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Abstract

Recent studies show that face recognition in uncon-
trolled images remains a challenging problem, although the
reasons why are less clear. Changes in illumination are one
possible explanation, although algorithms developed since
the advent of the PIE and Yale B data bases supposedly
compensate for illumination variation. Edge density has
also been shown to be a strong predictor of algorithm fail-
ure on the FRVT 2006 uncontrolled images: recognition is
harder on images with higher edge density.

This paper presents a new study that explains the edge
density effect in terms of illumination and shows that top
performing algorithms in FRVT 2006 are still sensitive to
lighting. This new study also shows that focus, originally
suggested as an explanation for the edge density effect, is
not a significant factor. The new lighting model developed
in this study can be used as a measure of face image quality.

1. Introduction

Face recognition technology has made significant
progress since the early 1990’s. Current face recognition
systems are highly accurate for face images collected in stu-
dios with consistent pose, focus and lighting. The Face
Recognition Vendor Test (FRVT) 2006 showed that it is
possible to achieve a false reject rate (FRR) of 0.008 at
a false accept rate (FAR) of 0.001 for well controlled im-
ages [16]. For many in the research community, this is now
considered to be a “solved problem”.

∗The work was funded in part by the Technical Support Working Group
(TSWG) under Task T-1840C. PJP was supported by the Department of
Homeland Security, Director of National Intelligence, Federal Bureau of
Investigation and National Institute of Justice. The identification of any
commercial product or trade name does not imply endorsement or recom-
mendation by Colorado State University or the National Institute of Stan-
dards and Technology.

The FRVT 2006 also included a set of uncontrolled im-
ages taken in hallways or outside with variations in light-
ing, focus, near fontal pose, and expression, among other
factors. For these images, the best reported performance
was a FRR of 0.12 at an FAR of 0.001; among the better
algorithms, the FRR ranged from 0.12 to 0.38 at an FAR of
0.001 [16, 3]. Two other useful uncontrolled data sets are
Labeled Faces in the Wild [8] and the PubFig [11]. Both
include images collected from the World Wide Web with-
out explicitly controlling for factors such as lighting, pose,
focus or expression. Error rates for recent algorithms on La-
beled Faces in the Wild range around 0.20 [17] to 0.15 [11].
For the PubFig data set the best total error rate is 0.22 [11].

The face recognition research community has consid-
ered a number of factors to explain what makes recognition
harder on uncontrolled data. The most common explana-
tions involve illumination, pose and expression [14, 19, 12].
Other factors studied include age of the person, gender, ex-
pression, image resolution, and time between images [13].

Of these, changes in illumination ranks high on most
researcher’s list of factors making face recognition hard.
To study the effects of changes in pose and illumination,
the Carnegie Mellon University Pose, Illumination, and Ex-
pression (PIE) and Yale B data sets [19, 12] were created.
In these data sets, changes in pose and illumination are sys-
tematically varied. Since the release of these data sets, there
has been a dramatic decrease in the error rate associated
with change in illumination direction. However, up to now
it has not been possible to assess quantitatively the impact
of changing illumination on data sets such as FRVT 2006
that do not explicitly control for illumination direction.

Other directly measurable quality measures of face im-
ages have been proposed that predict when algorithms will
fail. In particular, Beveridge et al. [3] show that higher edge
density is strongly associated with recognition failure on the
FRVT 2006 uncontrolled images. What they did not pro-
vide was a physical explanation. Is edge density reflecting
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changes in focus? Is it responding to changes in illumina-
tion? Perhaps neither; edge density could be responding to
some other unidentified aspect of the images.

To answer these questions, this paper presents a model
for estimating illumination direction based on prior work
by Sim and Kanade [20]. It also introduces a new measure
of image focus. Finally, it presents a series of of four ex-
periments on the same FRVT 2006 data studied in [3] that
unravel the relative importance of lighting and focus, and
relate both back to the original finding that higher edge den-
sity predicts recognition failure.

The most significant finding is that lighting accounts for
the edge density effect. In other words, the best explana-
tion for why edge density was previously found to be such
a strong predictor of recognition performance is that it was
indirectly capturing information about lighting. The second
most significant finding is that focus, when quantified using
a better measure, plays little or no role in making recogni-
tion easier or harder. This study represents the first time, to
our knowledge, that an illumination measure has been di-
rectly incorporated into a multi-factor study of face recog-
nition performance on a large uncontrolled data set.

2. Motivation
Beveridge et al noted that low edge densities predict suc-

cessful recognition in FRVT2006. Looking more closely at
the data, we noticed that high edge density was often associ-
ated with outdoor images taken under harsh lighting, while
low edge densities were associated with more uniform light-
ing. Furthermore, it appeared that recognition often failed
when the face was illuminated from the side by direct sun-
light. This makes sense to anyone familiar with the algo-
rithms, since such lighting introduces both strong shadows
and strong asymmetry.

The apparent association between strong side lighting
and recognition failure raises the question of whether light-
ing conditions might explain recognition performance as
well or better than edge density, while supplying a phys-
ical explanation. Telling the face recognition community
that algorithms fail for images with high edge density raises
the question of how one operationally ’controls’ edge den-
sity. An explanation in terms of how the face is illuminated
is qualitatively different and operationally more useful.

A separate lingering question concerns image focus. Re-
viewing the images by hand reinforced our belief that edge
density was responding to many aspects of the scene and
images. Poorly focused images did have low edge density,
but edge density clearly responds to other factors, too. From
an operational standpoint, knowing if poor focus contributes
to recognition failure is important, so the need for an effec-
tive quantitative measure of image focus persists.

In response to the questions raised by our visual inspec-
tion of the data, we have developed a lighting model and a

focus measure. These measures are described in Section 4.
Armed with these quantitative means of assessing lighting
and focus, we investigated four conjectures:

Conjecture 1 Lighting subsumes setting (i.e., indoors ver-
sus outdoors) as a predictor of performance.

Conjecture 2 Lighting subsumes edge density as a predic-
tor of performance.

Conjecture 3 Focus explains recognition failure better
than edge density.

Conjecture 4 Since focus is distinct from lighting, predic-
tions about recognition failure using both will be better
than either alone.

The basis for these conjectures is our hypothesis that edge
density and setting are poor quality measures that only indi-
rectly relate to performance. Edge density and setting con-
found different aspects in which images (and hence recogni-
tion performance) may vary. In comparison, lighting and fo-
cus isolate two physical components of image quality. Ide-
ally they should be nearly orthogonal, and they may cap-
ture nearly all of the signal inherent in the inferior measures
and perhaps additional information as well. Experiments
designed to test each of these conjectures and the interpre-
tation of their results are presented in Section 5.

3. Background
The work presented here draws upon prior work in light-

ing estimation, focus estimation and performance evalua-
tion. Prior work in each of these areas is reviewed here.

3.1. Lighting Estimation

There are many sources of variations that can confuse
a person’s identity. Illumination is one of those variations
in imagery. In fact, it has been argued that changes in il-
lumination can make two images of the same person less
similar than two images of different people [14]. A consid-
erable literature has been developed that addresses a variety
of techniques for estimating illumination, and in particular,
Sim and Kanade [20] were the first to employ kernel regres-
sion for illumination estimation.

The model presented in Section 4.1 also uses kernel re-
gression and is similar in general approach to that of Sim
and Kanade. It should be noted, however, that the primary
goal of Sim and Kanade was to remove lighting artifacts.
Our goal is to estimate the lighting angle, from frontal to
side. Hence, the approaches are related, but not identical.

3.2. Focus Estimation

Krotkov proposed edge density as a measure of focus in
1989 [10]. It was compared to a number of alternatives,



and found superior. In particular, it was found to do a bet-
ter job than alternative approaches that were based upon the
spectral energy signature of an image. Beveridge et al. [3]
adapted the measure slightly by restricting it to only the re-
gion of image containing the face.

3.3. Performance Evaluation

Empirical evaluation and performance evaluation have a
long and rich history in computer vision in general and face
recognition in particular [7, 9, 21]. For example, over the
past decade there have been a series of empirical evaluation
workshops associated with CVPR. In face recognition, there
have been a string of evaluations starting with FERET[15]
and moving through FRVT 2006 [16]. There is also increas-
ing interest in scenarios more closely associated with the
web: see for example the Labeled Faces in the Wild results
page 1.

Two lines of work are particularly relevant to the results
presented here. The first is that of Beveridge et al. [4, 3]
that has proposed the use of a Generalized Linear Mixed
Effect Model (GLMM) to relate a set of factors, i.e., co-
variates, to the probability that a face recognition algorithm
will succeed. As already discussed above, that work estab-
lished that a particularly simple image measure, edge den-
sity, is strongly related to face recognition performance in
the FRVT 2006. What that work did not do was to provide,
in any substantive manner, a practical explanation of why.

The second line of closely related research includes ef-
forts to predict the success or failure of biometric algo-
rithms, in our case, face recognition algorithms, based on
objective quantitative information available at the time of
recognition. If one associates these measures with bio-
metric quality, the task is equivalent to that of predicting
recognition success based upon biometric quality. One re-
cent good example of such work is that of Grother and
Tabassi [6]. It should also be noted that prediction of recog-
nition success may also be based upon sets of related match
scores rather than on a directly measurable property of the
biometric; an intriguing example of this approach is the re-
cent work by Scheirer and Boult [18].

Our work below will bring together some aspects of
each approach. The starting point in the analysis will be
a GLMM comparable to that developed by Beveridge et al.
From the second line of work, we will use the model’s abil-
ity to predict success or failure as a way to assess the value
of an associated factor. The factors examined here are edge
density, focus, lighting and setting.

4. Approach
This section sets forth our new lighting estimation

model, focus measure, and the approach that will be used
1http://vis-www.cs.umass.edu/lfw/results.html

to test when one covariate subsumes another.

4.1. Lighting Estimation

The illumination model is trained on the CMU-PIE [19]
imagery and is constructed to return a single number indi-
cating the extent to which the face is being lit from the side.
Recall that CMU-PIE has images for 68 subjects, and each
subject has 24 illumination variants. There are also images
with the room lights on and the room lights off. Here we
use only the images with room lights on.

To eliminate the identity effect, we average all 68 sub-
jects along each illumination variant. Hence, 24 illumina-
tion variant images are used to train the lighting model.

The lighting model is defined as follows. Let µk be the
average image in illumination variant k. We apply kernel
regression [1] to estimate the lighting coefficients described
as follows:

x̂ =
∑n

k=1 αkµk∑n
k=1 αk

(1)

αk = exp(−‖ x− µk ‖2

σ2
)

where x is the estimated image, n is 24 (the number of vari-
ants), and σ is 10. As Equation (1) shows, x̂ is the recon-
structed lighting images from the training set.

According to the illumination cone principle [2], any im-
age in the illumination cone can be reconstructed by a linear
combination of extreme rays given as:

x̂ = max (Bs, 0) (2)

where B is an illumination basis, s is the lighting coeffi-
cients, and 0 is used to remove the negative values corre-
sponding to the shadowed surface. Therefore, we obtain the
lighting coefficients as:

s = B−1x̂ (3)

whereB is the average illumination µ in our case. The dom-
inant illumination direction is determined as:

d∗ = argmax s (4)

and the lighting estimation γ is computed as:

γ = s(d∗)W(d∗) (5)

where W is a predefined weighted vector which is [0 0 -3 -3
-2 -2 -1 -1 1 1 1 1 1 1 1 -1 -2 -3 -2 -1 1 1 1 0]. An exam-
ple of lighting estimation is given in Figure 1. The prede-
fined weights correspond to the lighting directions from the
CMU-PIE dataset where positive indicates frontal illumina-
tion, negative denotes side illuminations, and zero indicates
that no flashes were applied.



Figure 1. Example of lighting estimation: left (-0.240), middle (-
0.237), right (0.068)

4.2. A Strong Edge Motion Compensated Focus
Measure

The problem with edge density as a measure of focus
across a range of images is that edge density responds to
many different aspects of the person and scene. These in-
clude lighting, glasses and hair across the forehead. To cor-
rect for this problem, a new motion blur compensated focus
measure is introduced. The measure also starts by using So-
bel operators to compute image gradients. Instead of mea-
suring the average gradient magnitude it measures the gradi-
ent of the strongest edges, since the gradient of the strongest
edge is a much better predictor of image focus than the av-
erage gradient. It also measures motion blur, and equates
motion blur with poor focus.

An image suffering from motion blur is smooth in the di-
rection of motion and sharp in the orthogonal direction. To
measure the strongest edges in the direction of motion, PCA
is applied to the horizontal and vertical components of the
image gradient vectors. If motion blur is present, the PCA
component corresponding to the smallest principal compo-
nent indicates the direction of motion. By projecting the
gradient vectors onto the smallest principal component, the
new measure estimates the gradient in the blurriest direc-
tion, and therefore measures blur caused by both focus and
motion.

In our earliest version of this new algorithm, the largest
edge in the direction of motion was used to estimate focus.
However, as one might expect, this approach is unstable be-
cause the maximum value is often an outlier and not repre-
sentative of the focus in the image. For this reason we select
the edge strength associated with the 97.5% quantile. This
is close enough to the maximum to measure the gradient of
a strong edge, but also reduces the chance of selecting an
outlier.

To compare the new focus measure to edge density, 54
images were hand selected to span a range from poorly fo-
cused to well focused. This set also included images with
blur due to motion. The 54 images were then ranked by al-
ternative measures of focus in order to assess how well these
measures performed. As expected, the ranking imposed by
edge density did not align well with our judgment about
focus. In contrast, the Strong Edge Motion Compensated
(SEMC) focus measure just described ranked images in a

manner consistent with our judgement. Images with mo-
tion blur were included in this test, and the steps described
above for handling motion blur resulted in those images be-
ing scored as out of focus.

Figure 2 compares some of the highest and lowest edge
density images to some of the highest and lowest SEMC
focus images. The highest edge density images are always
outside with strong lighting on the face and shadows, while
the lowest edge density images are always indoors with neu-
tral lighting. The SEMC focus measure seems to break the
dependency on lighting. Outdoor images with strong shad-
ows are often included with the low group because of poor
focus, and in-focus images with neutral lighting are often
found in the high focus group.

Lowest 5% of Edge Density

Highest 5% of Edge Density

Lowest 5% of SEMC Focus

Highest 5% of SEMC Focus

Figure 2. This figure shows some selected images from the highest
5% and lowest 5% of the edge density and SEMC focus measures.



4.3. Comparing GLMMs to Assess Importance

The conjectures posed in Section 2 mostly involve state-
ments about the relative value of one factor (covariate) ver-
sus another. It is possible to approach such questions with
a single statistical model including all significant covari-
ates and their significant interactions. Indeed, the state-
ments about the importance of edge density by Beveridge
et al. [3, 5] does just that. However, one drawback of this
approach is that for the sample sizes relevant here, most if
not all of the proposed covariates and their interactions may
turn out to be significant and hence warrant inclusion in the
GLMM. The combinatorics of model selection quickly sur-
pass one’s ability to make sense of the results.

Another problem with that approach is its intent. With
the GLMM approach, one obtains (for a given set of co-
variates) estimated probabilities of verification. The relative
performance of models (and hence the comparative value of
predictors in two competing models) is not necessarily di-
rectly related to the estimates of verification probabilities or
model parameters. Instead, it is related to the proportion of
the total variability in the data explained by each model.

A natural way to quantify that criterion is to ask how
many cases each model predicts correctly. Note that each
GLMM may be viewed as a mapping from the space of co-
variates to a predicted probability of successful verification
at a specific false accept rate. Moreover, the prediction is
relative to specific match pairs. For the FRVT 2006 anal-
ysis, the match pairs consist of a highly controlled target
image and a less controlled query image taken either in a
hallway or outdoors.

Thus, it is possible to test how well each GLMM pre-
dicts the actual outcomes, i.e. success or failure for each
match pair. Specifically, the probability of verification may
be thresholded in order to create a binary classifier: predict
successful verification if the probability of success is above
a threshold τ . In one sense, this does an injustice to the
model in terms of absolute quality, because it throws away
the fine gradations in predicted probabilities of verification.
However, as a means of making relative comparisons be-
tween the predictive power of alternative covariates in the
context of a larger statistical model, it works well. Indeed,
as the threshold τ is varied it is possible to create a standard
ROC plot with one curve per GLMM.

Each of the four conjectures in Section 2 will be tested
by assessing the relative predictive power of a carefully cho-
sen set of candidate models. Let us illustrate with the first
Conjecture in Section 2, namely that lighting subsumes set-
ting. To test this conjecture, four distinct GLMMs may be
created. They are:

1 A baseline GLMM without either lighting or setting.

2 Baseline plus an effect for lighting.

3 Baseline plus an effect for setting.

4 Baseline plus effects for lighting and setting.

By comparing the performance of these four models, we
can assess the relative importance of lighting and setting. A
set of four ROC curves compares the models. When inter-
preting these ROC plots, it is important to remember that
they are measuring the predictive power of alternative mod-
els for predicting whether verification succeeds or fails, the
ROC plots are NOT reporting the False Accept Rate and
False Failure Rate of the actual face recognition algorithms.

5. Findings
Beveridge et al. [3] reported results for a GLMM that

used fused similarity scores from three top performing
FRVT 2006 algorithms. Our first step was to replicate that
GLMM and to then remove from it all effects associated
with edge density2 and setting. Note the resulting model
still includes other covariates including gender, race, size of
the face and whether the person was wearing glasses in the
uncontrolled image.

The next step was to add back into this baseline GLMM
main effects for covariates in the pattern described above
in order to test each of the four conjectures presented in
Section 2. The ROC plots for each associated experiment
are presented in Figure 3. The findings are as follows.

5.1. Experiment 1: Lighting and Setting

Our conjecture, prior to running this experiment, was
that lighting would subsume setting in the sense that what-
ever makes recognition more difficult outdoors would be
entirely captured by our newly developed measure of light-
ing. The ROC presented in Figure 3 supports this conjec-
ture. Note the order, from lowest to highest equal error rate
is: Lighting+Setting, Lighting Only, Setting Only and Base-
line. The primary result seen here is that models that use the
lighting variable are superior to those that do not. There is a
small but notable distinction between the Lighting+Setting
model and the Lighting Only Model, indicating that lighting
may not capture 100% of the complex amalgam of factors
that inherently differ between settings. Nevertheless, it is
remarkable how fully the relationship between setting and
performance can be explained solely by our lighting mea-
sure.

5.2. Experiment 2: Lighting and Edge Density

Our conjecture was that lighting would subsume edge
density. The ROC presented in Figure 3 fully supports this
conjecture. Note the ROC curves for the Lighting Only
and Lighting+Edge Density GLMMs are nearly identical,

2In [3] the edge density covariate was often described as FRIFM.
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Figure 3. This figure shows ROC plots comparing the relative predictive power of alternative GLMMs which include combinations of
covariates. Experiments 1 through 4 correspond to the conjectures 1 through 4 in 2. In the Experiment 2 plot the Lighting Only and
Lighting+Edge Density lie on top of one another.

and in the plot one sees the Lighting+Edge Density curve
nearly completely covering the Lighting Only curve. Also
note that both curves have a lower equal error rate than the
Edge Density Only curve. At least in this experiment, there
appears to be no additional predictive value associated with
knowing edge density once a good lighting estimate is avail-
able.

5.3. Experiment 3: Focus and Edge Density

Our conjecture was that a good measure of whether the
face is in focus would better predict failure than edge den-
sity. The ROC presented in Figure 3 suggests this is not the
case. Note the order, from lowest to highest equal error rate
is: Focus+Edge Density, Edge Density Only, Focus Only
and Baseline. In short, edge density as a measurable prop-



erty of the query face images is doing a slightly better job
of predicting recognition failure then is the newly proposed
focus measure. Also, since performance is slightly better
when both variables are used, it appears that each variable
is providing some independent information. Our results are
consistent with the possibility that focus itself is not a major
contributing factor to verification failure.

5.4. Experiment 4: Lighting and Focus

Our initial conjecture, based upon the fact that focus
and lighting are operationally distinct, was that predictions
based upon the two together would be better then either
alone. As shown in Figure 3, the result does not support this
conjecture. Instead, the two curves with lowest equal er-
ror rate are for Lighting Only and Lighting+Focus; the two
curves lie nearly on top of each other. Further, the error rate
for the Focus Only GLMM is much higher. Two things are
apparent from this result. First, the newly proposed lighting
model is doing a good job of predicting when verification
will fail. In fact, the information is good enough that the
introduction of the focus measure adds nothing. Second, in
order to make sense of the lack of improvement when focus
is added, we must again entertain the notion that focus is
unrelated to verification failure.

In this experiment one might ask whether a focus effect
is being masked by lighting. Theoretically, the effect of
focus on performance might depend on the nature of the
lighting, with the average effect across the lighting range
being close to zero. To test this, we fit a fifth model that in-
cluded both predictors plus their interaction. The result still
showed no evidence that focus mattered. The same strategy
was also used in Experiment 2, again yielding a negative
finding.

5.5. Summarizing Effects

Beveridge et al. [3] reported effects in terms of estimated
probability of verification associated with individual covari-
ates and combinations of covariates. Here we do the same
for the main effects of Lighting, SEMC Focus and Edge
Density. These effects are reported for the models devel-
oped for Experiments 2, 3 and 4. They are summarized in
Figure 4.

The vertical axis indicates the estimated probability that
verification will succeed. For SEMC Focus and Edge Den-
sity, the horizontal axis represents standardized covariate
values, where standardization in this context means the
original values have been scaled and shifted to have a sam-
ple mean of zero and a sample standard deviation of one.
The horizontal axis for Lighting was left in the original raw
units of the illumination model, and the four values shown
may be interpreted as follows: 0.05 indicates frontal light-
ing, −0.05 indicates modest side lighting, −0.10 indicates
notable side lighting, and −0.18 indicates very strong side

lighting. These three covariates were included in GLMMs
for multiple experiments, and so the main effects for dis-
tinct experiments are shown. When reporting probability of
verification estimates, all other covariates in the GLMM are
set to baseline (default) values.

Lighting has a very strong effect. Estimated probability
of verification for frontal lighted images is around 0.95 and
drops down to roughly 0.65 for the images where side light-
ing is most pronounced. The effect is nearly identical for the
Lighting+Edge Density (Exp2) and Lighting+Focus (Exp3)
GLMMs. By any standard, this is a large main effect.

The SEMC Focus and Edge Density main effects viewed
together tell an interesting story. First recall that Exper-
iment 3 uses a GLMM including both SEMC Focus and
Edge Density, and does not include Lighting. Consequently,
a main effect associated with Experiment 3 is shown for
both SEMC Focus and Edge Density. Moreover, larger val-
ues of SEMC Focus are associated with increased probabil-
ity of verification. This is consistent with common expecta-
tion; recognition is easier when query images have a higher
focus score. In contrast, increased Edge Density in Experi-
ment 3 is associated with decreased probability of verifica-
tion.

Note, however, that the main effect for both SEMC Fo-
cus and Edge Density essentially disappears when each is
paired with Lighting, as in Experiments 4 and 2 respec-
tively. This is further evidence that Lighting is a highly
predictive covariate, and that when added to a GLMM, it
subsumes much of what is otherwise attributed to SEMC
Focus and Edge Density.

6. Conclusions
Prior work showed that face recognition on uncontrolled

images remains challenging and that high edge density in
images predicts failure. The study presented here intro-
duces a new model for measuring illumination direction in
images and shows that side lighting strongly degrades al-
gorithm performance. In fact, the new lighting measure
subsumes and explains in physical terms the previously re-
ported edge density effect. More generally, we show that
lighting remains a problem for state-of-the-art algorithms,
circa FRVT 2006. Consequently, lighting direction can be
viewed as an important quality measure that predicts face
recognition performance.
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