping tree has been constructed, the requirements must be
indexed. This is done by assigning for each statement at the top level a number (e.g., R1, R2,
etc)., and then assigning sub-requirements using an additional subindex for each level below the
top level (e.g., R1.2, R1.2.1, R1.3.2. …etc.). Categories are indexed using the placeholder “X.”
For example, R1.2.X represents the category “Conduct Market Research Public Relations”
(see Figure 5).

The simplest way to group requirements is as an explicit conjunction using the “&”
operator. Consider, as an example, the following tracing statement, taken from the Automatic
Pot Stirrer use case:

Teflon assures R10.1.2.1 & R10.1.2.2 jointly

 26

In this example, the material of Container, i.e., Teflon, satisfies both “R10.1.2.1: The pot
shall not permit sticking of the food to the wall of the pot” and “R10.1.2.2: The pot shall not
permit sticking of the food to the bottom of the pot.”

However, using the “&” operator can become cumbersome for groups consisting of more
than a few requirements. Thus, a mechanism for implicitly grouping requirements based on their
arrangement in the hierarchy is desirable.

Groups of requirements can be implicitly referenced in one of several ways:
“inheritance,” where a requirement as well as all of its parent requirements back to the top level
are included, “descendance,” where a requirement as well as all of its sub-requirements, and their
sub-requirements down to the lowest level, are included, and “cross-section,” where all
requirements or sub-requirements at a particular level are included in the reference.

To implement the “inheritance” type of group selection in a tracing statement, we
reference a requirement, and follow it with the “^” operator. For example, to select R1.1.2, its
parent R1.1, and its parent R1, we use the term “R1.1.2^.” The following tracing statement
includes the “^” operator:

FormOfPot satisfies R10.4.1.2.1^

This trace statement states that the form of the pot satisfies the requirement: “R10.4.1.2.1: The
weight of the pot shall be less than 12 pounds,” as well as its parent: “R10.4.1.2: The pot shall be
able to be lifted easily.”

To implement “descendance” selection, we reference a requirement and follow it with the
“*” symbol. In a hierarchy of requirements, R1, R1.1, R1.2, R1.3, R1.1.1, R1.1.2, and R1.2.1,
we use the term “R1*” to encompass R1 and all of its sub-requirements down to the lowest level.
For the Automatic Pot Stirrer use case, we write the following tracing statement:

FormOfPot Is imposed by R10.4.1.3* independently

to express that the form of the Pot was established to fulfill the requirement “R10.4.1.3: The pot
shall be able to be held easily” and all its decendants, i.e., “R10.4.1.3.1: The diameter of the pot
shall be 10 inches”and “R10.4.1.3.2: The depth of the pot shall be 6 inches.”

 Finally, to implement “cross-section” selection, we use the category operator “X”
as a placeholder in the requirement index. In the same example as before, to select “R1.1, R1.2,
and R1.3” for our tracing statement, we use the term “R1.X.” This syntax can be compounded as
appropriate. For example, “R1.X*” represents R1.1, R1.2, R1.3, and all of their sub-
requirements down to the lowest level of the tree. In our use case we use R1.1.X to represent all
the requirements belonging to the Conduct Market Research Patent Infringement category.
We write:

FormOfAutomaticPotStirrer satisfies R.1.1.X

to assert that the form designed for the Automatic Pot Stirrer does not infringe any patent listed
in the PDS.

Grouping is allowed not only for requirements but also, with the same purpose, for design
elements. While for requirements the user can liberally select the type of group and the
requirements that belong to it, for design elements the choice is more constrained. Groups of
design elements belonging to the classes Artifact, Feature, Form, Geometry and Material are

 27

created out of the compositions relationships contained in the CPM and OAM models. The
composition relationships are used as a mechanism for grouping as they specifically represent
part-whole relationships. Every time the user chooses a design element to be linked to the PDS, a
group is created containing that design element and the elements that compose it, directly and
indirectly.

Consider, as an example, the class Feature that contains a composition relationship with
itself and with the classes Function and Form, where Form is composed of Material and
Geometry. If a specific feature is selected to realize a link, then all its sub-features, functions,
forms, geometries and materials will be automatically grouped together and the group will be
considered as a whole. This principle forces the user to select the most specific design element to
realize the link. If the user, for example, intends to link only the material of a feature to the PDS,
he will need to select the instance of the class Material, since selecting the instance of Feature
would imply selecting also all its sub-elements. Obviously, if the selected element represents a
leaf in the composition structure, it will not be necessary to create a group.

Consider, again, the example provided earlier:

FormOfPot satisfies R10.4.1.2.1^

FormOfPot in the trace statement represents the group of design elements consisting of the
material and geometry of the pot and of its components (see Figure 12).

When the selected design element belongs to the class Function, the grouping cannot be
automatically executed. Consider as an example, the design of a device that needs to provide
purified water to the second floor of a building (first requirement). A function satisfying this
requirement is “pumping water from the basement to the second floor.” Because the water needs
to be purified at the first floor (second requirement), this function is decomposed into “pumping
water from the basement to the first floor” and “pumping water from the first floor to the second
one.” In this case, the first sub-function does not satisfy the first requirement so it would be
meaningless to group it with its super-function and to state that the group satisfies the first
requirement. Since grouping together a function and its sub-functions can be incorrect, an
automatic grouping mechanism for Function cannot be established.

To allow the user to group design elements at his own discretion, we provide the
possibility of using the “&” operator. When two or more design elements are joined together
through the “&” operator, a group is created containing: first, the listed design elements and,
second, their composing elements in case they belong to the classes Artifact, Feature, Form,
Geometry or Material.

In our use case, the “&” operator between design elements is used, for example, in the
following trace statement:

MaterialOfContainer & MaterialOfSeal & MaterialOfStirringShaft assures R10.6.1

where “R10.6.1: The pot shall not absorb odors.”

Once a group of design elements is either automatically created or established by the
user, it can be linked to a requirement or a group of requirements, so as to realize a many-to-one
or a many-to-many mapping respectively.

 28

5.3 Application of Tracing Statements
As mentioned earlier, tracing statements are useful for purposes such as coverage and

bottleneck analyses. To demonstrate the efficacy of our tracing scheme, we present several
queries which might be made during the lifecycle of the Automatic Pot Stirrer. We then solve
these queries using our tracing statements.

1) What are the design elements related to the safety of the pot?

Such a query might be asked if an injury lawsuit is brought up against the company, and a
lawyer must defend the safety of the current design. The results would include, for example:
Artifact: MotorHousingCase, AssemblyFeatureAssociation: SecuringTabsToRim, and
ArtifactAssociation: SpeedController2Cable.

2) Why did the designer choose silicone rubber for the seal?

This query may arise if the cost of silicone becomes significantly more expensive and the
company must find a cheaper alternative. The results would contain requirements such as:
“R10.6.1: The pot shall not absorb odors,” “R10.2.4: The pot shall be able to endure
temperatures up to 500F,” “R10.6.2: The acoustic noise of the pot shall be less than 110 dbA,”
and “R1.4.1: The cost of the pot shall be less than $70.” This would, thus, reveal that the
silicone rubber no longer satisfies the cost requirement.

3) If I eliminate the requirement “R10.6.2: The acoustic noise of the pot shall be less than
110 dbA,” what design elements will be affected?

Suppose the desired market for this product shifts from household usage, to industrial
food production. Noise will no longer be as crucial of an issue. In this case, results of the query
might yield: Artifact: MotorMount, Assembly: DCElectricalMotor, Material:
MaterialOfBlade, Material: MaterialOfSeal, and Material: MaterialOfContainer.

These are just a few representative examples of a wide range of queries which can be
automatically answered by using formalized tracing statements and a suitable software tool,
currently under development.

6 Conclusions and Future Work
To address the growing need for a means of consistently validating a product design

solution against its PDS, we have developed a framework. Our main contributions are as
follows. We devised a system of RDTs and taxonomies to semantically augment the design
specifications. After proposing a means for tagging individual words in each statement using
device, use-environment, verb, and attribute taxonomies, we outlined a method for tagging entire
phrases in each statement using an appropriate RDT. Requirements categories are then used to
classify the requirements statements based on the product lifecycle.

We used NIST’s CPM and OAM to model the final design solution. This consists of
identifying the design elements, recognizing the relationships between them, and finally
instantiating the CPM and OAM models.

We developed a formal way of writing tracing statements to connect the design elements
to the requirements statements. This consists of grouping design elements, grouping requirement
statements, realizing each link using a taxonomy of trace verbs, and finally providing an optional

 29

justification for each trace. As with any linking approach, managing relationships between the
design and the requirements can become cumbersome in large, evolving systems. However,
research in the field of requirements management (Section 2) may help to ameliorate this
problem.

To demonstrate how our model can be used effectively, the design of an Automatic Pot
Stirrer was chosen as a use case: Figure 16 presents its overview.

Figure 16: Use case overview

Appropriate device and use-environment taxonomies were developed, and all
requirements for this device were successfully categorized and tagged. The design solution was
represented in CPM and OAM, and design elements were linked to the requirements using
formalized tracing statements. Finally, some realistic queries were generated and successfully
solved using these tracing statements.

For this framework to be of practical use in the product development community,
software tools must be developed. Future work will consist of developing tools for efficiently
writing and tagging requirement statements, constructing the CPM and OAM models of the
design solution, and composing tracing statements. We also plan to develop search and
validation tools to allow personnel to search within and across multiple PDS, check that a
product design has met all of its requirements, and identify critical design elements. These tools

 30

will assist in generating other use cases, which will allow us to more accurately assess the
viability of our model. Finally, we will explore the relationships between our framework and
several available standards in the fields of systems engineering and requirements engineering.

Disclaimer

No approval or endorsement of any commercial product by NIST is intended or implied. Certain commercial
equipment, software, instruments or materials are identified in this report to facilitate better understanding. Such
identification does not imply recommendations or endorsement by NIST nor does it imply the materials, software, or
equipment identified are necessarily the best available for the purpose.

7 References

[1] Safayeni, F., Duimering, P. R., Zheng, K., Derbentseva, N., Poile, C., and Ran, B.,

"Requirements engineering in new product development," Communications of the ACM, Vol.
51, No. 3, pp. 77-82, 2008.

[2] Grady, J., System verification: proving the design solution satisfies the requirements,
Elsevier/Academic Press, 2007.

[3] Aurum, A., and Wohlin, C., Engineering and managing software requirements, Springer,
2005.

[4] Guide to the Software Engineering Body of Knowledge. http://www.swebok.org/, 2009

[5] Telelogic DOORS. http://www.telelogic.com/corp/products/doors/doors/index.cfm, 2006

[6] McKay, A., Pennington, A. D., and Baxter, J., "Requirements management: a representation
scheme for product specifications," Computer-Aided Design, Vol. 33, No. 7, pp. 511-520,
2001.

[7] EIA-632, Processes for Engineering a System, GEIA standard. 1999.

[8] IEEE-15288, Systems Engineering - System Life Cycle Processes, IEEE standard. 2004.

[9] OMG SysML v1.1 Specification. http://www.omgsysml.org/, 2008

[10] ASD-STE100, ASD Simplified Technical English, ASD standard. 2007.

[11] ASD-STE100 training. http://www.asd-ste100.org/raining.htm, 2009

[12] Magrab, E., Integrated Product and Process Design and Development: The Product
Realization Process, New York, CRC Press, 1997.

[13] Golden, I., "Function Based Archival And Retrieval: Developing A Repository Of
Biologically Inspired Product Concepts," MS Thesis, University of Maryland, 2005.

 31

[14] ISO. ISO 13584-1:2001, Industrial automation systems and integration -- Parts library --
Part 1: Overview and fundamental principles. Geneva, Switzerland,ISO, 2001.

[15] Pahl, G., and Beitz, W., Engineering Design, Design Council, London,1984.

[16] Thanh, V. H., Roberts, C., Tobias, A. M., Williams, J., Stirling, A., and Madelin, K.,
"Decision support at the wheel–rail interface: the development of system functional
requirements," Vol. 222, Professional Engineering Publishing, Proceedings of the Institution
of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit,pp. 195-206,2008 .

[17] Austin, J. L., How to do Things with Words, Oxford University Press, 1965.

[18] Hull, E., Jackson, K., and Dick, J., Requirements Engineering, Springer, 2002.

[19] Custompart.net: Free Online Manufacturing Cost Estimation and Education Resource.
http://www.custompartnet.com, 2008

[20] Matweb. http://www.matweb.com, 2008

[21] Units Markup Language project. http://unitsml.nist.gov/, 2009

[22] Fiorentini, X., Gambino, I., Liang, V., Foufou, S., Rachuri, S., Bock, C., and Mahesh, M.,
"Towards an ontology for open assembly model," International Conference on Product
Lifecycle Management,pp. 445-456,2007 .

[23] Fenves, S., Foufou, S., Bock, C., Bouillon, N., and Sriram, R. D., "CPM2: A Revised
Core Product Model for Representing Design Information," National Institute of Standards
and Technology, NISTIR 7185, Gaithersburg, MD 20899, USA, 2004.

[24] Chambers, M., McDonald, J., Monje, C., Shiffler, C., and Wutka, S., "The chef's helper,"
Final project of the capstone design class, University of Maryland, 2006.

 i

Appendix A: State Transition Diagram of lifecycle categories.

 ii

Appendix B: Taxonomy of Attributes.

■ Auditory

─ Loudness
─ Pitch
─ Timbre

■ Environmental
─ Barometric pressure
─ Dirt/Dust
─ Humidity
─ Particulate Concentration
─ Precipitation
─ Temperature
─ Visibility
─ Wind speed
─ Wind direction

■ Financial
─ Cost
─ Price

■ Geometric
─ Area
─ Configuration
─ Dimension
─ Direction
─ Location
─ Perimeter
─ Shape
─ Volume

■ Identification
─ Appearance
─ Classification (e.g.,

species)
─ Instantiation (e.g., serial

number)
─ Logo
─ Motto
─ Name

■ Quality Rating
■ Mechanics

─ Angular momentum
─ Force
─ Kinetic Energy
─ Intensity
─ Mass
─ Momentum
─ Potential Energy
─ Power
─ Pressure
─ Torque
─ Work

■ Motion
─ Acceleration
─ Angular Acceleration
─ Angular Velocity
─ Deformation
─ Displacement
─ Motion
─ Rotation
─ Translation
─ Velocity
─ Vibration

■ Quantity

■ Material
─ Acoustic

• Acoustic Absorption
• Refractive Index

─ Chemical
• Activation Energy
• Biodegradation
• Chemical Energy
• Concentration
• Electro-negativity
• Half-life
• Hydrophobicity
• Hygroscopy
• Ionization Potential
• Odor
• pH
• Radioactivity
• Reactivity
• Solubility
• Surface Energy
• Surface Tension
• Taste
• Toxicity

─ Electrical
• Arc Resistance
• Capacitance
• Charge
• Current
• Comparative Tracking
Index

• Conductivity
• Dielectric Constant
• Dielectric Strength
• Dissipation Factor
• Electromagnetic energy
• Inductance
• Magnetic flux density
• Permittivity
• Potential difference
• Power
• Resistance
• Surface Resistance

─ Failure
• Buckling
• Corrosion
• Creep
• Fatigue
• Fracture
• Impact
• Mechanical Overload
• Melting
• Thermal Shock
• Wear
• Yielding

─ Fluidic
• Reynolds Number
• Viscosity

─ Mechanical
• Compressibility
• Elongation
› Elongation at Yield
› Elongation at Break

• Friction coefficient
• Machineability Rating
• Modulus
› Compressive Modulus
of Elasticity

› Modulus of Rigidity
› Modulus of Toughness
› Secant Modulus
› Shear Modulus
› Specific Modulus
› Tensile Modulus

• Moment of Inertia
• Piezoelectric Constant
• Poissons Ratio
• Strength
› Charpy Impact
› Compressive Yield
Strength

› Ductility
› Fatigue Strength
› Fracture Toughness
› Hardness
› Izod Impact
› Malleability
› Rupture Strength
› Tensile Strength at
Yield

› Tensile Strength at
Break

─ Optical
• Absorptivity
• Emissivity
• Color
• Gloss
• Haze
• Luminosity
• Photosensitivity
• Reflection Coefficient
• Refractive Index
• Transmittance
• Visible Transmission

─ Physical
• Material Type
• Composition
• Density
• Linear Mold Shrinkage
• Melt Flow Index
• Moisture Vapor
Transmission

• Oxygen Transmission
• Porosity
• Surface Roughness
• Water Absorption
› Moisture Absorption at
Equilibrium

› Water Absorption
› Water Absorption at
Saturation

─ Thermal
• Coefficient of Thermal
Expansion

• Emissivity
• Enthalpy
• Entropy
• Flammability
• Heat of Combustion
• Material Phase
• Oxygen Index
• Phase Transition
› Autoignition
Temperature

› Boiling Point
› Critical Temperature
› Curie Point
› Deflection
Temperature

› Eutetic Point
› Fire Point
› Flash Point
› Freezing Point
› Glass Transition
Temperature

› Heat Distortion
Temperature

› Heat of Fusion
› Heat of Sublimation
› Heat of Vaporization
› Liquidus Temperature
› Melting Point
› Softening Point
› Solidus Temperature
› Triple Point

• Pyrophoricity
• Seebeck Coefficient
• Service Temperature
› Hot Ball Pressure Test
› Maximum Service
Temperature

› UL RTI
• Specific Heat Capacity
• Temperature
• Thermal Conductivity
• Thermal Diffusivity
• Thermal Energy
• Vapor Pressure

■ Signal
─ Amplitude
─ Attenuation
─ Frequency
─ Phase
─ Wavelength

■ Time
─ Duration
─ Frequency

 iii

Appendix C: Taxonomy of Verbs

We use the following taxonomy of verbs proposed by Golden [Golden, 2005]

• Copula: Be

• Create: Assemble, Bear, Beget, Breed, Brew, Bring About, Bring Forth, Build, Cast, Cause,

Compose, Concoct, Construct, Contrive, Craft, Design, Develop, Devise, Engineer, Erect,
Establish, Evolve, Fabricate, Fashion, Forge, Form, Formulate, Generate, Invent, Machine,
Make, Manufacture, Mold, Originate, Produce, Set Up, Shape, Spawn, Synthesize, Yield

• Copy: Clone, Double, Duplicate, Emulate, Imitate, Mime, Mimic, Mirror, Model,

Photocopy, Recreate, Replicate, Reproduce, Simulate, Xerox

• Destroy: Annihilate, Break, Break apart, Break down, Break up, Conquer, Crush, Damage,

Decimate, Delete, Demolish, Destruct, Disassemble, Dismantle, Eliminate, Eradicate, Erase,
Exterminate, Extinguish, Kill, Obliterate, Ruin, Smash, Spoil, Take apart, Take down, Tear
down, Undo, Unmake, Wipe out, Wreck

• Provide: Accommodate, Administer, Allow, Apply, Bring forward, Contribute, Deliver,

Deposit, Dispense, Distribute, Feed, Give, Grant, Introduce, Offer, Output, Present, Produce,
Return, Serve, Submit, Supply, Yield

• Acquire: Absorb, Accept, Accrue, Adopt, Assimilate, Bring In, Capture, Carry in, Catch,

Collect, Consume, Gain, Gather Up, Get, Grab, Import, Imbibe, Ingest, Obtain, Pick Up,
Procure, Pull In, Receive, Recover, Recruit, Retrieve, Seize, Take, Take In, Trap

• Remove: Abduct, Carry away, Carry off, Cart away, Cart off, Cast aside, Cast off, Clear,

Clear away, Clear off, Cut off, Cut out, Delete, Discard, Displace, Draw, Drop, Dump,
Empty, Erase, Evacuate, Export, Expunge, Extract, Haul away, Haul off, Pull out, Subtract,
Take away, Take out, Throw away, Toss away, Toss out, Trash, Wash away, Wash out, Wear
away, Withdraw

• Inject: Add, Administer, Dispense, Drive in, Embed, Force in, Give, Implant, Infuse, Input,

Insert, Introduce, Plug in, Put in, Shoot in

• Eject: Cast out, Deploy, Deport, Discharge, Dispatch, Drive out, Emit, Evict, Expel, Extrude,

Force out, Kick out, Launch, Output, Propel, Release, Secrete, Spit out, Throw out

• Move: Advance, Bring, Channel, Circulate, Close, Conduct, Deliver, Displace, Download,

Drag, Drive, Force, Forward, Launch, Lift, Locomote, Open, Oscillate, Pass, Progress,
Project, Propagate, Propel, Pull, Push, Relay, Relocate, Send, Shift, Shoot, Slide, Tow,
Transfer, Translate, Translocate, Transmit, Transplant, Transport, Undulate, Upload, Vibrate

 iv

• Rotate: Circle, Circumvolve, Flip, Go around, Gyrate, Orbit, Pivot, Revolve, Roll, Spin,
Spiral, Swivel, Turn, Twist, Yaw

• Position: Align, Arrange, Center, Level, Locate, Order, Perch, Place, Plant, Poise, Pose, Put,

Seat, Set, Sit, Situate, Square, Stand, Station

• Guide: Aim, Align, Channel, Conduct, Control, Direct, Focus, Govern, Lead, Line up,

Maneuver, Navigate, Operate, Orient, Pilot, Point, Redirect, Steer, Target

• Collect: Accumulate, Aggregate, Amass, Assemble, Cluster, Collocate, Compile, Gather,

Group, Lump, Pile up, Pull together, Round up

• Disperse: Deploy, Diffuse, Disband, Dispel, Disseminate, Dissipate, Dissolve, Distribute,

Scatter, Spray, Spread, Spread out

• Connect: Add, Adhere, Affix, Append, Attach, Bind, Bond, Bring together, Conjoin,

Couple, Fasten, Fix, Glue, Join, Link, Mate, Partner, Put together, Splice, Tape, Tether, Tie,
Unite, Weld

• Mix: Admix, Amalgamate, Blend, Coalesce, Combine, Commingle, Commix, Compound,

Conflate, Fuse, Immingle, Immix, Integrate, Intermingle, Intermix, Join, Merge, Mingle, Stir,
Unify, Unite

• Separate: Bisect, Branch, Break, Break off, Break up, Cut, Cut off, Decouple, Detach,

Disconnect, Disjoin, Dislocate, Dissect, Dissever, Disunite, Divide, Draw apart, Fracture,
Fragment, Intersect, Isolate, Part, Partition, Polarize, Seclude, Section, Segment, Set apart,
Sever, Slice, Split, Split up, Take apart, Tear, Unbind, Uncouple, Unhook, Unlink

• Contain: Border, Bound, Box in, Cache, Confine, Cover, Embrace, Encircle, Enclose,

Encompass, Frame, Guard, Hold, Include, Incorporate, Keep, Pack, Put away, Protect,
Reserve, Retain, Save, Store, Surround

• Secure: Affix, Anchor, Brace, Clamp, Fasten, Fix, Fortify, Ground, Hitch, Hold, Lock, Pin

down, Reinforce, Root, Seal, Set, Stabilize, Steady, Support, Suspend, Tether

• Change: Adapt, Adjust, Alter, Alternate, Amend, Attune, Calibrate, Condition, Control,

Convert, Edit, Evolve, Exchange, Flip, Interchange, Invert, Manipulate, Metamorphose,
Modify, Modulate, Morph, Mutate, Phase, Regulate, Replace, Reverse, Shape, Shift, Skew,
Substitute, Swap, Switch, Toggle, Trade, Transform, Transmute, Turn, Vary

• Maintain: Balance, Conserve, Continue, Control, Have, Hold, Keep, Keep up, Manage,

Perpetuate, Preserve, Regulate, Resume, Retain, Sustain, Stabilize, Steady, Uphold

• Start: Activate, Actuate, Animate, Begin, Carry out, Cause, Commence, Enable, Execute,

Incite, Induce, Initiate, Launch, Load, Motivate, Operate, Originate, Play, Power, Prompt,
Provoke, Set off, Spark, Trigger, Turn on, Use

 v

• Stop: Abort, Arrest, Avert, Avoid, Barricade, Block, Blockade, Bound, Cancel, Cease, Close,

Complete, Conclude, Constrain, Counteract, Culminate, Curb, Defend, Delay, Deflect,
Desist, Disable, Discontinue, Disrupt, Disturb, End, Expire, Finish, Forbid, Halt, Hinder,
Hold, Hold back, Immobilize, Impede, Inhibit, Intercept, Intermit, Interrupt, Jam, Limit,
Moderate, Obstruct, Occlude, Oppose, Pause, Prevent, Prohibit, Protect, Quit, Resist,
Restrain, Restrict, Retire, Shut off, Stall, Subdue, Suppress, Suspend, Terminate, Turn off

• Increase: Accrete, Add, Amplify, Augment, Boost, Broaden, Develop, Double, Enhance,

Enlarge, Expand, Extend, Grow, Increment, Intensify, Magnify, Maximize, Multiply, Raise,
Step up

• Decrease: Attenuate, Condense, Contract, Cut down, Decay, Decrement, Diminish, Drop,

Fade, Lessen, Lower, Minimize, Reduce, Shrink

• Detect: Ascertain, Discover, Distinguish, Expose, Feel, Find, Hear, Identify, Listen to,

Locate, Notice, Observe, Perceive, Read, Receive, Recognize, See, Sense, Sight, Smell, Spot,
Taste, Trace, Uncover

• Measure: Assess, Calculate, Check, Clock, Compare, Compute, Count, Determine, Estimate,

Evaluate, Examine, Figure, Gauge, Grade, Judge, Order, Process, Quantify, Rank, Rate,
Review, Scale, Score, Size, Test, Time, Track, Weigh

• Communicate: Advise, Alarm, Alert, Announce, Apprise, Call, Caution, Command,

Convey, Declare, Depict, Describe, Detail, Display, Educate, Explain, Expose, Express,
Gesture, Identify, Illustrate, Impart, Indicate, Inform, Instruct, List, Message, Name, Notify,
Order, Portray, Post, Present, Project, Relate, Relay, Render, Report, Represent, Reveal, Say,
Show, Signal, Sound, Speak, State, Symbolize, Teach, Tell, Verbalize, Visualize, Warn

• Record: Catalogue, Chart, Chronicle, Cite, Copy, Diagram, Document, Draw, Enter, File,

Graph, Hold, Index, Inscribe, Keep, List, Log, Mark, Note, Plot, Post, Print, Put down,
Register, Report, Save, Score, Store, Tag, Tally, Tape, Write,

• Specify: Assign, Choose, Cite, Decide, Declare, Define, Delineate, Describe, Designate,

Detail, Determine, Elect, Establish, Explain, Indicate, Fix, Name, Pick, Plan, Propose,
Quantify, Select, Set, State, Stipulate

 vi

Appendix D: Sample XML Representation of Product Requirement

<requirement_statement id=R1.4.1>
<label>“The cost of the pot shall be less than $70.”</label>
<subject_phrase id=R1.4.1.SP1>
 <label>“The cost of the pot”</label>
 <entity id=R1.4.1.SP1.E1>
 <label>“pot”</label>

 <tax>
 device::kitchen_appliance::mixer

device::kitchen_appliance::cooker::
conduction_cooker

 </tax>
 <modifier>
 singular
 </modifier>
 </entity>
 <attribute id=R1.4.1.SP1.A1>
 <label>“cost”</label>
 <tax>
 attribute::financial::price

 </tax>
 <reference>
 “pot” (R1.4.1.SP1.E1)

 </reference>
 </attribute>

</subject_phrase>
<verb_phrase id=R1.4.1.VP1>
 <label>“shall be”</label>
 <verb id=R1.4.1.VP1.V1>
 <label>“be”</label>
 <tax>
 verb::copula
 </tax>
 </verb>
</verb_phrase>
<how_much_phrase id=R1.4.1.HMP1>
 <label>“less than $70”</label>

<quantity>
 <label>“less than $70”</label>
 <value>
 (0,70)
 </value>
 <units>
 units::money::dollars
 </units>
 </quantity>
 <reference>
 “cost” (R1.4.1.SP1.A1)
 </reference>

 </how_much_phrase>
</requirement_statement>

 vii

Appendix E: Full Formalized PDS for Automatic Pot Stirrer

R1.X: Conduct Market Research

R1.1.X: Conduct Market Research Patent Infringement

R1.1.1: The pot shall not infringe on US Patent 5863121.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall not infringe”
 Verb: “infringe” (verb::copy::duplicate, negative)
 What-phrase: “on US Patent 5863121”
 Entity: “US Patent 5863121” (use_environment::patent)

R1.1.2: The pot shall not infringe on US Patent 6026735.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall not infringe”
 Verb: “infringe” (verb::copy::duplicate, negative)
 What-phrase: “on US Patent 6026735”
 Entity: “US Patent 6026735” (use_environment::patent)

R1.2.X: Conduct Market Research Public Relations

N/A

R1.3.X: Conduct Market Research Competitive positioning

N/A

R1.4.X: Conduct Market Research Cost

R1.4.1: The cost of the pot shall be less than $70.
 Subject phrase: “The cost of the pot”

Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)
Attribute: “cost” (attribute::financial::cost)

 Reference: “pot”
 Verb phrase: “shall be”
 Verb: “be” (verb::copula)
 How-much-phrase: “less than $70”
 Quantity: “less than $70” (0-70, units::money::dollars)
 Reference: “cost”

 viii

R1.5.X: Conduct Market Research Timeline

R1.5.1: The pot shall be on store shelves within one year.
 Subject phrase: “The pot”

Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

Verb phrase: “shall be”
 Verb: “be” (verb::copula)
 What-state-phrase: “on store shelves”
 When-phrase: “within one year”
 Quantity: “within one year” (0-1, units::time::years)
 Reference: “on store shelves”

R1.6.X: Conduct Market Research Production volume

R1.6.1: Initial production of the pot shall be 1800 units during the first year.
 Subject phrase: “Initial production of the pot”

Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)
Attribute: “production” (attribute::quantity)

 Reference: “pot”
Verb phrase: “shall be”

 Verb: “be” (verb::copula)
 How-much-phrase: “1800 units”
 Quantity: “1800 units” (1800, units::instances)
 Reference: “pot”
 When-phrase: “during the first year”
 Quantity: “during the first year” (0-1, units::time::years, ordinal)
 Reference: “initial production of the pot”

R1.7: The pot shall be marketed to nonprofessional chefs.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

Verb phrase: “shall be marketed”
 Verb: “market” (verb::guide::target, intransitive)

 Who-phrase: “to nonprofessional chefs”
 Entity: “nonprofessional chefs” (use_environment::operator::chef)

R2.X: Design

R2.1: The design team shall consist of 2 senior-level engineers and 5 junior level engineers.
 Subject phrase: “The design team”
 Entity: “design team”

Verb phrase “shall consist”
 Verb: “consist” (verb::contain::include)

 ix

 Who-phrase: “2 senior-level engineers and 5 junior level engineers”
 Entity: “senior-level engineer” (plural)
 Entity: “junior level engineer” (plural)
 Quantity: “2” (2, units::instances)
 Reference: “senior-level engineer”
 Quantity: “5” (5, units::instances)
 Reference: “junior-level engineer”

R3.X: Procure

TBD

R4.X: Manufacture/Assembly

R4.1: The pot shall be able to be manufactured within 30 minutes per unit.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall be able to be manufactured”
 Verb: “manufacture” (verb::create::manufacture, intransitive)
 When-phrase: “within 30 minutes per unit”
 Quantity: "within 30 minutes" (units::time::minutes)
 Reference: "manufactured"

R4.2: The pot shall be shipped already assembled.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

Verb phrase: “shall be shipped”
 Verb: “ship” (verb::move::deliver, intransitive)
What-state-phrase: “already assembled”
 Reference: “pot”

R5.X: Test/Inspect

R5.1: The pot shall conform to regulations of ASTM International.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall conform”
 Verb: “conform” (verb::maintain::uphold)
 What- phrase: “regulations of ASTM International”
 Entity: “regulations of ASTM International”
 (use_environment::regulation)

R6.X: Ship/Transport

 x

R6.1: The pot shall be able to endure a drop of 8 feet.
 Subject phrase: “The pot”

Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall be able to endure”
 Verb: “endure” (verb::maintain::sustain)
 What-phrase: “a drop”
 Entity: “drop”
 How-much-phrase: “of 8 feet”
 Quantity: “8 feet” (8, units::distance::feet)
 Reference: “drop”

R7.X: Warehouse

R7.1: The pot shall be able to be stacked up to 6 units high once packaged.
 Subject phrase: “The pot”

Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall be able to be stacked”
 Verb: “be stacked” (verb::collect::pile_up, intransitive)
 How-much-phrase: “up to 6 units high”
 Quantity: “up to 6 units” (0-6, units::instances)
 Reference: “the pot”
 What-state-phrase: “once packaged”
 Reference: “the pot”

R8.X: Display

R8.1: The design of the pot shall be clean and sleek.
 Subject phrase: “the design of the pot”

Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)
Attribute: “design” (attribute::appearance)
 Reference: “pot”

Verb phrase: “shall be”
 Verb: “be” (verb::copula)
What-kind-phrase: “clean and sleek”
 Reference: “design”

R9.X: Install

TBD

R10.X: Use/Operate

 xi

R10.1.X: Use/Operate Function

R10.1.1.X: Use/Operate Function Motion

R10.1.1.1: The pot shall be able to automatically stir the food after activation.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall be able to automatically stir”
 Verb: “stir” (verb::mix::stir, potential)
 What-phrase: “the food”
 Entity: “the food” (use_environment::food::mixture)
 What-state-phrase: “after activation”
 Reference: “pot”

R10.1.1.2: The blade shall not chop up solids within the food while maintaining power to move
throughout the pot.

Subject phrase: “The blade”
 Entity: “blade” (use_environment::blade, plural)
 Verb phrase: “shall not chop up”
 Verb: “chop” (verb::separate::break_up, negative)
 What-phrase: “solids within the food”
 Entity: “solids within the food” (use_environment::food::solid, plural)
 What-state-phrase: “while maintaining power to move throughout the pot”
 Verb: “maintain” (maintain)
 Attribute: “power” (mechanics::torque)
 Verb: “move” (verb::rotate)

Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)
Reference: “blade”

R10.1.2.X: Use/Operate Function Structure

R10.1.2.1: The pot shall not permit sticking of the food to the wall of the pot.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall not permit sticking”
 Verb: “permit” (verb::provide::allow, negative)
 Verb: “sticking” (verb::connect::adhere)
 What-phrase: “of the food”
 Entity: “the food” (use_environment::food::mixture)
 Where phrase: “to the wall of the pot”
 Entity: wall of the pot” (use_environment::surface)

R10.1.2.2: The pot shall not permit sticking of the food to the bottom of the pot.

 xii

Noun phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall not permit sticking”
 Verb: “permit” (verb::provide::allow, negative)
 Verb: “sticking” (verb::connect::adhere)
 What-phrase: “of the food”
 Entity: “the food” (use_environment::food::mixture)
 Where phrase: “to the bottom of the pot”
 Entity: bottom of the pot” (use_environment::surface)

R10.1.2.3: The stirring mechanism shall be attached to the lid.
 Subject phrase: “The stirring mechanism”
 Entity: “use_environment::stirring_assembly)
 Verb phrase: “shall be attached”
 Verb: “attach” (verb::connect::attach)
 Where-phrase: “to the lid”
 Entity: “lid” (use_environment::lid)

R10.1.2.4: The lid shall be attachable to the pot.
 Subject phrase: “The lid”
 Entity: “lid” (use_environment::lid)
 Verb phrase: “shall be attachable”
 Verb: “attachable” (verb::connect::attach, potential)
 Where-phrase: “to the pot”

Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

R10.1.2.5: The diameter of the lid shall be specified by the diameter of the pot.
 Subject phrase: “The diameter of the lid”
 Attribute: “diameter” (attribute::geometric::dimension)
 Reference: “lid”
 Entity: “lid” (use_environment::lid)
 Verb phrase: “shall be specified by”
 Verb: “specified” (verb::specify::determine, intransitive)
 What-phrase: “the diameter of the pot”
 Attribute: “diameter” (attribute::geometric::dimension)

 Reference: “pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

Equivalent to: “The diameter of the pot shall specify the diameter of the lid.”

R10.1.3.X: Use/Operate Function Energy

R10.1.3.1: The power for the pot shall be transmitted through an electrical cable.
 Subject phrase: “The power for the pot”

 xiii

 Attribute: “power” (attribute::material::electrical::power)
 Reference: “pot”

Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall be transmitted”
 Verb: “transmitted” (verb::move::transmit, intransitive)
 How-phrase: “through an electrical cable”
 Entity: “electrical cable” (use_environment::cable)
 Reference: “transmitted”

R10.1.3.2: The power of the motor shall be between 200 and 400 watts.
 Subject phrase: “The power of the motor”
 Attribute: “power” (attribute::material::electrical::power)
 Reference: “motor”
 Entity: “motor” (use_environment::motor)
 Verb phrase: “shall be”
 Verb: “be” (copula)

How-much-phrase: “between 200 and 400 watts”
Quantity: “between 200 and 400 watts” (200-400, units::electrical:: watts)
 Reference: “power”

R10.1.4.X: Use/Operate Function Interface

R10.1.4.1: The pot shall work with food with viscosities between 1.02cP and 250000cP.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

Verb phrase: “shall work with”
 Verb: “work” (verb::provide::accommodate)

 What-phrase: “food with viscosities”
 Attribute: “viscosity” (attribute::material::fluidic::viscosity)
 Reference: “food”

 Entity: “food” (use_environment::food::mixture)
 How-much- phrase: “between 1.02cP and 250000cP”

Quantity: “between 1.02cP and 250000cP” (1.02-250000, units::fluidic:: poise)
 Reference: “viscosity”

R10.1.4.2: The pot shall work with food with densities that are low or high.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

Verb phrase: “shall work”
 Verb: “work” (verb::provide::accommodate)

 What-phrase: “with food with densities”
 Attribute: “density” (attribute::material::physical::density)
 Reference: “food”

 xiv

 Entity: “food” (use_environment::food::mixture)
 How-much- phrase: “that are low or high”
 Quantity: “low or high” (0-inf, units::material::density::g_per_ml)
 Reference: “density”

R10.2.X: Use/Operate Environmental Conditions

R10.2.1: The surfaces shall be able to endure splattering of the food.
 Subject phrase: “The surfaces”
 Entity: “surface” (use_environments::surface)
 Verb phrase: “shall be able to endure”
 Verb: “endure” (verb::maintain::sustain, potential)
 What-phrase: “splattering of the food”

 Entity: “food” (use_environment::food::mixture)

R10.2.2: The cooking vessel shall be able to endure the temperature and humidity in the
dishwasher.
 Subject phrase: “The cooking vessel”
 Entity: “cooking vessel” (use_environments::cooking_vessel)
 Verb phrase: “shall be able to endure”
 Verb: “endure” (verb::maintain::sustain, potential)
 What-phrase: “the temperature and humidity in the dishwasher”
 Attribute: “temperature” (attribute::environmental::temperature)
 Reference: “dishwasher”
 Attribute: “humidity” (attribute::environmental::humidity)
 Reference: “dishwasher”
 Entity: “dishwasher” (use_environment::cleaning::dishwasher)

R10.2.3: The pot shall resist corrosion from water and household cleaning chemicals.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall resist”
 Verb: “resist” (verb::stop::resist)
 What-phrase: “corrosion”
 Attribute: “corrosion” (attribute::material::failure::corrosion)
 What-kind-phrase: "from water and household cleaning chemicals"
 Reference: "corrosion"

R10.2.4: The pot shall be able to endure temperatures up to 500F.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall be able to endure”
 Verb: “endure” (verb::maintain::sustain, potential)
 What-phrase: “temperatures”

 xv

 Attribute: "temperature" (attribute::material::thermal::temperature)
 How-much phrase: "up to 500F"

 Quantity: "up to 500F" (500,
 units::material::thermal::temperature::degrees_farenheit)
 Reference: "temperatures"

R10.3.X: Use/Operate Safety

R10.3.1: The pot shall avoid burning the operator.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “avoid burning”
 Verb: “burn” (verb::destroy::damage, negative)
 Who-phrase: “the operator”
 Entity: “operator” (use_environment::operator)

 R10.3.1.1: The pot shall prevent splattering of the food on the operator.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 V erb-phrase: "shall prevent"
 Verb: "prevent" (verb::stop::prevent)
 What-phrase: “splattering of the food”

 Entity: “food” (use_environment::food::mixture)
 Who-phrase: "on the operator"
 Entity: “operator” (use_environment::operator)

R10.3.2: The pot shall conform to regulations of the Underwriters Lab.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall conform”
 Verb: “conform” (verb::maintain::uphold)
 What- phrase: “regulations of the Underwriters Lab”
 Entity: “regulations of the Underwriters Lab”
 (use_environment::regulation)

R10.4.X: Use/Operate Ergonomics

R10.4.1.X: Use/Operate Ergonomics Ease of use

R10.4.1.1: The pot shall be able to be lifted with two hands.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 xvi

 Verb phrase: “shall be able to be lifted”
 Verb: “lift” (attribute::move::lift, passive)
 How-phrase: “with two hands”
 Reference: “lift”

 R10.4.1.1.1: The weight of the pot shall be less than 12 pounds.

Subject phrase: “The weight of the pot”
 Attribute: “weight” (attribute::mechanics::mass)
 Reference: “pot”

Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall be”
 Verb: “be” (verb::copula)
 How-much-phrase: “less than 12 pounds”
 Quantity: “less than 12 pounds” (0-12, units::weight::pounds)
 Reference: “weight”

R10.4.1.2: The pot shall be able to be held with two hands.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall be able to be held”
 Verb: “held” (verb::contain::hold, intransitive)

How-phrase: “with two hands”
 Reference: “hold”

 R10.4.1.2.1: The diameter of the pot shall be 10 inches.

Subject phrase: “The diameter of the pot”
Attribute: “diameter” (attribute::geometry:: dimension)
 Reference: “pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall be”
 Verb: “be” (verb::copula)
 How-much-phrase: “10 inches”
 Quantity: “10 inches” (10, units::length::inches)
 Reference: “diameter”

R10.4.1.2.2: The depth of the pot shall be 6 inches.

Subject phrase: “The depth of the pot”
Attribute: “depth” (attribute::geometry::dimension)
 Reference: “pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall be”
 Verb: “be” (verb::copula)

 xvii

 How-much-phrase: “6 inches”
 Quantity: “6 inches” (6, units::length::inches)
 Reference: “depth”

R10.4.2.X: Use/Operate Ergonomics Accessibility

R10.4.2.1: The pot shall be able to be operated by one person.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall be able to be operated”
 Verb: “operate” (attribute::start::operate, passive)
 Who-phrase: “by one person”
 Entity: “person” (use_environment::operator)
 Quantity: “one” (1, units::instances)
 Reference: “person”

R10.5.X: Use/Operate Reliability

TBD

R10.6.X: Use/Operate Aesthetics

R10.6.1: The pot shall not absorb odors.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “absorb”
 Verb: “absorb” (verb::acquire::absorb, negative)
 What-phrase: “odors”
 Attribute: “odor” (attribute::material::chemical::odor)

R10.6.2: The acoustic noise of the pot shall be less than 110 dBA.

Subject phrase: “The acoustic noise of the pot”
Attribute: “acoustic noise” (attribute::auditory::loudness)
 Reference: “pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall be”
 Verb: “be” (verb::copula)
 How-much-phrase “less than 110 dBA”
 Quantity: “less than 110 dBA” (0-110, units::auditory::decibel)
 Reference: “acoustic noise”

R10.6.3: The design of the pot shall match conventional design schemes.

Subject phrase: “The design of the pot”

 xviii

Attribute: “design” (attribute::identification::appearance)
 Reference: “pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall match”
 Verb: “match” (verb::measure::compare)
 What-phrase: “conventional design schemes”

R11.X: Store

R11.1: The pot shall be stored in a standard cabinet.
Subject phrase: “The pot”

Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall be stored”
 Verb: “stored” (verb::contain::store, intransitive)

Where-phrase: “in a standard cabinet”
 Entity: "cabinet" (use_environment::cabinet)

R12.X: Service/Repair

R12.1: The pot shall not require any other maintenance besides cleaning.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: “shall not require”
 Verb: “require” (verb::specify, negative)
 What-phrase: “maintenance besides cleaning”

R13.X: Upgrade

N/A

R14.X: Dismantle

R14.1: The pot shall be able to be dismantled using a Phillips screwdriver for purposes of
recycling.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

Verb phrase: "shall be able to be dismantled"
 Verb: "dismantle" (verb::destroy::dismantle, potential, intransitive)
How-phrase: "using a Phillips screwdriver"
 Entity: "Phillips screwdriver" (use_environment::tool)
Why-phrase: "for the purposes of recycling"

 xix

R15.X: Recycle

R15.1: The pot shall be made from fully recyclable plastics and metals.
Subject phrase: “The pot”

Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: "shall be made from"
 Verb: "make" (verb::create::make, intransitive)
 What-phrase: "plastics and metals"
 Entity: "plastics" (use_environment::materials)
 Entity: "metals" (use_environment::materials)
 What-kind-phrase: "fully recyclable"
 Reference: "plastics and metals"

R15.2: The pot shall be made from recycled plastics and metals.

Subject phrase: “The pot”
Entity: “pot” (device::kitchen_appliance::mixer,
device::kitchen_appliance::cooker::conduction_cooker)

 Verb phrase: "shall be made from"
 Verb: "make" (verb::create::make, intransitive)
 What-phrase: "plastics and metals"
 Entity: "plastics" (use_environment::materials)
 Entity: "metals" (use_environment::materials)
 What-kind-phrase: "recycled"
 Reference: "plastics and metals"

R16.X: Dispose

R16.1: Use of environmentally hazardous materials shall be prohibited.
 Subject phrase: “use of environmentally hazardous materials”
 Entity: “use_environment::environmentally hazardous materials” (plural)
 Verb: “use” (verb::start::use)
 Verb phrase: “shall be”
 Verb: “be” (verb::copula)
 What-state-phrase: “prohibited”
 Reference: “use”

