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Abstract

We investigate the trade-o� between utility and path diversity in a model of congestion control where
there can be multiple routes between two locations in a network. The model contains a random route
allocation scheme for each source s where the degree of randomness and therefore path diversity is con-
trolled by hs, the entropy of the route distribution. After deriving the model from a network utility
maximization problem we analyze it in detail for two sample topologies. We conclude that, starting
from an allocation with maximum robustness and path diversity, one can always increase the utility
by decreasing hs. However it can only decrease until a critical value of the entropy is reached. The
value depends on the topology and link capacities of the network and can be explicity computed for our
examples.

Keywords:TCP/IP protocols, multipath routing,discrete dynamics, Morse theory

1 INTRODUCTION

In recent years, network protocols have been interpreted as algorithms that solve a convex optimization problem. In
this set-up overall congestion control is formulated as a network utility maximization problem (NUM) that is solved
in a distributed fashion by the various network layers. The network topology and the capacity of its links introduces
constraints on the optimal solution. Then algorithms solve the problem by computing and modifying the primal and
dual variables based on e�cient communication between users, link and router layers of the network. Since the work
of Kelly et al [7] congestion control protocols have been seen as regulating user network transmission rates so that
the objective function i.e., the aggregate utility, is maximized subject to capacity constraints ([8], [3]). The utility
function incorporates e�cient utilization and fair allocation of resources among users. Signi�cantly, such functions
have been identi�ed for existing protocols such as TCP and BGP (Border Gateway Protocols) through a process of
"reverse engineering", thus opening up opportunities for analysis and improvement of existing protocols as well as
the development of new ones.

The paradigm just described has been extended to the problem of characterizing protocols that jointly control
congestion and routing ([12],[3], [4], [5],[6]). Aside from the obvious improvement in the utilization of network
resources that could be gained by such an approach, there are obvious bene�ts in this time of cybersecurity concerns
about adequate network robustness against route disruptions. However implicit in such a protocol is a tradeo�
between robustness through path diversity on the one hand and network performance or utility on the other. Single
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path routing based on e.g. the OSPF (Open Shortest Path First) protocol can lead to route �apping instability and
reduced utility. However splitting tra�c equally across all paths regardless of cost would also imply reduced utility.
The best tradeo� if it exists would have to navigate between these extremes. Thus the design of stable, implementable
algorithms that achieve maximum aggregate utility remains a challenge.

Our purpose is to propose a generalized NUM optimization problem for joint congestion control and routing
where we can examine the behavior of the time averaged utility as a function of entropy, a model parameter that
can be interpreted as a measure of path diversity. This paper is not presenting an algorithm to be implemented on
a real network but is rather, a theoretical study of issues that must be addressed by any algorithm that is based on
the NUM problem we discuss. Our model contains a routing scheme based on random allocation where the degree
of randomness is controlled. The randomness of any route or path allocation for a class of network users s, can be
measured in terms of the entropy hs of the probability distribution de�ned by the allocation.

Treating hs as a parameter, we �nd that as we increase hs from 0, the model equations fail to converge to an
equilibrium until the entropy reaches a critical value (see Section 5.1 for TwoLinks and Section 6.1 for Diamond).
Stable equilibria exist for values of hs greater or equal to the critical value and we show that the corresponding
equilibrium pair (x∗s , β

∗
s ) are solutions of the optimization problem.

We also calculate the time averaged aggregate utility for a range of values hs for each topology (see Figure 8,
Figure 9). These graphs show how the utility decreases as the entropy increases and they illustrate the fact that one
can always increase the utility for a route allocation that has entropy greater than the critical value by changing the
allocation so that the entropy decreases. This automatically decreases the mean route cost. A protocol based on
the model we presented does not allow one to decrease the entropy below the critical value. We conjecture that the
behavior of the model for entropy values less than the critical value corresponds to the unstable behavior seen in the
single path TCP/IP protocols as discussed in reference [12].

We now turn to a description of the organization of the paper. The NUM optimization problem is presented in
the next section and is followed by a description of the model and the notation used in Section 3. The model is an
algorithm for solving the NUM optimization problem and is derived following the work of [8], [12] in Section 4. Then
the model is specialized to the TwoLinks topology (see (29)) in Section 5, and there follows a detailed description of
the model behavior in 5.1-5.3. Readers who want to skip the details and see the results and conclusions can go to the
beginning of sections 5 and 6. The model equations for the Diamond topology (equations (38)-(42)) can be found in
Section 6. A summary of the model behavior for this topology can be found at the beginning while details can be
found in the subsections 6.1-6.3. A discussion of how the aggregate utility varies as a function of the parameter hs
for these two topologies can be found in Section 7. The conclusion can be found in Section 8. Finally the last section,
Section 9 is an appendix, containing proofs of some results needed in the detailed subsections of 5 and 6.

2 OPTIMIZATION PROBLEM

Consider a planar network to be a graph with nodes representing physical nodes in the network and edges representing
links. The link capacities are de�ned by the vector c = (c1, c2, · · · , cL). A user who requires bandwidth to transmit
from one node to another in the network (or a single TCP session between those two nodes) is indexed by s, the
index of the source-destination pair. For each s , the utility function is a twice di�erentiable strictly concave function
Us : [ms,Ms] → R. Here ms and Ms are lower and upper bounds respectively on the bandwidth rate xs. Us(xs)
measures the degree of user satisfaction, network fairness and e�ciency for the part of the network de�ned by s. Users
in a source-destination class s are assigned a path by edge routers using a probability distribution with a minimum
degree of randomization as speci�ed by hs. The distribution is constrained so that the tra�c on any link does not
exceed the link capacity.

The optimization problem that our protocol seeks to solve is:

max
β≥0,x∈X x≥0

∑
s

Us(xs) (1)∑
s

∑
r∈Rs(l)

βsrxs ≤ cl (2)

∀s
∑
r∈Rs

βsr = 1, βsr ≥ 0 (3)

−
∑
r∈Rs

βsr log βsr ≥ hs (4)

x = {xs : s = 1, 2, · · ·S} is the vector of source rates with each xs ∈ [ms,Ms] where ms ≥ 0. In this paper we will
take ms = 0 for all s and Us(xs) = ws(1−αs)x1−αs

s with αs = 2. The form for U is commonly used in the literature
[3]. The elements β = {βsr} comprise a matrix whose rows are the route probability distributions for source s. The
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constraints (2) require that all routes r in Rs(l), the set of routes of source s that use link l, be assigned bandwidth
rates βsrxs so that the total link load does not exceed the capacity cl. Finally if Rs is the set of all paths joining the
source-destination pair s, then (3) is the usual requirement for probability distributions and (4) places an lower bound
on the degree of randomness for the distribution {βsr} for source s. Small values of hs indicate that the problem is
closer to the single path case and as hs increases we are closer to the equiprobable case- a version of the multipath
problem. Following the approach of [8] we developed an algorithm based on a gradient projection iteration method
for the dual optimization problem. We will discuss the convergence of this algorithm and its stability as a function of
hs for two sample topologies. As in [8] and [12], the dual variables are link costs changing in response to congestion.
The route allocation distributions follow dynamics that minimize the average route cost.

In [9] where the idea of random route allocation was �rst proposed, the authors introduced an adaptive algorithm
involving non-constant values of hs. Through simulations they demonstrated the trade-o� between stability and
utility. They found that the maximum utility occurs near the boundary between stability and instability.

3 DESCRIPTION OF MODEL

To describe the results of this paper, the model equations are presented next. They are based on a gradient projection
algorithm for solving the dual form of a NUM problem and they are derived in Section 4. The utility funcion
Us : [ms,Ms]→ R where 0 < ms < Ms, is a strictly concave, twice continuously di�erentiable function.

We will as usual represent a computer network as a planar graph with nodes representing locations in the network.
In the literature, the total amount of bandwidth to send information from one part of the network to another is
controlled by an agent called a source. There are several routes a source can take to its destination and we assume
each route is de�ned by a set of uni-directional links indexed by l = 1, · · ·L. These links are represented in the graph
as weighted edges, where an edge weight is the link capacity. Sources are indexed by s, and tra�c is assigned to route
r ∈ R(s) with probability βrs where R(s) is the set of all routes used by source s. If p

(k)
l is the link cost at time k

and cl is the capacity of the lth link then the equations of the model are

p
(k+1)
l =

p(k)
l − h

cl −∑
s

xs(k)
∑

r∈Rs(l)

β(k)
sr


+

l = 1, · · ·L (5)

β(k)
sr = exp(−γs(k)dr(k))/Zs(k) (6)

where dr(k) =
∑
l∈r p

(k)
l is the cost of route r at time k, h is a step size , [a]+ = a if a > 0 and is 0 otherwise.

Zs(k) =
∑
r∈R(s) exp(−γ

(k)
s dr(k)) is the normalization factor for the route distribution and, the variable γ

(k)
s is the

solution of the implicit equation,

γ(k)
s Ds(k) + log(Zs(k)) = hs, Ds(k) =

∑
r∈R(s)

β(k)
sr dr(k) (7)

The model equations are completed by a relation between the bandwidth rate xs(k) and Ds(k), the mean route cost
at time k for positive constants w and M .

xs(k) = min

((
w

Ds(k)

)1/2

, M

)
(8)

Equations (6) and (7) force the route distribution β
(k)
sr to be the unique distribution of entropy hs with the smallest

mean route cost at each time step k. Recall that for any probability distribution βs = {βsr}r∈R(s) the entropy of the
distribution is

H(βs) = −

 ∑
r∈R(s)

βsr log βsr

 . (9)

Thus the condition on the route distributions is H(βs) = hs. This constant entropy requirement will constrain the

set of values {pl | l = 1 · · ·L} for which a bounded γ
(k)
s exists. The precise set depends on the network topology and

capacity of the links. In this paper we present a detailed discussion of two very simple sample networks where these
regions can be determined.
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4 DERIVATION OF THE MODEL

The problem (1)-(4) is not convex in (x, β) but through an invertible change a variables (x, β) 7→ (x, y) it can be
transformed to one. The new problem is:

max
x,y

∑
s

Us(xs) (10)∑
s

∑
r∈Rs(l)

ysr ≤ cl (11)

xs =
∑
r∈Rs

ysr, ysr ≥ 0 (12)

−
∑
r∈Rs

ysr
xs

log
ysr
xs
≥ hs (13)

This is a convex program because the functions in (10)-(13) are clearly concave. If we assume the conditions∑
s
′

ms
′ < cl

hold for each l, where the summation is over all source-destination pairs s
′
that use link l, and note that a β = {βsr :

r ∈ Rs, s = 1 · · ·S} can always be found so that ysr = xs ∗ βsr and

−
∑
r∈Rs

βsr log(βsr) ≥ hs

then there is a Slater point([11]) and the Slater constraint quali�cation is satis�ed. We note here that xs ∈ [ms,Ms]
can be chosen independently of β. Thus (10)-(13) is superconsistent and Lagrange multipliers exist. The Lagrangian
for the problem is:

L(x, yλ, p) =
∑
s

[Us(xs)−
∑
r∈Rs

(∑
l∈r

pl

)
ysr − λ1

s

(∑
r∈Rs

ysr log(
ysr
xs

) + hsxs

)
(14)

−λ2
s

(
xs −

∑
r∈Rs

ysr

)
+

NL∑
l=1

plcl

where {pl, l = 1 · · ·NL} are the Lagrange multipliers for (11) and λ = [λ1
s, λ

2
s : s = 1, · · ·S] are Lagrange multipliers

for constraints (13) and (12). To obtain solutions x, y we consider the problem;

max
x,y

L(x, y, λ, p) = max
x

max
y

L(x, y, λ, p)

where maximization is �rst performed in y with x and p held �xed. The problem maxy L(x, y, λ, p) is equivalent to
the constrained problem

max
y

∑
s

Us(xs)−
∑
r∈Rs

(
∑
l∈r

pl)ysr (15)

xs =
∑
r∈Rs

ysr, ysr ≥ 0

−
∑
r∈Rs

ysr
xs

log(
ysr
xs

) ≥ hs

Problem (15) has a Slater point so it too is superconsistent. A solution y∗ to (15) exists if and only if there is a λ∗

that satis�es the Karush-Kuhn-Tucker conditions ([11] p.182,183). Reintroducing βsr = ysr
xs

where βsr is independent
of xs, we obtain the following form of the optimal solution of (15) for each �xed xs and p.

βsr =
exp(−γ ∗ dr)

Zs
(16)

where

Zs =
∑
r∈Rs

exp(−γ ∗ dr), dr =
∑
l∈r

pl
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and γ = 1
λ2
s
is the solution of the implicit equation,

γ ∗Ds + logZs(γ) = hs , Ds =
∑
r∈Rs

βsrdr (17)

Recognizing that (15) is equivalent to the problem of minimizing
∑
r∈Rs ysrdr = xsDs subject to the constraints, we

see that the optimal solution can be obtained by setting γ equal to the unique positive root of (17). Indeed there
are in general two roots of this equation when hs < log |Rs| and the positive root provides the smallest value of Ds.
Given γ > 0, call any βsr subject to (16) and (17), β∗sr. Then we have y∗sr = xsβ

∗
sr. The {y∗sr : r = 1, · · ·Rs} are

unique since for each s, (17) has a unique positive solution. Set

L(x, p) = max
y

L(x, y, λ, p) = L(x, y∗(x, p), λ∗(x, p), p)

where y∗(x, p) and λ∗(x, p) are the optimal solution and Lagrange multipliers of (15) for �xed x and p. Using the
KKT conditions L can be written as,

L(x, p) =
∑
s

[Us(xs)− xs
∑
r∈Rs

(
∑
l∈r

pl)β
∗
sr] +

NL∑
l=1

plcl (18)

L is strictly concave on the product interval X =
∏
s[ms,Ms] and therefore maxx L(x, p) exists for a unique x.

Moreover L is convex in p. To see this note that

− Λs(p) = −
∑
r∈Rs

(
∑
l∈r

pl)β
∗
sr ≥ −

∑
r∈Rs

(
∑
l∈r

pl)βr (19)

and is the supremum over all vectors β; β :
∑
r∈Rs βr = 1,−

∑
r∈Rs βr log βr ≥ hs. Thus L(x, p) is the supremum of

set of convex functions over an in�nite (convex) set (p. 81 Boyd and Vandenberghe). Applying the same reasoning
to L we can conclude that Q(p) = maxx L(x, p) = maxx maxy L(x, y, λ, p) is convex in p. The remainder of this
derivation follows the work of [8] and [12]. First the dual problem for p is formulated as:

min
p:pl≥0

Q(p) (20)

If {β∗sr}s,r is di�erentiable in p and λ, then Danskin's theorem [1] applied to L implies the di�erentiability ofQ. Indeed
the unique maximizing x̄ and y = xβ̂∗ are di�erentiable in p and λ. At x̄, either x̄s(p) = Ms or U

′
s(x̄s)(p)) = Λs(p). If

x̄s(p) < Ms, then a condition introduced in [8], U
′′

(xs) ≥ δs > 0 for all xs ∈ (0,Ms], together with the di�erentiability
of Λs with respect to p and λ, imply that x̄s is di�erentiable(see Appendix) and thus L(x̄, y∗, λ, p) is di�erentiable.
We conjecture that Λs is di�erentiable at p if p lies in a convex subset of RL. The exact nature of the subset depends
on the existence of a �nite positive root of (17). We have determined the region for sample problems discussed in
this paper. In general however we do not expect Q to be everywhere di�erentiable. These considerations lead to the
following subgradient algorithm for solving (20).

pk+1 = [pk − hgk]+ (21)

If xs(p) < Ms, for all s, where g is a subgradient of Q. When it is di�erentiable gk = 5Q(pk). Our interest lies in
understanding the dynamics of the latter equation when this condition is satis�ed at least initially and the boundary
of X can only be approached from the interior thus for the rest of our discussion we assume that for each k:

ASSUMPTION For all s , x̄s(p
k) < Ms.

Under this assumption, (21) can be written as

pk+1
l =

pkl − h
cl −∑

s

xks
∑

r∈Rs(l)

βksr(
∑
l
′∈r

pk
l
′ )


+

l = 1 · · ·NL (22)

Equations (22) is supplemented by the relations coming from the optimality conditions.

βksr =
exp

(
−γks (

∑
l∈r pl)

)
Z(γks )

(23)

xks = min(

(
w

E[d]

) 1
α

M) , E[d] =
∑
r∈Rs

βksr(
∑
l
′∈r

pk
l
′ ) (24)

where γks is the solution of (17) using βksr , and Z(γks ) is de�ned analogously to Z(s). Equation (17) e�ectively insures

that at each time step k the route distribution
{
β

(k)
sr : r ∈ Rs

}
has entropy hs for every s.
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5 TWO LINKS TOPOLOGY

A network consisting of a single source-destination pair of nodes connected by two links is depicted in Figure 1. In
this section we describe the dynamics of equations (22) particular to this case as seen in equation (29). We �nd the
values of the entropy hs where the iterations converge and these can be used to express the solution of the original
optimization problem. As hs is varied it will be convenient from a conceptual as well as mathematical point of view
to express the variation in entropy in terms of the route allocation distribution.

In Section 5.1, we discuss the existence of stable equilibria for (29) at an intrinsic (critical) entropy value with
route probabilities,

β∗1 =
c1

c1 + c2
, β∗2 =

c2
c1 + c2

(25)

where c1 and c2 are the link capacities and without loss of generality we assume c1 > c2. The corresponding critical
value of the entropy is therefore

hT (c) = −
[

c1
c1 + c2

log
c1

c1 + c2
+

c2
c1 + c2

log
c2

c1 + c2

]
(26)

(27)

Each initial point in a region H in the p1, p2 plane, converges along a straight line orbit to a point on the line of
constant mean cost x̄∗ (see the line L1 Figure 2). Although there are in�nitely many such points in the plane there

is a unique equilibrium bandwidth rate xs∗ =
(
w
x̄∗

)1/2
. These equilibria are neutrally stable.

There is a corresponding equilibrium route allocation as well. In the latter part of our discussion here and Theorem
9.1 in the Appendix we show that there are just two probability distributions with a given entropy hs < log 2. It is
shown that within the quadrant sector {p = (p1, p2, ) : p1 < p2 }, the route probabilities β(k)

1 > β
(k)
2 are constant

and equal to the values in (25) for k ≥ 1. Thus the optimal route probabilities are reached in a single step although
of course the solution of the implicit equation varies and depends on p. The reverse inequality holds in the other
quadrant sector. The particular choice of solution depends on the sector the intiial values of p are in. The proof
that the equilibrium values (xs∗, β∗) are solutions of the optimization problem for h small enough is omitted here
but follows along the same lines as the proof of Theorem 1 in reference [8] and page 214 of [1], because orbits of
(29) remain in a single sector so the route probabilities are constants. Therefore the equations take the same form as

those discussed in [8]. We note that it is also at this point that the lower bound on U
′′
is needed.

If hs 6= hT (c), then the route probabilities in analogy with equation (25) are:

β
(hs)
1 =

c1 + µc2
(1 + µ)c2 + c1

β
(hs)
2 =

c2
(1 + µ)c2 + c1

(28)

where µ 6= 0. If µ = 0 then hs = hT (c), while µ < 0 implies that hs > hT (c). The dynamics of the iterations
for these values are discussed in Section 5.2. There it is proved, that if initial points start in H, iterates converge
to a asymptotically stable equilibrium point on the p2 axis. Figure 3 shows some of these orbits. This equilibrium
corresponds to a solution of the optimization problem but here the utility, i.e. U(x∗s) is smaller than the value obtained
at hT (c). The discussion of TwoLinks ends in Section 5.3 where we treat the case µ > 0. Here hs < hT (c). The
algorithm does not converge but instead orbits approach the line p1 = p2 and the solution of the implicit equation
becomes unbounded.

We now introduce the equations for the TwoLink topology and establish some preliminary facts needed for their
analysis in the later subsections. We are interested in identifying su�cient conditions for the existence of equilibria
for our algorithm in the region where the dual function Q is di�erentiable. In this topology note that a �nite
solution of (17) fails to exist if hs < log 2 but p1 = p2. Therefore we will restrict our investigation of (22) to the set
{p = 〈p1 , p2〉 : p1 < p2}. We will denote by xs the bandwidth rate with the single source in this network. In this
setting equations (22) become:

pk+1
1 =

[
pk1 − h

{
c1 − βk1xs(k)

}]+
(29)

pk+1
2 =

[
pk2 − h

{
c2 − βk2xs(k)

}]+
Here β

(k)
1 is the probability of being assigned to route 1 at the kth step and β

(k)
2 = 1 − β(k)

1 . Now the entropy of a
two point distribution is de�ned as

H(β) = − (β log(β) + (1− β) log(1− β))
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Figure 1:

The equation H(β) = hs, for some �xed hs < log 2, is satis�ed by exactly two distributions β̂ = {β(hs), 1− β(hs)} or
{1− β(hs), β(hs)}. Since the left hand side of (17) can be interpreted as H(β̂k), where β̂(k) = {β(k)

1 , β
(k)
2 }, this means

there are only two possible values of β
(k)
1 (β

(k)
2 respectively).The optimality conditions require that the positive root

be selected, so we conclude that β
(k)
1 ≡ β(hs) where β(hs) > (1− β(hs)) if p

(0)
1 < p

(0)
2 and the reverse inequality when

p
(0)
1 > p

(0)
2 (see Theorem 9.1 in the Appendix).

In what follows the sets Wi = {pi|pi − h{ci − βixs} > 0} will be mentioned frequently.

5.1 Route Distribution de�ned by Link Capacities

Given capacities c1 > c2 where c1 and c2 are the capacities of link 1 and link 2 respectively suppose,

c1
c2

=
β

(hs)
1

β
(hs)
2

= λ > 1. (30)

Here β
(hs)
1 and β

(hs)
2 , the proportion of tra�c allocated to links 1 and 2 respectively de�ne a probability distribution

with entropy hs = hT (c) given by (27). The entropy and thus the possible path allocation probabilities are determined
by the capacities of the links and are therefore intrinsic to the network. The ratio in (30) is greater than 1 so we

make the choice of assigning the smaller initial price to link 1, i.e. p
(0)
1 < p

(0)
2 . We also make the realistic assumption

that M > c1

β
(hs)
1

. There exists a family of steady states (equilibrium values) (xs∗, p∗1, p
∗
2, β

(hs)
1 , β

(hs)
2 ). Here xs∗ = c2

β2

is the unique equilibrium source rate, where p∗i are the link costs for i = 1, 2 such that β
(hs)
1 p∗1 + β

(hs)
2 p∗2 = x̄∗, where

xs∗ =
(
w
x̄∗

)1/2
. The equilibrium values of pi are not unique as we will see. To simplify notation in what follows we

write β
(hs)
i = βi i = 1, 2.

The dynamics of (29) are most conveniently described by dividing the (p1, p2) plane into 3 regions. Let L0 be
the line perpendicular to the line L1 : x̄ = x̄∗ at the point (0, p̃2). It is clear that p̃2 = x̄∗

β2
. Similarly let L2 be the

line perpendicular to L1 at the point of intersection of the lines L1 and {p : p1 = p2}. We will begin with the region
bounded above by L0, and below by L2 and on the left by the p2 axis. Denoting this region by R we assume that
initial value p0 = (p

(0)
1 , p

(0)
2 ) is in H = R∩W1 ∩W2 ∩ {p : p2 > p1}. As long as p(k)

2 > p
(k)
1 , β

(k)
i = βi i = 1, 2 (see the

discussion at the end of the introductory part Section 5). Equations (29) and (30) imply that p
(k)
2 − p

(k)
1 increases so

this inequality holds while p
(k)
i ∈ Wi. The orbit of p proceeds in a direction parallel to L0, i.e. perpendicular to L1.

To see this let, ∆p equal the vector < h(β1xs(k)−c1), h(β2xs(k)−c2) >. Then the dot product with < −β2, β1 >
is ∆p· < − β2, β1 >= 0. If p1 leaves W1, (p2 cannot leave W2 because p2 > β2x̄

∗), then the orbit will move to the

p2 axis and p
(k)
2 → p̃2 as k → ∞. If p1 remains in W1 we will show that p(k) will exponentially converge to a point

on the line L1. From (29) we derive the following equation for the evolution of x̄ for p
(k)
i ∈Wi i = 1, 2 k ≥ 1.

x̄k+1 = T (x̄(k)) = x̄k + hβ
(hs)
2 (1 + λ2)

(
xs(k)β

(hs)
2 − c2

)
(31)

First suppose that xs(0) < xs∗ , (x̄0 > x̄∗). Equation (31) shows that x̄ decreases as long as xs(k) ≤ xs∗ and is �xed
when xs(k) = xs∗ (x̄(k) = x̄∗). Moreover, an application of the the Mean Value theorem shows the the map T is a
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uniform contraction in within the interval, [x̄∗, x̄(k)] and the approach to x̄∗ is exponential. In fact we have,

x̄(k+1) − x̄∗ = (x̄(k) − x̄∗)− hβ2
2

2w
(
w

ξ
)3/2(x̄(k) − x̄∗) (32)

where ξ ∈ [x̄∗, x̄(k)]. Thus p(k) converges to a point p̂ on L1 that is the intersection of L1, with the line perpendicular
to it and passing through through p(0). It is clear then, that the equilibrium values are not unique. However the
equilibrium value of the bandwidth xs∗ and therefore the equilibrium mean cost x̄∗ is unique. If xs(0) > xs∗, then
x̄ increases and eventually reaches an interval where T is a contraction i.e. (32) holds with ξ ∈ [x̄(k), x̄∗]. Since

p(0) ∈W1 ∩W2 the orbit remains in this set because p
(k)
1 and p

(k)
2 are both increasing while c2 − β2 ∗ xs(k) decreases

with k. As in the previous case, p(k) exponentially approaches a point on L1. It is not hard to show by local stability
analysis that the limiting point is neutrally stable along the L1 direction (with eigenvalue 1) and is stable along the
L0 direction, with eigenvalue less than 1 in absolute value.

Let us now consider the cases where p(0) ∈W1 ∩W2 is located outside of H. If the initial point is above (and to
the left of) L0, then the orbit of p lies along a straight line perpendicular to L1 and approaches a point on the p2

axis. At some time k, p
(k)
1 /∈W1, then p

(k+1)
1 = 0. Since xs(m) ≤ xs∗, for m ≥ k, then p(m)

1 = 0 for m ≥ k+ 1 and the

orbit is con�ned to the p2 axis. p
(m)
2 → p̃2 as m→∞. If p(0) is located to the right of the line L2 but still satis�es,

p
(0)
2 > p

(0)
1 , then the orbit moves in a direction perpendicular to L1. As in previous cases however, it will reach the

p1 = p2 before it reaches L1 so that the orbit fails to converge to an equilibrium.

Figure 2: (p1, p2) plane when hs = hT (c)

5.2 Route Distribution with Less Weight on the Larger Link (increased hs)

We now consider the choice of parameters
c1
c2

= λ ,
βhs1

βhs2

= λ+ µ.

The parameter µ expresses the degree to which the route allocation distribution's entropy di�ers from what we can
call an intrinsic entropy de�ned in (27). In this instance λ is �xed by the intrinsic capacities of the links but the
controller can vary tra�c allocation by varying µ. The �rst case we consider, µ < 0 , decreases the portion of tra�c
assigned to link 1. As β1 decreases while maintaining the inequality β1 > β2, we have hs > hT (c) and the entropy

increases. It approaches the distribution that assigns 1/2 to each i.e. hs = log 2. We assume that p
(0)
i ∈Wi, i = 1, 2.

If p
(k)
i ∈ Wi 1 ≤ k ≤ K i = 1, 2 ,where K, is an arbitrary but �xed positive integer, the right hand sides of of the

two equations in (29) can be used to show the following:

Lemma 5.1 If p
(0)
1 < p

(0)
2 and xs(0) ∈

[
c2
βhs2

, c1
βhs1

]
, then p

(k)
1 < p

(k)
2 and xs(k) ∈

[
c2
βhs2

, c1
βhs1

]
for 1 ≤ k ≤ K.

8



Proof: We use mathematical induction on 0 ≤ l ≤ K − 1. The induction hypothesis is that p
(l)
1 < p

(l)
2 and

xs(l) ∈
[
c2
βhs2

, c1
βhs1

]
with β

(l)
i = β

(hs)
i , i = 1, 2. Equation (29) then implies that p

(l+1)
1 < p

(l+1)
2 . Using the argument

in the appendix, we then see that β
(l+1)
i = β

(hs)
i , i = 1, 2. To show that xs(l+1) ∈

[
c2
βhs2

, c1
βhs1

]
we rewrite (29),

simplifying the notation for βi by dropping the hs superscript. Note that the right hand sides of (29) can be

rewritten as [p
(l)
1 − h{c1 − β

(l)
1 xs∗ + β

(l)
1 (xs∗ − xs(l))}]+ and [p

(l)
2 − h{c2 − β

(l)
2 xs∗ + β

(l)
2 (xs∗ − xs(l))}]+ respectively.

Here xs∗ = θ c2
β2

where θ = 1+λ(λ+µ)

1+(λ+µ)2
. Therefore after some algebra the equations for p(l+1) are:

p
(l+1)
1 = p

(l)
1 +

hµc2
1 + (λ+ µ)2)

+ hβ
(l)
1 (xs(l) − xs∗) (33)

p
(l+1)
2 = p

(l)
2 −

hµ(λ+ µ)c2
1 + (λ+ µ)2

+ hβ
(l)
2 (xs(l) − xs∗)

The fact that βi = β
(l)
i = β

(l+1)
i i = 1, 2 is then used to derive an equation for the mean value x̄(l+1),

x̄(l+1) =
[
x̄(l) + h(β2

1 + β2
2)(xs(l) − xs∗)

]
(34)

If xs(l) ≥ xs∗, then (34) shows that x̄(l+1) ≥ x̄(l) and thus xs(l+1) ≤ xs(l). It is clear then that xs(l+1) ≤ c1
β1
. To see

that xs(l+1) ≥ c2
β2

for h small enough, suppose the contrary, xs(l+1) < c2
β2
. We would then have

xs(l) − xs(l+1) > xs(l) − c2
β2
≥ xs∗ − c2

β2
.

We compute the last di�erence as xs∗ − c2
β2

= −µ(λ+µ)

1+(λ+µ)2
c2
β2
. However the di�erentiability and in particular the

continuity of U
′
shows that xs(l+1) − xs(l) can be made much smaller than this (it is O(h) ) for h small enough).

Indeed we have

|xs(l+1) − xs(l)| ≤ C max
x̄∗1≤x≤x̄

∗
2

( w

4x3

)1/2

h

where x̄∗i =
(
βiw
ci

)1/2

for i = 1, 2 and C = maxi=1,2 | ciβi − xs
∗|. Thus the contradiction. A similar argument can be

made when xsl < xs∗. 2

If p
(k)
1 remains in W1 for a su�ciently long interval then xs(k) will be close enough to xs∗ so the (xs(k) − xs∗)

terms in the equations of (33) can be neglected. Note also that in this situation p
(k)
2 is always in W2. We then have

p
(k)
1 decreasing until it leaves W1 and thereafter p

(k)
1 = 0. Meanwhile p

(k)
2 increases as the orbit moves along the p2

axis until p2 → p∗2, where β2p
∗
2 = x̄∗2. This conclusion still holds true if p

(k)
1 leaves W1 at some time we can assume

to be k = K + 1. Using the fact that p
(l)
i ∈ Wi 0 ≤ l ≤ K we can show that xs(k) ∈

[
c2
β2
, c1
β1

]
. This means that the

orbit lands on the p2 axis on the next step k = K + 2 and p
(k)
2 continues to increase and approach p∗2.

5.3 Distribution with More Weight on the Larger Link (decreased hs)

We now discuss the case µ > 0, where hs < hT (c) . First note that for any µ the equation for p
(k)
1 can be rewritten

as,

p
(k+1)
1 =

[
p

(k)
1 − h((λ+ µ)β2{x∗1 − xs(k)}

]+
, x∗1 =

λ

λ+ µ
c2/β2 (35)

We have x∗1 < xs∗ < c2/β2 since xs∗ = θ c2
β2

and θ < 1. As before, we �rst assume that p
(0)
i ∈ Wi. If xs(0) ∈ [x∗1,

c2
β2

]

then p
(k)
1 increases and since p

(k)
2 > p

(k)
1 , it follows that p

(k)
i ∈ Wi i = 1, 2 for all k ≥ 0 and xs will approach xs∗.

Rewriting (29) to reveal the behaviour of p(k) near xs∗, we have,

p
(k+1)
1 = p

(k)
1 + h

{
µ

(λ+ µ)2 + 1
+ β1(xs(k)− xs∗)

}
(36)

p
(k+1)
2 = p

(k)
2 − h

{
µ(λ+ µ)c2

(λ+ µ)2 + 1
+ β2(xs(k)− xs∗)

}
. (37)

Therefore it follows that p
(k)
1 increases and p

(k)
2 decreases in this situation so that p

(k)
2 − p(k)

1 → 0 as k → ∞. This
means that γ(k)→∞, where γ(k) is the solution of (17) at the kth step and the iterations fail to converge.
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Figure 3: (p1, p2) plane when hs > hT (c)

If xs(0) < x∗1, then p
(k)
1 and p

(k)
2 decrease. The dot product ∆p · 〈−β2, β1〉 = −hµβ2c2 shows that when p

(0)
i ∈Wi

then p
(k)
i ∈ Wi because in this region, the increment ∆p is pointing away from the p2 (p1 = 0) axis. At xs(k) = x∗1,

p
(k)
1 remains �xed but p

(k)
2 decreases, i.e. ∆p is pointing downward. xs(k) increases until it enters the interval [x∗1,

c2
β2

],

and approaches xs∗. Therefore p2 decreases and p1 increases. Consequently p
(k)
2 −p

(k)
1 → 0 as in the previous case. If

xs(0) > c2
β2

then p2 and p1 both increase. Thus, x̄(k) increases and xs(k) decreases and eventually enters the interval

[x̄∗1,
c2
β2

]. Suppose therefore that this is the case. If for some k, p
(k)
1 = 0 then , since p

(k)
2 decreases and p

(k)
1 increases,

either p
(k)
2 → p∗2 while p

(m)
1 remains 0 for m ≥ k or p

(m)
1 becomes positive and is therefore in W1. In the latter case

we can use the previous arguments for the case p
(k)
i ∈Wi that show that p

(k)
2 − p(k)

1 → 0.

Our �nal case for the parameter choice µ > 0 is to suppose that xs(0) > c2
β2
. Clearly xs will decrease until it

enters the interval [x∗1,
c2
β2

]. Previous arguments can then be used to determine the fate of p
(k)
i , i = 1, 2. We in

fact see the divergence of γ(k) in our numerical computations. The cases discussed in this section correspond to the
selection of a distribution that allocates a larger fraction of tra�c to link 1 than the allocation de�ned by (30)and
the corresponding critical entropy in equation(27). Thus hT (c) de�nes the outer limit of how far one can decrease
entropy in order to increase utility.

6 DIAMOND TOPOLOGY

We turn our discussion now to another simple topology (see Figure 5 ) with 5 links attached to a single source
destination pair. As seen in the �gure there are 3 routes, using the links indicated in the �gure.

Inspection of the �gure leads to the system:

p
(k+1)
1 =

[
p

(k)
1 − h{c1 − (β

(k)
1 + β

(k)
3 )xs(k)}

]+
(38)

p
(k+1)
2 =

[
p

(k)
2 − h{c2 − β(k)

2 xs(k)}
]+

(39)

p
(k+1)
3 =

[
p

(k)
3 − h{c3 − β(k)

1 xs(k)}
]+

(40)

p
(k+1)
4 =

[
p

(k)
4 − h{c4 − (β

(k)
2 + β

(k)
3 )xs(k)}

]+
(41)

p
(k+1)
5 =

[
p

(k)
5 − h{c5 − β(k)

3 xs(k)}
]+

(42)

10



Figure 4: (p1, p2) plane when hs < hT (c)

where, as in Section 5, the bandwidth rate xs(k) = min(
(

w

E[d(k)]

) 1
2
,M) , with E[d(k)] =

∑
r=1,2,3 β

k
r d

(k)
r =∑

r=1,2,3 β
(k)
r

(∑
l
′∈r p

k
l
′
)
. The route probabilities are updated according to the following equations:

β
(k+1)
i =

exp
(
−γ(k)d

(k)
i

)
Z(k)

i = 1, 2, 3 (43)

where Z(k) =
∑3
i=1 exp

(
−γ(k)d

(k)
i

)
and

d
(k)
1 = p

(k)
1 + p

(k)
3 , d

(k)
2 = p

(k)
2 + p

(k)
4 , d

(k)
3 = p

(k)
1 + p

(k)
5 + p

(k)
4 . (44)

As was the case with the twolinks topology, we will examine the dynamics for a special choice of capacities. Here,
led by the search for strictly interior equilibria of (38)-(42), we take

c2 = c3, c1 = c3 + c5, c4 = c2 + c5. (45)

The Subsections 6.1-6.3 contain discussions of the dynamics (38)-(42) for values of the route distribution entropy hs
in relation to the critical entropy for this topology,

hD(c) = −
[

c2
c2 + c3 + c5

log
c2

c2 + c3 + c5
+

c3
c2 + c3 + c5

log
c3

c2 + c3 + c5
+

c5
c2 + c3 + c5

log
c5

c2 + c3 + c5

]
. (46)

Equation (47) expresses the corresponding route distribution. In Section 6.1, (see Figure 6), we prove the existence
of a set of equilibria in (d1, d2, d3) space that correspond to solutions of the optimization problem. Propositions
6.2 and 6.3 show that these values lie on the line x̄∗ =

∑3
i=1 βid

∗
i , with βi, the optimal route distribution given by

(47). The equilibrium bandwidth rate is unique and can be expressed in terms of the equilibrium route costs by
xs∗ = w

x̄∗
1/2. These solutions are neutrally stable and do not persist when hs is perturbed. New unique and stable

equilibria for (38)-(42) arise when hs is increased. Note however that the value of the aggregate utility will be less
than the value achieved at hD(c). In sections 6.2 we study the dynamics of the iterations when hs > hD(c). Changes
in hs are re�ected in changes in the route allocation distribution as seen in equation (53), where ν < 1. In Section
6.3, hs < hD(c) and ν > 1. It is shown there that the iterations fail to converge and in fact the line d1 = d3 is
approached.

The proofs that the equilibrium values of subsections 6.1 and 6.2 are solutions of the original optimization
problem again rely on the proof of Theorem 1 in reference [8] . The arguments below show that the route allocation

distributions (β
(k)
1 , β

(k)
2 , β

(k)
3 ), are constant for k ≥ 1 when hs ≥ hD(c). Thus the proofs of our statements closely

follow those in [8] and [1] therefore they are omitted.

We now choose initial conditions for p
(0)
i , i = 1 · · · , 5, that greatly simplify the dynamics as seen in the following

result.
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Figure 5: DIAMOND NETWORK

Lemma 6.1 Suppose the capacities in (38)-(42) satisfy (45). Further suppose the initial conditions

p
(0)
2 = p

(0)
3 , p

(0)
1 = p

(0)
3 + p

(0)
5 , p

(0)
4 = p

(0)
2 + p

(0)
5

hold, with p
(0)
i ∈Wi, i = 1, ...5. Then

p
(k)
2 = p

(k)
3 , p

(k)
1 = p

(k)
4 , k ≥ 1

and β
(k)
1 = β

(k)
2 for k ≥ 1.

Proof of Lemma: The proof is by induction. Suppose the conclusions of the lemma hold for some k. We then
have d

(k)
1 = d

(k)
2 by (44). Now at stage k ,γ(k) must satisfy the implicit equation(17) with dr = d

(k)
r r = 1, 2, 3. Since

β1 and β2 satisfy (43), we must have β
(k+1)
1 = β

(k+1)
2 . The other conclusions follow from the right hand sides of

(38)-(42). 2

Remark: If p
(k)
i ∈Wi for i = 2, 3, 5, then p

(k+1)
1 = p

(k+1)
3 + p

(k+1)
5 and p

(k+1)
4 = p

(k+1)
2 + p

(k+1)
5 . When p

(k)
i /∈Wi for

some i = 2, 3, 5 we cannot claim these equations are valid. Nevertheless it is always true that p
(k+1)
1 = p

(k+1)
4 .

As a corollary of Lemma 6.1 we can show that β
(k)
i i = 1, 2, 3 is constant in k and therefore the dynamics

of (38)-(42) are greatly simpli�ed. To see this let us call the simplex of probability distributions on the three

routes S =
{
β̂ = (β1, β2, β3) | βi ≥ 0 i = 1, 2, 3 , β1 + β2 + β3 = 1

}
. For a �xed hs ≥ log(2), the subset de�ned

by C =
{
β̂ = (β1, β2, β3) ∈ S | H(β̂) ≥ hs

}
is a closed convex region enclosed by a smooth simple closed curve

as boundary. It is the constraint region of the optimization problem (3)-(4). Its boundary is the level curve ` ={
β̂ ∈ S | H(β̂) = hs

}
. When hs < log(2), the level curve breaks up into 3 pieces at the points where some βi = 0

(see Figure 10 ). When 0 < hs < log 3 there are precisely two points in C with distribution hs that satisfy β1 = β2.
Each point corresponds to one of the conditions β1 > β3 or β1 < β3. It is not hard to show that in the region
where d

(k)
3 ≥ d(k)

1 = d
(k)
2 , we have β

(k)
1 = β

(k)
2 ≥ β(k)

3 so that over any time interval where this inequality is satis�ed,

β
(k)
j j = 1, 2, 3 is constant. When hs < log 2, β1 = β2 > β3 occurs when β3 = 0. Therefore the corresponding value

of hs must therefore be log 2 which is infeasible.

Corollary 1 Assume the hypotheses of Lemma 6.1 hold and let hs be given with hs > log(2). Further suppose that

d
(l)
3 > d(1) for 1 ≤ l ≤ k. Then β̂(l) = β̂(hs) where β̂(hs) is the distribution with entropy hs satisfying β

(hs)
1 = β

(hs)
2 ≥

β
(hs)
3 . The latter inequality is strict when hs < log(3).

Remark: The dual function Q in (20) is di�erentiable in the region {p | d3 > d1 }.
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Figure 6: (d1, d3) plane for hs = hD(c)

6.1 Diamond Route Distribution Using Link Capacities

We assume a value of hs for which

β̂(hs) =

〈
c3

c2 + c3 + c5
,

c2
c2 + c3 + c5

,
c5

c2 + c3 + c5

〉
(47)

As was true with the twolinks topology, the values of xs for which ∆p
(k)
i = 0 when p

(k)
i ∈Wi i = 1 · · · 5, will play an

important role in de�ning the dynamical behaviour of the link and route costs. Here Wi = { pi ≥ 0 | pi−h∆pi > 0 }
where ∆i is the part of the expression on the right hand side of (38)-(42) inside the curly brackets. Since the entropy

in (47) is expressed in terms of link capacities that satisfy (45) it is not hard to show that xs
(∗)
i = xs(∗) = c2 + c3 + c5

where xs(∗) as in Section 5.1, is the equilibrium bandwidth rate. Equations for the route costs can be obtained from
(38)-(42) when p

(k)
i ∈Wi.

d
(k+1)
1 = d

(k)
1 − h [C1 − xs(k)b1] (48)

d
(k+1)
3 = d

(k)
3 − h [C3 − xs(k)b3] (49)

where C1 = c1 + c3, b1 = β1 + β2 + β3 = 1, while C3 = c1 + c4 + c5, and b3 = β1 + β2 + 3β3 with βi = β
(hs)
i . Recall

that Lemma 6.1 implies that d
(k)
1 = d

(k)
2 so the equation for d2 is unecessary. We assume that initial values of pi

begin in Wi. When (48)- (49) are valid it can be seen that for ∆d
(k)
i = d

(k+1)
i − d(k)

i i = 1, 2, 3, the dot product

< b3,−b1 > · < ∆d
(k)
1 ,∆d

(k)
3 > is,

b3∆d
(k)
1 − b1∆d

(k)
3 = 2(1− ν)(c2 + c3) (50)

where in the present case ν = 1 (see equation (47) and (53)). Let x̄∗ be the mean route cost corresponding to

xs∗ =
(

w

x̄(∗)

)1/2

and let ld be the line in the d1, d3 plane given by ld : β1d1 + β2d2 + β3d3 = x̄∗ (see Figure 6) It

intersects the d3 axis at the point (0, x̄
∗

β3
). Let l0 be the line through this point, parallel to the vector < −b3, b1 >

and given by the equation,

l0 : b1d3 − b3d1 = b1
x̄∗

β3
(51)

Finally, if P is the intersection of ld with the line d1 = d3, let l1 be the line passing through P and parallel to l0. We
call A the region in the d1, d3 plane bounded above by l0 and below by l1. Propositions 6.2 describes the dynamics
of (48)-(49) when p

(k)
i ∈Wi i = 1 · · · 5 for all k ≥ 1 and Proposition 6.3, discusses equations (38)- (42) when at some

time k and for some i, p
(k)
i /∈Wi.
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Proposition 6.2 Assume ν = 1 and suppose p(0) is chosen so that (d
(0)
1 , d

(0)
3 ) lies in A∩{(d1, d3)|d3 ≥ d1}. Further

suppose that p
(k)
i ∈Wi for all k ≥ 0 and the hypotheses of Lemma 6.1 are satis�ed. Then the orbit d(k) = (d

(k)
1 , d

(k)
3 )

moves along a straight line through d(0) parallel to l0 , and converges to a point d∗ = (d∗1, d
∗
3) on ld. We have

β1d
∗
1 + β2d

∗
2 + β3d

∗
3 = x̄∗ with d∗i > 0.

Proof: Since p
(k)
i ∈ Wi, k ≥ 0, we can compute the dot product < −b3, b1 > · < ∆d

(k)
1 ,∆d

(k)
3 >= 0 for all k, by

equation (50) where ∆d
(k)
i = d

(k+1)
i −d(k+1)

i i = 1, 2, 3. Therefore iterates proceed in a direction parallel to < b1, b3 >

, i.e. parallel to the line l0. Since p
(k)
i ∈ Wi, we can write down the following equation for x̄(k+1), the mean route

cost at time k + 1 ,

x̄(k+1) = T x̄(k) = x̄(k) − h(β1b1 + β2b2 + β3b3)(xs∗ − xs(k)) (52)

where xs∗ = c2 + c3 + c5 and xs(k) = ( w

x̄(k) )
1
2 . As in Section 5.1 we can see that T is a uniform contraction when

d(k) ∈ A so that x̄(k) → x̄∗, where xs∗ = ( w
x̄∗ )

1
2 . When d(k) is above the line ld, d

(k)
1 and d

(k)
3 decrease and approach

the line from above. Conversely when d(k) is below the line, the d
(k)
1 , and d

(k)
2 both increase so the approach is from

below. 2

Remarks: Note that d
(k)
1 < d

(k)
3 for all k ≥ 1 in this situation so we can legitimately treat the β

(k)
j j = 1, 2, 3 as

constant.
If (d

(0)
1 , d

(0)
3 ) is below the line l1, the orbit will reach the line d1 = d3 before it reaches ld and hence γ(k) will diverge

to ∞.

The fate of orbits beginning at points in the region A ∩ {(d1, d3)|d3 ≥ d1} where for some k p
(k)
i /∈ Wi , is the

same as that of orbits that begin above the line l0 because in both cases, the orbits approach the d3 axis. The next
proposition discusses the latter situation. Here some of the link prices will converge to zero, an indication the tra�c
on those links have reached their capacity.

Proposition 6.3 If p(0) is chosen as in the previous proposition but (d
(0)
1 , d

(0)
3 ) is above the line l0, then d(k) ap-

proaches the d3 axis. Moreover:

1. if for some k, p
(k)
1 /∈W1, and p

(l)
3 ∈W3 l ≥ 0 , then p(k) converges to p∗ = (0, p∗2, p

∗
2, 0, p

∗
5), with β1p

∗
2 +β2p

∗
2 +

β3p
∗
5 = x̄∗.

2. if for some k p
(k)
3 /∈ W3, and p

(l)
1 ∈ W1 , l ≥ 0 , then p(k) converges to p∗ = (p∗1, 0, 0, p

∗
1, p
∗
5) where β1p

∗
1 +

β2p
∗
1 + β3(2p∗1 + p∗5) = x̄∗.

3. if for some k p
(k)
i /∈Wi i = 1, 3, then p(k) converges to p∗ = (0, 0, 0, 0, p∗5) where β3p

∗
5 = x̄∗.

Proof: The proof that the orbit d(k), k ≥ 0 proceeds along a straight line parallel to l0 is also valid for this case.
Therefore the orbit must approach the d3 axis. We can also assume that h is small enough so that any point above
the line l0 has a d3 value large enough so that either p1 ∈W1 or p3 ∈W3 or p

(k)
5 ∈W5. Since d

(k)
1 = p

(k)
1 + p

(k)
3 , there

is some k, where either p
(k−1)
1 /∈W1 and/or p

(k−1)
3 /∈W3.

(i) If p
(k−1)
1 /∈W1 we must have p

(k)
1 = p

(k)
4 = 0. From (38)-(42), one can therefore see that p

(l)
1 = 0 l ≥ k as long as

xs(l) ≤ xs∗, l ≥ k. During this time we can restrict our attention to the equations for p2 (= p3) and p5. Here

we assume that p
(k)
2 ∈W2. The mean route cost at time k, x̄(k) = β1p

(k)
2 +β2p

(k)
2 +β3p

(k)
5 , continues to decrease

and converges to x̄∗. We have x̄(l) ≥ x̄∗ so xs(l) ≤ xs∗ for all l ≥ k. Meanwhile, p
(k)
2 , p

(k)
5 converge to values

p∗2 , p
∗
5 for which x̄ = x̄∗ while p∗1 = p∗4 = 0. Note that p

(l+1)
2 −p(l+1)

5 = p
(l)
2 −p

(l)
5 +h(β

(hs)
3 −β(hs)

2 )(xs∗−xs(k)).

Therefore if p
(k)
5 > p

(k)
2 , the inequality remains true for l ≥ k and d

(l)
3 ≥ d

(l)
1 .

(ii) If p
(k−1)
3 /∈ W3 , we will also assume in analogy with (i) that p

(k)
1 ∈ W1. Since p

(k)
2 = p

(k)
3 = 0, and p

(k)
1 = p

(k)
4 ,

a system for p1 and p5 remains. Arguing as before it can be seen that since x̄(l) ≥ x̄∗, for l ≥ k , then
p

(l)
1 = 0 l ≥ k. The mean route cost at time k, x̄(k) = (1 + β3)p

(k)
1 + (β2 + β3)p

(k)
5 , decreases and p

(k)
1 , p

(k)
5

converge to p∗1, p
∗
5 where x̄∗ = (1 + β3)p∗1 + (β2 + β3)p∗5. The remaining limiting pi values are p

∗
2 = p∗3 = 0. In

this case we also have d
(l)
3 ≥ d

(l)
1 , for l ≥ k.

(iii) If both p
(k−1)
3 /∈W3 and p

(k−1)
1 /∈W1 hold, then we can repeat the reasoning in (i) and (ii) and conclude that the

system reduces to the evolution of just p5 . In this case p
(k)
5 converges to p∗5 where β3p

∗
5 = x̄∗. The remaining

limiting values are p∗i = 0 i = 1 · · · 4. As in the previous cases, d
(l)
3 > d

(l)
1 for l ≥ k. 2
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Proposition 6.2 shows that there are in�ntely many equilibrium points with d∗ > 0 for the system (38)-(42) with
each point depending on the initial condition d0. However the equilibrium value xs∗ is unique. In the d-plane,
linearization about any such point shows that each has a neutrally stable direction (eigenvalue 1) along the direction
of ld, and an asymptotically stable direction parallel to l0 and so these points are neutrally stable. Thus it is not
surprising that they do not persist when a parameter,in particular the entropy hs , is changed. The equilibrium
points in the p plane discussed in Proposition 5.3 are more di�cult to analyze because the right hand side of the
system fails to be di�erentiable when any pi /∈ Wi. Nevertheless linearization of the reduced system discussed in (i)
and (ii) in the proof of Proposition 6.3 shows the equilibrium points there are neutrally stable and the equilibrium
point in (iii) is asymptotically stable. A complete proof would have to show that the stability demonstrated in the
reduced system is also valid in the entire p plane. The fact that, in each of these cases, the plane for the reduced
system is invariant under (38)-(42) leads us to conjecture that this extension can be made.

In the next section we will discuss the e�ect of perturbing the route allocation away from the distribution de�ned
by the critical entropy. Under such a perturbation the neutrally stable points will disappear but the asymptotically
stable point in Proposition 6.3 (iii) with a single positive price for link 5 will persist.

6.2 Diamond Route Distribution with increased hs

In our discussion of the behavior of (38)-(42) for perturbed entropy values, it is useful to introduce a parameter ν
that decreases (increases) the weight on links 2 and 3 as the perturbed entropy increases (decreases). Since we will

continue the assumptions on the capacity values displayed in equation (45), β
(hs)
1 = β

(hs)
2 will still hold. Therefore,

it is assumed that the entropy is the value hs for which the route allocation distribution is,

β̂(hs) =

〈
νc3

c2 + c3 + c5
,

νc2
c2 + c3 + c5

,
c5 + (1− ν)(c2 + c3)

c2 + c3 + c5

〉
, (53)

where ν < 1. The entropy of the distribution with β
(hs)
1 = β

(hs)
2 = β, is H = 2β log(2)+hβ where hβ = −2β log(2β)−

(1−2β) log(1−2β). It is not hard to show that if β > 1/4, decreasing β increases H and vice versa. Since we con�ne
our analysis to the region d1 ≥ d3 (see the discussion at the beginning of Section 6), we must consider a distribution
where β1 = β2 ≥ β3. This implies that β ≥ 1/3.

The case ν < 1 corresponds to an entropy value hs larger than the critical entropy where ν = 1. Here in
contrast to Section 6.1, the values of xs for which ∆p

(k)
i = 0 in (38)-(42) are not all equal and so any orbit for

which p
(k)
i ∈ Wi, k ≥ 0 as in Proposition 6.2 will not become a stationary point once d(k) reaches the line ld . The

equilibrium value x̄∗ satis�es:

xs∗ = (w/x̄∗)1/2, where xs∗ = (c2 + c3 + c5)
(

1− (1−θ)β3b3
β1b1+β2b2+β3b3

)
and

θ = (c2 + c3 + 3c5) / (c2 + c3 + 3c5 + 2(1− ν)(c2 + c3))

The neutrally stable points discussed in that proposition no longer exist. The same situation also holds for the
neutrally stable points discussed in parts 1 and 2 of Proposition 6.3. However, as the next proposition shows, for
each ν < 1, there is a unique equilibrium bandwidth rate and a corresponding unique equilibrium to which orbits of
(38)-(42) converge.

In what follows we let B
′
be the region in the d1, d3 plane bounded above by the line l0 , below by the line l1

and on the left by d3 axis. The lines l0 and l1 are described just as they are in Section 6.1. We then de�ne
B = B

′
∩ {(d1, d3) | d1 ≥ d3}.

Proposition 6.4 Let hs be the entropy de�ned by the distribution in (53) and suppose the initial values of {p(0)
i i =

1 · · · 5} satisfy the hypotheses in Lemma 6.1. Then p(k) = (p
(k)
1 , p

(k)
2 , p

(k)
3 , p

(k)
4 , p

(k)
5 )→ (0, 0, 0, 0, p∗5)

Proof: Since p
(0)
i ∈ Wi i = 1, · · · 5, the initial dynamics of the route cost vector d(k) is governed by the equations

in (48)-(49). First suppose, d(0) ∈ B. The mean route cost, x̄(k) = β1d
(k)
1 + β2d

(k)
2 + β3d

(k)
3 becomes stationary (i.e.

∆x̄(k) = 0) when xs(k) = xs∗. We can repeat the arguments in the derivation of (32) from (31) to this situation to
show that the mapping T , de�ned by

x̄(k+1) = T x̄(k) = x̄(k) − hb̄{xs∗ − xs(k)} (54)

where b̄ = β1b1 +β2b2 +β3b3, is a global contraction in B with a �xed point at x̄∗. Consequently orbits in the d plane
starting in B will converge to the line ld. Once the orbit approaches the line, it remains there and moves toward the
d3 axis i.e. d1 decreases while d3 increases. This is because,

xs∗3 < xs∗ < xs∗1 (55)
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where xs∗1 = C1/b1 = c2 + c3 + c5 and xs∗3 = (c2 + c3 + c5)θ are values for which ∆d
(k)
i = 0, for i = 1, 3. If d(0) lies

above the line l0, then x̄
(k) decreases since xs(k) < xs∗. It is clear therefore that regardless of where the orbit starts,

d1 will eventually become small enough so that p
(k−1)
1 /∈W1 or p

(k−1)
3 /∈W3 for some k for the �rst time.

We examine the case when p
(k−1)
3 /∈W3 �rst. It follows that p

(k)
3 = 0. We will show that p

(k+1)
3 = 0 and that the

subset {p|p3 = 0} is invariant under the iteration of (38)-(42). By Lemma 6.1, p
(k)
2 = 0, and p

(k)
1 = p

(k)
4 , so we will

focus on p1 and p5 . If p
(k)
i ∈Wi i = 1, 5, then an equation for x̄(k+1) can be obtained. The value let us call it xsp∗1,5,for

which ∆x̄(k+1) = 0 is xsp∗1,5 = u ∗xsp∗1 + (1−u) ∗xsp∗5 where u = (1+β3)(β1+β3)

(1+β3)(β2+β3)+β2
3
. Here, xsp∗1 = (c3 + c5)/(β1 +β3)

and xsp∗5 = c5/β3 are xs values for which ∆p
(k)
i = 0, i = 1, · · · , 5. The inequality xsp∗5 < xsp∗1,5 < xsp∗1 < xsp∗3

holds. It can also be shown that the mapping x̄(k+1) = T x̄(k) is a contraction in the p1, p5 plane with a �xed point x̄∗1,5
corresponding to xsp∗1,5. Now p

(k−1)
3 /∈W3, implies that xs(k−1) ≤ xsp∗3 = (c2 + c3 + c5)/ν and if xs(k−1) > xsp∗1,5,

then xs will decrease and xs(k) < xs(k − 1). If xs(k − 1) < xsp∗1,5 then xs(k) > xs(k − 1) but since h is small
xs(k) < xsp∗3. Moreover, the distance between xs(k) and xsp∗1,5 decreases because of the contraction property in

the iteration of x̄(k). Thus p
(k+1)
3 = 0. Even though, subsequent iteration of p1 and p5 leads to increasing xs when

xs(k) < xsp∗1,5 the corresponding value of xs will approach but cannot exceed xsp∗1,5. Thus p3 remains 0. Eventually

(p
(k)
1 , p

(k)
5 ) converges to the line xsp∗1,5 = β1p1 + β3p5 and remains on the line as p

(k)
1 → 0, and p

(k)
5 → p∗5, where

xs∗ = xsp∗5.
If p

(k−1)
1 /∈W1 and p

(k−1)
3 /∈W3, then since xsp∗1 > xsp∗5, xs(k) > xsp∗1 implies that x̄(k) = β3p

(k)
5 will increase and

thus xs decreases and eventually, xs(l) < xsp∗1 for some l ≥ k. If pl)1 = 0, it remains 0 and the orbit remains on the p5

axis and converges to p∗5. If p
(l)
1 ∈W1 for some l then we are back in case discussed in the previous paragraph. In all

these cases the orbits eventually converge to the point (0, 0, 0, 0, p∗5) where x̄∗ = β3p
∗
5 with corresponding xs∗ = c5/β3.

Finally we turn to the case where the equations for d lose validity because for some k, p
(k−1)
1 /∈ W1 but

p
(k−1)
i ∈ Wi i = 3, 5. We are supposing that up to this point, p

(l)
i ∈ Wi l = 0, 1 · · · k − 2, i = 1, 3, 5. From

the Remark following Lemma 6.1, we have p
(k−1)
1 = p

(k−1)
3 + p

(k−1)
5 . But p

(k−1)
3 > h{c3 − β1xs(k − 1)} and

p
(k−1)
5 > h{c5 − β3xs(k − 1)} so it must be that p

(k−1)
1 > h{c1 − (β1 + β3)xs(k − 1)}. Thus p(k−1)

1 ∈ W1 a contra-
diction. Consequently this case cannot occur. 2.

Remark: Since orbits that begin below the line l1 blow up we will not discuss these here.

6.3 Diamond Route Distribution with decreased hS

Using the notation introduced in Section 6.2 we consider ν > 1. This has the e�ect of increasing the weight on links 2
and 3 with a compensating decrease of weight on link 5. The discussion in Section 6.2 shows that the corresponding
entropy hs is decreased. In contrast with the previous case, the algorithm fails to converge and in fact the root γ(k)
of (17) diverges as k →∞. This section details a proof of this fact. For a particular sub-case (see Case 1a) we assume
that 2c2 > c5.

We assume initial values of p, such that p
(0)
i ∈ Wi i = 1, · · · , 5. The subsequent dynamics at least intially can

therefore be described by equations (48)-(49) Let the xs values for which ∆d
(k)
j = 0 j = 1, 2, 3 be denoted by xs∗j .

The relation (55) is now,

xs∗1 < xs∗ < xs∗3 (56)

Let τ1 be the line in the d plane given by x̄ = x̄∗1, where x̄
∗
1 is the mean cost corresponding to xs∗1. The line τ3 is

de�ned analogously. The line τd : x̄ = x̄∗ lies between τ1 and τ3 so we will de�ne C to be the region bounded by
these lines , the d3 axis , and the line {(d1, d3)|d3 = d1}. If d(0) is an initial point whose corresponding xs value is
xs(0) < xs∗1, then d1 and d3 will decrease. On the other hand if the corresponding xs value satis�es xs(0) > xs∗3,
then d1, and d3 will increase (see Figure 7). Orbits either enter the region C or they intersect or approach the d1

or d3 axes. We describe the fate of orbits that enter C. The behavior of x̄(k) is governed by (54). The contraction
property of T implies that d(k) approaches the line τd and once the orbit reaches the line it moves along it. By (56)
see that d1 increases and d3 decreases so it is clear that d(k) approaches the line d1 = d3. Thus γ

k must diverge.
Suppose now that an orbit's initial position is located above the line l0 (see equation (51) and Figure 7). In this

situation, at least initially xs(k) ≤ xs∗1 < xs∗3, therefore d1 and d3 are decreasing and orbits approach the d3 axis.

We have d
(0)
3 ≥ δ where (0, δ) is the intersection of l0 with the d3 axis. Thus the equation (48) will cease to be valid

for some k for the �rst time. Since dk−1
1 = p

(k−1)
1 + p

(k−1)
3 , we can suppose either p

(k−1)
1 /∈ W1 or p

(k−1)
3 /∈ W3. One

can verify after some algebra, an inequality that will be used in the arguments that appear below. Recall that xsp∗i
is the value of xs for which ∆p

(k)
i = p

(k+1)
i − p(k)

i = 0, when p
(k)
i ∈Wi. For ν > 1, xsp∗3 = xsp∗2 < xsp∗1 < xsp∗5.
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Figure 7: (d1, d3) plane for hs < hD(c)

Case 1: First assume that p
(k−1)
1 /∈W1 and thus p

(k)
1 = 0.

Case 1a If p
(k)
2 = p

(k)
3 ∈ W2 and p

(k)
5 ∈ W5, an equation for x̄(k+1) can be obtained in terms of p

(k+1)
2 and p

(k+1)
5 of

the form x̄(k+1) = T x̄(k) analogous to (32). T is a contraction with a �xed point x̄∗2,5 such that xs∗2,5 =
(

w
x̄∗2,5

)1/2

, and

xs∗2,5 = (1− f)xsp2 + fxsp5 with f =
β2
3

(β2
3+(1−β3)β2)

. Now suppose xs∗2,5 < xsp∗1. Then x̄
(k) = β1p

(k)
3 + β2p

(k)
2 + β3p

(k)
5

will move closer to the value of x̄ corresponding to xs∗2,5. Thus xs(k + 1) < xsp1 and therefore p
(k+1)
1 = 0. We could

repeat this argument so that by induction this implies then that p
(l)
1 = 0 l ≥ k. Now d

(l)
3 ≥ d

(l)
1 and p

(l)
1 = 0 = p

(l)
4 ,

therefore p(l) ≥ p(l)
2

In the p2, p5 plane, xs(k) → xs∗2,5 and since xsp∗2 < xs∗2,5 < xsp∗1 < xsp∗5, we must have p5 decreasing and

p2 increasing. Thus (p
(k)
2 , p

(k)
5 ) approaches the line p2 = p5 as k → ∞. This means that we approach the line

d1 = d2 = d3. The following su�cient condition for xs∗2,5 < xsp1 is derived in the Appendix and is satis�ed when
κ = c2

c5
> 1/2 and ν > 1. {

1

κ+ 1 + (1− ν)κ
− f

1 + 2(1− ν)κ

}
> 0 (57)

(58)

The preceeding reasoning assumed p
(k)
2 ∈ W2. The convergence of (p

(l)
2 , p

(l)
5 ) to the line x̄ = xs∗2,5 and the fact that

xs∗2,5 > xsp2 shows that p
(l)
2 ∈W2 for l ≥ k.

Case 1b: Suppose p
(k)
3 /∈ W3. Then xs(k) ≤ xsp∗3 and since xsp∗3 < xsp∗1 < xsp∗5, both d

(k)
1 and d

(k)
3 decrease.

Therefore even though p
(k+1)
3 is 0, xs(k) increases. xs continues to increase until xs(l) ≥ xsp∗3, for some l ≥ k. If

xs(l) = xsp∗3 then note that p
(l)
5 decreases, and hence x̄(l) decreases. Therefore xs will continue to increase and p3

eventually becomes positive and we are back in the previous case where p
(k)
3 = p

(k)
2 ∈W2. If we have p

(k)
5 /∈W5, then

p
(k)
1 = 0 implies that d

(k+1)
1 = p

(k+1)
3 ≥ d(k+1)

3 = p
(k+1)
5 = 0. So we have crossed the line d1 = d3 causing γ to diverge.

Case 2: Finally let us consider the case when for the �rst time , p
(k−1)
3 /∈W3. Then xs(k− 1) ≤ xsp∗3 < xsp∗1 < xsp∗5

so d1 and d3 decrease, causing xs(k) to increase. This increase continues until xs(l) ≥ xsp3, for some l ≥ k.
Case 2a: If p

(k)
1 ∈W1, then xs continues to increase and eventually, p

(l)
3 ∈W3 for some l ≥ k and is increasing.One

can check that xsp∗3 = xs∗1 < xsp∗1 < xsp∗5. If xs(l) ≤ xsp1, then (d
(l)
1 , d

(l)
3 ) ∈ C and we can apply the results of the

discussion of orbits in that region to this case. If xs(l) > xsp1 and p
(k)
5 ∈ W5 then, equations (48)-(49) can be used
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to show that (d
(l)
1 , d

(l)
3 ) is either in or will eventually enter C. If p

(k)
5 /∈ W5 then d

(k+1)
1 = d

(k+1)
3 , i.e. we are at the

boundary of the feasible region so γ(k+1) =∞.

Case 2b Note that xsp∗3 < xs∗2,5 < xsp∗1 . If p
(k)
1 /∈ W1 then xs increases until for some l ≥ k, p

(l)
3 > 0. As

in Case 1a, the dynamics of d
(l)
1 , d

(l)
3 are determined by p

(l)
3 = p

(l)
2 and p

(l)
5 as long as xs(l) < xsp∗1 with l > k. We

can repeat the arguments of Case 1a to show that in fact xs(k)→ xs∗2,5.

7 UTILITY-ENTROPY TRADEOFF

Figure 8: Twolinks Utility vs. entropy

Figure 9: DIAMOND Utility vs. entropy

The route distribution entropy hs is a measure of the degree of path diversity of an allocation scheme that uses
that distribution.The tradeo� between path diversity and utility is not well understood in general but our approach
allows us to frame the issue in relation to a reference entropy that de�nes an intrinsic allocation de�ned by the link
capacities and topology of a given network. Using the critical entropy value as a reference, the e�ect of decreasing or
increasing path diversity beyond this allocation can be assessed. This is illustrated in our examples by plotting the
utility as a function of hs. In each case, this was done by computing the average utility over a �nite time interval for
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each hs for a range of values that contained the critical entropy value. Figure 8 shows the computation for TwoLinks
and Figure 9 shows the corresponding computation for Diamond. For values of hs less than the critical value, a time
interval was chosen so that orbits were still within the feasible region. Increasing the entropy from hs = 0, the value
for a single path allocation scheme, the iterations did not converge until a critical entropy value was reached.

Inspection of the curves shows that a network using an allocation with larger entropy can increase utility by
decreasing the entropy (that is, increasing the fraction on less expensive links) up until the critical value is reached.
The di�ering topologies of TwoLinks and Diamond a�ect what happens when the allocation entropy is less than the
critical value. In TwoLinks the utility cannot be increased by decreasing the entropy. In Diamond, the utility is
increased until the value hs = log 2. Note in contrast to [9] the utility does not reach a maximum at the critical
entropy value. We could not stably iterate equations (38) -(42) for values hs < log 2. We �nd that the iterations
fail to converge for any hs < hD(c). A possible reason for this comes from a visualization of the route allocation
distributions for 3 routes (Figure 10). As discussed in Section 4, each β = (β1, β2, β3), such that βi ≥ 0 i = 1, 2, 3 ,
β1 +β2 +β3 = 1, can be associated with a point in the equilateral triangle with altitude height 1. The transformation
from the simplex in 3-space to this triangle is smooth and invertible. The region de�ned by the constraints of the
optimization problem i.e. inequalities (11)-(13) is convex and bounded by the level curve for hs. Level curves for
various values of hs are mapped to the curves in the triangle. When hs = log 2, the curve is tangent to the boundary
of the triangle and therefore the level curve is tangent to the boundary of the simplex. The points of tangency are
singular points for the entropy function (i.e. points where the derivative of hs as a function of β fail to exist). Once
hs < log 2, the curve becomes disconnected. It is interesting to note that the source of the trouble comes from
the implicit equation. Indeed there are two solutions of the implicit equation for each hs and when hs < log 2, the
values of γ(k) oscillate between these values introducing sustained oscillations into the system that resemble the route
�apping phenomenon discussed in [12] and other work. For such hs note that we are e�ectively operating with only
two of the three links, so that the Diamond topology is equivalent at this stage to the Twolinks topology.

8 CONCLUSION

In this paper, we presented a convex network optimization problem for simultaneously controlling congestion and
route allocation. The set of possible route allocations that can be used by a source s is constrained by placing a
lower bound on the route distribution entropy hs. As a �rst step towards understanding the issues involved in any
protocol based on this model we derived a dual iteration scheme and analyzed the dynamics for two simple topologies.
Su�cient conditions insuring that the equilibria of the iteration scheme are solutions of the optimization problem
are given. We also discuss the limits of the algorithm. Speci�cally in our examples we identify parameter values hs
where the iterates eventually leave the region of feasibility. For such parameter values some other approach-using
subgradient methods may prove useful.

Another key issue here is the trade-o� between network utility and hs, a parameter that measures path diversity.
After making mild assumptions about the capacity of the links in each example we found a critical value of the
entropy. The average utility can always be increased if the system has an allocation with route distribution entropy
hs that is larger than the critical value. Figure 8 shows how the average utility for the TwoLinks topology plateaus
so that its maximum value is achieved at or near the value at the critical entropy hT (c) similar to the results of the
simulation in [9]. However Figure 9 shows that the average utility for the Diamond topology continues to increase
for hs < hD(c). A natural lower bound of log 2 is reached, corresponding to the point where one of the 3 routes is
eliminated and the topology is e�ectively equivalent to TwoLinks. What we can therefore say in this case is that the
utility value at hD(c) is the largest practicably achievable one given a protocol based on dual iteration.

In summary, we see that one cannot increase the utility by choosing a path distribution with entropy less than
the reference entropy without producing infeasible solutions. For each of the examples, the link capacities and the
topology introduce inherent limits to how closely the route allocation can approach the single path speci�cation
scheme.

9 APPENDIX

9.1 Constant β(k) in TwoLinks

In this section we will show that

Theorem 9.1 Let c1
c2

= λ and
β
(hs)
1
βhs2

= λ+ µ with λ > 1 and λ+ µ ≥ 0. Then

β
(k)
i ≡ β(hs)

i i = 1, 2, k ≥ 0 (59)

where H(β(hs)) = −(β
(hs)
1 log β

(hs)
1 + β

(hs)
2 log β

(hs)
2 ) = hs.
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Proof: For simplicity we will drop the hs notation from β
(hs)
i i = 1, 2. Given an entropy value hs < log 2 there are

exactly two associated probability distributions, either {β, 1 − β} or {1 − β, β}. If we de�ne the ratio ρ = β1
β2
, then

the distributions can be expressed as either { ρ
1+ρ

, 1
1+ρ
} or { 1

1+ρ
, ρ

1+ρ
}. If p

(k)
1 < p

(k)
2 then the choice of a positive

root of (17) implies that β
(k)
1 = ρ

1+ρ
where ρ < 1. If on the other hand, p

(k)
1 > p

(k)
2 then β

(k)
1 = 1

1+ρ
. 2

Note that the condition hs < log 2, rules out the possibility that p
(k)
1 = p

(k)
2 for any �nite k since the solution

of (17) would then be ∞. These facts lead to the observation that β
(k)
i , i = 1, 2 remains constant in k if and only if

p
(k)
2 − p(k)

1 does not change sign. In fact a change in sign leads to a jump discontinuity in the value of βi, i = 1, 2 .

9.2 Diamond route distributions and their entropy

There are 3 routes in the diamond topology. Using planar geometry one can show that every distribution in the simplex

of distributions on 3 routes S =
{
β̂ = (β1, β2, β3) | βi ≥ 0 i = 1, 2, 3 β1 + β2 + β3 = 1

}
, can be represented by a

point in an equiliateral triangle with an atltitude of height 1. This result is known as Viviani's theorem. If we
position the leftmost vertex of the base of the triangle at the origin (as shown in Figure 10), then the distribution
(β1, β2, β3) ∈ S corresponds to coordinates (x, y) in the triangle through Ψ : R2 → S given by,

β1 = y , β2 =

√
3x− y

2
, β3 = 1−

(
y +

√
(3)x

2

)
(60)

The entropy function H(β1, β2, β3) , de�nes a function of x, y through (60) and h(x, y) = H(Ψ(x, y)). The distribution
with β1 = β2 = β3 = 1/3, is the image of (1/

√
(3), 1/3). A simple computation shows that the latter is a non-singular

critical point of h. Hence nearby level curves are nearly ellipses and other level curves for smaller values of hs that
do not touch another critical point must have the same topological type and so they are simple closed curves [10].
Since Ψ is a�ne and H is convex, h = H ◦Ψ is convex and therefore quasi-convex. The region enclosed by a level of
h is therefore convex. At log 2, the level curve has several critical points that are the images of the intersection of
the black curve in Figure 10 with the sides of the triangle. The topological type of the level curve therefore changes.

9.3 Su�cent condition that x∗2,5 < xsp∗1

We present a proof of the inequality (58) that appeared in Section 6.3.

Lemma 9.2 Let xsp∗1 be the value of xs for which ∆p
(k)
1 = 0 in equation (38). Further let, xs∗2,5 be the value of xs

for which ∆x̄(k) = 0 restricted to the (p2, p5) plane. Then xs∗2,5 < xsp∗1 if and only if inequality (58) is satis�ed .

Proof:
We have,

xsp1 =
c3 + c5

c3 + c5 + (1− ν)(c2 + c3)
, xsp2 = xsp3 =

c2 + c3 + c5
ν

(61)

xs∗2,5 = (1− f)xsp2 + fxsp5 (62)

f =
β2

3

β2
3 + (1− β3)β2

(63)

=
(c5 + 2(1− ν)c2)2

[2(νc2)2 + (c5 + 2(1− ν)c2)2]
(64)

Writing xs∗2,5 − xsp1 = (xsp2− xsp1)− (xsp2− xs∗2,5), after some algebra it can be seen that

xs∗2,5 − xsp1 =

(
1− ν
ν

)[
1

c3 + c5 + (1− ν)c3
− f

c5 + (1− ν)(c2 + c3)

]
(c2 + c3 + c5) (65)

The expression in the square brackets of equation (65) is the left hand side of inequality (58). Setting κ = c2
c5

= c3
c5

it can be seen that choosing κ > 1/2 is su�cient when f is rewritten in terms of κ and the inequality is veri�ed by
calculation. 2
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Figure 10: Diamond route allocations
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