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Abstract 

Experimental data have been gathered by applying 3D imaging systems, such as 
LIDAR/LADAR instruments, to spherical objects.  This report provides a compilation of the 
statistical and analytical procedures to be used for an evaluation, to be reported separately, of 
two different methods of modeling objects, directional and orthogonal fitting, based on those 
data.  Estimating the variances of fitted parameters directly from their sensitivities to data 
perturbations is proposed. Sensitivities are determined by implicit differentiation of error 
gradiens.  Detailed descriptions of the directional and orthogonal fitting methods, as applied to 
spheres in a scanning environment, are set forth. In particular, the report furnishes closed-form 
expressions for those derivatives of the respective error functions which are needed for the 
calculation of the parameter sensitivities with respect the full set of control variables. 
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1  Introduction 

A frequent task is to determine the shape characteristics, size, position and pose of physical 
objects for purposes of identification, location, registration, and calibration of coordinate frames. 
Such tasks are needed, among others, for quality control in manufacturing, determination of “as-
built” structures, construction automation and site monitoring, e.g., [1, 2].  

A common approach to these tasks is to acquire 3D coordinates of data points considered to lie 
on the surface of targeted objects.  3D Imaging Systems, which include “line-of-sight” 
LIDAR/LADAR devices, are increasingly used for this purpose.  The latter instruments, in 
particular, are capable of fast generation of large amounts of data points or “point clouds”.  They 
scan an object by emitting laser pulses and processing return signals in order to determine the 
distance traveled and thus determine the distance or “range” between the instrument and the 
point of impact -- presumably -- on the object.  The device keeps track of the “bearings” such as 
azimuth and elevation angle, at which each particular signal was emitted.  This process of data 
acquisition suggested the use in this work of polar/spherical (“angle-angle-range”) coordinate 
systems for representing data points. Also, transformation to Cartesian coordinates will introduce 
correlation.  
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Once the point cloud corresponding to an object has been determined, a computational process is 
required to extract the desired features of the object from this data set. In typical applications, a 
mathematical “model” is specified, based on features characteristic for a class of objects. The 
model is “parameterized”, that is, it is defined with the help of parameters that determine these 
characteristics. Choosing values for these parameters will result in the mathematical description 
of a surface to represent a “virtual object”, which may then be compared to an image of the real 
object as provided by the point cloud.  By adjusting the model parameters so that the virtual 
object moves into a location that optimizes the proximity of the object surface to points in the 
point cloud, desired characteristics such as location, pose, size and shape are found within the 
coordinate frame of the point cloud.  This permits determining the geometric relationship 
between that object and other objects or features that are also represented in the point cloud 
frame. If this frame registers to an established ground-truth frame, then absolute measurements 
of location, pose and shape can be extracted. 
 
Such approaches to the modeling of objects of interest within a point cloud may employ the 
powerful “Iterative Closest Point (ICP)” method [3], or the “Hough Transform”, e.g. [4].  Present 
work focuses on the extensively used “Fitting” paradigm, which is based on minimizing a 
specified error function or on maximizing likelihood.  The reader may want to consult texts on 
“Statistical Models” such as [5-7]. 
 
Of particular interest are two least-squares based approaches, “orthogonal” and “directional“ 
fitting.  Orthogonal fitting, also referred to as “Orthogonal Distance Regression (ODR)” [8, 9], or  
“Geometric Fitting” [10], is a commonly used and widely commercialized method.  In particular, 
publications [10-19] discuss its application to the fitting of spheres or circles.  The alternate 
approach, “directional fitting” has been proposed and discussed [20, 21] for data acquired by 
scanning from a single instrument position.  Here, the orthogonal (closest Euclidean) distance to 
the virtual object has been replaced by the distance in the direction of the scan by which the data 
point had been acquired.  While computational aspects dominate much of this research, our 
interest here is in statistical and metrological issues. 
 
The thrust of this report is an approach to determining the sensitivities of fitted model 
parameters, in general, and for spherical models, in particular.  The report is also preparatory to 
an experimental study of different fitting methods and their statistical evaluation [22].  At issue, 
in particular, is the estimation of derived variances for fitted sphere centers based on specified 
variances for range measurements.  In Chapter 2, the general fitting paradigm, based on the 
concept of an error function, is described, along with the general computational formalism for 
calculating parameter sensitivities. These sensitivities will be used to estimate parameter 
variances. In dealing with spherical models, this approach is of necessity more general than the 
common nonlinear least squares approach based on linearization and homoscedacity.  A 
comparative discussion of these statistical procedures will be provided in a separate report [23].  
Chapters 3 and 4 are dedicated, respectively, to orthogonal and directional fitting of spheres in a 
scanning environment. Closed forms of the derivatives, needed for calculating sensitivities, are 
reported. The Appendix will feature detailed derivations of the reported formulas so as to enable 
verification. 
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2 The Fitting Paradigm 
 
2.1 Error Function 
 
Once a parameterized model has been selected, it is natural to ask for parameters that minimize 
the extent to which the point cloud deviates from the resulting virtual object.  The hope is that 
such an – at least locally – optimal virtual object provides, within the coordinate frame of the 
data points, an accurate representation of the actual object.  Fitting a 3D model of a sphere of a 
Cartesian center ],,[ ZYXC =  and known radius R  may be accomplished by specifying an 
“error function” 
  
 (2.1.1)                                 ),,,...,,,,,,,,,( 222111 nnndddZYXEE θϕθϕθϕ=  

 
where ZYX ,,  denote the model parameters, and the variables nid iii ,...,1,,, =θϕ ,  are 

coordinates of points [ ]iiii d θϕ=P  to be measured.  The following discussions, however, 

should not be construed as pertaining only to this special scenario, but rather as representative of 
full generality.  In particular, the data may also be Cartesian, or not be coordinates, at all. 
 
The choice of the error function should be such that it produces only nonnegative values.   A 
minimum of zero should indicate a perfect fit.  An error function E  thus furnishes a model 
description. 
 
Given an actual data set of measurements 
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the parameter values 
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for the variables ZYX ,, , given the coordinate values of the data points iP . 

 
A common approach to constructing error functions is to assign an individual error 
 
                                        ),,,,,( iiiii dZYXee θϕ=  

 
to each data point [ ]iiii d θϕ=P , and to minimize the sum of squares 
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Both, the orthogonal and directional fitting method, mentioned in the Introduction, are based on 
the Nonlinear Least Squares (NLS) concept [17, 19].  In both cases, each data point iP  is 

assigned a “theoretical point” or “model point” iP̂   located on the proposed virtual object.  That 

theoretical point is seen as the desired “correct” point, and the Euclidean distance between the 
two points is considered the individual error 
 

                                                         iiie PP −= ˆ   

 
of the data point with respect to the current location and shape specification of the virtual object. 
  

In orthogonal fitting, the theoretical point iP̂  is chosen as a point that lies on the virtual object 

and is closest to the data point iP  in terms of Euclidean distance. In the 3D imaging 

environment, however, the data point iP   is considered to lie on a particular “scan ray” or “line-

of-sight”, which emanates from the instrument position.  
In directional fitting, if the scan ray intersects the virtual object, the intersection closest to the 

instrument is thus chosen as the theoretical point iP̂   for the data point iP . What happens if the 

scan ray of a data point  Pi does not intersect the current virtual object?  It might be tempting to 
reject such an occurrence as unrealistic as the point cloud was generated from the real object.  It 
should be kept in mind, however, that during the fitting process, the virtual object will, in 
general, not match the actual object.  Indeed, establishing that match is the purpose of the fitting 
process.  It is, therefore, necessary to extend the error definition to those date points whose scan 
rays miss the virtual object.  The following generic principle for a continuous extension has been 

proposed in [21].  Here, the theoretical point iP̂  is chosen as a point on the virtual object that is 

closest to the scan ray in terms of Euclidean distance. 
 
 
2.2 Sensitivity 
 
As we return to the general error function E  (2.1.1), we examine a major aspect of analyzing the 
results of a fitting procedure.  It concerns the “sensitivities” of the resulting parameters, namely, 
their marginal rates of change caused by perturbations of the data coordinates.  Such sensitivities 
not only provide key information about a fitting process, they also play a role in the estimation of 
variances and covariances of the fitted parameters, as will be discussed in the subsequent section. 
 
With each set of stipulated data values nid iii ,...,,,, θϕ , the error function  E   associates a set of 

minimizing parameters.  We may thus consider the minimizing parameters as functions of these 
data variables 
 
 (2.2.1)                            ),,,...,,,( 111 nnnddX θϕθϕ  
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                                      ),,,...,,,( 111 nnnddZ θϕθϕ  

 
in a suitable neighborhood of the actually measured values nid iii ,...,1,,, )0()0()0( =θϕ .  By 

definition,  
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            are the desired results of the fitting process.  

 
In what follows, we will assume that the error function E  satisfies all necessary differentiability 
conditions. We are particularly interested in the derivatives 
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represent the respective sensitivities of the parameters )0()0()0( ,, ZYX  to perturbations of the 
indicated  data variables. 
    
Implicit differentiation will be used to derive expressions for the sensitivities (2.2.2) from the 
expression for the error function E . Indeed, the gradient of E  with respect to these parameters, 
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vanishes if the parameters ZYX ,,  have been minimized with respect to the coordinates 

nid iii ,...,1,,, =θϕ .  As we thus substitute for the parameters ZYX ,,  their corresponding 

functions (2.2.1) in the above gradient components, we arrive at a set of derivative functions 
which are identically zero as functions of the data variables nid iii ,...,1,,, =θϕ .  In other words, 

the following derivative expressions,  
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vanish identically.  Then so do the derivatives of these functions, which by the Chain Rule 
become: 
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For brevity, we displayed these relationships only for sensitivities with respect to the range 
variables id .  Evaluating these functions for the resulting parameters 000 ,, ZYX  and the actual 

data 000 ,, iiid θϕ , yields a numerical mm ×  linear system of equations for the sensitivities (2.2.2) 

with respect to the coordinates id .  With the notations 
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The matrix of this linear system may be stated in terms of the Hessian  
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of the error function E.  The linear system (2.2.5) may thus be written as  
 

(2.2.7)                            )0(

)0(

)0(

)0(

)0( E
d

d

Z
d

Y
d

X

E XYZ
i

i

i

i

XYZ ∇
∂
∂−=

























∂
∂
∂
∂
∂
∂

H  , 

  

where again the symbol  )0( is meant to indicate the, -- a posteriory --, substitution by 
)0()0()0( ,, ZYX  and the actual data values. The resulting Hessian matrix is positive definite, and 

therefore nonsingular, at any locally unique minimum of the error function  E.  The linear system 
is then solvable and yields the values of the sensitivities (2.2.2) with respect to the variables id . 

 
The remaining sensitivities with respect to the variables iϕ  and iθ  may be determined from 

analogous linear systems, based on the same Hessian matrix. 
 
Note that implicit differentiation can be used to determine higher order sensitivities such as 
  

...,,,,,,, 2

22

2

222

2

2

ljlijijli

XXX

d

X

d

X

d

X

θθϕϕθϕ ∂
∂

∂∂
∂

∂
∂

∂∂
∂

∂∂
∂

∂
∂

 . 

 
The corresponding linear systems are based on the same Hessian matrix as in (2.2.7) but use 
different right hand sides. 
 
 
2.3 Noise Propagation 
 
In, general, data variables  iiid θϕ ,,   and the parameters ZYX ,, will be considered random 

variables with expected values  )0(
1

)0()0( ,, θϕiid  and ,,, )0()0()0( ZYX  respectively.  In frequent 

applications, however, some data variables of the error function will be given “control variables” 
or “design variables”, and are thus not random.  When fitting scanned objects, in particular, it is 
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frequently assumed that the noise in range measurements id  dominates noise in bearings, which 

furthermore is difficult to assess.  Consequently, only the range coordinates id   are considered 

random, while the bearing angles iϕ  and iθ  are specified control variables.  For scanning 

instruments, it is generally safe to assume that range variables id   are independent of each other.  

The following exposition will be based on these assumptions, again for brevity. 
  
The sensitivities described in the previous section will be instrumental in assessing the effects of 
data noise on fitted parameters. The well known “Error Propagation Formula” provides first 
order estimates of the variances (see GUM [24], Chapter 5) 
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Similarly, one has for the covariances [25], 
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Again, it is here assumed that the coordinate measurements )0(

id  are independent, that is, not 

correlated, so that their mutual covariances are zero.  Note however that, even if the measured 
quantities )0(

id  are independent, the fitted parameters )0()0()0( ,, ZYX will still be correlated. 

 
In most applications, the condition of homoscedacity is supposed to hold, that is, the variances 
have the same value within a class of measurements, such as the class d  of range measurements, 
 
                                                nidd i ...,1),var()var( == . 

 
For the special cases of LS and NLS regression, in which the individual errors in our scenario 
would take the form 
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a covariance matrix  can be approximated in an elegantly simple fashion under homoscedacity as 
set forth in the general literature, e.g. [5-7, 26, 27].  Unfortunately, the error functions considered 
here, in particular, the orthogonal error function (Chapter 4) and a portion of the directional error 
function (Chapter 3) do not fall into this regression category as the required separation of the 
random variables from the control portion cannot be achieved.  It is for this reason, that the more 
general approach described in Sections 2.2 and 2.3 had to be adopted.  A more detailed 
explanation will be provided in a separate report [23]. 
 
 
3 Directional Fitting of Spheres 
 
3.1 Directional Errors 
 
Introducing the trigonometric quantities iii ςηξ ,, , the Cartesian coordinates iii zyx ,,  of data 

points will be expressed in the form 
 
(3.1.1)         iiiiii ddx ξθϕ == coscos ,     iiiiii ddy ηθϕ == cossin ,   iiiii ddz ςθ == sin , 

 

where 1222 =++ iii ςηξ .  The vector ),,( iii ςηξ  represents the direction of the scan ray along 

which the data point iP  was acquired.  Next we introduce the quantities: 

    
                               iiiiiii ZYXp ςηξ ++=  , 

 

(3.1.2)                    22222
ii pZYXq −++= , 

 

                               222
ii qRs −= . 

 
Figures 1 and 2 illustrate the geometric meaning of these quantities.   
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If the scan ray of data point iP   intersects the virtual sphere centered at ][ ZYX=C , we 

associate with  iP   the midpoint iP′  of the resulting chord.  The quantity iip P′=   then 

represents the distance of that “mid-chord” point from the instrument at the origin ]000[=O .  

Similarly, 0≥−′= CPiq represents the distance of the mid-chord from the sphere center.   

Thus 
 
                                                               Rqi <  

 
is the condition for true, that is, non-tangential intersection.  The quantitiesip  and iq  are side 

lengths of the right triangle CPO i′∆ , with its right angle atiP′ .  Pythagoras thus yields the 

relation (3.1.2) between 2
ip  and 2

iq .  The triangle CPP ii ′ˆ∆ , where the theoretical point iP̂   

marks the entry point into the sphere, also has a right angle at iP′ .  The quantity is  thus 

represents the length of the half-chord that needs to be subtracted from the distance P′=ip  to 

arrive at the desired distance P̂  of the theoretical point from the origin.  As a result, the 

directional error of the data point iP  is given by 

 
 
(3.1.3)                    iiii dspf −−=       (=  “interior error” of iP  if Rqi < ) . 
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Figure 1. Geometrical interpretation of the directional error function when a scan ray 
intersects the sphere surface.  Pi (marked by dark dot) is the experimental point, light dots 

mark the theoretical point on the sphere surface iP̂  and the mid-chord point iP′ .  The length 

of the bold line segment measures the error if  defined by (3.1.3).  
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On the other hand, if 
 
                                                             Rqi ≥  , 

 
then the scan ray of the data point iP  fails to truly intersect the virtual sphere.  In that case, and 

following the general extension principle set forth in Section 2.1, we determine the theoretical 
point as that point on the virtual sphere which is closest to the scan ray.  The line segment which 
represents the shortest distance between the sphere and the scan ray has to be orthogonal to both 
the sphere and the scan ray.  The line segment thus has to be part of a line through the center of 
the sphere, and also meet the scan ray at a point iP′  at a right angle.  This defines again the right 

triangle CPO i′∆ , which we encountered before, and whose side lengths are again ip  and  iq  

(Fig.2).  The desired theoretical point iP̂  thus lies on the side [OPi′ ] at distance R  from center 

and at distance  Rqi −  from iP′ . The triangle CPP ii ′ˆ∆  is also a right triangle, has side lengths 

iiii dp −=−′ PP and Rqiii −=−′ PP ˆ . The length of its hypotenuse ii PP −ˆ  thus 

represents the error of the data point iP  : 
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Figure 2. Geometrical interpretation of the directional error function when a scan ray does 
not intersect the sphere surface.  Pi (marked by dark dot) is the experimental point, light dots 

mark the theoretical point on the sphere surface iP̂  and the point iP′ on a scan ray which is 

the closest one to the sphere center C.  The length of the bold line segment measures the 
error ig  defined by (3.1.4). 
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(Note that, by Thales’ theorem, the locus of all possible points iP′  is the sphere through both the 

virtual sphere center C  and the originO , centered halfway between these two points.) 
 
If  0=− Rqi  then ii gf =  , so that the combined error function will be continuous.  While the 

error expression ig  is everywhere twice continuously differentiable, the error expression if  fails 

to be so if and only if 0=is  , -- the case of tangential intersection -- , where its gradient with 

respect to the parameters ZYX ,,  is infinite.   In these cases, the resulting full error function 
will also not be differentiable.  However, those points will only amount to a closed set of 
measure zero in parameter space.  As a consequence, a gradient based numerical minimization 
method, such as the often relied on “BFGS” method [28], may still be used [21]. Similarly, the 
probability of the error function E not being differentiable for the fitted parameters 

)0()0()0( ,, ZYX  will be theoretically zero. 
 
We find it convenient, to categorize only a true intersections as a “hit”. A tangential intersection 
is thus considered a “miss”, along with all cases in which the virtual sphere is not met at all.  
Accordingly, we divide the indices i  into two sets: 
 
                                         { }RqiU i <= :   and  { }RqjV j ≥= :  . 

 
The combined error function then takes the form 
 

 (3.1.5)              ∑ ∑∈ ∈
+==

Ui Vj jinnndirecdirec gfddZYXEE 22
11 ),,,...,,,,,( θϕϕ  

 
 
3.2  Derivatives for the Directional Error Function 
 
In this section, we list formulas for the gradients and the Hessians of the individual error 
functions if  and  ig  with respect to the parameters ZYX ,, , along with the second derivatives 

with respect to both these parameters and the data variables iiid θϕ ,, . Gradients support 

optimization methods and are the first step towards determining the above second derivatives, 
which are needed for the computation of the sensitivities and variances described in Sections 2.3-
4. Derivation of these formulas is provided in the Appendix as referenced.  
 
In terms of the individual errors if  and  ig  , the gradients and Hessians of the directional error 

function are: 
 

                                    ∑ ∑∈ ∈
∇+∇=∇

Ui Vi iXYZiXYZdrecXYZ gfE 22  

 

                                    ∑ ∑∈ ∈
+=

Ui Vi iXYZiXYZdrecXYZ gfE 22 HHH . 

 
The gradients are linear combinations of the vectors  
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(3.2.1)                                     





















=

Z

Y

X

U    and    





















=

i

i

i

i

ς

η

ξ

Λ , 

 
namely (see (A.2.6) and (A.2.7) in Appendix) 
 

(3.2.2)        i
i

iii

i

i
iXYZ s

dff

s

f
f ΛU

)(
2
1 2 +−=∇  ,    ii

i

i

i
iXYZ d

q

Rp

q

R
g ΛU )()1(

2
1 2 −+−=∇  

     
Similarly, the Hessian matrices are linear combinations of the following four symmetric 
matrices: 
 

(3.2.3)      





















=

100

010

001

I  (Identity), 

 

           [ ]





















=





















=

2

2

2

ZZYZX

YZYYX

XZXYX

ZYX

Z

Y

X

TUU , 

 
                 

[ ] [ ]





















+++

+++

+++

=





















+





















=+

ZZYZXZ

ZYYYXY

ZXYXXX

ZYX

Z

Y

X

iiiiii

iiiiii

iiiiii

i

i

i

ii
T

i
T
i

ςςςηςξ

ηςηηηξ

ξςξηξξ

ς

η

ξ

ςηξUΛUΛ , 

 

           [ ]





















=





















=

2

2

2

iiiii

iiiii

iiiii

ii

i

i

i

T
ii

ςηςξς

ςηηξη

ςξξηξ

ςηξ

ς

η

ξ

ΛΛ . 

 
Thus, (see (A.2.11) and (A.2.12))  
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(3.2.4)       
T
ii

i

ii

i

iiii

T
i

T
i

ii

iiiT

i

ii

i

ii
iXYZ

s

sp

s

dpsp

ss

dpp

s

dp

s

dp
f

ΛΛ

UΛUΛUUIH








 −+−−+

+







−−−







 −+







−−=

)(2))((

)(
1)(

1
2
1

3

22

33
2

 

 

                 
T
ii

i

T
i

T
i

i

iT

ii
iXYZ

q

ZYX
R

q

Rp

q

R

q

R
g

ΛΛ

UΛUUIH UΛ








 +++

+−+







−=

3

222

33
2 )(1

2
1

. 

 
Evaluated for optimal parameters )0()0()0( ,, ZYX  and actual data points ][ )0()0()0(

iiii d θϕ=P , 

these Hessian matrices support the left hand side of linear systems (2.2.7) for the corresponding 
sensitivities.  For the right-hand sides of those systems, we have for the range variables id  , 

 

                                  ∑ ∑∈ ∈ ∂
∂∇+

∂
∂∇=

∂
∂∇

Ui Vi
i

i
XYZ

i

i
XYZdrec

i
XYZ d

g

d

f
E

d

22

 

 
where (see (A.3.1)  and (A.3.2)) 
 

(3.2.5)                       i
i

ii

ii

i
XYZ s

sp

sd

f
ΛU

−−−=
∂
∂∇ 1

2

1 2

 ,         i
i

i
XYZ d

g
Λ−=

∂
∂∇

2

2
1

 . 

 
For the bearing variables  ϕ  , θ , the individual derivatives in 
 

                                  ∑ ∑∈ ∈ ∂
∂∇+

∂
∂∇=

∂
∂∇

Ui Vi
i

i
XYZ

i

i
XYZdrec

i
XYZ

gf
E

ϕϕϕ

22

 , 

 

                                   ∑ ∑∈ ∈ ∂
∂∇+

∂
∂∇=

∂
∂∇

Ui Vi
i

i
XYZ

i

i
XYZdrec

i
XYZ

gf
E

θθθ

22

. 

 
are multiples of the vectors 
 

(3.2.6)                                      



















−

=
∂
∂

0

i

i

i
i

ξ

η

ϕ
Λ  ,     





















=
∂
∂

i

i

i

i
i

γ

β

α

θ
Λ  , 

 
where   iiiiiiii θγθϕβθϕα cos,sinsin,sincos =−=−= .  Thus 
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(3.2.7)              



















−

=
∂
∂∇

0

)(
2
1 2

2

i

i

ii
i

i
XYZ f

f ξ

η

ϕ
Γ  ,    



















−

=
∂
∂∇

0

)(
2
1 2

2

i

i

ii
i

i
XYZ g

g ξ

η

ϕ
Γ  

 

(3.2.8)              





















=
∂
∂∇

i

i

i

ii
i

i
XYZ f

f

γ

β

α

θ
)(

2
1 2

2

Γ  ,      





















=
∂
∂∇

i

i

i

ii
i

i
XYZ g

g

γ

β

α

θ
)(

2
1 2

2

Γ  , 

 
where the two pre-multiplying matrices are given by 
 
(3.2.9)                  

,1)(
2))((

)(
)(1

)( 23
2 IUΛUUΓ 







 −−−+







−−+−+







 −−=
i

ii
ii

T
i

ii

iiii
ii

T

i

iii

i
ii s

dp
sp

ss

dpsp
sp

s

dpp

s
f

 

                            IUΛUUΓ 







−+







 +++







−= u

i

iT
i

i

T

i

i
ii d

q

Rp

q

ZYX
R

q

Rp
g 3

222

3
2)( . 

 
As 
 

(3.2.10)                                    0Λ =



















−

0

i

i

T
i ξ

η

 and   0Λ =





















i

i

i

T
i

γ

β

α

 , 

 
the above matrices may be replaced in  (3.2.7) and (3.2.8), respectively, by the following 
symmetrized versions: 
 
 
(3.2.11)                  

,1)(

)(
2))((

)(
)(1

)(
23

2

I

UΛUΛUUΓ








 −−−

++







−−+−+







 −−=

i

ii
ii

T
i

T
i

ii

iiii
ii

T

i

iii

i
i

S
i

s

dp
sp

ss

dpsp
sp

s

dpp

s
f
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              IUΛUΛUUΓ 







−++







 +++







−= u

i

iT
i

T
i

i

T

i

i
i

S
i d

q

Rp

q

ZYX
R

q

Rp
g )()( 3

222

3
2 . 

 
 
 
 
 
4 Orthogonal Fitting of Spheres 
 

Here, the theoretical point iP̂  , that is, the point on the sphere which is closest to the data point 

[ ]iiii zyx=P , defines the individual error 

 

                                          RwRh iiiii −=−−=−= PCPP̂  

 
with respect to the sphere center C  and the radius R .  We thus represent the orthogonal fitting 
approach by the full error function 
 

(4.1.1)                            22

1

2

1

2 2)( RRwwRwhE ii

n

i
i

n

i
Iorth +−=−== ∑∑

==

 . 

 
Consistent with the generation of point clouds by scanning from a single instrument location, and 
as discussed before, the underlying coordinate frames are again considered polar with the 
instrument location at the origin.  For an analytic discussion of the orthogonal error function in 
terms of Cartesian data see [11]. 
 
With the notation (3.1.1) and the definition (3.1.2) of the auxiliary quantitity ip , 

 
               iiiiii ddx ξθϕ == coscos ,     iiiiii ddy ηθϕ == cossin ,   iiiii ddz ξθ == sin , 

 
we have 
 
(4.1.2)              22222222 2)()()()( iiiiiii dpdZYXzZyYxXw +−++=−+−+−=   . 

 
A key vector, in which gradients and Hessians of the individual orthogonal error squares 2

ih may 

be expressed, is given by 
 

(4.1.3)                                 ii

i

i

i

i

i

i

i

i dd

Z

Y

X

zZ

yY

xX

ΛUW −=





















−





















=





















−

−

−

=

ς

η

ξ

, 
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as  2
ii

T
i w=WW  .  Also (see (A.4.3) and (A.4.5)), 

 

(4.1.4)                         i
i

iXYZ w

R
h W








−=∇ 1

2

1 2  

 
and 
 

(4.1.5)                         T
ii

ii
iXYZ WW

w

R

w

R
h 3

2 1
2
1 +








−= IH  .  

 
For the derivatives which define the right-hand sides of the linear system (2.2.7), we have first: 
 

                             ∑
= ∂

∂∇=
∂
∂∇

n

i i

i
XYZorth

i
XYZ d

h
E

d 1

2

 

 
with (see (A.5.2)) 
 

(4.1.6)                    i
i

iii
ii

i
XYZ w

R
dp

w

R

d

h
ΛW 







−−−−=

∂
∂∇ 1)(

2
1

3

2

 . 

 
Again, the corresponding mixed derivatives with respect to the bearing variables ii θϕ ,  

are multiples of the vectors i
i

Λ
ϕ∂
∂

and i
i

Λ
θ∂
∂

, defined in (3.2.6). Their common multiplier is the 

matrix   
 

 (4.1.7)                          T
i

i

i

i
iii w

Rd

w

R
dh UWIΓ 3

2 1)( +







−−= , 

 
which, in analogy to (3.2.11), may be replaced also by its symmetrized form, 
 

(4.1.8)                           T
ii

i

i

i
ii

S
i w

Rd

w

R
dh WWIΓ 3

2 1)(
2
1 +








−−=  . 

 
Thus 

(4.2.5)                        



















−

=



















−

=
∂
∂∇

0

)(

0

)(
2
1 22

2

i

i

i
S
ii

i

ii
i

i
XYZ hh

h ξ

η

ξ

η

ϕ
ΓΓ  

and 
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(4.2.6)                        





















=





















=
∂
∂∇

i

i

i

i
s
i

i

i

i

ii
i

i
XYZ hh

h

γ

β

α

γ

β

α

θ
)()(

2
1 22

2

ΓΓ  . 

 
This concludes the main part of the report. It is followed by the Appendix in which details about 
the derivation of the key formulas are provided. 
 
Appendix A: Determination of Derivative Formulas Used for Calculating Sensitivities  
 
Here, we provide step by step developments of the derivative formulas referred to in Chapters 3 
and 4 for the purpose of determining the parameter sensitivities for directional and orthogonal 
fitting.  In Section A.2, the gradient direcXYZ E∇  and Hessian drecXYZ EH  of the directional error 

function are at issue. The Hessian provides the matrix for the corresponding linear system 
(2.2.7).  Also for the directional error function, the derivatives of both parameters and data 
variables, 
 

              
i

XYZXYZ
ii

XYZXYZ
ii

XYZXYZ
i

E
E

E
E

d

E
E

d θθϕϕ ∂
∂∇=∇

∂
∂

∂
∂∇=∇

∂
∂

∂
∂∇=∇

∂
∂

,,  , 

 
are derived in Section A.3, furnishing the right hand sides of these systems.   Finally, Section A.4 
provides the analogous information in the case of orthogonal fitting.  
 
 
A.1 General Considerations 
 
In what follows, the calculation of gradients XYZ∇  and Hessians XYZH  will often be based on the 
following straightforward reformulations of product and chain rules: 
 
(A.1.1)                  aabab XYZXYZ ∇′=∇ )()(  , 
 
                                abbaab XYZXYZXYZ ∇+∇=∇  , 
 
                                aaa XYZXYZ ∇=∇ 22  , 
 

                                  22 1

2

1
a

a
aa XYZXYZXYZ ∇=∇=∇ , 

and 
 
(A.1.2)                 aabaaabab XYZ

T
XYZXYZXYZ HH )()()( ′+∇∇′′= , 

 
                               abbaabbaab XYZXYZ

T
XYZXYZ

T
XYZXYZXYZ HHH ++∇∇+∇∇=  , 
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                               aaaaa XYZ

T
XYZXYZXYZ HH 222 +∇∇=  , 

 

                                222
3

2 1
2
11

4
1

a
a

aa
a

aa XYZ
T
XYZXYZXYZXYZ HHH +∇∇−==  . 

 
These formulas are straightforward reformulations of product and chain rules, and will not 
always be referred in what follows. 
 
 
A.2 Gradients and Hessians of the Directional Error Functions 
 
Recall the directional error function 
 
                                ∑ ∑∈ ∈

+==
Ui Vi iidrec gfE 22  

 
with individual errors (3.1.3-4), 
 

                               iiii dspf −−=  ,  22 )()( Rqdpg iiii −+−=  , 

 
based on the auxiliary quantities iii sqp ,, (3.1.2) and the direction cosines (3.1.1) 

 
                         iiiiiiii θςθϕηθϕξ sin,cossin,coscos ===  . 

 
Again, all gradients XYZ∇  determined in this Section will be linear combinations of the two 
vectors, 
 

                                                  





















=

Z

Y

X

U    and    





















=

i

i

i

i

ς

η

ξ

Λ  , 

 
which were introduced in Section 3.2.  Using (A.1.1) where indicated, we note: 
 
(A.2.1)             iiiiXYZiXYZ ZYXp Λ=++∇=∇ )( ςηξ  ,   iiiXYZ pp Λ22 =∇  , 

 
                        ][2)( 22222

iiiXYZXYZiXYZ ppZYXq ΛU −=∇−++∇=∇  , 

 

                         [ ]ii
i

iXYZ
i

iXYZiXYZ p
q

q
q

qq ΛU −=∇=∇=∇ 11
2
1 22  ,  

 



 20 

                        [ ]iiiXYZiXYZiXYZ pqqRs ΛU −−=−∇=−∇=∇ 2)( 2222  , 

 

                        [ ]ii
i

iXYZ
i

iXYZiXYZ p
s

s
s

ss ΛU −−=∇=∇=∇ 11
2
1 22  , 

                       [ ]ii

i

iXYZ

ii
XYZ p

s
s

ss
ΛU −=∇−=∇ 32

111
 . 

 
All Hessians XYZH  determined in this section will be linear combinations of the four matrices 
(3.2.4).  Again we begin with the auxiliary quantities: 
  
(A.2.2)      0=iXYZ pH  ,       T

iii
T
XYZiXYZiXYZ ppp ΛΛΗ 222 =∇∇=   by (A.1.2), 

 
                 ( )T

iiiXYZXYZiXYZ pZYXq ΛΛIHHH −=−++= 2)( 22222  , 

                
                 ( )T

iiiXYZiXYZ qs ΛΛIHH −−=−= 222  , 

 
From Hessians of 2iq , 2

is  we pass to Hessians of iq  , is , using (A.1.2) 

 

                ( )( ) ( )

.)(
1

)(
1

11

1
2
11

4
1

3

2

33

3

222
3

2

T
ii

i

T
ii

i

i
ii

i

iT

i

T
ii

i

T
iiii

i

iXYZ
i

i
T
XYZiXYZ

i
iXYZiXYZ

qq

p

q

p

q

q
pp

q

q
q

qq
q

qq

ΛΛIΛΛUΛUΛUU

ΛΛIΛUΛU

HHH

−+−++−=

−+−−−=

+∇∇−==

 

 
Thus 
 

(A.2.3)      T
ii

ii

i
ii

i

iT

ii
iXYZ qq

p

q

p

qq
q ΛΛUΛUΛUUIH 








+−++−= 1

)(
11

3

2

33 . 

 
Concerning the last term, note 
 

                                          3

222

3

22

3

2 1

ii

ii

ii

i

q

ZYX

q

qp

qq

p ++=+=+  . 

 
Similarly, by (A.1.2), 
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      ( )( )

).(
1

)(
1

)(
11

1
2
11

4
1

3

2

33

3

222
3

2

T
ii

i

T
ii

i

i
ii

i

iT

i

T
ii

i

T
iiii

i

iXYZ
i

i
T
XYZiXYZ

i
iXYZiXYZ

ss

p

s

p

s

s
pp

s

s
s

ss
s

ss

ΛΛIΛΛUΛUΛUU

ΛΛIΛUΛU

HHH

−−−++−=

−−−−−=

+∇∇−==

 

 
Thus 
 

(A.2.4)              T
ii

i

i

i
ii

i

iT

ii
iXYZ s

p

ss

p

ss
s ΛΛUΛUΛUUIH 








−+++−−= 3

2

33

1
)(

11
. 

 
Concerning the last term, note 
 

          3

2222

3

2222

3

222

3

22

3

2 )(1

iii

ii

i

ii

i

i

i q

RZYX

q

ZYXR

q

pqR

q

ps

s

p

s

−++−=++−=−−=−=−  . 

 
 
 
From the above, we derive derivative expressions involving the errors if  and ig : 

  

(A.2.5)                    

( )

i
i

ii

i
i

i

ii

i

ii
i

iiXYZiXYZiXYZ

s

df

ss

sp

s

p
s

spf

ΛUΛU

ΛUΛ

+−=−−=

−+=∇−∇=∇

11

1

 

 

(A.2.6)                    i
i

iii

i

i
iXYZiiXYZ s

dff

s

f
fff ΛU

)(
2
1 2 +−=∇=∇  

 
For the external portion of the error function, we find 
 

( )

i
i

iiiii

i

i

ii
i

i
iiiXYZiiXYZiiiXYZ

q

pRqqdp

q

Rq

p
q

Rq
dpqRqpdpg

ΛU

ΛUU 

)(2)(2)(2

)(2
)(2)(2)(2

2

−−−
+

−
=

−
−

+−=∇−+∇−=∇
 

 
or 
 

(A.2.7)                  ii
i

i

i
iXYZ d

q

Rp

q

R
g ΛU )()1(

2
1 2 −+−=∇  
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and by (A.1.1), 
 

(A.2.8)             ( )iiiii
ii

iXYZ
i

iXYZiXYZ qdpRRq
gq

g
g

gg ΛU )()(
11

2
1 22 −+−=∇=∇=∇  . 

 
Moving to the second derivatives, we find 
 

(A.2.9)            T
ii

i

i

i

T
i

T
i

i

iT

ii
iXYZiXYZ s

p

ss

p
UU

ss
sf ΛΛUΛUΛIHH 








−++−+=−= 3

2

33

1
)(

11
 . 

 
Next, we introduce the matrix 

                   

( )( )

T
ii

i

iiT
i

T
i

i

iiT

i

T
iiiiii

i
i

T
XYZiXYZiXYZ

s

sp

s

sp

s

spsp
s

fff

ΛΛUΛUΛUU

ΛUΛUG

2

2

22

2

)(
)(

1

)()(
1

−++−−=

−−−−=∇∇=
. 

 
Also by (A2.9), 
 

                T
ii

i

iiiT
i

T
i

i

iiT

i

i

i

i
iXYZi s

spf

s

pf

s

f

s

f
ff ΛΛUΛUΛUUIH 3

22

33

)(
)(

−++−+= . 

 
By (A.1.2) , iXYZiiXYZiXYZ ffff HGH 222 +=  .  Thus 

 

(A.2.10)   

.
)()(

)(
1

2
1

3

22

2

2

3232
2

T
ii

i

iii

i

ii

T
i

T
i

i

ii

i

iiT

i

i
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i
iXYZ

s

spf

s

sp

s

pf

s

sp

s

f

ss

f
f

ΛΛ

UΛUΛUUIH








 −+−+

+







+−−








++=

 

  
 
Expressing iiii dspf −−=  yields 

 
 

3332

1

i

ii

i

ii

i

i

i s

dp

s

fs

s

f

s

−=+=+  

 

ii

iii

i

iiiiiiii

i

iiiii

i

ii

i

ii

ss

dpp

s

dpsppssp

s

pfssp

s

pf

s

sp 1)()(
33

22
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−−=−−+−=+−=+−
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3

222

3

322223

3

223223322

3

22

3

2

)(2))((

22)()(

2)()(

i

iiiiiii

i

iiiiiiiiii

i

iiiiiiiiiiiiiii

i
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s

sspdpsp
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sspsdspdpp

s

sddpspssppsspsp

s

spf
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sp
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+−−−−=

+−+−−++−=−+−

 

 
From these relations, we find the alternate expression 
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which duplicates the first portion of (3.2.1). 
 
We move now to the external portion ig  of the error function.  Note that the following Hessians 

vanish: 
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and by (A.2.2), 
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This establishes the second portion of (3.2.1). 
 
 
A.3 Mixed Derivatives of the Directional Error Function 
  
The right-and-sides of the system of linear equations (2.2.7) are at issue.  They require the 
negatives mixed derivatives of the form 
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As pointed out in Section 3.2, the calculation of the corresponding derivatives with respect to iϕ  

and iθ  will be based on the matrices generated by the differential operator 
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introduced in Section 3.2.  In order to apply this operator to the individual errors  22 , ii gf  , we 

first apply the transposed gradient  T

iii ςηξ∇  to auxiliary quantities.  In particular, note: 
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Consequently, 
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With these intermediary results, we are able to determine the matrices )(,)( 22

iiii gf ΓΓ . By 

(A.2.6) and the Product Rule, 
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By (A.3.3-5), 
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From this and by (A.3.3),  
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For the external portion ig  of the error function, we find similarly: 
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so that – in matrix notation--, 
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and finally, 
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A.4 Gradients and Hessians of the Orthogonal Error Function 
 
We repeat the definitions of Chapter 4.  The error function for orthogonal fitting of a sphere is 
given as 
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where 
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will play the key role.  Indeed, all the following gradients are multiples of iW : 
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Te Hessians of the quantities considered below are linear combinations of the two matrices 
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In particular, 
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A.5 Mixed Derivatives of the Orthogonal Error Function 
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First, we differentiate with respect to the range variable id  , starting with the key quantity iw  :  
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so that, finally, by (A.4.1) and (3.2.1), 
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We move to differentiation with respect to the bearing variables ii θϕ , . Again we aim to apply 

the differential matrix operator 
 
                                            [ ]XYZ

T
i iii

∇∇= ςηξΓ  , 
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By (A.3.3), 
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Taking into account the orthogonality relations (3.2.10), this matrix can again be symmetrized by 
substituting  T
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ΛUW +=  for TU  in the above expression, yielding the matrix 
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