
 
 
 
 

 

August 2009

Information Access Division
Information Technology Laboratory

A 1D Spectral Image
Validation/Verification Metric

for Fingerprints
 
 
 
 

John M. Libert 
John Grantham 

Shahram Orandi 

NISTIR 7599 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 



 
 
 
 

 

 

 
 



 
 
 
 

 
 
 
 

 
John M. Libert
John Grantham 

Shahram Orandi 
 
 

U.S. Department of Commerce 
Technology Administration 

National Institute of Standards and Technology 
Information Technology Lab 

Gaithersburg, MD 20899 

August 2009

U.S. Department of Commerce 
Gary Locke, Secretary 

 
National Institute of Standards and Technology 

 Patrick D. Gallagher, Deputy Director 
 
 

NISTIR 7599
 

A 1D Spectral Image 
Validation/Verification Metric

for Fingerprints

 

 
 



 
 
 
 

 

 
 



 
 
 
 

 
 
 

Acknowledgements 
 
The authors wish to acknowledge the contributions of those who have facilitated the research 
and development work described in the present document. We would like to acknowledge 
and thank Scott Swann of the Federal Bureau of Investigation's (FBI) Criminal Justice 
Information Services (CJIS) as well as other key partners at the FBI who provided both 
sponsorship and support to NIST in facilitating this research.

 

NISTIR 7599 Page i 08/19/2009 

 
 



 
 
 
 

 

NISTIR 7599 Page ii 08/19/2009 

 
 



 
 
 
 

 
Table of Contents 

 
ACKNOWLEDGEMENTS .................................................................................................................................i 
ABSTRACT..........................................................................................................................................................1 

1. INTRODUCTION............................................................................................................................................3 
2. BACKGROUND ..............................................................................................................................................5 
3. SIVV METHOD...............................................................................................................................................7 

3.1 IMAGE WINDOWING .............................................................................................................................7 
3.2 DISCRETE FOURIER TRANSFORM (DFT) .................................................................................................9 
3.3 NORMALIZED POWER SPECTRUM........................................................................................................10 
3.4 POLAR TRANSFORM OF POWER SPECTRUM.........................................................................................10 
3.5 1D NORMALIZED POWER SPECTRUM...................................................................................................11 
3.6 PEAK STRUCTURE OF SPECTRUM.......................................................................................................13 

4. RESPONSE OF THE SIGNAL TO IMAGE PARAMETERS..................................................................17 
4.1 ROTATION INVARIANCE.....................................................................................................................17 
4.2 RESPONSE OF SPECTRUM TO TRANSLATION ......................................................................................17 
4.3 SCAN SAMPLE RATE SENSITIVITY (1000 PPI VS. 500 PPI) ....................................................................20 

5. RESULTS AND DISCUSSION ....................................................................................................................23 
6. CONCLUSIONS ............................................................................................................................................29 
7. REFERENCES...............................................................................................................................................31 
8. APPENDIX A: DEMONSTRATION OF ROTATION INVARIANCE...................................................33 
9. APPENDIX B: TEST DATA ........................................................................................................................35 
10. APPENDIX C: DISTRIBUTIONS OF SIVV FEATURES......................................................................37 
 

 

NISTIR 7599 Page iii 08/19/2009 

 
 



 
 
 
 

List of Figures 
 

Fig. 1 2D Blackman window function....................................................................................8 
Fig. 2 Input image (995 x 1090 pixels) and Blackman windowed version..........................8 
Fig. 3 Sample fingerprint image (922 x 860 pixels) and associated 1D spectra computed 

without and with application of a window function....................................................9 
Fig. 4 Diagram showing operation performed by a function that shifts quadrants of the 

DFT such that dc term, P(0,0), is centered in the image..........................................10 
Fig. 5 Illustration of processing steps from image to 1D Normalized Power Spectrum. 

(Image of size 995 x 1090 pixel) Spatial frequency, u and v, are in units of cycles 
per image width as are the unnormalized units of polar radius, ρ. Polar angles, 
θ, are in degrees. In the log power spectrum, radius values of cycles/image width 
are scaled to become cycles/pixel..............................................................................12 

Fig. 6 Fingerprint sampled at 1000 ppi (1107 x 1145 pixels) and associated 1D 
spectrum. The pair of local minimum and maximum having the largest difference 
in power are indicated with green and red marks....................................................14 

Fig. 7 Fingerprint sampled at 1000 ppi (1990 x 790 pixels) and associated 1D 
spectrum........................................................................................................................14 

Fig. 8 Slap-four image sampled at 1000 ppi (2049 x 3116) and spectrum........................15 
Fig. 9 Off-center fingerprint image (1500 x 1600) and associated spectra computed both 

without and with Blackman windowing....................................................................18 
Fig. 10 Image from fig 9 with fingerprint moved toward more centered position 

applying a circular shift to the image.........................................................................18 
Fig. 11 Fingerprint image digitized at 1000 ppi (995 x 1090 pixels).................................21 
Fig. 12 Fingerprint image from fig. 11 resampled at 500 ppi (498 x 545 pixels) using 

bicubic interpolation. The spectral features are shifted by factor of 2 in 
frequency......................................................................................................................21 

Fig. 13 Box plot showing distributions of peak height for non-fingerprint images (0) and 
fingerprint images (1) in a mixed image 
dataset...........................................................................................................................24 

Fig. 14 Box plot showing distributions of frequency location of the valley-peak structure  
for non-fingerprint images (0) and fingerprint images (1) in a mixed image 
dataset...........................................................................................................................24 

Fig. 15 Plot of false positive vs. false negative error rates with variation of threshold 
value of peak height used as a classifier applied to a mixed image dataset. Feature 
frequency maximum was set at 0.15 
cycles/pixel....................................................................................................................25 

Fig. 16 Box plot showing distributions of peak height (dy) for equal numbers of 
fingerprint, face, and iris images in a mixed biometric dataset...............................26 

 

NISTIR 7599 Page iv 08/19/2009 

 
 



 
 
 
 

 

NISTIR 7599 Page v 08/19/2009 

 
 

Fig. 17 Box plot showing distributions of frequency location of the valley-peak feature 
for equal numbers of fingerprint, face, and iris images in a mixed biometric 
dataset.........................................................................................................................26 

Fig. 18 Peak height (dy) vs. frequency of SIVV output for images of the Mixed 
Biometric 1 dataset. Note the separation of fingerprints into clusters 
corresponding to the 1000 and 500 ppi samples........................................................27 

Fig. 19 Plot of false positive vs. false negative error rates with variation of threshold 
value of peak height used as a classifier applied to the mixed biometric dataset. 
Feature frequency maximum was set at 0.15 cycles/pixel........................................27 

Fig. A-1 Circular sample of a rolled fingerprint image (1029 x 1023) captured at 1000 
ppi. Original orientation (top) is rotated 45° and 90°...............................................33 

Fig. A-2  Circular sample of a slap-four image (2012 x 2064) captured at 1000 ppi. 
Original orientation (top) is rotated 45° and 90°......................................................34 

Fig. C-1 Box plot showing distributions of peak height (dy) by finger for SD27 dataset 
sampled at 1000 ppi. Fingers 1 – 10 are rolled inked prints on FBI 10-print cards; 
11 and 12 are plain impressions of thumbs; and 13 and 14 are slap-four prints of 
left and right hands......................................................................................................38 

Fig. C-2 Box plot showing distributions of peak height (dy) by finger for SD27 dataset 
down-sampled (with anti-aliasing) to 500 ppi. Fingers 1 – 10 are rolled inked 
prints on FBI 10-print cards; 11 and 12 are plain impressions of thumbs; and 13 
and 14 are slap-four prints of left and right hands...................................................38 

Fig. C-3 Box plot showing distributions of peak height (dy) by finger for SD29 dataset 
sampled at 500 ppi. Fingers 1 – 10 are plain inked prints........................................39 

Fig. C-4 Box plot showing distributions of peak frequency location of  the valley-peak 
feature by finger for SD27 dataset sampled at 1000 ppi. Fingers 1 – 10 are rolled 
inked prints on FBI 10-print cards; 11 and 12 are plain impressions of thumbs; 
and 13 and 14 are slap-four prints of left and right hands......................................39 

Fig. C-5 Box plot showing distributions of  frequency location of the valley-peak feature 
by finger for SD27 dataset down-sampled (with anti-aliasing) to 500 ppi. Fingers 1 
– 10 are rolled inked prints on FBI 10-print cards; 11 and 12 are plain 
impressions of thumbs; and 13 and 14 are slap-four prints of left and right 
hands.............................................................................................................................40 

Fig. C-6 Box plot showing distributions of  frequency location of the valley-peak feature 
by finger for SD29 dataset sampled at 500 ppi. Fingers 1 – 10 are plain inked 
prints.............................................................................................................................40 

 



 
 
 
 

ABSTRACT 
 
Image validation and verification are important functions in the acquisition of fingerprint 
images from live-scan devices and for assessing and maintaining the fidelity of fingerprint 
image databases. Such databases are used by law enforcement agencies, for which data 
integrity is paramount, and many hours must be devoted to visual inspection of images. In 
addition, such databases are used by the National Institute of Standards and Technology 
(NIST) and others to test automated fingerprint identification system (AFIS) algorithms and 
to aide the advance of this technology. We propose a comparatively simple computational 
mechanism by which to screen fingerprint image databases for specimens improperly 
scanned from fingerprint cards, guide the auto-capture process and flag auto-capture failures, 
identify non-fingerprint images that may have been included in a database, and recognize 
aberrant sampling of fingerprint images. The scheme reduces an input image to a 1-
dimensional power spectrum that makes explicit the characteristic ridge structure of the 
fingerprint that on a global basis differentiates it from most other images. The magnitude of 
the distinctive spectral feature, related directly to the distinctness of the level 1 ridge flow, 
provides a primary diagnostic indicator of the presence of a fingerprint image. The frequency 
of the spectral feature provides a secondary classification metric and, on a coarse level, 
indicates the scan sample rate of the fingerprint image. Test results are reported in which the 
Spectral Image Validation and Verification (SIVV) utility is applied to a variety of databases 
composed of fingerprint and non-fingerprint images. Using only the peak height and 
frequency limit as simple classification criteria, the SIVV utility achieves an equal error rate 
(EER) for false positive and false negative classifications of 10 % for fingerprints mixed with 
a variety of non-fingerprint images, including many chosen to exhibit periodic structure 
similar to that of a fingerprint. An EER of around 7 % is found with a dataset containing 
fingerprints mixed with other biometric samples, i.e. face and iris images. 
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1. INTRODUCTION 

The present investigation explores the use of a 1D summary of the 2D image spectrum to test 
validity of fingerprint images and to diagnose acquisition problems such as aberrant 
sampling, such as misplaced fingers in a single finger capture, or faulty segmentation. The 
preparation of datasets of biometric samples for various development and testing applications 
as well as for law enforcement and homeland security applications requires that the images 
be screened with respect to their validity as examples of the expected biometric. Starting 
with fingerprint acquisition using a live-scan device, detection of the presence of a finger or 
the position of the finger on the platen should aid in automating such a system. A rapid 
fingerprint recognition capability could serve as a preprocess for a more sophisticated image 
quality algorithm, such as the NIST Fingerprint Image Quality (NFIQ) metric [1, 2]. Such a 
system could assist in identifying mislabeled images in a mixed biometric dataset, for 
example where a face image is erroneously labeled as a fingerprint. A validation/verification 
signal might support identification of sampling errors, for example, in which an image fails 
to conform to a specified scan sample rate. Accordingly, the present research activity was 
undertaken to develop and test a computational scheme for fingerprint image validation and 
verification. Our method, computationally simple, differentiates fingerprint images on the 
basis of a power spectral feature related to the periodic texture of friction ridge skin. The 
relative height and frequency of the dominant spectral peak differentiates a fingerprint image 
from a variety of other image types, including other biometrics such as face and iris images. 
In view of its implementation and application we have named the method the Spectral Image 
Validation and Verification (SIVV) utility. 
 
This report provides in Section 2 a brief survey of previous work on fingerprint image 
validation and verification, related application of spectral analysis, and decomposition of 
fingerprint images. Section 3 details the mathematical and algorithmic underpinnings of the 
SIVV method. Section 4 examines robustness of the diagnostic spectral pattern under 
rotation and translation of the fingerprint, and provides qualitative comparisons of the SIVV 
response to non-fingerprint images. Section 5 provides a quantitative examination of the 
SIVV performance as an aid in classifying fingerprints among assorted non-fingerprint 
images and among face and iris images. Finally, Section 6 summarizes the utility of the 
SIVV in differentiating fingerprint from non-fingerprint images, detecting scan sample rate 
anomalies, and detecting some types of live-scan acquisition errors. 
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2. BACKGROUND 

Local orientation and frequency of ridges are recognized as unique intrinsic properties of 
fingerprint images. Some attention is directed toward examining such ridge structure in order 
to assess quality, enhance quality, and to evaluate suitability of fingerprint images for 
verification/recognition. Most of the work has involved various wavelet representations of 
the fingerprint image directed toward evaluation of the image quality, e.g. [3-6]. Other work 
such as that of Maio [7] and Yin [8] looks specifically at ridge spacing and distinctness of the 
pattern, mainly with respect to characterization of the fingerprint ridge structure as a distinct 
texture to be used in a recognition scheme as well as for evaluation of image quality. 
 
Lim et al [9] describe a means by which to evaluate the quality as well as to test the validity 
of fingerprint images with respect to the ridge structure of fingerprint images. Local analysis 
of “orientation certainty” is used as an indicator of quality, while the ridge-to-valley structure 
provides indication of fingerprint image validity, i.e., that the image actually exhibits a 
fingerprint. They evaluate quality on a local level as indicated by the strength of energy 
concentration along ridge-valley orientations. Validity is indicated by measures of global 
uniformity and continuity of orientation across adjacent image blocks. 
 
Tabassi, Wilson, and Watson [1, 2] describe a fingerprint image quality method that 
incorporates a measure of ridge flow based on local (blockwise) analysis of the discrete 
cosine transform signal. While the NIST Image Quality (NFIQ) metric itself primarily 
examines minutia and aims to predict the performance of fingerprint matchers, the reliability 
of minutia detection in each image neighborhood is assessed via local measures of ridge flow 
direction, contrast, and curvature. 
 
The closest methods to those presently under examination are efforts directed toward using 
the spectral characteristics of images for texture-based image retrieval. Using a mechanism 
somewhat similar to that proposed in the present paper is the RAH (Radius Angle 
Histogram) described by Wang et al [10]. These researchers describe use of power spectral 
histograms for texture-based image retrieval. They construct the polar representation of the 
2D power spectrum and characterize image textures via histograms of the quantized power 
over polar radius and over angle. Power over radius corresponds to spatial frequency content 
of the image texture and that over angle reflects the orientations of the textural components. 
They use a distance metric to evaluate similarity of a query target to library images. Another 
spectral histogram method for texture classification is proposed by Xiuwen [11] that 
decomposes the spectral content of image textures using Gabor wavelets. These methods 
treat orientation of textural components as important to classification; hence make no attempt 
to impose rotational invariance on the representation. 
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Nill and Bouzas [12] propose a measure of image quality derived from the 2D spectrum of 
the image under evaluation. While their quality metric is based on the 2D image spectrum, 
these researchers present a 1D representation of the spectrum that has interesting properties 
in its own right. Nill and Bouzas employ 1D summaries of 2D power spectra to aid in 
visualizing the most significant spectral differences among images. The present investigation 
explores the use of this 1D spectral summary to test validity of fingerprint images directly 
and to diagnose acquisition problems such as aberrant sampling or faulty segmentation. 
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3. SIVV METHOD 

3.1  IMAGE WINDOWING 

The effect of observing the image signal over finite extent with discontinuity at the edges is 
to introduce spurious power into the spectrum (spectral leakage). Windowing reduces this 
effect, narrowing the peak side lobes and concentrating energy at the appropriate spatial 
frequency, thus better defining the location of peaks and resolving separate peaks that 
otherwise might remain merged. In order to enhance resolution and localization of spectral 
features, recommended procedure (see [13]) calls for applying a weighting function to the 
input signal prior to application of the Discrete Fourier Transform (DFT) such that values of 
the input signal taper toward zero at the edges. In the case of single fingerprint images, 
windowing has the additional advantage in reducing the effects of sensor contact artifacts at 
the sensor edge. 
 
A variety of window functions were applied to several fingerprint image examples and the 
resultant spectra examined by inspection with respect to spatial frequency specificity of 
peaks as indicated by peak height, width, and number of distinct peaks. Such limited testing 
could not support exclusion of alternate window shapes, but the Blackman window seemed 
to produce reasonably well-defined peaks. Hence it was selected for the SIVV tool 
implementation. The 1D Blackman window is defined [14] as  

 2 4( ) 0.42 0.5cos 0.08cos , 0 .n nw n n N
N N
π π⎛ ⎞ ⎛ ⎞= − + ≤ ≤⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (1) 

The desired length of the window L N 1= + (or 1L M= +

1...M

) for windowing rows or columns 
of the imagei. Conveniently, the application of this 1D window function to the input image 
requires only element-wise multiplication of the image rows and columns by 1D window 
functions of the appropriate length. Thus, first each row of the input image, I(i,j), is 
multiplied by the window function ( ),w m m =  where M = number of image columns. 
The columns of the output of this operation are then multiplied element wise by 

 where =number of rows of the image. Alternately the entire 2D window 
function, , may be constructed by forming the cross product of the column vector, 

, and the row vector . This cross product yields the 2D window function of the 
appropriate dimensions for element-wise multiplication by the input image, I. 

( ), 1...w n n N=
( ,n mW

( )nw

N
)

( )mw

 

                                                 
i Square pixels are assumed here. 
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Fig. 1 illustrates the 2-dimensional Blackman window sized appropriately for application to 
the input image shown in fig. 2. The windowed image is shown on right of fig. 2 illustrating 
the tapering of intensity values toward the image edges. Various window functions share the 
property that they taper the image values toward zero on the borders.  
 

Fig. 1 2D Blackman window function. 
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Fig. 2 Input image (995 x 1090 pixels) and Blackman windowed version. 
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Fig 3 shows an example of spectrum computation without windowing and with application 
of the Blackman window to the image. Windowing increases the sharpness of the main peak 
at around 0.05 cycles/pixel and increases the power of the spectrum overall. A slight shift in 
frequency of the peak reflects the differential weighting applied to the central ridge structure 
relative to that on the periphery of the fingerprint. In this regard, it may be noted that the 
effect of the windowing will be at maximum for textures centered in the image frame. Effects 
of fingerprint offset will be examined later in this paper. 
 
3.2  DISCRETE FOURIER TRANSFORM (DFT) 

Given a 2D image, having dimensions N rows x M columns, a pixel grey level may be 
specified as h(x,y) with x coordinates ranging 0…M-1 and y coordinates 0…N-1. The 
discrete Fourier transform (DFT), is computed as 

 

1 1

0 0
( , ) exp 2 exp 2 ( , )

... , ... .
2 2 2 2

M N

x y

v uH u v iy ix h x y
N M

M M N Nu v

π π
− −

= =

⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= − = −

∑∑
 (2) 

where u and v denote frequency components in x and y directions. 
 

Fig. 3 Sample fingerprint image (922 x 860 pixels) and associated 1D 
spectra computed without and with application of a window 
function. 
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3.3 NORMALIZED POWER SPECTRUM 

The 2D power spectrum is computed as  

 
2

2

( , )
( , )

(0,0)
H u v

P u v
H

=  (3) 

The normalization term in the denominator is the square of the average grey level which 
corresponds to the dc term of the spectrum, ( )0,0H . 
 
In the output array of the Fast Fourier Transform  (FFT) routine, the 0th frequency term is 
repeated in each corner of the image frame and the spectra are mirrored about the middle 
rows and columns. Therefore, the 2D power spectral array must be rearranged to center the 
dc response, P(0,0), in the image frame. For the 2D DFT this means that the quadrants are 
swapped diagonally such that quadrant 1 is swapped with quadrant 3 and quadrant 2 is 
swapped with quadrant 4 as shown in fig. 4. 

 
Fig. 4 Diagram showing operation performed by a function that shifts quadrants of the 

DFT such that dc term, P(0,0), is centered in the image. 
 
3.4 POLAR TRANSFORM OF POWER SPECTRUM 

The polar transform is applied to the 2D power spectrum, converting rectangular coordinates 
of the 2D power spectrum to radius, ρ, and angle, θ, with respect to the origin (center) of the 
2D spectrum, where 

 
2 2

2

u v
2M N

ρ +
=

+
 (4) 

 1tan v
u

θ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (5) 

1 2 

4 3 
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Equation 3 then becomes 

 ( )
( ) 2

2

,
,

(0,0)

H
P

H

ρ θ
ρ θ = .  (6) 

Values of θ range from 0 - 180°ii and radius values, ρ, correspond to frequencies 0 – N/2 
cycles per image width (or height), where N is the minimum dimension of the input image. 
Noting that the maximum frequency that can be represented in an image requires 2 pixels, 
the spatial frequency scale is expressed as cycles per pixel from 0 to 0.5 cycles/pixel in 
increments of 0.5/(n-1), where n=number of radii specified for the polar transform. 
 
3.5 1D NORMALIZED POWER SPECTRUM 

To form a 1D representation of the polar transformed power spectrum one need simply sum 
over angle for each of the frequency (radius) values, i.e. 

  (7) ( ) ( )
180

0
, , 0...0.5 /P P cycles pixel

θ

ρ ρ θ ρ
=

= =∑
Rather than performing the normalization step as described in section 3.3, the present 
software implementation performs the DC level normalization here as  

 ( )( ) , 0...0.5 /
(0)

PP c
P

ycles pixelρρ ρ= =  (8)  

 
Note that the radius, ρ, is expressed in units of cycles per pixel. For application of the polar 
transform, the number of radii is selected nominally as half the minimum of the length and 
width of the input image. Thus the polar transform of the 2D spectrum includes frequencies 
enclosed by the largest circle that can fit within the dimensions of the 2D spectral array. 
 
In fig. 5, the 2D power spectrum is shown (top right) in image format. The units of 
frequency, u and v, correspond to cycles per image dimension. The log function is applied to 
the magnitude values of this representation in order that small values at high frequencies 
might be displayed as well as the much larger power at low frequencies. The polar transform 
of the 2D spectrum is shown in fig. 5 (lower left). Radius values, ρ, represent cycles per 
image width corresponding to units of the 2D spectrum. Angles, θ, in degrees, range from 0 
to 180. The 1D spectral signal represented in the lower right of fig 5 is formed by summing 
over all angles the power at each radius of the polar transform. In the 1D spectrum, the radius 
units in cycles per image dimension are rescaled to the frequency range (0.0 to 0.5) cycles 
per pixel as described above. 

                                                 
ii As the spectrum repeats over the 360°, it is completely described over the interval 0-180°. 
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It is noted here that units of cycles per pixel may be converted to a more conventional spatial 
frequency specification given that information is available by which to assign a conventional 
length unit to pixel dimensions. For many images this length factor may remain unknown, or 
recoverable only through estimation based on assumptions relative to the image content. For 
fingerprint images, knowledge of the sample rate often is available in metadata supplied with 
the imagery, and required to be conformant to the ANSI/NIST standard (see [15]) for the 
Type 1 fingerprint data record. This information enables assignment of a conventional linear 
dimension, e.g. millimeters, to the pixel. The generic unit, cycles per pixel, is converted to 
cycles per millimeter by multiplying by the appropriate scaling factor. However, for image 
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Fig. 5 Illustration of processing steps from image to 1D Normalized Power 
Spectrum. (Image of size 995 x 1090 pixel) Spatial frequency, u and v, are in 
units of cycles per image width as are the unnormalized units of polar radius, 
ρ. Polar angles, θ, are in degrees. In log power spectrum, radius values of 
cycles/image width are scaled to become cycles/pixel. 

 



 
 
 
 

applications, where in most cases scale is unknown, it could be argued that cycles per pixel is 
a perfectly acceptable unit of frequency. 
 
As may be observed via inspection of a variety of examples, the 1D spectral representation of 
fingerprints appears consistently to exhibit a distinctive valley-peak combination (as 
observed in the lower right plot of fig. 5) in the low frequency range, doubtless the 
expression of the characteristic friction-ridge flow structure of the fingerprint, the so-called 
level 1 detail. 
 
3.6 PEAK STRUCTURE OF SPECTRUM 

The feature of potential diagnostic significance is observed in the appearance of paired local 
minima and maxima of power values in a frequency band related to the ridge spacing. 
Toward further development of this notion as a diagnostic, an algorithm is devised to locate 
peaks and valleys in the spectrum and to select pairs of such features that might be examined 
further with respect to position along the frequency axis, height of the peak relative to 
preceding valley (dy), frequency distance between valley and peak (dx), slope (dy/dx), and 
statistics of these values with respect to image classes. Other features of potential value may 
be the number of peaks detected in the spectrum and the ordinal position of the valley-peak 
pair having the maximum value of dy. Further, total or average power in each of a small set 
of frequency bands might also be taken as diagnostic features. 
 
Figs 6 - 8 exhibit fingerprint images and their spectra. Red and green dots along the spectrum 
denote local minimum and maximum feature pairs having the largest power difference, i.e., 
dy value. The feature definition requires that the peak be preceded (over increasing 
frequency) by a local minimum. 
 
In the present implementation, the spectrum may be smoothed (optionally) prior to peak 
localization using a n-point moving average filter, where n is an odd number greater than 1. 
In the examples n=7. The filtering algorithm performs zero-phase digital filtering by 
processing the input data in both forward and reverse directions as described in [16]. 
 
The peak finder returns coordinates of pairs of local minimum and maximum values. These 
are processed further to yield the pair exhibiting the maximum difference in power, i.e. dy. 
The frequency position of the feature pair for fingerprints on average should be related to the 
ridge spacing, and in most cases the spectra for fingerprints are expected to lack other 
significant peak structure. This aspect is thus proposed as a means to validate fingerprint 
images. 
 
The feature pattern occurs over a variety of fingerprint formats. Even the more complicated 
slap-four print exhibits the structure rather clearly as shown in fig. 8. 
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Fig. 6 Fingerprint sampled at 1000 ppi (1107 x 1145 pixels) and a
1D spectrum. The pair of local minimum and maximum having the 
largest difference in power are indicated with green and red marks.

ssociated 

Input Img.

0 0.2 0.4
0.4

0.5

0.6

0.7

0.8

0.9

1

 L
og

 P
ow

er
 (d

b)
 Frequency (cycles/pixel)

 Log Power Spectrum

Fig. 7 Fingerprint sampled at 1000 ppi (1990 x 790 pixels) and 
associated 1D spectrum. 
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Fig. 8 Slap-four image sampled at 1000 ppi (2049 x 3116) and spectrum. 
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4. RESPONSE OF THE SIGNAL TO IMAGE PARAMETERS 

4.1 ROTATION INVARIANCE 

A demonstration of the rotation invariance of the SIVV signal is provided in Appendix A. 
But rotation invariance is intrinsic to the signal representation itself. The 2D spectrum is not 
rotation invariant in that the 2D components preserve directionality of frequency information 
in the image. Orientation of frequency components is conveyed to the polar transform of the 
2D spectrum in which rotation becomes translation. Thus, polar transformed spectra of 
images rotated with respect to each other may be brought into registration by circular shiftiii 
along the angular dimension. The 1D spectral summary used in the SIVV utility, however, is 
rotation invariant without additional manipulation. That is, integration of the polar spectrum 
over angle generates a similar 1D representation regardless of where one places the origin of 
the summation operation. 
 
4.2 RESPONSE OF SPECTRUM TO TRANSLATION 

Whereas the SIVV signal representation is invariant to rotation of the fingerprint sample, the 
same is not true for translation of the main ridge-flow region of the fingerprint from the 
image center. We find that fingerprint position does not affect the frequency structure of the 
power spectrum. However, with windowing, the power is substantially greater with the 
centered fingerprint. We find further that “white” space surrounding the fingerprint also 
tends to reduce the spectral power. Fortunately, both potential problems are solved easily as 
will be explained. 
 
To examine the effect of fingerprint offset from the frame center, a test image displaying the 
fingerprint in a non-centered position was selected from an available database of images 
scanned at 1000 pixels per inch (ppi). A second image was created from this image by 
shifting the fingerprint from its placement along one edge toward the center of the frame by 
applying a circular shift to the image. Figs 9 and 10 exhibit the effects of this manipulation 
on the spectrum both with and without pre-DFT application of a weighting window. 
 

                                                 
iii  Columns of pixels are removed from one edge of the array and inserted along the opposite 

edge. Some number of such operations should bring polar transform arrays of rotated 
images into correspondence. 
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The spectra of figs 9 and 10 confirm that the position of the fingerprint in the image has only 
negligible effect on the position of the peaks in the spectrum. Moreover, power is almost 
identical for centered and offset fingerprints in the “no windowing” case. Significant increase 
in the power is seen with application of the Blackman window to the centered fingerprint as 
shown in fig 10.Windowing has little effect on the spectrum of the offset fingerprint shown 
in fig 9. Thus, while fingerprint position has little effect on the pattern of spectral peaks with 
respect to frequency localization, the power and definition of the peaks can be increased by 
centering the fingerprint in the frame prior to application of the weighting window. 

Fig. 9 Off-center fingerprint image (1500 x 1600) and associated spectra 
computed both without and with Blackman windowing. 
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Fig. 10 Image from fig 9 with fingerprint moved toward more centered 
position applying a circular shift to the image. 
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The latter result suggests advantages and perhaps even the necessity of centering the 
fingerprint in the image before estimating the spectrum, particularly if windowing is to be 
employed. The spectral power response is maximized by centering the fingerprint in the 
image frame. Also, we find that the spectral power is enhanced further and the signature 
made more consistent by excluding empty space surrounding the fingerprint. Sophisticated 
image segmentation schemes might be used to center and crop the fingerprint from 
surrounding white space, but simple, less computationally expensive methods are quite 
effective. 
 
For example, in the current MATLABivv implementation of the SIVV, the average row and 
column coordinates of the binary output of a Sobel [17] edge filter are taken as the center of 
the fingerprint. A circular shift in row and column is then performed to shift the centroid to 
the geometric center of the image prior to windowing and spectrum computation. Except in 
cases having significant stray marks in the surrounding of the fingerprint, this method does a 
good job of centering the ridge-flow of the image. Where edge “noise” is significant in the 
background, cropping is necessary. The same edge map can be used fro cropping as well as 
for centering. 
 
In the C++ implementation of the SIVV method to be detailed in a subsequent document, 
both centering and cropping functions are implemented using the output of a Canny[18] edge 
detector. The fingerprint center is determined as described above. Then row and column 
cropping boundaries are set by examining edge point density statistics along rows and 
columns with respect to a threshold density value. Only the image region bounded by edge 
densities above threshold is processed further. 
 
Thus, the sensitivity of the SIVV signal to translation and background is corrected easily. Yet 
this sensitivity of the SIVV method to translation points to the additional diagnostic capacity 
of the method to detect fingerprints offset from the ideal centered position. Difference 
between power spectra before and after centering operations would indicate that the original 
fingerprint was not centered in the original image frame and provide an estimate of the 
degree of offset. 

                                                 
iv Registered trademark of The Mathworks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098.  

v Any mention of commercial products within this report is for information only; it does not 
imply recommendation or endorsement by NIST 



 
 
 
 

 
4.3 SCAN SAMPLE RATE SENSITIVITY (1000 PPI VS. 500 PPI) 

Fingerprints, typically, have been scanned at a sample rate of 500 ppi. With improvements in 
scanner technology, data storage capacity, processing capability, and growing interest in 
extending analysis to smaller features of the fingerprint, movement has been rapid toward 
scaning at higher rates of 1000 ppi and even up to 2000 ppi. Accordingly, the potential for 
matching failures due to an unrecognized disparity between image sample rates has become 
significant. Verification of image sample rate, accordingly, has become an important 
component of database screening. 
 
Given that the 1D spectral frequency is scaled as cycles per pixel, one might expect that 
reducing the sample rate by a factor of two should expand the frequency representation by a 
proportional degree and shift the peak toward higher frequency. Indeed this occurs and may 
be useful for detecting large differences in scan sample rate. Given some variation in the 
precise frequency position of the valley-peak feature among fingerprints at a constant scan 
sample rate, the spectrum may not be sufficiently sensitive to detect small differences in 
sample rate. However, the method can signal disparities on the order of several hundreds of 
ppi. 
 
Identical fingerprints sampled at both 1000 ppi and 500 ppi were not available, so the 
comparison images are prepared by resampling a 1000 ppi fingerprint at half the original 
rate. The software function employed for this operation applies an “anti-aliasing” (low-pass) 
filter to the image prior to resampling the image. This ensures that under-sampling the high 
frequency components of the original image will not create spurious low frequencies, i.e., the 
Nyquist sampling criterion [19, 20] will be satisfied. Resampling was done using a bicubic 
interpolation method.  
 
Example 1000 ppi and 500 ppi images and their spectra are shown in figs. 11 and 12. As 
expected, the structure of the spectrum is essentially the same in the two cases but the 
features are stretched out, i.e. redistributed, over the frequency dimension for the lower 
sample rate. At the half the sampling rate, the spectrum at 500 ppi covers only ½ of the 
actual frequency range of that of the 1000 ppi sampling. Hence a 500 ppi image should be 
easy to recognize among 1000 ppi images. 
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Fig. 11 Fingerprint image digitized at 1000 ppi (995 x 1090 pixels). 
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Fig. 12  Fingerprint image from fig. 11 resampled at 500 ppi (498 x 545 
pixels) using bicubic interpolation. The spectral features are shifted 
by factor of 2 in frequency. 
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5. RESULTS AND DISCUSSION 

The SIVV code was run on each of the mixed datasets (described in Appendix B) and the 
output piped to a text file for analysis. As indicated elsewhere in this document, the current 
output of the SIVV consists of the following: 
 • image file name 
 • ordinal location of the maximum peak among the array of peaks returned by the peak 

finder 
 • number of peaks returned by the peak detector 
 • power difference (dy) between the maximum peak and the signal minimum (valley) 

immediately preceding it 
 • frequency difference (dx) between the valley and peak 
 • slope between the valley and peak (dy/dx) 
 • frequency of the midpointvi between the valley and the peak 
 
The output of the SIVV routine is examined for each of the datasets with respect to the 
distributions of the feature values among fingers in the case of the fingerprint databases (see 
Appendix C), and with respect to fingerprint compared to non-fingerprint images. Then 
assessment is made of the error rates in classifying images as fingerprint or non-fingerprint 
considering the peak height relative to the valley (dy) feature with a rough constraint on the 
acceptable frequency location of the valley-peak feature. 
 
Figs 13 and 14 contrast distributions of peak height and feature frequency location for 
fingerprints and non-fingerprint images of the mixed dataset. Fig. 13 shows fingerprint 
images to exhibit significantly higher peak height values in comparison to non-fingerprint 
images. Thus, this feature appears effective at discriminating fingerprints from other images. 
 

                                                 
vi Initial analysis considered the diagnostic feature to consist of both a minimum and a 

succeeding maximum. Given this feature definition, the midpoint seemed a reasonable 
means to locate the feature. Currently, however, we are considering the frequency 
position of the peak alone as a feature, particularly in differentiating various sample scan 
rates, and have plans to test such. 
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Frequency location is less discriminating, though the range of frequency location is much 
smaller for fingerprints than for non-fingerprint images as is shown in fig. 14. This suggests 
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Fig. 13 Box plot showing distributions of peak height for non-
fingerprint images (0) and fingerprint images (1) in a 
mixed image dataset.  
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Fig. 14 Box plot showing distributions of frequency location of the 
valley-peak structure for non-fingerprint images (0) and 
fingerprint images (1) in a mixed image dataset. 
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that frequency location may not be particularly diagnostic in its own right but rather may 
provide a constraint or filter in selection of peak height values for classification. Fig 15 
shows the relative error rates for fingerprint vs. non-fingerprint classification fixing a 
maximum frequency location at 0.15 cycles/pixel and varying the threshold of peak height. 
An equal proportion of false positives and false negatives, equal error rate (EER), of 
approximately 10 % is achieved at a peak height (dy) threshold of around 0.024 dB. 

 
Figs. 16 and 17 exhibit distributions of peak height and feature frequency location for 
fingerprint, face, and iris images of the mixed biometric dataset, Mixed Biometric 1. As with 
the general mixed image dataset, the distribution of peak heights of fingerprints are quite 
distinct from the much lower values for face and iris images. Again, frequency location is not 
unique for fingerprints, but may serve as a limiting filter for selection of peak height as a 
classification criterion. 
 
The composite consideration of both peak height and frequency is illustrated in the scatter 
plot of fig. 18. The fingerprint responses are largely separated from those of both face and 
iris images. Moreover, separate clusters are evident for fingerprints at the two scan sample 
rates, 1000 ppi and 500 ppi. Face images represented within the fingerprint clusters are 
actually very small area faces against a brick wall background. Iris images among the 
fingerprints exhibit prominent eye lashes and eyebrows generating the periodic structure. 
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Fig. 15 Plot of false positive vs. false negative error rates with 
variation of threshold value of peak height used as a 
classifier applied to a mixed image dataset. Feature 
frequency maximum was set at 0.15 cycles/pixel. 
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Fig. 19 shows the error rate as a function of threshold in peak height for classification of 
fingerprint vs. non-fingerprint (face or iris). Again the upper frequency limit is set at 0.15 
cycles/pixel. An EER of 6.6 % is achieved at a peak height of 0.02 dB. 
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Fig. 16 Box plot showing distributions of peak height (dy) for  
equal numbers of fingerprint, face, and iris images in a 
mixed biometric dataset. 
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Fig. 17 Box plot showing distributions of frequency location of the valley-
peak feature for equal numbers of fingerprint, face, and iris images 
in a mixed biometric dataset. 
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Fig.19 Plot of false positive vs. false negative error rates with 
variation of threshold value of peak height used as a 
classifier applied to the mixed biometric dataset. Feature 
frequency maximum was set at 0.15 cycles/pixel. 
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Fig. 18 Peak height (dy) vs. frequency of SIVV output for images of the Mixed 
Biometric 1 dataset. Note the separation of fingerprints into clusters 
corresponding to the 1000 ppi and 500 ppi samples. 



 
 
 
 

In the preceding EER analysis only the peak height feature is used for classification, though 
constrained via a maximum limit on frequency position. From examination of the 
distributions of all the features, however, it is not clear that consideration of the other 
features in a simple fashion will be adequate to enhance the classification performance 
beyond that reported here. Training a support vector machine (SVM) or other learning model 
would yield a more sophisticated integration of the multiple features. However, it is also 
possible that a more precise representation of the spectral shape, i.e. beyond merely the 
major peak, would provide greater classification accuracy. That is, examination of some of 
the non-fingerprint images that exhibited a peak feature similar to that of the fingerprint also 
exhibited peaks at higher frequencies that would differentiate them from fingerprints. Hence 
a follow-on effort will examine the spectrum itself in greater detail via additional features 
representing average or total power in each of some small number of frequency bands of the 
spectrum in addition to the features currently output. For example, the frequency extending 
from 0.0 to 0.5 cycles/pixel might be examined over each of 10 intervals of 0.05 cycles/pixel 
in width. A classification model based on these additional 10 features together with those 
already discussed might improve the classification accuracy. 
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6. CONCLUSIONS 

The spectral image validation and verification (SIVV) method proposed here demonstrates 
its utility as a means for screening fingerprint databases for poorly segmented specimens and 
for non-fingerprint images that may have been included in the database. The magnitude of 
the distinctive spectral feature related directly to the level 1 ridge flow feature of the 
fingerprint provides a primary diagnostic indicator of the presence of a fingerprint image. 
The frequency location of the feature provides a secondary classification metric and on a 
coarse level verifies the reported scan sample rate of the fingerprint image. Using only a 
simple threshold criterion based on these two features, the SIVV utility was able to limit 
classification EER to 10% or less for a mixed image dataset, including many images 
intentionally selected to confuse the algorithm, and a dataset including fingerprints amidst 
face and iris images. Efforts toward improving performance may include use of a more 
sophisticated classification model using additional features available in the 1D power 
spectrum. 
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8. APPENDIX A: DEMONSTRATION OF ROTATION INVARIANCE 

Experiments indicate the 1D spectrum to be largely invariant to in-plane rotation of the 
fingerprint. In order to avoid effects of cropping or scale change that would result from 
rotating a rectangular image, circular regions of interest are extracted from the original 
images. The fingerprint samples are rotated by resampling using bicubic interpolation. In the 
case of 90° rotation, the image transpose is used. Figs A-1 & A-2 demonstrate the stability of 
the 1D spectral representation over rotation for two images. 

Fig. A-1 Circular sample of a rolled fingerprint image (1029 x 
1023) captured at 1000 ppi. Original orientation (top) is 
rotated 45° and 90°. 
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Fig. A-2 Circular sample of a slap-four image (2012 x 
2064) captured at 1000 ppi. Original orientation 
(top) is rotated 45° and 90°. 
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9. APPENDIX B: TEST DATA 

Performance of the software relative to the designed use of fingerprint image validation and 
verification (IV&V) is evaluated with respect to several fingerprint and non-fingerprint 
databases. The databases used are characterized as follows: 
 
A fingerprint database, here referred to as SD27_1000, consists of images digitized at a 
sample rate of 1000 ppi from FBI standard 10-print cards. The individual images include 
rolled ink prints of each of the 10 fingers, plain impressions of each of the two thumbs, and 
plain “slap-four” impressions of the right and left hands. The dataset includes images from 
212 fingerprint cards with 14 images per card for a total of 2968 images. 
 
A second dataset is derived from this image set by resampling the 1000 ppi images to 500 
ppi, with application of a low-pass filter to reduce the effects of aliasing due to under-
sampling the original images. This dataset is referred to as SD27_500. 
 
A third fingerprint dataset, referred to as SD29_Plain consists of 1188 plain impressions of 
fingers 1-10. These fingerprints were digitized at 500 ppi via scanning of the inked 
impressions. 
 
The mixed data set referred to as ImagesTest02 consists of a variety of images largely 
downloaded from the Internet (e.g. Google Images collection) and various other public 
sources. The 331 downloaded images include a small number of biometric data samples such 
as fingerprints, iris, and face at various scales included in website libraries. Many non-
biometric images in this sample were selected on the basis of their exhibiting periodic 
structure that might generate a spectrum similar to that of a fingerprint. Others images 
include portraits, trees, landscapes, buildings, textured materials, and other subjects at a 
variety of pixel resolutions.  
 
ImagesTest02 contained a relatively small number of actual fingerprint images. Accordingly, 
the dataset was expanded for testing by adding a random sample of fingerprint images drawn 
from the three fingerprint datasets, SD27_1000, SD27_500, and SD29. Thus, to the original 
331 images of the mixed set were added 300 additional images including 100 images drawn 
from each of the fingerprint datasets for a total of 631 images. We refer to this fourth dataset 
as ImagesTest03. 
 
Finally, fifth and sixth datasets, Mixed Biometric1 and Mixed Biometric2, were constructed 
to examine relative distributions of the three biometrics and to examine classification rates 
for fingerprints against the background of non-fingerprint biometrics. A suite of face and iris 
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images was obtained from Phillips and Scallan of NIST. These images are part of the dataset 
assembled for use in the Multi-Biometric Grand Challenge (MBGC)vii conducted by these 
researchers. The face images consist of frontal posed subjects imaged at a range of scales 
from full-frame face to images in which the subject is at a considerable distance from the 
camera with the face occupying only a very small area of a natural scene image. In a number 
of these images the comparatively small area face is imaged against a background often 
consisting of a brick wall. In some cases subjects are wearing striped or plaid clothing. The 
iris images are acquired using short wavelength infra-red (near-IR) lighting and include the 
entire eye, including eyelashes. In most of the images, the iris is nearly all visible or only 
slightly cropped. In many of the iris images, the eyebrow is visible.  
 
Mixed Biometric 1 used to compare distributions of spectral features was constructed from 
equal sized random samples of face, iris, and fingerprint images (3000 of each). For the 
classification experiment, fingerprint vs. non-fingerprint, a random sample of 3000 
fingerprint images was combined with 1500 each of face and iris images to form Mixed 
Biometric 2. 

                                                 
vii http://face.nist.gov/mbgc/ 
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10. APPENDIX C: DISTRIBUTIONS OF SIVV FEATURES 

Figs   C-1 –  C-3 exhibit box and whisker plots [21, 22] summarizing the distributions of the 
peak height (dy) values grouped by finger designation for the three fingerprint datasets. In 
each figure, the enclosed region, the box, includes observations within the 25th and 75th 
percentiles with the median (50th percentile) indicated by the red line. The vertical lines 
terminated by a short horizontal line extend for 1.5 times the lower and upper interquartile 
ranges. Observations beyond these intervals are considered to be outliers and are indicated by 
the red "plus" symbols. The notches centered on the medians indicate the 95 % confidence 
intervals of the medians and can be used to compare medians across the various boxes. For 
example, a median included within the notched region of another is not significantly different 
in the statistical sense, though one is advised to make such an interpretation with caution. In 
practice, we are more impressed with significant offset between boxes.  
 
Figs  C-1 and  C-2 show respectively the peak height distributions for the 1000 ppi and 500 
ppi images of the SD27 dataset. Within each of the figures, the distributions are similar 
among the rolled prints, having the designations 1 – 10, though heights are slightly higher for 
the lower sample rate. In both cases the peak heights are reduced significantly for the plain 
thumb impressions, 11 and 12, and for the slap-four plain impressions of 13 and 14. 
Inspection of images finds that in general the contrast is higher with the rolled prints, and the 
ridge pattern occupies a greater proportion of the image area than in the plain impressions. 
Moreover, handwritten content on many cards is placed over the plain print regions of the 
card, introducing frequency content in potential conflict with that of the ridge pattern. 
 
The position of the valley-peak structure, taken as the midpoint between the valley minimum 
and the peak maximum, are also consistent among the rolled prints 1 – 10, with the bulk of 
the values falling between 0.03 cycles/pixel and 0.05 cycles/pixel for the 1000 ppi images 
(see fig.  C-4) and between 0.07 cycles/pixel and 0.09 cycles/pixel for 500 ppi images as 
shown in figs  C-5 and  C-6. Inasmuch as the ridge frequency metric for each print represents 
an average over the entire print, and in fact, the entire image, a more precise position is not 
expected. The distribution for the plain single thumb prints, 11 and 12, exhibit much greater 
variability and a noticeable shift toward higher frequency relative to the distributions for the 
rolled prints. By contrast, the frequency position for the plain slap-four prints, 13 and 14, is 
distributed with smaller variance than the other distributions and the frequency position is 
slightly lower than that of the rolled prints. 

 

NISTIR 7599 Page 37 08/19/2009 

 
 



 
 
 
 

 

NISTIR 7599 Page 38 08/19/2009 

 
 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Finger

Peak Height - SD27_1000ppi

Pe
ak

 H
ei

gh
t (

dB
)

Fig. C-1 Box plot showing distributions of peak height (dy) by finger for SD27 
dataset sampled at 1000 ppi. Fingers 1 – 10 are rolled inked prints on 
FBI 10-print cards; 11 and 12 are plain impressions of thumbs; and 13 
and 14 are slap-four prints of left and right hands. 
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Fig. C-2 Box plot showing distributions of peak height (dy) by finger for SD27 
dataset down-sampled (with anti-aliasing) to 500 ppi. Fingers 1 – 10 are 
rolled inked prints on FBI 10-print cards; 11 and 12 are plain impressions of 
thumbs; and 13 and 14 are slap-four prints of left and right hands. 
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Fig. C-3 Box plot showing distributions of peak height (dy) by 
finger for SD29 dataset sampled at 500 ppi. Fingers 1 – 10 are 
plain inked prints. 
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Fig. C-4 Box plot showing distributions of peak frequency location of the 
valley-peak feature by finger for SD27 dataset sampled at 1000 ppi. 
Fingers 1 – 10 are rolled inked prints on FBI 10-print cards; 11 and 12 
are plain impressions of thumbs; and 13 and 14 are slap-four prints of 
left and right hands. 



 
 
 
 

 

NISTIR 7599 Page 40 08/19/2009 

 
 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Finger

Frequency - SD27_500ppi

Fe
at

ur
e 

Fr
eq

ue
nc

y 
(c

yc
le

s/
pi

xe
l)

Fig. C-5 Box plot showing distributions of  frequency location of the valley-peak 
feature by finger for SD27 dataset down-sampled (with anti-aliasing) to 500 
ppi. Fingers 1 – 10 are rolled inked prints on FBI 10-print cards; 11 and 12 
are plain impressions of thumbs; and 13 and 14 are slap-four prints of left 
and right hands. 
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Fig. C-6 Box plot showing distributions of  frequency location of the 
valley-peak feature by finger for SD29 dataset sampled at 500 
ppi. Fingers 1 – 10 are plain inked prints. 
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