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Technology Providers 

 

This table lists the technology providers who participated in this study.  The letter keys listed down the first 

column are used throughout the report to identify results from specific algorithms.  The authors wish to thank 

the technology providers for their voluntary participation and contribution. 

 

Key Technology Provider Name 

K1 Motorola, Inc. 

L1 Sonda Technologies, Ltd. 

M1 NEC Corporation 

N1 Peoplespot, Inc. 

O1 SPEX Forensics, Inc. 

P1 Cogent, Inc. 

Q1 L1 Identity Solutions 

R1 BioMG, Ltd. 

Table 1: SDK letter keys and the corresponding technology provider 
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Executive Summary 

 

Introduction: 

The National Institute of Standards and Technology (NIST), with the cooperation of eight technology providers, 

performed a test of accuracy for searching latent fingerprints when using automatic feature extraction and 

matching (AFEM). This test is Phase II of the Evaluation of Latent Fingerprint Technology (ELFT) project.  The 

test was open to both the commercial and academic community, and participants included vendors of 

Automated Fingerprint Identification Systems (AFIS). This report provides the design, process, caveats, results, 

observations and conclusions of the test. 

The primary objective of the test is to determine whether significant latent print examiner time savings can be 

achieved while maintaining accuracy by not performing manual encoding of the latent fingerprint features. 

Doing so would permit a greater workload to be processed in the same amount of time and would potentially 

open up new opportunities for better exploitation of latent fingerprint services in various applications. 

The eight technology providers each submitted a Software Development Kit (SDK) containing a latent 

fingerprint and ten-print minutiae extraction algorithm, and a 1-to-many match algorithm that returns a 

candidate list report.  The specific fingerprint features extracted by the SDK were at the discretion of the 

technology provider and could be proprietary, and the feature template input to the SDK’s matcher may 

include the original latent fingerprint image in its entirety.  Technology providers were encouraged to submit 

research algorithms in this study. There was no requirement for the SDKs to be in operational use or 

commercially available.  NIST performed a pre-test of the SDKs to ensure all functional capabilities were 

working. After validation of the SDKs, the technology providers were no longer involved in the testing. NIST 

performed the same test on all SDKs. 

The test dataset contained 835 latent fingerprints, the associated ten-print fingerprint records containing the 

mates to the latent fingerprints, and two separate galleries of ten-print fingerprint records: one containing 

5,000 records (50,000 fingerprints), and the second containing 10,000 records (100,000 fingerprints).  The 

latent fingerprints were studied at two image resolutions: 1000 pixels per inch (ppi) (39.37 pixels per 

millimeter (ppmm)) images, and sub-sampled 1000 ppi producing 500 ppi (19.69 ppmm) images.  In all tests, 

the ten-print galleries were 500 ppi
1
.  The technology providers had no knowledge of, or access to, the 

fingerprint datasets prior to, during, or after the tests. 

The SDKs were tested as black boxes.  For each SDK, all ten-print fingerprint records and latent fingerprint 

images were processed by each SDK’s automatic feature extraction algorithm.  There was no human 

intervention during these processes. The automatically extracted features for the latent fingerprints were 

independently searched against the galleries of ten-print fingerprint features. A candidate list report was 

generated for each latent fingerprint search listing the top 50 candidates in ranked order by score, with the 

candidate having the highest score listed at rank 1. 

In addition to assessing the overall performance of AFEM latent fingerprint technology, tests were designed to 

study specific factors expected to significantly impact performance.  Insights into the effect of some of these 

factors may contribute to automated determination of latent fingerprint image quality.  To this end, factors 

analyzed included the effect of gallery size, latent image resolution, supplementary region of interest, latent 

minutiae count, finger position, and finger pattern classification. 

                                                           
1
 Pixels per inch (ppi) is used throughout this report as this unit is commonly used across the biometric community, which is the 

audience to which this report has been written. 
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Caveats: 

1. The 835 latent fingerprints represent identifications made using operational AFIS technology in actual 

case examinations.  As a result, the latent fingerprints and their ten-print mates possess sufficient 

quality and quantity of information to result in identification, and therefore the results are 

representative of a category of higher quality latent fingerprints. 

2. The characteristics of a latent print dataset that determine its difficulty level with respect to matching 

are largely determined by the source, selection, and preparation of the data.  The results reported in 

this study may differ greatly from other latent datasets and operational fingerprint repositories. 

3. The digital images of the latent fingerprints used for the test have undergone pre-search processing 

typical of AFIS operations.  These include a combination of latent print analysis, selection criteria for 

AFIS search, scanning, orientation, image enhancement, classification, and finger designation. 

4. The SDKs were not overly constrained by time in either extracting features or searching the galleries. It 

is possible for tighter time constraints to cause a decrease in performance. It is also possible to 

mitigate this concern by adding computing resources. However, the impact of time on performance 

was not tested. 

5. The latent fingerprints were all directly captured at 1000 ppi. The creation of the 500 ppi images for 

the tests were produced by down-sampling the 1000 ppi images. The performance of matching with 

latents directly captured at 500 ppi was not tested in Phase II. 

  



 

6 

 

 

Results:  

NIST performed analyses of the data and determined the performance and accuracy for each technology 

provider’s SDK.  A summary of identification rates based on candidate list position (rank) is reported in the 

following table.  Note that each latent fingerprint search generated a list of fifty candidates, and it was 

generally observed that most identifications occurred within the top ten.  Therefore, rank one and rank top ten 

results are reported. 

 

SDK 
Technology 

Provider 

1000 ppi latents  

vs. 100K fgpts,  

Rank 1 

1000 ppi latents  

vs. 100K fgpts,  

Rank 10 

500 ppi latents  

vs. 50K fgpts,  

Rank 1 

500 ppi latents  

vs. 50K fgpts,  

Rank 10 

M1 NEC 97.2 98.8 96.4 97.2 

P1 Cogent 87.8 89.2 88.0 89.9 

O1 SPEX 80.0 85.6 80.0 87.1 

K1 Motorola 79.3 83.2 79.6 84.0 

Q1 L1 Identity Solutions 78.8 86.5 81.4 88.0 

N1 Peoplespot 67.9 77.8 68.5 79.0 

L1 Sonda 28.5 30.9 76.0 83.0 

R1 BioMG 27.5 30.2 74.0 80.5 

Table 2: Summary of Identification Rates (%) 

 

Score-based measures can be used for two purposes: for candidate list reduction (eliminating low-probability 

candidates from candidate lists), and for automatic determinations of high-likelihood hits. 

Candidate list reduction offers a tradeoff of accuracy for a reduction in human examiner workload: if a 

candidate list is reduced, the matcher will present shorter (or empty) candidate lists to the examiner, but some 

true mates will be excluded, lessening overall accuracy. This is illustrated by analyzing the results for the 

highest performing SDK shown in the Figure 1 (note that these results are based on probability of true mate
2
 

score values).  At a false positive identification rate (FPIR) of 95% the false negative identification rate (FNIR) is 

3%, whereas at FPIR of 47% the FNIR is 4%.  Moving from the first operational point to the second cuts the 

examiner workload by up to half (FPIR from 95% to 47%), while missed identifications are increased by one 

third (FNIR 3% to 4%).  It is a policy issue to determine if this is an acceptable trade-off. 

  

                                                           
2
 See observation 9. 



 

 

 

 

Automatic determinations of high-likelihood hits can be used operationally to flag likely matches in low

priority cases that might otherwise never warrant examiner time, or to priorit

based on the likelihood of match. In either case, automatic determinations of high

used for areas with an excessive backlog to maximize examiner efficiency.  This is illustrated by analyzing the 

highest performing SDK shown in the figure below.  At FN

identifications are successfully made 92% of the time with only 1% of the examiner’s comparisons including 

non-mates. 

 

K1 Motorola L1 Sonda

O1 SPEX P1 Cogent

Figure 1: Detection error trade

7 

likelihood hits can be used operationally to flag likely matches in low

priority cases that might otherwise never warrant examiner time, or to prioritize an examiner’s workload 

based on the likelihood of match. In either case, automatic determinations of high-likelihood hits could be 

used for areas with an excessive backlog to maximize examiner efficiency.  This is illustrated by analyzing the 

erforming SDK shown in the figure below.  At FNIR of 8% the FPIR is 1%.  At this operating point, 

identifications are successfully made 92% of the time with only 1% of the examiner’s comparisons including 

 

Sonda M1 NEC N1 Peoplespot 

Cogent Q1 L1 Identity Solutions R1 BioMG 
 

: Detection error trade-off (DET) characteristics at rank 1 

likelihood hits can be used operationally to flag likely matches in low-

ize an examiner’s workload 

likelihood hits could be 

used for areas with an excessive backlog to maximize examiner efficiency.  This is illustrated by analyzing the 

R of 8% the FPIR is 1%.  At this operating point, 

identifications are successfully made 92% of the time with only 1% of the examiner’s comparisons including 
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Observations: 

1. The effect of scaling the gallery size was clearly observed as all SDKs demonstrated a drop in 

performance.  The average decrease in rank 1 identification rate was 1% between searching a gallery 

of 50,000 fingerprints and a gallery of 100,000 fingerprints. 

2. Five of the eight SDKs showed some benefit when searching latent images at 1000 ppi over 500 ppi 

(against a gallery of 500 ppi ten-prints), but the benefit was not shown to be statistically significant.  

An average improvement of 0.93% in rank 1 identification rate was observed.  It was also observed 

that for every SDK, increasing resolution from 500 ppi to 1000 ppi caused some hits to be gained, but 

also some to be lost.  The net outcome differs with each SDK. 

3. The “region of interest” (ROI), produced mixed results. While for some SDKs the overall results 

improved when using ROI, for others they were worse. It was observed that those images with heavy 

excision (greater than 50% of the image cut out) tended to benefit the most.  We conclude that ROI is 

inexpensive compared to manual markup, but so far has only been shown to be of limited use.  More 

studies in this area are needed. 

4. There is a strong correlation between the number of minutiae exhibited by a latent image and its 

search performance across all SDKs.  Searches with higher numbers of minutiae tended to do better. 

5. As with other biometric modalities, the quality of the image data strongly influences accuracy. 

6. Looking at just the thumb, index, middle, and ring fingers on each hand, there is some evidence that 

latent search performance is highest with thumbs, next with index fingers, and lowest with ring 

fingers.  However, results varied across the SDKs.  Results on little fingers were not analyzed due to 

very small sample size representation in the Phase II dataset. 

7. There is some evidence that latent search performance is affected by latent pattern class.  Latent 

search performance was higher with whorls.  The results for arches were bipolar; some SDKs 

performed best on arches; while other SDKs performed worst.  Loops achieved medium performance.  

The undetermined category performed worst over all, which appears to be an indication of low latent 

image quality. 

8. Fusing the latent search results (candidate lists) of multiple (cross-vendor) SDKs did improve the hit 

rate. The same is true for fusing the results of the same SDK for two or more of an individual's latent 

fingerprints.  These methods provide a powerful mechanism for potential improvements of accuracy. 

9. In addition to proprietary matcher scores, all SDKs reported a form of normalized scores, probability of 

true mate values in the range 0 to 100 indicating the SDK’s estimated likelihood that a candidate is 

actually a mate. This has important implications for candidate list reduction, interoperability, and 

fusion.  Results were mixed, with two SDKs demonstrating enhanced capability to reduce false 

matches. 

Conclusions: 

1. The results from ELFT Phase II demonstrate that a limited class of latent fingerprint case work can 

benefit from today’s AFEM technology, thereby reducing some of the human workload during the AFIS 

latent fingerprint processes. 

Cautionary Note:  Technology providers were encouraged to submit research algorithms in this study. 

There was no requirement for the SDKs to be in operational use or commercially available.   

2. While the testing has demonstrated a level of performance beyond pre-test expectations, the 

limitations of the technology remain undefined and further testing is required.  

3. Test results do not provide sufficient insight to determine with any specificity which latent prints in a 

case can benefit or should not be considered for AFEM.  Latent fingerprint image quality measures are 

needed and should be tested. 
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Terms and Definitions 

 

This table provides ELFT-specific definitions to various words and acronyms found in this report. 

 

# Term Definition 

1 AFEM Automated Feature Extraction and Matching 

2 API Application Programming Interface 

3 Background A set of enrolled ten-prints not containing mate fingerprints 

4 CMC Cumulative Match Characteristic 

5 DET Detection Error Tradeoff characteristic 

6 Exemplar Fingerprint image acquired during an enrollment process and the mate of a latent 

fingerprint 

7 FNIR  False Negative Identification Rate (also called miss rate or false non-match rate) 

8 Foreground A set of enrolled ten-prints containing mate fingerprints. 

9 FPIR False Positive Identification Rate (also called false-match rate) 

10 Fusion A method of combining biometric information to increase accuracy 

11 Gallery A set of enrolled ten-prints; synonymous with “database.”  An ELFT Gallery is 

composed of foreground and background ten-prints. 

12 Hit/hit-rate A “hit” results when the correct mate is placed on the candidate list; the “hit rate” is 

the fraction of times a hit occurs, assuming a mate is in the gallery. 

13 Latent A fingerprint image left on a surface touched by an individual 

14 Matcher Software functionality which produces one or more plausible candidates matching a 

search print 

15 Mate An enrolled fingerprint corresponding to a latent 

16 NIST National Institute of Standards and Technology 

17 PPI Pixels per inch (500 ppi corresponds to 197 pixels per centimeter) 

18 ROC Receiver Operator Characteristic  

19 ROI Region of Interest 

20 Rolled print A fingerprint image acquired by rolling a finger from side to side 

Table 3: Glossary of ELFT Phase II related terms 
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1 Introduction 

NIST has been investigating automated fingerprint matching since 1969, beginning with the pioneering work of 

Ray Moore. Focus on latent fingerprints is more recent, and was initiated in 2004 by a study comparing the 

performance of matching latent images against plain impressions versus rolled impressions [1].  In 2006, NIST 

inaugurated a more extensive project, called Evaluation of Latent Fingerprint Technology (ELFT) to investigate 

the performance of automated feature extraction and matching (AFEM) in the context of latent fingerprint 

identification [2]. 

ELFT is a study of latent fingerprint identification (one to many search) rather than verification (one to one 

match).  Generally, the unknown fingerprint presented to an identification system may be any of the three 

types (rolled, plain, or latent), and the database against which it is searched may also be any of the three 

types, or even a mixture of types.  In this study, the unknown is always a latent fingerprint, and the database 

consists entirely of rolled fingerprint impressions. 

1.1 ELFT and Automated Feature Extraction and Matching 

It is important to distinguish AFEM-based latent fingerprint identification from the general concept of lights-

out identification.  Lights-out identification refers to a system requiring minimal or zero human assistance in 

which an image is presented as input, and the output consists of a short candidate list.  For ten-print search 

applications, this list may be: 1) empty, 2) contain a single candidate, or rarely 3) have more than one 

candidate. Event (3) will occur only in cases when the matcher produces more than one candidate with a 

significant computed probability of being a true mate.  Lights-out matchers are currently in operation for rolled 

fingerprint search systems, and are emerging for plain impressions. Latent fingerprints are much more difficult, 

and no lights-out matchers are currently in operational service. Furthermore, the ELFT07 Concept of 

Operations (CONOPS) asserts that a fully lights-out latent fingerprint matching capability represents too large 

of a single step from current practices [2]. 

Accordingly, the initial focus of ELFT is on AFEM-based latent fingerprint identification systems in which 

manual feature extraction by an examiner is eliminated  (i.e. the feature extraction and search operations are 

fully automated), but the candidate lists output by these systems may be of non-trivial size, and require 

varying degrees of human inspection.  This automates the traditional human feature selection on the latent 

image – often referred to as “front end functions” – but does not fully address the “backend” functions, 

including reduction of the output candidate list.  Human feature extraction by a latent fingerprint examiner is a 

time-consuming task. It is common for the examiner to spend twenty minutes or more on this step. It is 

therefore highly desirable to automate feature extraction to the extent possible, as well as automate any other 

time-consuming steps. 

In current latent matching practice the candidate lists tend to be of fixed length, typically 10 to 20 candidates 

long. A fixed number of candidates is then always produced, even though the vast majority of these are non-

matching to the search latent. (Although they do represent the best matches encountered, these are not close 

matches in any meaningful sense and cursory inspection often reveals that the candidate cannot possibly 

match the search print.)  One goal of ELFT is to suppress these non-matching candidates, resulting in a much 

shorter candidate list of variable length. We refer to this goal as candidate list reduction. 

1.2 Phase I 

ELFT Phase I was designed as a “proof of concept” test for evaluating state-of-the-art AFEM-based one-to-

many (1:N) latent fingerprint identification systems.  A secondary goal of Phase I was to determine the test 

methods and metrics necessary to evaluate the technology.  Participation was open to all, and testing and 

reporting was done anonymously to encourage participation and minimize risk to participants.  Software was 

submitted to NIST for testing in the form of Software Development Kits (SDKs) conformant to an Application  
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Programming Interface (API) created by NIST.  Ten technology providers participated in Phase I, submitting a 

total of 16 SDKs for testing.  These SDKs were installed and executed on NIST hardware, by NIST personnel.   

The dataset used for Phase I was a mix of operational and non-operational images.  A total of 100 latent 

images were searched against a gallery of 10,000 rolled fingerprints (1000 ten-prints).  The aggregate results of 

Phase I have been reported publically without mention of the technology provider names [4], and detailed 

reports have been provided directly to the individual participants.  Phase I demonstrated the feasibility of the 

technology and test methods, and provided valuable insights into how future phases should be conducted. 

1.3 Phase II 

Whereas ELFT Phase I was intended to assess the feasibility of AFEM-based latent fingerprint identification 

systems, ELFT Phase II was designed to assess the performance of state-of-the-art AFEM technology and 

evaluate its viability for operational use.  ELFT Phase II builds on the work in Phase I by using 100% operational 

images, as well as larger and more diverse datasets to provide better performance estimates.  A primary 

objective of the test was to determine whether significant latent print examiner time savings can be achieved 

by applying AFEM technologies while maintaining accuracy.  Doing so would permit a greater workload to be 

processed in the same amount of time and would potentially open up new opportunities for better exploiting 

latent fingerprint services in various applications. 

A further objective of Phase II was to study specific factors that are expected to significantly impact the 

performance of AFEM latent fingerprint technologies.  It is anticipated that insights into the effect of these 

factors may contribute to automated determination of latent fingerprint image quality, which is a key 

component to future AFEM-based systems.  Phase II analyzed the effect of the following factors: 

• Gallery size 

• Latent image resolution 

• Supplementary region of interest (ROI) 

• Latent minutiae count 

• Finger position 

• Finger pattern classification 

In all, eight technology providers chose to participate in ELFT Phase II, each contributing an SDK for testing.  

Section 2 provides an overview of the Phase II test implementation, experimental design, and the dataset 

used.  Section 3 reports accuracy results and analyses on various factors.  Section 4 discusses the results of 

using probability scores in place of raw matcher scores.  Section 5 presents a study on candidate list fusion.  

The appendices cover topics including a simple model for predicting the effect of increasing gallery size along 

with the ELFT Phase II protocol and application program interface (API).  A complete set of Detection Error 

Trade-off (DET) curves created for this study are included in Appendix D. 

1.4 What Phase II is Not 

The following are specifically not within the scope of ELFT Phase II: 

• Evaluation of human examiner assisted latent fingerprint based identification 

• Evaluation of standardized fingerprint feature encodings and standard templates 

• Closed set (“closed universe”) identification 

• Verification or one-to-one (1:1) matcher performance 

• Performance when matching ten-print records against a repository of latent fingerprints (also called 

“reverse latent” searches) 

• Performance when matching latent fingerprints to latent fingerprints (latent-to-latent) 

• Evaluation of latent fingerprint collection/processing methods 

• Estimates of algorithm speed when implemented in operational systems 

• Template update or adaptive search algorithms 
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2 Test Implementation 

The testing model used by ELFT is similar to that used by NIST for Minutiae Interoperability Exchange (MINEX) 

Test 2004 [5] and Proprietary Fingerprint Template Test [6].  Binary software modules only (no source code), 

referred to as SDKs, are solicited from participants. These are intended to be executed by NIST on local 

computer hardware, and they must adhere to an Application Programming Interface (API) specified by NIST. 

The SDK testing model is different from other fingerprint evaluations such as Fingerprint Vendor Technology 

Evaluation (FpVTE) [7] and Fingerprint Verification Competition (FVC) [8] in that it provides greater flexibility 

and control over the execution of software during the test.  Testing of the SDKs on NIST hardware by NIST 

personnel ensures that the test images themselves are never disclosed outside of NIST.  This has important 

implications for privacy as well as for the use of these images in future testing.  The principal disadvantage of 

this approach is that it limits the feedback NIST can provide to participants regarding image-specific behavior 

of their software. 

Each technology provider submitted an SDK containing a latent fingerprint and ten-print minutiae extraction 

algorithm, and a 1-to-many match algorithm that returns a candidate list report.  The specific fingerprint 

features extracted by the SDK were at the discretion of the technology provider and could be proprietary, and 

the feature template input to the SDK’s matcher may include the original latent fingerprint image in its 

entirety.  Technology providers were encouraged to submit research algorithms in this study.  There was no 

requirement for the SDKs to be in operational use or commercially available.  NIST performed a pre-test of the 

SDKs to ensure all functional capabilities were working.  After validation of the SDKs, the technology providers 

were no longer involved in the testing. NIST performed the same test on all SDKs. 

The test dataset contained 835 latent fingerprints, the associated ten-print fingerprint records containing the 

mates to the latent fingerprints, and two separate galleries of ten-print fingerprint records: one containing 

5,000 records (50,000 fingerprints), and the second containing 10,000 records (100,000 fingerprints).  The 

technology providers had no knowledge of, or access to, the fingerprint datasets prior to, during, or after the 

tests.  Latent prints were searched at both 500 pixels per inch (ppi) (19.69 pixels per millimeter (ppmm)) and 

1000 ppi (39.37 ppmm) resolutions, as well as with and without supplementary ROI markup.  In all tests, the 

ten-print galleries were 500 ppi. 

The SDKs were tested as black boxes.  For each SDK, all ten-print fingerprint records and latent fingerprint 

images were processed by each SDK’s automatic feature extraction algorithm.  There was no human 

intervention during these processes. The automatically extracted features for the latent fingerprints were 

independently searched against both galleries of ten-print fingerprint features. A candidate list report was 

generated for each latent fingerprint search listing the top 50 candidates in ranked order by score, with the 

candidate having the highest score list at rank 1. 

The computer hardware used to run the SDKs were of the following configuration: 

• Processor:  

o Dual 2.8 GHz/1MB Cache, Xeon (dual-core) 

o 800 MHz Front Side Bus for PE 1855 

• Memory: 

o 2GB DDR2 400 MHz (2x1GB) single ranked DIMMS 

• Secondary storage: 

o DUAL 73GB 10K RPM, Ultra 320 80 pin SCSI Hard drives (hot plug) 

Note that the above hardware may not be representative of operational systems.  Therefore, all timing 

requirements and all timing results may not be directly comparable to operational scenarios, which may 

involve different hardware and software. 
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In the remainder of this section, section 2.1 presents the overall experimental design and section 2.2 describes 

the dataset of latents, ten-print exemplars (foreground), and ten-print background used. 

2.1 Experimental Design 

NIST ran each of the eight Phase II SDKs through a series of four major latent search tests.  Each test involved a 

different configuration of latents and ten-prints designed to measure overall performance, as well as analyze 

the effects of gallery size (5,000 vs. 10,000 ten-print records), image resolution (500 ppi vs.1000 ppi), and 

supplementary ROI. 

There were three different sets of latents used in the study; each consisted of impressions from the same 835 

distinct fingers.  These are listed in the table below.  The first set, L1, consisted of images at 500 ppi resolution.  

The second, L2, consisted of images at 1000 ppi resolution. The third set, L3, consisted of the same 1000 ppi 

images in L2, but with ROI included in the search.  All latent images were originally scanned at 1000 ppi 

resolution.  The corresponding 500 ppi latents in L1 were produced by sub-sampling the 1000 ppi images in L2.  

None of the latent images were ever lossy-compressed.  More details on the characteristics of the latent 

fingerprint images used in this study are provided in section 2.2.1. 

 

Latent  

test set 

Total  

latents 

Latent  

image  

resolution 

(ppi) 

ROI  

included? 

L1 835 500 No 

L2 835 1000 No 

L3 835 1000 Yes 

Table 4: Phase II latent test sets 

There were four different configurations of galleries used in the study; the four are paired into two groups.  

These are listed in the table below.  The first pair, G1A & G1B, contains a 10K random sample of ten-print 

records; the second pair, G2A & G2B, contains a 5K proper subset of those records in G1A & G1B.  In both 

pairings, the ‘A’ set includes the mated ten-print records, called the foreground, while the ‘B’ set excludes the 

mated ten-print records, called the background.  Another way to say this is the ‘A’ set is a seeded gallery 

comprised of background ten-print records in addition to the latent set’s mated ten-print records.  The ‘B’ set 

is unseeded, and contains none of the latent set’s mated ten-print records.  The seeded galleries have been 

constructed with the foreground ten-print records randomly distributed throughout.  For each latent in a test 

set, there is one, and only one, mate in the corresponding seeded gallery.  By searching a seeded gallery, 

genuine (true) match scores can be accumulated contributing to the calculation of the False Negative 

Identification Rate (FNIR).  By searching an unseeded gallery, imposter (non-match) scores can be accumulated 

contributing the calculation of the False Positive Identification Rate (FPIR). 

It should be noted that all ten-print records used in this study were scanned at 500 ppi, and they were lossy-

compressed using Wavelet Scalar Quantization (WSQ).  More details on the characteristics of the ten-print 

records used in this study are provided in sections 2.2.2 and 2.2.3. 
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Gallery  

test set 

Total  

ten-print 

records 

Mate  

ten-print  

records  

(foreground) 

Non-mate  

ten-print  

records  

(background) 

Ten-print  

image  

resolution 

(ppi) 

G1A 10000 608 9392 500 

G1B 10000 0 10000 500 

G2A 5000 608 4392 500 

G2B 5000 0 5000 500 

Table 5: Phase II gallery test sets 

The latent and gallery test sets, described above, were combined into the four major latent search tests listed 

in the table below.  Notice that not all possible combinations of latent to gallery configurations were executed 

in Phase II.  This was due to the large computation time it takes to execute one SDK on just one search 

configuration.  It was determined that there was only time to execute the four tests below by each of the eight 

SDKs, and that the selection of these four was sufficient to study the effects of gallery size, image resolution, 

and supplementary ROI.  Results in this report identify which of these four tests they were derived from, and 

analyses identify which of these four tests are studied and/or compared. 

 

Latent search test 

Search  

configuration 

Latent  

test set 

Gallery  

test set 

500 ppi Latent vs. 5K Gallery 
L1 G2A 

L1 G2B 

1000 ppi Latent vs. 10K Gallery 
L2 G1A 

L2 G1B 

1000 ppi Latent vs. 5K Gallery 
L2 G2A 

L2 G2B 

1000 ppi Latent +ROI vs. 5K Gallery 
L3 G2A 

L3 G2B 

Table 6: Phase II major latent search tests 
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2.2 Dataset Description 

2.2.1 Latents 

The images NIST used for this evaluation were obtained from an unnamed U.S. Government operational 

source.  The latents were prepared during the course of feature search transactions conducted by an examiner 

using the FBI’s Integrated Automated Fingerprint Identification System (IAFIS).  For each latent, a single 

examiner was involved in feature selection, searching, and subsequent pairing with a subject’s ten-print mate.  

The complete set of latent images, minutiae features, images of ten-print mates, and original IAFIS candidate 

lists were provided to NIST, along with associated metadata. 

The dataset contains latents of type “latent photo,” and most are likely to have originated from paper medium 

after first being developed using ninhydrin  (the precise methods of developing the print are not documented).  

The images themselves are assumed to be scans of original photographic prints, which make them 2
nd

 

generation images.  Most all images were modified by the examiner conducting the original case work to 

enhance usability, which typically included cropping and/or rotation of the original scanned image.  In 

approximately one third of the cases, a kind of “contrast enhancement” was applied which sometimes resulted 

in the images having a “binarized” appearance. 

All latent images in the dataset were originally scanned at 1000 ppi resolution.  The width of these images 

ranges from 216 to 1510 pixels, and the height ranges from 276 to 1667 pixels. The mean width is 586 pixels, 

and the mean height is 696 pixels. 

2.2.1.1 Latent Pattern Classification 

Table 7 lists the percentages of latent prints in the dataset belonging to three major ridge flow pattern 

classifications as reported to NIST: loops, whorls and arches. All pattern classifications listed here were 

determined by the examiners when conducting the original case work.  (Additionally, a fingerprint examiner at 

NIST verified these original classifications.)  A fourth category of “undetermined” is included for those latent 

prints in which there was no discernable pattern class.  The table compares these percentages to the 

approximate pattern class percentages for all fingerprints in the FBI’s Criminal Master File (CMF).  Based on 

this, the ELFT dataset appears somewhat overrepresented in whorls and underrepresented in loops. 

 

  ELFT Phase II Dataset (%) FBI CMF (%) 

Loops 46.8 65 

Whorls  41.7 30 

Arches 3.6 5 

Undetermined 7.9 N/A 

Table 7: Distribution of latent pattern classes for ELFT Phase II dataset vs. FBI CMF 
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2.2.1.2 Latent Finger Position 

Table 8 lists the percentages of latent prints in the dataset by finger position as determined by the examiner 

during the original case work.  Finger position of each latent is based on the finger position of the 

corresponding ten-print mate.  As shown, the dataset contains predominately thumbs (47.2%) and index 

fingers (27.3%).  It should be noted that the prevalence of whorls shown in Table 7 is most likely due to the 

dataset containing a large percentage of thumbs, as thumbs are more likely to have whorls. 

Finger position 
Right 

thumb 

Right 

index 

Right 

middle 

Right 

ring 

Right 

little 

Left 

thumb 

Left 

index 

Left 

middle 

Left 

ring 

Left 

little 

% of total 29.6 15.2 7.7 2.4 0.7 17.6 12.1 7.7 5.7 1.3 

Table 8: Distribution of latent fingerprint positions in ELFT Phase II dataset 

2.2.2 Foreground 

For each latent image in the dataset, there is a corresponding ten-print mate image.  The collection of ten-

prints containing these mates comprises the foreground.  While 588 unique subjects are associated with the 

latents in the dataset, the number of subjects associated with the foreground ten-prints is 608 – this is an 

artifact of a number of latents having been excluded from the study after gallery creation.  (See section 2.2.5 

for more detail.) 

Figure 2 shows how the latent prints are distributed by subject.  The majority of subjects (75%) have a single 

associated latent in the dataset; however, a significant percentage (25%) have two or more.  The top chart in 

the figure shows the total number of latent images per subject in the dataset, whereas the bottom chart 

counts only distinct physical fingers present per subject (e.g., a subject having three total fingers where two 

are right index and one is right thumb is counted as having only two “distinct” fingers).  This is of relevance to 

section 5, which examines the potential utility for “fusion” of search results when two or more fingers are 

available per subject. 

The foreground consists of approximately 18% live-scanned and 82% non-live scanned (ink) impressions.  The 

foreground images were all scanned at 500 ppi, and were WSQ compressed (15:1). The image width of the 

foreground images ranges from 304 to 837 pixels, and the height ranges from 432 to 800 pixels. The mean 

width is 798 pixels, and the mean height is 752 pixels 

  



 

Figure 2: The distribution of lat
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: The distribution of latent fingerprint images for all 588 subjects 
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2.2.3 Background 

The dataset consists of a larger number of non-mate ten-prints called the background.  To ensure dataset 

diversity, the background was selected to be composed of ten-print images from four different government 

operational datasets: TXDPS, LACNTY, AZDPS, and INSBEN.  Ten-prints were randomly selected from these 

datasets in order to achieve a 50/50 mix of ink and live-scan impression types along with equal proportionality 

from each source.  Table 9 below shows the composition by data source of each gallery defined in Table 5.  The 

background images were all scanned at 500 ppi, and were WSQ compressed (15:1).  The image width of the 

background images ranges from 384 to 812 pixels, and the height ranges from 544 to 801 pixels. The mean 

width is 800 pixels, and the mean height is 742 pixels.  

 

Gallery 

Name 

Non-mate  

ten-print  

records  

(background) 

TXDPS  

(100% 

ink) 

LACNTY  

(50% 

live-scan 

and 50% 

ink) 

AZDPS  

(100% 

live-scan) 

INSBEN  

(50% live-

scan and 

50% ink) 

G1A 9392 2348 2348 2348 2348 

G1B 10000 2500 2500 2500 2500 

G2A 4392 1098 1098 1098 1098 

G2B 5000 1250 1250 1250 1250 

Table 9: Phase II background sources 

2.2.4 Ten-Print Image Quality 

Table 10 summarizes the quality of the ten-prints by source comprising the ELFT Phase II dataset.  The NIST 

Fingerprint Image Quality (NFIQ) [9]) is being used for the comparison with NFIQ=1 of highest image quality 

and NFIQ=5 of lowest image quality.  (Note that NFIQ was primarily designed for use with plain fingerprints, 

but is being applied to rolled prints in this case.)  The Summary NFIQ listed in the right column of the table is 

based on equation 1 of NIST IR 7422 [10] and is on the scale of 0 to 100, with 100 being of highest image 

quality.  As can be seen from Table 10, the resulting foreground ten-prints are generally of higher quality than 

the background ten-prints. 

 

Dataset name 
NFIQ=1  

(%) 

NFIQ=2  

(%) 

NFIQ=3  

(%) 

NFIQ=4  

(%) 

NFIQ=5  

(%) 
Summary NFIQ 

TXDPS 36.5 9.2 38.7 6.4 9.2 83.6 

LACNTY 33.4 17.8 29.5 5.0 14.2 79.9 

AZDPS 38.5 17.3 24.2 9.4 10.6 82.4 

INSBEN 31.0 15.2 29.9 11.8 12.2 79.3 

ELFT foreground  44.1 15.5 27.9 4.7 7.8 86.7 

ELFT background  34.9 14.9 30.6 8.1 11.5 81.3 

Table 10: Summary of ten-print quality by source 
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2.2.5 Mate Association and Validation 

Accurately determining the correspondence between latent fingerprints and their associated ten-print mates is 

essential for the purpose of measuring latent search error rates.  As described earlier, the latent images used 

for this study are from real case work, and the metadata provided was used to establish the associations to the 

corresponding ten-print mates.  Specifically, all latents in this study were originally submitted to the FBI IAFIS 

system in order to produce suitable candidate lists for subsequent (1:1) comparisons by US government latent 

fingerprint examiners.  In each case, a ten-print record was eventually determined by examiners to contain a 

mate corresponding to the search latent. 

Use of latent data obtained as a result of a successful AFIS search introduces “AFIS bias.”  AFIS bias results 

when the data has been selected using an AFIS.  Latents that may have a mate in the database, but which are 

not matched because of poor exemplar image quality, relative distortion differences, or insufficient overlap, 

are excluded. This can result in a significant overstatement of the system performance capability as compared 

to the expected performance level that is likely to be achieved in an operational environment.  The quality of 

the latent fingerprints used in Phase II was reviewed by a latent fingerprint examiner, and it was determined 

that the overall quality was higher than typical operational latent case work.  This is supported by the 

observation that the average minutiae count for the Phase II dataset is 23, which is higher than the average 

minutiae count observed in typical latent case work (reported to be 17.
3
) 

In order to validate the association of identity between latents and their alleged mates, a limited number of 

cases were reviewed by a latent examiner at NIST.  Included for review were cases in which all SDKs missed 

reporting the alleged mate on the candidate list, cases in which the highest performing SDK missed reporting 

the alleged mate on the candidate list, cases of high scoring alleged non-mates, and cases of low scoring 

alleged mates.  Of all cases reviewed, six were removed as confirmed non-matches.  Six cases were 

determined inconclusive, and of these, three were missed by all SDKs and therefore removed.  For each of the 

three inconclusive cases retained in the dataset, the associated mate provided from the original case work was 

assumed to be true, and SDKs were scored accordingly.  This validation process promoted the accuracy of 

testing while it minimized any bias in removing particularly difficult latents. 

2.2.6 ROI Markup 

The ELFT Phase II CONOPS proposed a type of human assistance to the AFEM SDKs requiring minimal effort on 

the part of the human expert. The basic concept is to have the examiner designate an ROI on the latent image. 

The ROI would include the area of the primary fingerprint in the image, while excluding areas of non-

fingerprint data, extraneous fingerprints, and / or highly smudged parts of the fingerprint. In principle, this 

should increase the signal-to-noise ratio, resulting in better performance. Experience has shown that selecting 

an ROI is much less labor intensive than extracting minutiae manually, and can typically be done by an expert 

in well under a minute, compared to possibly 20 minutes for a full examiner-markup. 

Figure 3 shows the steps in creating an ROI. In the first image (a) an ROI is outlined on the latent fingerprint 

image. The next figure (b) shows the resulting ROI mask by itself. This is followed by a figure (c), which shows 

the effect of applying the ROI mask to the image. These three images constitute a simplified example, for 

illustrative purposes. The actual Phase II masks had more complicated boundaries, as shown in (d) for a 

different latent image case. 

The ROI is intended to preserve the “good” part of the fingerprint image, while excising regions considered 

possibly “detrimental.” When creating the ROI masks, NIST found that there were many cases where excising 

any part of the image would be an arbitrary decision, and therefore unjustified. In these cases the ROI mask 

was selected to cover the entire image, and in essence the entire image was retained.  Of the 835 latent cases 

in the dataset, 89 included an ROI of the entire latent image. 

                                                           
3
 Minutiae count of 17 for typical case work cited by NIST latent expert. 
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(c) Sub-mage created by applying  

mask (b) to original image (a) 

 

(d) Specimen of actual Phase II mask  

(unrelated to prior image) 

Figure 3: Example of Region-of-Interest (ROI) markup 

 

  

 
(a) Original image with  

region-of-interest marked 
(b) Image mask created from  

region of interest 



 

22 

3 Results and Analysis 

3.1 Accuracy Results of Phase II 

Overall accuracy results are presented in this section first using rank-based metrics via Cumulative Match 

Characteristic (CMC) curves, and then using score-based metrics via Detection Error Trade-off (DET) curves.  It 

should be noticed that ranked-based statistics are not necessarily stable as database size grows. 

3.1.1 CMC 

A CMC curve shows how many latent images are correctly identified at rank 1, rank 2, etc.  A CMC is a plot of 

identification rate (or hit rate) vs. recognition rank.  Identification rate at rank k is the proportion of the latent 

images correctly identified at rank K or lower.  A latent image has rank k if its mate is the k
th

 largest comparison 

score on the candidate list.  Recognition rank ranges from 1 to 50, as 50 was the (maximum) candidate list size 

specified in the API. 

Figure 4 shows CMC plots of the eight SDKs for different gallery sizes (5K and 10K) and latent images at 

different resolution (500 ppi and 1000 ppi).  SDK M1 outperforms other SDKs, with P1 at a distant second 

place.  This is confirmed by Figure 5, which shows the identification rate at rank 1 (i.e. percentage of hits in 

first position) for the eight SDKs along with the 95% confidence intervals for latents at 500 ppi and gallery of 

5K.  The non-overlapping confidence intervals of M1 and P1 suggest significant difference between their 

performance and other SDKs.  Figure 4 also suggests that there is not much gain in identification rate after rank 

10.  Also, L1 and R1 exhibit curiously lower performance on 1000 ppi than on 500 ppi latents.  There are small 

changes observed between the CMC plots when comparing effect of gallery size, latent image resolution 

(ignoring L1 & R1), and supplementary ROI.  These factors will be analyzed more closely in later sections. 

Key Observations: 

• SDK M1 outperforms other SDKs (rank 1 identification rate of 97.2% for 1000 ppi gallery 10K) ; the 

second best performer is P1. 

• There is not much gain in identification rate after rank 10. 
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(a) CMC – 500 ppi latents vs.5K gallery 

 

(b) CMC – 1000 ppi latents vs.5K gallery 

  

  

 

(c) CMC – 1000 ppi latents vs. 10K gallery 

 

(d) CMC – 1000 ppi latents + ROI vs.5K gallery 

  

Figure 4: CMC of all SDKs for four test cases.  

(L1 & R1 have noticeable problems processing 1000 ppi latent images) 
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Figure 5: Rank 1 identification rate; 500 ppi latents vs. gallery size 5K with 95% confidence intervals 

 

3.1.2 DET 

While CMC is a rank-based identification performance measure, most operational biometric systems report 

hits and misses relative to a threshold based on matcher score.   An analysis of performance relative to 

threshold is needed here because identification is rarely a closed-universe problem.  Instead, in the open-

universe case, many latents will not have an enrolled mate.  Thus the ideal response to a search is a candidate 

list of length one for searches that have an enrolled mate and length zero when there is no enrolled mate.  In 

practice, however, there will be more than one entry on a candidate list, because some impostor comparisons 

will probably exceed threshold, resulting in false matches (Type I error).  The opposite case occurs when a 

genuine comparison score falls below threshold; the result is a false reject, or a miss (Type II error).   A 

Detection Error Trade-off (DET) curve is a plot of Type II error (false reject rate) vs. Type I error (false match 

rate). 

In real-world forensic one-to-many applications, the biometric comparison system returns a candidate list of 

enrolled identities that may include the correct match.  Candidate lists are examined by human experts for the 

final decision on identity match.  There are two types of error that can occur: the correct (genuine) match does 

not appear on the candidate list, or one or more impostors generate comparison scores higher than the 

correct (genuine) match and so appear at rank better than the correct match.  There are different but closely 

related terminologies for these two types of errors in the literature, such as False Match and False Non-Match, 

False Accept and False Reject, False Positive and False Negative, Selectivity and Reliability to name a few. 
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Absent universally accepted identification error rate metrics, the ISO/IEC 19795 Biometrics Performance 

Testing and Reporting - Part 1: Framework and Principles suggested new terms.  These are False Positive 

Identification Rate (FPIR) and False Negative Identification Rate (FNIR).  The standard, however, leaves the 

exact mathematical definition to the implementer.  So for ELFT we define FPIR as the fraction of candidate lists 

which contain one or more non-mate entries after the original candidate list has been thresholded at score t 

and limited to length K.  Formally, if 

IDi  denotes subject’s i unique ID  

Ci  is candidate list for latent print of subject i (IDi) 

sij  is the comparison score of latent print of subject i (IDi) and 

gallery image of subject j (IDj) 

(i.e. sii is the comparison score of latent and gallery images of 

the same subject, and likewise sij is the comparison score of 

latent and gallery images of different subjects.) 

rankj  is the rank of gallery image of subject j (IDj) on the Ci 

N  is the total number of searches 

t is the specified threshold 

K is the candidate list cut-off (limit) 

then the false positive identification rate is: 

FPIR(t, K) = 
|{ Ci : ∃ IDj ∈ Ci and  sij > t, length(Ci) = K, IDi ≠ IDj }| 

N 

Similarly, the false negative identification rate, as a statement of miss rate, is the fraction of candidate lists for 

which the enrolled mates do not appear in the top K positions with score greater than threshold, t. 

FNIR(t, K) = 

|{ Ci : ∀IDj sii < t    or rank i  > K }|  + |{ Ci : Ci  = ∅ }| 

N 

The ELFT API requires SDKs to produce a candidate list of length 50.  In the DETs that follow we restricted rank 

to values of 1, 20 and 50, and let the threshold run over the entire range of scores reported by the SDK.  The 

dual application of constraints on rank and threshold constitute a candidate list reduction procedure. 

To compute FPIR we used impostor scores from searches of galleries containing no mates (see “G1B” and 

“G2B” above).  This was done to reflect operational reality that many searches do not have mates.  It is often 

assumed that the non-mate scores returned in an identification search will be independent of whether or not 

the enrollment set includes the mate.  However, this is not always the case.  ELFT included the execution of 

searches without an enrolled mate, because false matches are a considerable hazard in large gallery one-to-

many biometric identification applications, and because the a priori knowledge that a mate exists would allow 

performance to be artificially improved. 

Figure 6 shows DET curves of all eight SDKs for four different test cases when only the rank 1 entry on the 

candidate list is considered (i.e. reducing candidate list to length 1).  DET curves for rank 20 and 50 are shown 

in Figure 7 and Figure 8, respectively. 

The results observed from the DET curves are similar to the CMC results discussed above.  M1 outperforms all 

the other SDKs, followed by P1.  L1 and R1 exhibit lower performance on 1000 ppi than on 500 ppi latents.  The 

very small difference in DET curves of ranks 1, 20, and 50 is consistent with our earlier (CMC curve) observation 

that SDKs most of the time place the correct match at rank 10 or below.  Such information is helpful in 

choosing an appropriate candidate list length in operation.  There are small changes observed between the 
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DET plots when comparing effect of gallery size, latent image resolution (ignoring L1 &R1), and supplementary 

ROI.  These factors will be analyzed more closely in later sections. 

 

Key Observations: 

• M1 outperforms all the other SDKs at all thresholds; the second best performer is P1. 

• For 1000 ppi latent and gallery 10K, M1 achieves FNIR = 0.149 at FPIR = 0.01. 

• The very small difference in DET curves of ranks 1, 20, and 50 is consistent with our CMC-based results 

in that SDKs most of the time place the correct match at rank 10 or below. 

 

  



 

Figure 6: DET at rank 1 
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at rank 1 of all SDKs for four test cases 

 

 



 

Figure 7: DET at rank 20 
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at rank 20 of all SDKs for four test cases 

 

 



 

Figure 8: DET at rank 50 
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at rank 50 of all SDKs for four test cases 
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3.2 Comparison with Phase I Results 

It is of interest to compare the Phase II performance with the performance using the Phase I dataset. The 

Phase I dataset was not primarily intended for performance evaluation. Rather, it was intended as a “proof of 

concept test.” As such, it included a large variety of different image types and quality, not necessarily 

representative of actual case work. 

There were 88 latent fingerprint images used to compute performance in the Phase I dataset, and the gallery 

consisted of 1000 ten-prints.  As shown in the table below, when all 15 Phase I SDKs are included in the 

aggregate, the resulting performance was 59% in first place and 66% on the candidate list.  The second row 

shows the performance for those Phase I SDKs in which the Participant selected to continue to Phase II. The 

third row shows the performance of revised SDKs submitted for Phase II on the Phase I data.  Finally, the 

fourth row shows the performance of the Phase II SDKs on the Phase II dataset. 

Based on Phase I results, NIST expected Phase II performance to be comparable or slightly worse due to the 

larger gallery.  The actual outcome was a surprise, as performance was 12 to 15% higher. 

Key Observations: 

• On average, performance of Phase II SDKs improved over their corresponding SDKs on the Phase I 

dataset. 

• Phase I dataset is more difficult than the Phase II dataset. 

 

  Performance 

 In first place  
(top) 

On candidate   
 list (1-50) 

All Phase I SDKs 59.02% 66.06% 

Those going on to Phase II 62.69% 68.37% 

Phase II SDKs on Phase I data 68.61% 75.00% 

Using Phase II data  80.50% 89.13% 
Table 11: Comparison with Phase I results 
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3.3 Effect of Gallery Size 

It is known that as gallery size increases (i.e. the number of individuals in the gallery set increases) the 

identification rate (as shown on the Y-axis of the CMC curves) decreases [11].  This is known as the scalability 

problem.  We examined the effect of gallery size on performance by comparing the performance of searching 

the 5K gallery against that of the 10K gallery. 

Figure 9 compares identification rate for the two different gallery sizes.  Specifically, it shows the rank 1 

identification rate of each SDK along with their 95% confidence interval for both the 5K gallery and 10K gallery 

(an increase in gallery size by a factor of two.) The observed average decrease is 1%. 

 
Figure 9: Comparison of Rank 1 identification rate of 1000 ppi latents at two gallery sizes, 5K and 10K; 

superimposed are 95% confidence intervals 



 

It is interesting to note that the theoretical model described in 

in performance between the 5K gallery and the 10K gallery.  The graph below takes this model and predicts the 

estimated decrease in performance when scaling the gallery size from 5K to the number of subjects plotted 

along the x-axis.  (Note that the x-axis is on the log scale.)  The observed average decrease in Phase II testing 

between the 5K and 10K gallery is plotted as the red point.  The model estimates a decrease of performance of 

just over 10% when scaling from a 5K gallery to a 10M gallery.

The reader is strongly encouraged to not put too much weight in these results.  In this case a very simplistic 

model was used based on the average performance of the eight SDKs in Phase II.  The ability of the model to 

predict the change in performance between the 5K and 10K gallery is promising, but there is no evidence 

that the model’s estimates should be trusted further out.  More work in this area is warranted.

Key Observations: 

• There is a clear trend that for all SDKs, the Rank

increased from 5k to 10K. 

• The amount of change in identification rate is not the same for all SDKs.

• Initial work in modelling the effect of increasing the gallery size has been demonstrated.

 

Figure 10: Estimated average drop in performance due to scaling gallery size.

Red data point is observed decrease between gallery size of 5K and 10K.
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It is interesting to note that the theoretical model described in Appendix A similarly predicts a 0.95% decrease 

in performance between the 5K gallery and the 10K gallery.  The graph below takes this model and predicts the 

estimated decrease in performance when scaling the gallery size from 5K to the number of subjects plotted 

axis is on the log scale.)  The observed average decrease in Phase II testing 

between the 5K and 10K gallery is plotted as the red point.  The model estimates a decrease of performance of 

allery to a 10M gallery. 

The reader is strongly encouraged to not put too much weight in these results.  In this case a very simplistic 

model was used based on the average performance of the eight SDKs in Phase II.  The ability of the model to 

change in performance between the 5K and 10K gallery is promising, but there is no evidence 

that the model’s estimates should be trusted further out.  More work in this area is warranted. 

There is a clear trend that for all SDKs, the Rank 1 identification rate decreases when gallery size is 

The amount of change in identification rate is not the same for all SDKs. 

ing the effect of increasing the gallery size has been demonstrated. 

: Estimated average drop in performance due to scaling gallery size. 

Red data point is observed decrease between gallery size of 5K and 10K. 

milarly predicts a 0.95% decrease 

in performance between the 5K gallery and the 10K gallery.  The graph below takes this model and predicts the 

estimated decrease in performance when scaling the gallery size from 5K to the number of subjects plotted 

axis is on the log scale.)  The observed average decrease in Phase II testing 

between the 5K and 10K gallery is plotted as the red point.  The model estimates a decrease of performance of 

The reader is strongly encouraged to not put too much weight in these results.  In this case a very simplistic 

model was used based on the average performance of the eight SDKs in Phase II.  The ability of the model to 

change in performance between the 5K and 10K gallery is promising, but there is no evidence 

 

1 identification rate decreases when gallery size is 
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3.4 Effect of Resolution 

Increased latent image resolution provides more information, and in principle, should result in better 

performance.  One of the objectives of this study was to analyze the effect of latent image resolution. This is 

accomplished by comparing searches at 1000 ppi with those at 500 ppi.  In both cases, the gallery consists of 

5K ten-prints, and note that the ten-print images were scanned at 500 ppi and WSQ compressed.  There is a 

caveat with the latent images: the 500 ppi images were actually scanned at 1000 ppi, and then sub-sampled to 

500 ppi.  This may produce higher-quality imagery and therefore more favorable results than if the images 

were originally scanned directly at 500 ppi. 

Figure 11 compares identification rate at the two resolutions.  Specifically, the figure shows rank 1 

identification rate of each SDK along with their 95% confidence interval at 500 ppi and 1000 ppi.  SDKs L1 and 

R1 curiously had much lower identification rates for 1000 ppi latent images than for 500 ppi.  Additionally it is 

noted that Q1’s performance slightly drops from 500 ppi to 1000 ppi.  The other five SDKs (K1, M1, N1, O1, & 

P1) all show a small improvement when going from 500 ppi to 1000 ppi, and their average rank 1 identification 

rate increases by 0.93%.  The fact that differences in performance between pairs (same SDK at 500 ppi vs. 1000 

ppi) are often smaller than half the confidence interval does not necessarily imply statistically insignificance. 

Keeping in mind that searches of a latent at 500 ppi and a 100 ppi are in no way independent observations, the 

issue of whether higher resolution offers higher accuracy is more completely addressed by counting the 

occurrences of improved and degraded accuracy.  These outcomes are shown in Figure 12. 

 
Figure 11: Comparison of Rank 1 identification rate at different resolutions; 500 ppi and 1000 ppi latents vs. 

gallery size 5K 



 

34 

The following figures provide a detailed comparison between the performance when searching latent images 

at both 500 and 1000 ppi resolution.  (R1 and L1 are excluded.)  The general case is that the use of 1000 ppi 

over 500 ppi causes some hits to be gained, but also some to be lost.  M1, Q1 and K1 demonstrate a net 

benefit, while N1, O1 and P1 show a loss.  While M1 realizes the most consistent improvement, all SDKs exhibit 

degraded rank for some latents.  While the changes in the numbers of hits is generally less than 2 percent of 

the total searches, the net gain for M1 represents a large fraction of the number of latents not hit at rank 50. 

Key Observations: 

• Excluding L1, R1 & Q1, an average improvement of 0.93% in rank 1 identification rate is observed. 

• Increasing resolution from 500 ppi to 1000 ppi causes some hits to be gained but also some to be lost.  

The net outcome differs between each SDK. 

 

 
Figure 12: Effect of latent resolution on Rank 50 detection rate; searches of 1000 and 500 ppi latents against 

gallery of size 5K 
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3.5 Effect of Region of Interest (ROI) Markup 

ROI markup is discussed in section 2.2.6.  It should be noted that the instructions to the test participants did 

not specify that only the ROI image (i.e., after application of the mask) be used. In principle, it was permitted 

for an SDK to use the original image along with the ROI-extracted image. NIST has no information regarding the 

actual approach used by any SDK. 

Figure 13 shows the rank1 identification rate of the 1000 ppi latents with and without ROI markup, for gallery 

size of 5K, along with their 95% confidence interval.  The results are mixed and show that augmenting the 

search with ROI markup only slightly improved the performance of matchers K1, N1 & R1, while slightly 

degraded that of L1, O1, and P1.  There is no affect on the performance of M1. 

 
Figure 13: Comparison of Rank 1 identification rate of 1000 ppi latents with and without ROI masking; 

gallery size 5K; superimposed are the 95% confidence intervals 
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The following analysis provides additional comparisons between the performance when using the ROIs and not 

using ROIs.  Figure 14 shows the number of cases where the ROI improved the result, the number of cases 

where it made it worse, and the net difference between these two.  Again, the results are mixed.  The general 

case is that the use of ROI causes some hits to be gained but also some to be lost.  While K1 and N1 realize the 

most consistent improvement, all SDKs exhibit degraded rank for some latents.  It is interesting to note 

however, that if ROIs could somehow be selectively applied only to those images where beneficial (i.e., 

eliminating the cases of degraded performance), it could have resulted in a 3.3% to 4.5% performance increase 

for three of the SDKs. 

 
Figure 14: Effect of ROI on Rank 50 detection rate; for searches of 1000 ppi latents with and without ROI 

against gallery of size 5K 

 

  



 

To gain more insight, we looked at how performance was affected 

Five “bins” were selected.  A latent case was assigned to a bin depending upon the amount of area 

excised from the image when applying the ROI

no area excised; bin #2 contains cases of area excised 

excised between 15% and 35%; bin #4 contains ca

contains cases of area excised greater than 50%

following figure shows the total change in performance for each bin.

weighted rankings.  Thus a candidate which went from first position (with no ROI) to second position (when 

using ROI) would receive a delta score of – ½

receive + 1/6.  The delta performance reported

across the SDKs (excluding L1 & R1) for each search.

When only a small amount of the image is excised (

without ROI.  When the amount excised is between 

definite trend is observed when larger amounts of a

than 50% of the image, a 3% improvement in performance is observed.  So in these cases, using ROI appears to 

have benefit. 

Key Observations: 

• The results were mixed for rank1 identification rate of

markup.  When using ROI, three SDKs slightly improved, three SDKs slightly degraded, with one SDK 

remaining the same. 

• Using ROI causes some hits to be gained

each SDK.  If ROI could be selectively applied only to those latent images where beneficial, three SDKs 

could have improved performance by as much as 3% to 

• When more than 50% of the latent image is excised as a result of applying the ROI, an avera

3% in performance was observed. 

 

Figure 15: Change in Performance vs. percentage of latent image area marked as ROI
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To gain more insight, we looked at how performance was affected by how much of the image was excised. 

was assigned to a bin depending upon the amount of area 

when applying the ROI.  Bin #1 contains cases where the entire image was used with 

f area excised between 0% and 15%; bin #3 contains cases of area 

35%; bin #4 contains cases of area excised between 35% and 50%; and bin #5 

50%.  The largest area of excision in the dataset was 80%.  

performance for each bin.  A “delta-score” was computed

weighted rankings.  Thus a candidate which went from first position (with no ROI) to second position (when 

½, while one that went from third place to second place would 

performance reported in the figure represents the sum of all delta scores averaged 

across the SDKs (excluding L1 & R1) for each search. 

excised (0%-15%), the results with ROI are slightly worse than 

When the amount excised is between 15% and 35% results are rather neutral.  However, a 

definite trend is observed when larger amounts of area are excised.  For ROIs resulting in excision of greater 

in performance is observed.  So in these cases, using ROI appears to 

The results were mixed for rank1 identification rate of the 1000 ppi latents with and without ROI 

markup.  When using ROI, three SDKs slightly improved, three SDKs slightly degraded, with one SDK 

causes some hits to be gained, but also some to be lost.  The net outcome differs bet

be selectively applied only to those latent images where beneficial, three SDKs 

ed performance by as much as 3% to 4%. 

of the latent image is excised as a result of applying the ROI, an avera

Change in Performance vs. percentage of latent image area marked as ROI

e was excised.  

was assigned to a bin depending upon the amount of area that was 

where the entire image was used with 

15%; bin #3 contains cases of area 

50%; and bin #5 

was 80%.  The 

was computed based on 

weighted rankings.  Thus a candidate which went from first position (with no ROI) to second position (when 

hile one that went from third place to second place would 

delta scores averaged 

are slightly worse than 

However, a 

rea are excised.  For ROIs resulting in excision of greater 

in performance is observed.  So in these cases, using ROI appears to 

the 1000 ppi latents with and without ROI 

markup.  When using ROI, three SDKs slightly improved, three SDKs slightly degraded, with one SDK 

.  The net outcome differs between 

be selectively applied only to those latent images where beneficial, three SDKs 

of the latent image is excised as a result of applying the ROI, an average gain of 

 
Change in Performance vs. percentage of latent image area marked as ROI. 
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3.6 Effect of Minutia Count  

Each latent has been evaluated by examiners, and information such as the number of minutia points, pattern 

class, etc., was encoded in the original Type 9 record that was used as part of the transaction (LFFS - latent 

fingerprint feature search) when submitting to IAFIS.  To our knowledge, only one examiner has marked each 

latent, and given that many aspects of latent markup are subjective, this information might be prone to 

variation.  Nevertheless, such information is useful to study how performance is affected by number of 

minutiae or pattern class of latent images.  

Figure 16 shows how each SDK performed based on the minutia count in each latent searched.  The figure 

reports the distribution of minutia count for latent cases identified at rank 1, rank 2 to 50, and latent cases that 

were missed.  The results were obtained when searching with latents at 1000 ppi on a gallery of 5K.  Note that 

ELFT API required SDKs to produce a candidate list of length 50. Latent cases identified at rank 2-50 are those 

whose mate appeared on the candidate list, but not as the most probable candidate.  Missed latent cases are 

those that either the mate did not appear on the candidate list or latent cases for which the SDK failed to 

return a candidate list. 

In the Phase II dataset, the latent with the least minutiae has 8, and the latent with most minutiae has 90.  The 

dotted horizontal line in the figure marks the median minutia count at 22 for the latent cases identified at rank 

one.  Furthermore, median minutia count for latent cases identified at rank 2-50 (i.e., appeared in the 

candidate list, but not at rank 1) is relatively similar to median minutia count for missed latent cases (mate not 

reported in the candidate list), with their distributions considerably overlapping.  This suggests that factors 

other than minutiae count are needed to distinguish lower-ranking latent cases from missed cases. 

  



 

Figure 16: Box plot of minutia count vs. performance

(Minutia count was performed manually by

 

To determine the extent to which the overall 

the latent images were divided into three approximately equal bins.

count (from 25 up to 90); the second has medium minutiae count (from 17 to 

minutiae count (8 to 16). The mean minutiae count for the three bins is 35.0, 20.6, and 13.7.

cases is 23. 

The average performance for the eight SDKs was then evaluated for each bin. 

following figure using latents at 500 ppi on a 5K gallery.  A weighted rank

makes allowance for hits in other positions than rank 1.  The weight assign

position on the candidate list.  Thus a hit in first place receives full value (w=1), a hit in second place receives 

half value (w=1/2), a hit in third place receives 

A.1) for more discussion on this and other rank
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: Box plot of minutia count vs. performance for latent resolution 1000 ppi and gallery size of 5k.  

(Minutia count was performed manually by fingerprint examiners.) 

the overall observed detection performance is affected by minutiae count, 

atent images were divided into three approximately equal bins.  The first bin has the highest minutiae 

up to 90); the second has medium minutiae count (from 17 to 24); and the third had the lowest 

). The mean minutiae count for the three bins is 35.0, 20.6, and 13.7.  The mean for all 

SDKs was then evaluated for each bin.  The results are reported in the 

s at 500 ppi on a 5K gallery.  A weighted rank-based metric (Mw) is used

makes allowance for hits in other positions than rank 1.  The weight assigned to a hit is the reciprocal of its 

position on the candidate list.  Thus a hit in first place receives full value (w=1), a hit in second place receives 

), a hit in third place receives one third value (w=1/3), and so forth.  See Appendix

for more discussion on this and other rank-based metrics. 

 
resolution 1000 ppi and gallery size of 5k.   

affected by minutiae count, 

The first bin has the highest minutiae 

); and the third had the lowest 

The mean for all 

The results are reported in the 

) is used, which 

ed to a hit is the reciprocal of its 

position on the candidate list.  Thus a hit in first place receives full value (w=1), a hit in second place receives 

Appendix A (section 
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Figure 17: Matcher performance by minutia count category (high, medium and low).   

Performance computed using average of the Mw metric. 

It is clear that performance generally drops off for lower minutia count (successive bins), as expected. In the 

case of M1 and P1, the performance for the “high” count and “medium” count are almost the same. This 

suggests that beyond some critical number of minutiae, additional minutiae do not necessarily aid 

performance for these particular SDKs. 

The following graph shows “aggregate” performance plotted against the number of minutiae, where the 

performance of all eight SDKs was averaged together. There are now four bins.  They are similar to the three 

used above, but now include a “very low minutiae count” bin, so as to better determine the behavior.  

Superimposed on the graph is a “trend line.” The equation of the trend line (a quadratic) is also exhibited. This 

trend line may be used to compute a “sensitivity coefficient” (= slope of the trend line). For example, at 20 

minutiae, the slope is 1.49% per minutia. This can be interpreted that, if the minutiae count is reduced by one, 

the Mw statistic can be expected to drop by 1.5%.  (The quadratic used here is illustrative of model fitting, but 

not necessarily the best equation to apply in this case, as it behaves with an inflection point rather than 

asymptotic as greater numbers of minutiae within latents are encountered.) 

The average minutiae count for the Phase II dataset is 23. This is higher than the average minutiae count 

observed in latent case work, which has been reported to be 17 (this data was provided by an expert latent 

examiner). The difference in performance between the two minutiae counts can be estimated as 6 x 1.5% = 

9%.  (E.g., the Mw metric is 71% for 23 minutiae, and 62% for 17 minutiae.)  This can be verified directly from 

the graph. 
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As expected, rank one identification rate is positively correlated with number of minutiae in a latent print.  This 

implies minutia count could be a proxy for level of difficulty identifying a latent; the more minutia points in a 

latent print, the “easier” it is to identify the latent. 

Key Observations: 

• Minutia count is an indicator of the level of difficulty in correctly identifying the latent.  The median 

minutia count for latent cases identified at rank one is 22, while the median minutia count for latent 

cases identified at rank 2 to 50 is less than 22. 

 

 
Figure 18: Aggregate matcher performance (Mw) vs. number of minutiae 

 

  

Mw 
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3.7 Effect of Finger Position 

In this section we examine the effect of finger position on performance.  Finger position refers to the specific 

finger of a subject, and is a number from 1 – 10. Finger #1 is the right thumb, and finger #2 is the right index 

finger, and so forth.  Similarly, finger #6 is the left thumb, and finger #7 the left index finger, and so forth.  

Most latent fingerprints come from finger positions 1, 2, 6, and 7; and not surprising, most of the latent images 

in ELFT test set are thumb and index fingers.  There are very few latents of little fingers (position #5 & #10); 

therefore results for little fingers are presented but not considered reliable.  All fingerprint position 

information presented here originated from the latent fingerprint examiners who conducted the original case 

work. 

Rank 1 identification rate per finger position for each SDK at resolutions of 1000 ppi and gallery size of 10K is 

given in Table 12. SDK M1 is least affected by finger position while N1 and K1 performance varies by finger 

position more than for other SDKs.  In order to detect trends, Table 13 was created based on the performance 

results reported in Table 12.  The performance numbers for each SDK were ranked within each hand by finger 

position.  (Note that L1 & R1 are omitted from the ranking due to their unusually low performance on 1000 ppi 

latents, and little fingers (#5 & #10) have been omitted due to small sample representation.)  For example, SDK 

K1 with the right hand achieved highest performance of 0.85 for the right thumb, and rank 1 is recorded in the 

corresponding cell in Table 13; likewise, K1 with the right hand achieved lowest performance of 0.55 for the 

right ring finger, and rank 4 is recorded in the corresponding cell in Table 13.  The overall results suggest that 

multi-algorithm fusion based on finger position could improve performance. 

Some trends are seen in Table 13.  For right hand, the SDKs rather consistently rank their performance in the 

order of finger position; #1 ranks 1, #2 ranks 2, etc.  The right index finger ranks highest down to the right ring 

finger.  Ranks are a bit more blended for the left hand, but trends are still seen.  The left index finger has a 

higher frequency of rank 2, while left middle and left ring fingers trade off ranks 1 & 3.  The left ring finger has 

the highest frequency of rank 4, and is therefore considered the most difficult to match on the left hand. 

Figure 19 plots the results of Table 12 in the bottom graph (latents at 1000 ppi and gallery size of 5K).  The top 

graph is for latents at 500 ppi and gallery size of 5K, and is provided for the benefit of SDKs L1 & R1. These 

graphs support the trends observed above. 

Key Observations: 

• SDK M1 is least affected by finger position, while N1 and K1 performance varies by finger position 

more than for other SDKs. 

• Looking at just the thumb, index, middle, and ring fingers on each hand, there is some evidence that 

latent search performance is highest with thumbs, next with index fingers, and lowest with ring 

fingers.  Results on little fingers were not analyzed due to very small sample size representation in the 

Phase II dataset. 
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Finger 

position 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

Number 

Searches 

247 127 64 20 6 147 101 64 48 11 

 

K1 0.850 0.772 0.672 0.55 0.833 0.816  0.782 0.844 0.688 0.818 

L1 0.356 0.236 0.219 0.35 0.000 0.306 0.277 0.234 0.208 0.091 

M1 0.996 0.945 0.938 1.00 1.000 0.959 0.960 1.000 0.979 1.000 

N1 0.789 0.622 0.531 0.50 1.000 0.673 0.733 0.609 0.521 0.545 

O1 0.854 0.795 0.766 0.75 1.000 0.796 0.743 0.828 0.688 0.727 

P1 0.891 0.890 0.875 0.70 0.833 0.876 0.891 0.860 0.833 1.000 

Q1 0.866 0.732 0.734 0.75 0.833 0.755 0.802 0.828 0.625 0.818 

R1 0.332 0.244 0.250 0.30 0.000 0.327 0.248 0.219 0.146 0.091 

Table 12: Rank 1 identification rate per finger position for latent searches at 1000 ppi and gallery size of 10K.  

Finger position for each latent in the probe set was determined manually by fingerprint examiners.  

Number of latent images with each finger position is shown in the second row. 

 

Finger 

position 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 
 

K1 1 2 3 4  2 3 1 4  

M1 2 3 4 1  4 3 1 2  

N1 1 2 3 4  2 1 3 4  

O1 1 2 3 4  2 3 1 4  

P1 1 2 3 4  2 1 3 4  

Q1 1 4 3 2  3 2 1 4  

Table 13: Ranking within each SDK, with each hand, by finger position based on performance reported  

in Table 12.  (SDK L1 & R1 along with little fingers (#5 & #10) are omitted.) 

 

  



 

Figure 19: Rank 1 identification rate 

(Finger position for each latent was determined manually by fingerprint examiners
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: Rank 1 identification rate for all SDKs per latent finger position for two test cases.

Finger position for each latent was determined manually by fingerprint examiners

two test cases. 

Finger position for each latent was determined manually by fingerprint examiners.) 
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3.8 Effect of Pattern Class 

NIST investigated how identification rate varies for different latent pattern classifications.  Each latent in the 

probe set has been assigned one of the four basic pattern classes: arch, left slant loop, right slant loop, and 

whorl; if none of these could be established with certainty, a category of “undetermined” was assigned.  All 

pattern class information presented here originated from the latent fingerprint examiners who conducted the 

original case work. 

About 42% (348 of 835) of ELFT Phase II latent searches are whorls, 23% right loops, 23% left loops, 4% arches, 

and 8% were undetermined.  The FBI’s Criminal Master File contains a distribution of 65% loops, 30% whorls, 

and 5% arches.  If this is representative of the US population, then it appears that the Phase II dataset set is 

somewhat overrepresented in whorls, and underrepresented in loops.  This is most likely due to the dataset 

containing a large percentage of thumbs, as thumbs are more likely to have whorls. 

Rank 1 identification rate for each SDK for latent images of 1000 ppi and gallery size of 10K is given in the Table 

14.  In order to detect trends, Table 15 was created based on the performance results reported in Table 14.  

The performance numbers for each SDK were ranked by pattern class.  (Note that L1 & R1 are omitted from 

the ranking due to their unusually low performance on 1000 ppi latents.)  For example, SDK K1 achieved 

highest performance of 0.813 on whorls, and rank 1 is recorded in the corresponding cell in Table 15; likewise, 

K1 achieved lowest performance of 0.742 on the undetermined category, and rank 5 is recorded in the 

corresponding cell in Table 15. 

Some trends are seen in Table 15.  In terms of SDK performance, whorls are either ranked first or second, 

indicating higher matchability.  The results for arches are quite bipolar.  Four SDKs achieved highest 

performance on arches, while two SDKs achieved lowest performance on arches.  The rankings for loops are 

mixed, with medium ranks (mostly ranks 3&4.)  The undetermined category has the highest frequency of ranks 

4 & 5, indicating that they are the most difficult to match.  The observation that whorls have higher 

matchability may be indicative of AFIS-bias in the selection of latent cases, which would explain why whorls are 

somewhat overrepresented in the Phase II dataset. 

Figure 20 plots the results of Table 14 in the bottom graph (latents at 1000 ppi and gallery size of 10K.)  The 

top graph is for latents at 500 ppi and gallery size of 5K, and is provided for the benefit of SDKs L1 & R1.  These 

graphs support the trends observed above. 

Key Observations: 

• Latent search performance was higher with whorls.  The results for arches were bipolar; four SDKs 

performed best on arches; while two SDKs performed worst.  Loops achieved medium performance.  

The undetermined category performed worst over all, which appears to be an indication of low latent 

image quality. 
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 Whorl 

348 

Arch 

30 

Right Loop 

195 

Left Loop 

196 

Undetermined 

66 

K1 0.813 0.933 0.754 0.791 0.742 

L1 0.322 0.233 0.246 0.270 0.273 

M1 0.991 1.000 0.954 0.959 0.955 

N1 0.701 0.600 0.672 0.679 0.621 

O1 0.807 0.867 0.795 0.791 0.773 

P1 0.882 0.933 0.877 0.872 0.848 

Q1 0.807 0.700 0.805 0.765 0.742 

R1 0.328 0.167 0.221 0.255 0.273 

Table 14: Rank 1 identification rate per pattern class for latent searches at 1000 ppi and gallery size of 10K. 

Pattern class for each latent in the probe set was determined manually by fingerprint  examiners. 

Number of latents with each pattern class is shown in the first row. 

 

 Whorl 

348 

Arch 

30 

Right Loop 

195 

Left Loop 

196 

Undetermined 

66 

K1 2 1 4 3 5 

M1 2 1 5 4 3 

N1 1 5 3 2 4 

O1 2 1 3 4 5 

P1 2 1 3 4 5 

Q1 1 5 2 3 4 

Table 15: Ranking within each SDK by latent pattern class.  

(SDK L1 & R1 are omitted.) 

 

  



 

Figure 20: Rank 1 identification rat

(Pattern class of each latent was 
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: Rank 1 identification rate of all SDKs per latent pattern class for two test cases

Pattern class of each latent was determined manually by fingerprint examiners.)

e of all SDKs per latent pattern class for two test cases.  

) 
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3.9 Timing Results 

The observed execution times for all SDKs tested are presented here as elapsed time (i.e. “wall clock time”) 

measurements.  These timings were generated using the system clock on systems executing only a single SDK 

in addition to the typical system software load.  Note that some SDKs implemented individual execution 

phases as multi-threaded processes, which were able to more fully utilize the four processing “cores” available 

on each system.  

Figure 21 presents the average execution time for enrolling a gallery subject. There appears to be a variation of 

about a factor of 6 between the different SDKs.  The mean enrollment time is approximately 50 seconds, so 

that to enroll the 10K gallery would require about 5.8 days. Two of the best performing matchers in the test 

(M1 and Q1) in terms of hit-rate were the slowest in terms of enrollment time.  (The rankings shown in Figure 

5 are used in this section for the purpose of SDK comparisons.  These rankings are based on searching 500 ppi 

latents against the gallery of 5K.)  The lowest performing matcher (N1) was the fastest.  Some matchers’ 

enrollment times were affected by gallery size: L1 & Q1 become faster per ten-print for the larger gallery size; 

P1 becomes slower per ten-print for larger gallery size. 

 

 

 

Figure 21: Ten-print enrollment times 
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Figure 22 shows the enrollment time per latent for three cases: 500 ppi, 1000 ppi, and 1000 ppi with ROI. The 

median latent enrollment times vary more by SDK than do the ten-print enrollment times; there appears to be 

at least a factor of ten variation.  Three of the highest performing matchers (M1, P1, Q1) in the test are also 

the slowest; and the best performing matcher (M1) is more than an order of magnitude slower than the next 

slowest matcher.  The lowest performing matcher (N1) was the 2nd fastest.   Median times are about equal for 

both image resolutions (500 &1000 ppi) for all matchers except N1.  The addition of ROI has no affect on 

median times in 2 cases (R1,Q1) ;  in four cases (K1,L1,O1,P1) the median time is decreased slightly, and in 2 

cases (M1, N1) it increases slightly. 

 

 

 

Figure 22: Latent enrollment time 
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Figure 23 compares total search times. Two cases are shown for each SDK, 5K and 10K gallery. Not surprisingly, 

the search times for the 10K gallery are very nearly twice those for the 5K gallery. The variation by SDK of 

individual search times is again large, and appears to be at least a factor of ten.  The slowest matcher, K1, was 

the 5th most accurate performing matcher overall.  The second and third slowest matchers, P1 & M1, were the 

first and second most accurate performing matchers overall.  The fastest matcher, N1, was the least accurate 

matcher overall.  The increase in median search time between 5K and 10K gallery was usually linear (i.e. a 

factor of 2).  However, in three cases it increased less than a factor of two (Q1,P1,K1). 

 

 

 

Figure 23: Search times for Gallery sizes 5K and 10K 
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Figure 24 is similar to the previous one, but breaks the data down by the three cases: 500 ppi, 1000 ppi, and 

1000 ppi with ROI.  Search times for the three cases appear very similar, though the 2
nd

 case is often the 

slowest.   The slowest matcher was the 5th most accurate performing matcher overall. The second and third 

slowest matchers were the first and second most accurate performing matchers overall.  The fastest matcher 

was the least accurate overall (ignoring the 1000 ppi cases for L1 & R1).  There was a slight increase in median 

search time between 500 & 1000 ppi across all matchers except O1 (excluding L1 & R1).  When going from 

1000 ppi to 1000 ppi with ROI, there was a decrease in observed median search time across all matchers 

except R1 (which had a slight increase).  The greatest decrease occurred when ROI was added for L1. 

 

 

 

Figure 24: Search times for 500 ppi, 1000 ppi, and 1000 ppi + ROI 
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Key Observations: 

• The most accurate SDKs tend to execute for longer periods of time than less accurate ones during ten-

print enrollment, latent feature extraction, and latent search operations.  The least accurate SDK 

nearly always executed for the least amount of time. 

• Latent image resolution and use of ROI masks have small, mixed effects on latent feature extraction 

and search times. 

• Increases in gallery size in general (but not always) have proportional increases in latent search times. 

• Note that the hardware used in this study may not be representative of operational systems.  

Therefore, all timing results reported may not be directly comparable to operational scenarios, which 

may involve different hardware and software. 
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4 Probability Scores vs. Raw Scores 

The ELFT Phase II API specifies that every candidate reported by an SDK should be accompanied by an estimate 

of the likelihood that the candidate is a true mate of the search latent (called a probability score).  The exact 

manner of calculation was not specified, but some guidelines were provided in the CONOPS.  The estimate is to 

be assigned a value between 0 and 100.  A value near 100 is to be interpreted as “this candidate is almost 

certainly a true mate”; while a value near zero is to be interpreted as “this candidate is very unlikely a true 

mate.” 

The motivation behind this was three-fold: 

1. The magnitude and range of raw match scores vary greatly between different algorithms from 

different providers.  Some matchers produce scores that are small fractions (say 0.1), while others 

produce scores in the hundreds of thousands.  A latent expert needs to be thoroughly familiar with a 

particular matcher to assess whether a given raw score is significant or not.  Probability scores were 

introduced into this study in an attempt to simplify this by standardizing the range and meaning of the 

scores making them more intuitive for human judgment. 

2. It is also desirable to have scores that can be used for candidate list reduction.  Candidate lists 

produced by current-generation latent matchers are “cluttered” with many candidates that are 

patently improbable – for example, when the search latent and the candidate differ in pattern class.  A 

goal of ELFT is to study how to eliminate as many “nuisance” candidates as possible.  Using probability 

scores provides a mechanism whereby candidates having very low likelihood of being a mate (for 

example 2% or less) could be pruned from the list. 

3. Probability scores have the potential to factor in information in addition to just the matcher’s raw 

score including: quality of the latent, number of minutiae found, number of minutiae matched, pattern 

class, finger position, and the size and difficulty of the gallery.  Factoring in this information has the 

potential to generate more robust scores that place true mates closer to the top of candidate lists, 

thus increasing performance. 

4.1 Reported Probability Scores 

All the SDKs reported probability scores in their generated output; however, analysis of the eight SDKs shows a 

variety of approaches and results.  The bar graph in Figure 25 compares the mean value of probability scores 

for true mates to that of true non-mates (i.e., impostors).  L1 and R1 computed probability scores for true 

mates too low to be useful.  The other SDKs computed reasonably good probability estimates for true mates, 

but their probability estimates for impostors tend to be too high. 

Figure 26 shows the ratio of mean probability scores for the two distributions (true mates and imposters) by 

SDK.  The largest ratio (i.e., highest separation) was obtained by M1 and Q1.  We may therefore consider these 

two as having come closest to implementing a workable candidate list reduction measure.  However, the mean 

value of 5 for impostors is considered too high for effective candidate list reduction – a candidate which has a 

1/20 chance of being a mate is worth looking at. 
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Figure 25: Mean values for probability scores for two distributions  

(true mates and imposters) by SDK 

 

 
Figure 26: Ratio of mean probability scores between two distributions  

(true mates and imposters) by SDK 
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4.2 Re-computing DET Using Probability Scores 

The reported probability scores can be substituted in place of raw matcher score when computing DET curves.  

This may or may not produce the same result, depending upon whether additional information enters into the 

calculation of the probability scores.  Figure 27 compares DET results between using raw matcher scores and 

using the provided probability scores.  The performance of two SDKs (M1 & N1) improves when probability 

scores are used, O1 shows improvement down to an FPIR around 5%, while no change is noticed from P1, K1, 

and Q1. 

Comparing the difference in performance for SDK M1 between the bottom two graphs (c & d) in the figure 

(latents @ 1000 ppi on 10K gallery), we see that at an FPIR of 5%, the FNIR with raw scores is 11%, while the 

corresponding FNIR with probability scores is 6%.  An even larger change in performance is seen with SDK N1.  

These results are promising, but it appears more work is needed in this area. 

Key Observations: 

• Results were mixed, but promising, with two SDKs clearly demonstrating enhanced capability to 

reduce false matches. 

• More work in the area of probability scores is warranted for the purposes of increasing accuracy, but 

also in generating probability scores that are more intuitive to human examiners, more effective in 

candidate list reduction, and more interoperable across SDKs. 

 

  



 

Figure 27: DET at rank 1 of all SDKs comparing between results using probability scores (left) to results using 

raw matcher scores (right) for two test cases
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comparing between results using probability scores (left) to results using 

raw matcher scores (right) for two test cases. 

 

 
comparing between results using probability scores (left) to results using 
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5 Fusion 

Biometric fusion involves consolidating information from multiple biometric sources. For example, multiple 

latent impressions of the same person can be combined to improve matching accuracy. Although fusion can be 

accomplished at various stages during the identification process, this report only addresses fusion at the rank 

and score level, which occur post-matching. The fusion problem in this context involves consolidating the 

candidate lists from different searches into a single fused candidate list, preferably with the correct mate at 

better position on the fused list.  Recent work on fusion has been reported for latent fingerprints [12]. 

Score level fusion uses the raw score associated with each returned candidate to perform fusion, and fusion at 

the rank level uses only the relative position of the candidate in the unfused candidate list. If the candidate 

lists were generated by different matching algorithms, as is the case with multi-algorithm fusion, the raw 

scores must be normalized before they can be directly compared. The rank can be used in place of the raw 

score to avoid the normalization requirement. However, the rank does not contain as much information as the 

raw score and may therefore lead to smaller performance gains. 

Fusion can also be accomplished at the feature level, which occurs prior to matching. A method of feature-

level fusion that is sometimes applied to fingerprints is referred to as image “mosaicking” [13]. The technique 

involves combining the valid areas of two or more images of the same fingerprint into a new aggregate image. 

Since the constructed image combines the useful information from each of the individual fingerprint images, it 

is expected to perform better when matched.  Fingerprint examiners sometimes use a similar strategy when 

they markup a latent image.  If an area of a latent image it too poor to identify minutiae, the examiner will look 

at another latent image of the same fingerprint to extrapolate the location of minutiae within the poor quality 

area.  When mosaicking is performed at the minutia level, it is known as “template consolidation.” 

Mosaicking is often impractical for the latent identification problem for several reasons. Firstly, multiple latent 

impressions of the same finger tend to look nearly identical (e.g., when a person flips through a book, he/she 

tends to leave nearly identical latent impressions on each page). When this occurs, all the latent impressions 

contain roughly the same information, negating the potential benefit of mosaicking.  Secondly, precisely 

aligning the different images can be difficult if there is little overlapping fingerprint area. An incorrect 

alignment would misrepresent an individual’s finger, leading to a reduced chance of making a correct 

identification. The safer alternative would be to search each of the impressions separately. 

5.1 Multi-Instance Fusion 

Multi-instance fusion combines the results of matching two or more latent impressions of a single person.  

Applying multi-instance fusion to the latent identification problem is very practical since a criminal will often 

leave several latent impressions at a crime scene. At present, a latent examiner will often run each latent 

through IAFIS separately. The other latent images are typically used to verify a match that was returned for a 

particular search. Since AFEM does not require a manual markup of the images, all latent impressions can be 

searched in parallel with little additional work for the human examiner. For the Phase II dataset, which is 

somewhat reflective of case work, latent impressions of more than one finger were available for 121 of the 

588 subjects. This frequency may be higher than what is typical of actual case work data, since the Phase II set 

includes only individuals who were identified by IAFIS, and an individual is more likely to be identified if 

multiple latent impressions are available. 

Two latent impressions representing different fingers were selected for each of the 121 subjects. If more than 

two were available, two were chosen at random. Each latent impression was searched separately and the rank 

of the correct mate determined.  Table 16 shows the frequency at which different combinations of ranks occur 

for each set of paired latent impressions for two algorithms. The table demonstrates that the correct match is 

almost always at rank one on at least one of the candidate lists. This behavior occurs for the other algorithms 

(not shown) as well. This suggests complicated methods of fusion are unnecessary to achieve near optimal 

results; the fusion method need only place the rank one candidates from the unfused lists at a top position on 
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the fused candidate list. This conclusion may not apply to situations where a longer candidate list is available, 

or for larger gallery sizes. 
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Rank of correct mate for first finger 

1 2-10 11-20 20-50 Miss 

1 111 0 3 1 3 

2-10 0 0 0 0 0 

11-20 1 0 0 0 0 

21-50 1 0 0 0 0 

Miss 1 0 0 0 1 

(a) M1 
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Rank of correct mate for first finger 

1 2-10 11-20 20-50 Miss 

1 86 0 2 1 12 

2-10 0 0 0 0 0 

11-20 0 0 0 0 0 

21-50 1 0 1 0 0 

Miss 14 0 2 0 3 

(b) K1 
 

Table 16: Two distinct latent impressions were selected for each subject and the rank of the correct mate 

determined for each latent. The tables show the frequency at which different combinations of ranks occur 

for each set of paired latent impressions for M1 (a) and K1 (b).  

Gallery size is 5,000; latent image resolution is 500 ppi. 

 

The Borda count method [14] of fusion was used to generate all fusion plots. Borda count assigns points to 

each candidate based on rank, with better ranking candidates receiving more points. If a subject appears on 

more than one list, the points for that subject are summed. The fused candidate list is generated by sorting the 

subjects by their points such that the subject with the most points is assigned the best rank. Ties are broken 

randomly to maintain a strict ordering. 
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Figure 28 shows the result of performing two-finger fusion using the Borda count method for each algorithm. 

The rank 10 “hit rate” refers to the fraction of searches that placed the correct mate at one of the top 10 

positions on the candidate list. A substantial performance improvement occurs for every algorithm. In 

addition, several algorithms perform almost as well when two fingers are used as M1 using a single finger. The 

figure may give a false impression of the potential for fusion to improve matching results for two reasons. 

Firstly, multi-instance fusion can only be performed if two distinct latent impressions are available for a 

subject, and the Phase II dataset suggests that most of the time only a single latent impression is available. 

Secondly, although a better rank ordering is achieved, the overall identification rate of case work is unlikely to 

be affected, since an examiner is still expected to make a positive identification as long as the correct mate is 

on at least one of the candidate lists. 

 

 
Figure 28: Comparison of rank 10 performance for single finger and two-finger fusion for each algorithm. 

Gallery size 5,000; latent image resolution 500 ppi. 
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A possible application of multi-instance fusion is to allow the examiner to send all available latent impressions 

for a subject to IAFIS. The Phase II dataset contained 467 subjects with only one distinct impression, 121 

subjects with two or more distinct impressions, 34 subjects with three or more distinct impressions, and 11 

subjects with 4 or more distinct impressions. Figure 29 shows the results of applying Borda count fusion to all 

of the available latent impressions for each subject. If only one impression was available, no fusion was 

performed and the unfused candidate list was used. Since only one impression was available for the majority 

of subjects, the performance improvement is not as pronounced as in Figure 28. Nevertheless, the 

performance improvement demonstrates that multi-instance fusion can be used to improve rank ordering, 

thus reducing workload on the human examiner. 

 
Figure 29: Comparison of rank 10 performance for single finger and for fusion using all available latent 

impressions per subject. Gallery size 5,000; latent image resolution 500 ppi. 
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On occasion, two latent impressions may be mistakenly assigned to a single subject when they are, in fact, 

from different subjects. The examiner would most likely notice such a problem when attempting to verify a 

“match”. When comparing each of the latent impressions to the corresponding ten-print record of the 

matching subject, the examiner would discover that some of the latent impressions match while others do not. 

Applying multi-instance fusion to this type of situation is expected to reduce the chances of positively 

identifying any of the subjects represented by the latent impressions.  Figure 30 shows the effect of applying 

two-finger fusion when the second impression is from a different subject that is not in the gallery set. The 

figure shows a moderate drop in the hit rate for most of the algorithms. However, the drop is no more than 5 

percent for 7 of the 8 algorithms and no more than 10 percent for the remaining algorithm. The figure does 

not demonstrate what would occur if both subjects were present in the gallery. Nevertheless, the results 

suggest multi-instance fusion is somewhat robust to situations where two latent impressions are mistakenly 

assigned to the same subject. 

 
Figure 30: Rank 10 performance for single finger and two-finger fusion when the second latent impression is 

from a different subject not in the gallery. This might occur if two impressions from different subjects were 

mistakenly assigned to the same subject. 
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5.2 Multi-Algorithm Fusion 

Multi-algorithm fusion in this context refers to searching the same latent impression using multiple matching 

algorithms. Unlike multi-instance fusion, it has the advantage of not requiring additional latent information, 

but it is more computationally intensive. In this section, multi-algorithm fusion is applied to the Phase II data. 

Matching performance is highly dependent on the quality of the latent impressions. A difficult latent for one 

algorithm tends to be difficult for others as well. Thus, a certain amount of correlation between matching 

algorithms is expected. This is reflected in the candidate lists returned by the different algorithms, which are 

often very similar with regard to their placement of the correct match. Nevertheless, Table 17 shows that 

performance can be improved by combining algorithms. In particular, the hit rate can be improved beyond 

what M1 is able to achieve without fusion. In addition, M1 by itself achieved a hit rate better than any other 

two algorithms combined (not including M1). However, the statistical significance of these results could not be 

established. 

 

 K1 L1 M1 N1 O1 P1 Q1 R1 

K1 .84 .90 .98 .90 .94 .95 .94 .90 

L1 .90 .83 .98 .89 .93 .94 .93 .88 

M1 .98 .98 .97 .98 .99 .98 .98 .98 

N1 .90 .89 .98 .79 .92 .93 .93 .88 

O1 .94 .93 .99 .91 .87 .96 .94 .92 

P1 .95 .94 .98 .93 .96 .90 .96 .94 

Q1 .94 .93 .98 .93 .94 .96 .88 .92 

R1 .90 .88 .98 .88 .92 .94 .92 .81 

 
Table 17: Rank 10 identification rates when various pairs of algorithms are combined by applying Borda 

count fusion to the candidate lists. The main diagonal represents the cases where no fusion occurs. 

 

Key Observations: 

• Fusing the search results (candidate lists) for two latent fingerprints from the same subject 

consistently improved the identification rate for each of the eight SDKs.  This increase in performance 

can be realized without any significant increase in the human examiner’s workload due to AFEM being 

used. 

• Fusing the latent search results (candidate lists) of two different SDKs consistently improved the 

identification rate.  The amount of improvement varied between the systems being fused due to the 

search results of some systems being more correlated than others. 
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Appendix A– Modelling Effect of Gallery Size 

A.1 Scalar Performance Measures 

In comparing the performance of different systems it is convenient to be able to do so via a single number 

(scalar).  In this section three such measures are introduced (Mfirst ,    Mlist and Mw). 

Mfirst is the percentage of searches which resulted in the true match appearing in first (top) place on the 

candidate list.  Mfirst takes on values between 0 and 1 (or 0 to 100%).  

The related measure is Mlist, the percentage of searches which appear (anywhere) on the candidate list.  Mlist 

also takes on values between 0 and 1 (or 0 to 100%). 

Mfirst tends to underestimate performance, while Mlist provides an overoptimistic value. This is the motivation 

for introducing the third measure, Mw. 

Mw makes allowance for a “hit” in other positions than first place. (These are often referred to as “secondary 

hits”.) However, these secondary hits are weighted less than a hit in first position. The weights are taken to be 

the reciprocal of the list position. Thus, a hit in first place receives full value (w =1), but one in second position 

receives only half value (w = 1/2); one in third position is given weight (w = 1/3), etc. (These weights are also 

known as “roll-off factors.”) As is the case for Mfirst and Mlist, Mw is always between 0 and 100%. It is easy to see 

that Mfirst  ≤ Mw ≤  Mlist . 

There are two justifications for this weighting/roll-off scheme. The first is that that secondary hits tend to “fall 

off” (disappear) from the candidate list if the gallery is greatly enlarged. For example, a hit in seventh position 

has six imposters ahead of it. If the gallery were to be (say) doubled, the expected number of impostors ahead 

of this hit would be 12. Now the hit could be expected to appear in 13
th

 position. If we suppose the candidate 

list to be of length ten, the true mate would “fall off” the list. 

The second justification for rolling off inversely as the list position takes into account human effort expended. 

To examine a subject in tenth position (say) requires that the nine candidates ahead of it be examined first. 

Hence, roughly speaking, the amount of work which must be performed is ten times as large as for a subject in 

first position. There is therefore justification for considering a subject in tenth position to be worth only 1/10 

as much as one in first position. 

A number of investigators have suggested different schemes for the roll-off weights. One such proposed 

method is to roll of inversely as the square-root of the ranking as opposed to inversely as the first power of the 

ranking [15].  The thinking is that the 1/k (k is the ranking) “punishes” lower places too much, and that 1/√k is 

“softer.” This may have some merit, but additional experimental support is required.  Another proposed 

scheme is to roll off as (L +1 –k)/L, where L is the list length. This scheme suffers from the shortcoming that, if L 

is increased, the value of the metric goes up, even if there were no additional “hits” on the expanded 

candidate list. 
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A.2 Power-Law Model 

It is desirable to have a performance measure which captures the intrinsic merit of the system, independent of 

the size and quality of the gallery used in performing measurements. Ideally the performance measure should 

factor in the difficulty of the searches.  

One model which has gained recognition is the power-law.  This particular model can be derived/justified 

theoretically in a number of ways [16].  A particular merit of this model is its simplicity.  The probability 

that the true mate appears on the candidate list is given by: 

P(L) = (L/N)α     … (A-1) 

Where, L = length of candidate list, N = database size, and α is a parameter characterizing the intrinsic quality 

of the system and the difficulty of the data. For a “good” system α must be quite small, say α < 0.1. Note that  

α = 1.0 represents a random-guessing (zero information) system. 

From equation (A-1) we can conclude that the probability of being in first position is 1/N
α 

; while the 

probability of obtaining a hit in position k ( 1< k ≤ L) is 

   p(k) = (k/N)α - ((k-1)/N)α   …(A-2) 

We have already introduced the weighted metric (Mw). This metric is defined by assigning one point if the 

mate is in the top position, ½ point if in second position, and so on. This measure provides a finer measure in 

performance than simply counting the number of mates reported in first place (P(1)).  Mw is particularly useful 

when gauging relatively small changes in performance (for example by doubling the gallery size), as it provides 

a smoother estimate. 

Using eq. (A-2) we can compute the theoretical value of Mw. To a high degree of approximation it is given by 

  Mw = {1 + (α/(1 – α))*(1 – Lα-1)}/ Nα    … (A-3) 

This expression is valid for all values of α in the range 0 to 1.0. For small α and large L (say L>10) the following 

simplification may be used:  

  Mw = (1 + α)/ Nα = (1 + α)P(1)    … (A-4)  

It can be shown that Mw always taken on values between 0 and 1.0, and that Mw >= P(1). (A result that is 

obvious from eq. (A-4).) 

Note that for high performance systems, Mw and P(1) are nearly the same. (The largest difference 

between Mw and P(1) occurs when α = 1/ln(N). Assuming N = 100,000 fingers, this gives α = .09. In this 

event P(1) = 37%, while Mw = 40%. In fact α = .09 characterizes a relatively poorly performing system. 

For small α the two metrics are even more similar.) 

A.2.1   Figure of Merit (FOM): 

The α of equation (A-1) is a characteristic parameter of a system, in the sense that it captures the intrinsic 

quality of the system (including database). In particular, α provides a type of performance measure, 

independent of gallery size.  

A figure of merit (FOM) of a system is a measure capturing the intrinsic merit of a system. Of course any 

given system may be characterized by many FOMs. Convention dictates that a larger FOM indicates a 

better system. Thus a FOM of 5 should indicate a better system than an FOM of 2. 

The parameter α behaves in the opposite manner – smaller values indicate a better system. We can 

overcome this by defining an FOM as follows: 

   FOM = -ln(α)     … (A-5) 

This has the required property that the better system provides a higher FOM. Note also that, with using 

this definition, a random-guessing (zero information) system has an FOM of zero. 
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A.2.2   Using the Power Law to Analyze Scalability 

An objective of the ELFT Phase II tests was to assess the effect of gallery size on the performance of current 

latent search technologies. We call this the “scalability problem.” 

That increasing the size of the gallery results in a performance drop (say as measured by the “hits” in first 

place) is well known. Qualitatively, this decrease in performance can be understood using fairly elementary 

arguments. However, creating a precise numerical model is much more difficult. 

A following simple argument provides insight into the “scalability problem.”  Suppose that for a gallery of size 

N the true mate of a given search appeared in fifth position. This means, of course, that the true mate was 

outscored by four “impostors.” If the gallery were now doubled, a reasonable extrapolation is that the number 

of impostors (outscoring the true mate) would also double, from 4 to 8. The hit would now be expected to 

appear in ninth position. Of course this is true only “on the average”, and in any given trial the hit might 

appear in eight place, in tenth place, even further away from ninth place. 

Execution time imposes limitations on the size of the dataset which can be employed. The Phase II runs 

required several weeks to execute. Even a modest increase in gallery size requires careful planning so as to 

execute in a reasonable time; extremely large datasets are prohibitive. NIST’s strategy therefore was to 

supplement direct calculations with modeling and analysis.  

We may use the power-law to analyze “scalability”, i.e., the effect of an increase in gallery size. Since the 

power-law is not exact, the results may be of limited accuracy. 

The effect on an increase in gallery is readily computed from eq. (A-1). Assuming that the gallery is increase by 

a factor of k, we substitute kN for N in eq. (A-1) to obtain 

  P(L) = (L/kN)α  = k-α *(L/N)α    … (A-6) 

So the probability is decreased by a factor of k
-α 

. The net decrease in hit rate will be 

  Delta_P(L) = (k-α  - 1)*(L/N)α    … (A-7) 

For the present case, representative values are: L=1 if only first-place hits are counted; L = 50 if all hits on the 

candidate list are counted; N = 50K fingers (i.e., 5000 subjects) for the smaller gallery; and N = 100K fingers 

(i.e., 10,000 subjects) for the larger gallery. 

The value of α is obtained empirically by fitting eq. (A-1) to the Phase II test results, and differs for each 

SDK.  The computed values also depend somewhat on the value of L selected (e.g., L=1 or L=50), as well as 

the value of N (50K or 100K). We compensate for this small variation by averaging over these cases (this 

is roughly equivalent to a least-squares solution).  

The mean value over the SDKs so obtained is α = .0172. (SDKs L1 and R1 are not included in this average due to 

their curious performance on 1000 ppi latents). 

If we now assume L =1, N = 50K, and use the above value of α, we can compute P(1) = 0.826 , or 82.6%. 

This is the correct value for aggregate of first place hits for the six best SDKs. 

Suppose now we would like to estimate the effect of doubling the repository. Using the same parameters of 

before, but doubling N to 100K, we compute P(1) = 0.816, or 81.6%. This suggests that approximately 1% of 

hits can be expected to be lost from first position. 

A.2.3 Elementary Error Analysis 

As we have seen, the actual decrease in performance due to doubling the gallery is quite small. Unfortunately 

this has an adverse effect on the statistics. 

For example, assume that the number of searches having mates is 813. We then expect approximately 672 hit 

in first place; doubling the gallery will lose about 8 hits from top position (more precisely, 8.4 on the average). 
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A simple calculation then shows the standard error of the number of hits lost is about 2.9, or about 35% of the 

hits lost from top position. The conclusion is that the extrapolation uncertainty is quite large. 

A.2.4 Test Results 

The following table shows the values of α computed for the eight SDKs (L1 and R1 are included). In the table, α 

is referred to as “alpha_bar” as it represents the average of several values. 

SDK alpha_bar 

K1 0.020806 

L1 0.136254 

M1 0.002054 

N1 0.031001 

O1 0.018518 

P1 0.013088 

Q1 0.017759 

R1 0.135665 
Table A- 1: Computed (estimated) values of alpha (α) for the eight SDKs 

The graph below (Figure A- 1) provides a comparison between the observed and predicted decrease in 

performance due to doubling the size of the gallery. The values shown represent P(1;50K) – P(1;100K), and are 

given as a percentage. The bars labeled “observed” are the actual test results, while “computed” are based on 

calculations using the method outline above. As mentioned, in interpreting these results it should be kept in 

mind that the statistical fluctuations (i.e., uncertainty) are quite large. 

 

 
Figure A- 1: Observed and computed scaling results 
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Note that in general the agreement is good, except for Q1; even for Q1 the predicted result is of the right 

order of magnitude.  

In the previous analysis we looked at the effect of increasing in the gallery by a factor of two. This modest 

increase in the ELFT Phase II testing was dictated by software execution time limitations.  For a convenient 

“rule of thumb” it is better to use a factor of ten when testing for the effect of scaling gallery size. A computed 

estimate of this parameter is shown in the following table in the column labeled “delta_10”. (once again, SDKs 

L1 and R1 are excluded.) The table also shows the computed α, as well as a derived Figure of Merit (FOM). 

Larger FOMs indicate better performance. 

  alpha_bar delta_10 FOM2 
K1 0.02081 4.68% 3.87 
M1 0.00205 0.47% 6.19 
N1 0.03100 6.89% 3.47 
O1 0.01852 4.17% 3.99 
P1 0.01309 2.97% 4.34 
Q1 0.01776 4.01% 4.03 
Average  0.01720 3.86% 4.32 

Table A- 2: Predicted decrease in performance due to factor of ten Increase in gallery size 

Based on the above table, Figure A- 2shows the projected performance for large databases. Rather than 

showing a separate graph for each SDK, we present the performance for a hypothetical “averaged” matcher 

(whose performance is the “aggregate” or mean of the six). Note that the size of the gallery is given in 

subjects, rather than fingers.  With a background of 1 million subjects, the predicted performance is 75.04%; 

with 5 million subjects, the predicted performance is 72.94%; and with 10 million subjects, the predicted 

performance is 72.04%. 

 
Figure A- 2: Predicted performance of hypothetical “average” matcher as a  

function of gallery size 
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Key Observations: 

• The power law appears to be a reasonable “order of magnitude” predictor of the change in 

performance due to scaling the gallery. 

• Based on calculations, current SDK may perform well even if the gallery is increased by several orders 

of magnitude. 

• The reader is strongly encouraged to not put too much weight in these results.  In this case a 

very simplistic model was used based on the average performance of the eight SDKs in Phase 

II.  The ability of the model to predict the change in performance between the 5K and 10K 

gallery is promising, but there is no evidence that the model’s estimates should be trusted 

further out.  More work in this area is warranted 
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Appendix B– ELFT Phase II Protocol Description 

ELFT is a technology evaluation, similar to [5] and [6], which uses a software-only approach that attempts to 

minimize the “entry cost” for potential participants regarding implementation of their algorithms.  ELFT 

employs a PC-based approach in which participants may submit either Windows or Linux executable libraries 

for use with off-the-shelf PC hardware.  This approach itself however places limitations on the testing 

environment (e.g. processor speed, I/O speed, and memory), which may not otherwise exist in operational 

systems.  In response, the ELFT testing protocol seeks to manage these limitations within the goals of the 

evaluation. 

B.1 API 

The use of a common testing API promotes efficient and uniform testing and minimizes testing errors.  

The ELFT Phase II API specification is included in Appendix C, and it defines a set of requirements that all 

SDKs submitted for ELFT testing must follow.  The Phase II API consists of both optional and mandatory 

elements, and includes: 

• Test image format (latent and ten-print) 

• Procedural interfaces (function prototypes & data structures) 

• SDK library binary format & platform requirements 

• Execution speed requirements (in the form of time limits for enrollment and search) 

The API used for Phase II was an evolution of the ELFT Phase I API, with the following modifications: 

• Revised method for specifying estimated latent print orientation 

• Revised error handling and reporting 

• Revised specification of image size ranges 

• Revised specification of file pathname syntax 

• Restriction to non-adaptive matching  

• Additional threading support and documentation requirements 

• Revised mean execution time limits for enrolling latent and gallery images 

B.2 Computer Hardware Platform 

Only NIST hardware was used for ELFT testing, and only NIST had access to this hardware.  A total of forty-eight 

Dell 1855 Blades were used for execution of submitted SDKs. The hardware configuration of these machines is 

as follows: 

 

o Processor:  

§ Dual 2.8 GHz/1MB Cache, Xeon (dual-core) 

§ 800 MHz Front Side Bus for PE 1855 

o Memory: 

§ 2GB DDR2 400 MHz (2x1GB) single ranked DIMMS 

o Secondary storage: 

§ DUAL 73GB 10K RPM, Ultra 320 80 pin SCSI Hard drives (hot plug) 

 

SDKs were submitted in encrypted form. Submitters could specify whether they wished to execute in a 

Window or Linux environment. Six of the tested SDKs were executable on Windows, and two on Linux.    

Windows executables were tested on blades running Windows 2003 Server (service pack SR2).  Linux 

executables were tested on blades running Red Hat Enterprise Linux ES Release 4 (Nahant).  
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Each SDK had access to all of the machine’s resources (less an allowance for normal operating system 

overhead), and at no time during execution did more than one SDK run on the same physical machine. 

Additionally, all I/O performed to retrieve test images and write output data was performed using locally 

attached non-shared storage. 

 

Note that the above hardware may not be representative of operational systems.  Therefore, all timing 

requirements and all timing results may not be directly comparable to operational scenarios, which may 

involve different hardware and software. 

 

B.3   Execution Time Limits 

Our procedure for establishing test execution time limits was as follows.  Prior to Phase I we requested 

execution time estimates from all the technology providers. Based on this feedback and observed 

processing times from past 1:1 tests conducted at NIST, we set the Phase I execution time limits. Using the 

observed Phase I timing results we then adjusted the limits slightly for Phase II. The execution times 

chosen are summarized in the following table. 

Function Phase I time limit Phase II time limit 

Enroll ten-print 150 seconds per ten-print 

(10 sec/finger) 

150 seconds per ten-print 

(10 sec/finger) 

Enroll latent image 350 seconds/image 600 seconds/image 

Search compare 0.2 seconds per ten-print 0.25 seconds per ten-print 

Table B- 1: Phase II SDK execution time limits 

Some in the biometrics community have expressed an opinion that the allowable execution time is too 

generous. Their principal argument is that the allowable time far exceeds that which would be available in 

operational scenarios.  NIST’s position is that at this stage of testing we are not attempting to simulate 

operational scenarios. Rather, we are trying to establish best possible performance within a “reasonable” 

period of time for testing. In due course we will address operational scenarios. 

B.4   Test Execution 

The Phase II test execution protocol will be briefly discussed in this section.  More details are available in the 

CONOPS [2]. 

Executable modules for testing were constructed from two sources: 1) technology provider-supplied 

software in the form of a Software Development Kit (SDK), and 2) NIST-supplied software. The submitted 

SDKs were executable in either a Windows or Linux environment, based upon the technology provider’s 

preference. The core of the executable module is of course derived from the SDK. The part supplied by 

NIST is mainly concerned with the image retrieval and manipulation.  The executable module itself is 

known as the NIST Test Application. 
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Once constructed (linked), the executable modules (one per SDK) are executed in three stages, each being 

a distinct operational mode of the NIST Test Application: 

1. Gallery enrollment 

2. Latent feature extraction 

3. Latent search against gallery using extracted features 

Stage 3 depends on data output from the successful completion of stages 1 and 2; however stages 1 and 2 

are independent and may be executed concurrently on separate processors. 

The first stage performs “enrollment” of the gallery fingerprints. This process converts images into 

proprietary “feature” representations. The output of this enrollment stage is at the discretion of the 

technology provider, except that all extracted data must be written into a single directory specified by the 

NIST Test Application.  A gallery consists of a series of ten-prints (i.e. a record with ten fingerprints per 

subject), with each stored in a file consisting of ten Electronic Fingerprint Transmission Specification 

(EFTS) [17] type-14 records.  Each type-14 record contains a single WSQ-compressed fingerprint image.  

During enrollment, a list of ten-print filenames is input by the NIST Test Application to the SDK.  To 

promote uniform parsing and decompression of these images, NIST supplied “extraction routines” (with 

interfaces specified in the ELFT Phase II API) for retrieving the individual images. 

The following diagram summarizes the gallery feature extraction pass.  The calls to NIST-provided image 
extraction routines are highlighted in blue.  All SDKs were executed (in stage 1 processing) so as to enroll 

four separate galleries, as shown in Table B- 2. 

 

extract_image_data() 
Get the ten rolled 
fingerprint images 

free_image_data() 
De-allocate memory for 

fingerprint images 

NIST-supplied 
Library 

 enroll_gallery() 
Enrolls the entire set of 

gallery images 

set_gallery() 
Selects gallery to be 
searched by latents 

enroll_latent() 
Enrolls the latent which 

is searched against 
gallery 

image_search() 
Searches gallery for 
candidate matches 

Participant’s SDK 

NIST Test Application --
Executable Latent Search 

Module 

Figure B- 1: Executable software is a combination of technology provider-supplied (SDK)  

and NIST-supplied software 
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Figure B- 2: Stage 1 - Logic and data flow for Gallery enrollment 

 

Gallery 

Name 

Total ten-

print records 

Non-mate 

ten-print 

records 

(background) 

Mate ten-print 

records 

(foreground) 

G1A 10000 9392 608 

G1B 10000 10000 0 

G2A 5000 4392 608 

G2B 5000 5000 0 

Table B- 2: All Phase II test Galleries (enrolled in stage 1) 

 

extract_image_data() 

Start 

Gallery Images 

Gallery 

Features 
enroll_gallery() 

free_image_data() 

End 

Done all Gallery? 

Yes 
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The second stage of execution generates a set of proprietary features for all latent fingerprint images. The 

specific features extracted and their formats are at the discretion of the technology provider, and may even 

include the original latent fingerprint image itself in its entirety.  The latent fingerprint images and Region of 

Interest (ROI) masks input to the SDK by the NIST Test Application are in uncompressed “raw” format.  The 

details of the latent enrollment process also depend on whether a latent ROI mask is specified or not, as 

shown by the following figure.  

All SDKs were executed in stage 2 so as to extract features from two sets of 835 distinct latent fingerprint 

images. The first set, L1, consists of images at 500 ppi resolution.  The second, L2, consists of images at 

1000 ppi resolution. A third set, labeled L3, consists of the extracted features from the 1000 ppi latent 

images accompanied by an ROI mask. 

 

Figure B- 3: Stage 2 - Logic and data flow for latent feature extraction 
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In Stage 3 processing, each latent’s proprietary feature set (created in stage 2) is fetched and searched 

against the enrolled gallery data (created in stage 1), and a candidate list is returned. The details of the 

searching process are unregulated by the API. In particular, technology providers may invoke multi-stage 

algorithms within the top-level search function called by the NIST Test Application.   The following 

diagram summarizes the logic and data flow during the matching pass. 

 

Figure B- 4: Stage 3 - Logic and data flow for Latent image search of Gallery using extracted features 
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Each SDK was executed (in stage 3) to perform searches using eight distinct combinations (“search 

configurations”) of enrolled latent and gallery prints as summarized in the table below. 

Latent 

resolution 

(ppi) 

Gallery size 

(total ten-

prints) 

Total # of 

non-mate 

ten-prints 

(background) 

Total # of 

mate ten-

prints 

(foreground) 

Total # of 

Latents 

Gallery 

contains 

mates? 

ROI 

provided? 

Search 

configuration 

name 

500 5000 4392 608 835 Yes No L1_vs_G2A 

500 5000 5000 0 835 No No L1_vs_G2B 

1000 10000 9392 608 835 Yes No L2_vs_G1A 

1000 10000 10000 0 835 No No L2_vs_G1B 

1000 5000 4392 608 835 Yes No L2_vs_G2A 

1000 5000 5000 0 835 No No L2_vs_G2B 

1000 5000 4392 608 835 Yes Yes L3_vs_G2A 

1000 5000 5000 0 835 No Yes L3_vs_G2B 

Table B- 3: Latent vs. Gallery search configurations 

 

B.5  SDK Conformance Testing 

Technology providers in Phase II were permitted to submit a single SDK.  Once received by NIST, each SDK was 

tested for conformance to the ELFT II API by means of a sample “validation set” of latent and gallery ten-print 

images.  Latent and gallery images were input to the SDKs by NIST with the objective to identically reproduce 

the candidate lists submitted by the technology providers.  All candidate lists were required to be reproduced 

identically to ensure proper installation and expected operation of the technology provider’s software before 

the SDKs were accepted by NIST for testing.  In several cases, due to problems encountered (non-

conformance, crashes, etc.), several iterations of SDK and candidate lists were solicited from a given 

technology provider before SDK acceptance.  All technology providers in ELFT Phase II eventually passed 

conformance testing of their submitted SDKs. 
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Appendix C– ELFT Phase II API Specification 

Introduction 

The Latent Fingerprint SDK Test provides a means of determining core search performance of latent-

fingerprint matchers.  This document specifies all SDK interfaces and functionality as well as the data formats 

used for this test.   

There will be minimal human involvement during the actual execution of the test.  A small amount of human 

assistance will probably be required to prepare the data. All such assistance will be provided indirectly by NIST, 

and may include: 

a) Crop and orient certain latents. 

 

b) Provide a region-of-interest. 

 

c) Provide latent experts for examining potential consolidations. 

Those wishing to submit software for Latent Fingerprint SDK testing shall be required to provide NIST with an 

SDK (Software Development Kit) library which complies with the API (Application Programmer Interface) 

specified in this document. 

C.1 Fingerprint Image Data 

C.1.1 Format 

The SDK must be capable of processing fingerprint images supplied to the SDK in uncompressed raw 8-bit (one 

byte per pixel) grayscale format.  The image data shall appear to be the result of a scanning of a conventional 

inked impression of a fingerprint.  Figure C- 1 illustrates the recording order for the scanned image.  The origin 

is the upper left corner of the image.  The x-coordinate (horizontal) position shall increase positively from the 

origin to the right side of the image.  The y-coordinate (vertical) position shall increase positively from the 

origin to the bottom of the image.   

 
Figure C- 1: Order of scanned lines 

 

Raw 8-bit grayscale images are canonically encoded.  The minimum value that will be assigned to a "black" 

pixel is zero.  The maximum value that will be assigned to a "white" pixel is 255.  Intermediate gray levels will 

have assigned values of 1- 254.  The pixels are stored left to right, top to bottom, with one 8-bit byte per pixel. 

The number of bytes in an image is equal to its height multiplied by its width as measured in pixels; there is no 

header.  The image height and width in pixels will be supplied to the SDK as supplemental information. 
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C.1.2  Resolution, Dimensions and Orientation 

The latent fingerprint images will employ either 500 or 1000 ppi resolution (both horizontal and vertical).  All 

background fingerprint images will employ 500 ppi resolution (both horizontal and vertical).  The precise 

resolution for each individual image will be specified to the SDK via the API. 

All fingerprint images used for the background will vary from 150 to 1000 pixels in both width and height 

dimensions.  All latent images at 500 ppi will vary from 150 to 1000 pixels in both width and height.  All latent 

images at 1000 ppi will vary from 150 to 2000 pixels in both width and height.  The precise dimensions of each 

individual image will be specified to the SDK via the API. 

All latent fingerprint images used for Phase II testing may vary in orientation over the full angular range (0 to 

359).  The estimated orientation and range of uncertainty of individual latent prints may be specified to the 

SDK via the API.  Otherwise, the orientation is specified as “upright” +-180 degrees.  No information will be 

specified to the SDK regarding the orientation of background fingerprint images.   

No information regarding the distribution of fingerprint image resolution, dimensions, or orientation within 

the Phase II dataset is provided in this document. 

C.2  Test Interface Description 

Participants shall submit an SDK which provides the interfaces defined in section C.2.3.  Section C.2.2 defines 

the interfaces to functions provided by NIST for use by the SDK.  Sections C.2.1 and C.2.4 specify the 

declaration of constants, error codes, data-types and functions used by both. 

 

C.2.1 Declarations 

The following are declarations of data types and functions used in the Latent Fingerprint SDK testing interface: 

 
/////////////////////////////////////////////////// /// 
// Declarations of constants                        // 
/////////////////////////////////////////////////// /// 
 
// Impression type codes 
#define IMPTYPE_LP 0     // Live-scan plain 
#define IMPTYPE_LR 1     // Live-scan rolled 
#define IMPTYPE_NP 2     // Nonlive-scan plain 
#define IMPTYPE_NR 3     // Nonlive-scan rolled 
 
// Finger position codes 
#define FINGPOS_UK 0     // Unknown finger 
#define FINGPOS_RT 1     // Right thumb 
#define FINGPOS_RI 2     // Right index finger 
#define FINGPOS_RM 3     // Right middle finger 
#define FINGPOS_RR 4     // Right ring finger 
#define FINGPOS_RL 5     // Right little finger 
#define FINGPOS_LT 6     // Left thumb 
#define FINGPOS_LI 7     // Left index finger 
#define FINGPOS_LM 8     // Left middle finger 
#define FINGPOS_LR 9     // Left ring finger 
#define FINGPOS_LL 10    // Left little finger 
 
/////////////////////////////////////////////////// ///////////// 
// Declarations for the NIST provided library funct ions       // 
/////////////////////////////////////////////////// ///////////// 
 
// Structure to hold a single fingerprint record (i mage+metadata) 
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struct finger_record 
{ 

BYTE    impression_type; 
UINT16  resolution; // Image resolution in pixels/c m 
BYTE    finger_position;   
UINT16  height;  // Image height in pixels 
UINT16  width;  // Image width in pixels 
BYTE    *image_data; // 8-bit grayscale image data 

}; 
typedef struct finger_record   FINGER_REC; 
 
// Extracts 10 fingerprint records from a ten-print (AN2K) file 

INT32 extract_image_data(const char *tenprint_filename,  

FINGER_REC **finger_recs); 

 

// De-allocates the memory holding 10 fingerprint records 

void free_image_data(FINGER_REC *finger_recs); 

 

//////////////////////////////////////////////////////////////// 

// Declarations for the SDK provided library functions        // 

//////////////////////////////////////////////////////////////// 

 

// Structure to hold zero or more candidates return ed in a search 
 struct candidate { 
  UINT32 background_index; 
  BYTE   finger_position; 
  DOUBLE similarity_score; 
  BYTE  probability; 

UINT16 num_matching_minutiae; 
BYTE   candidate_quality; 

 } 
 typedef struct candidate CANDIDATE; 

 
// Structure to hold list of candidates returned by  SDK 
struct candidate_list 
{ 

UINT32    num_entries; 
UINT16    num_latent_minutiae; 
BYTE      latent_quality; 
CANDIDATE *list; 

} ; 
typedef struct candidate_list   CANDIDATE_LIST; 

 

// Enrolls the entire set of background images 

INT32 enroll_background(const INT32 num_recs,  

const char **filenames, const char *enrollment_dir, 

char *error_msg); 

 

   // Selects the current background for latent image searching 

INT32 set_background(const char *enrollment_dir); 

 

// Enrolls the latent image 

INT32 enroll_latent(const FINGER_REC *latent_finger, 

const BYTE *roi_mask, const UINT16 orientation, 

const BYTE offset, BYTE  *enrolled_latent, 

INT32 *enroll_length); 
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// Searches for the latent image in the background 

INT32 image_search(const BYTE *enrolled_latent, 

CANDIDATE_LIST *candidates, char *error_msg); 

 

C.2.2 NIST Provided Functions 

C.2.2.1 Extract Image Data 

INT32  
extract_image_data (const char  *tenprint_filename, 

 FINGER_REC  **finger_recs); 
 

Description 
This function extracts ten fingerprint image records from a single (AN2K formatted) ten-print record file.  

The caller shall pass tenprint_filename as a pointer to the fully qualified pathname of an AN2K 

formatted ten-print record file, and finger_recs as the address of a pointer of type FINGER_REC (see 

2.1 above). 

 

Upon return finger_recs will contain a pointer to an array of ten FINGER_REC structures ordered by 

finger position from 1 (right thumb) to 10 (left little finger).  For any fingers that are missing from the 

original ten-print record file, the image_data field in the respective FINGER_REC will be a NULL 

pointer. 

 

 Example 
  // Example of processing a ten-print record 

 FINGER_REC *finger_recs; 

 INT32 status=extract_image_data(“image00205.an2k”, &finger_recs); 

 if (status == 0) { 

for (i=0;i<10;i++) { 
 if (finger_recs[i].image_data != NULL) 

process_valid_finger(finger_recs[i]); 
    else 

process_missing_finger(finger_recs[i]); 
   } 

free_image_data(finger_recs); // see 2.2.2 below 
  } 

 
Parameters 

tenprint_filename (input): A pointer to a ten-print record filename. 
finger_recs  (output): The address of a FINGER_REC pointer. 
 

Return Value 

This function returns zero on success or a documented non-zero error code otherwise. 

 

C.2.2.2 Free Image Data 

 
void 
free_image_data(FINGER_REC *finger_recs); 

 

Description 
De-allocates all memory used by the array of FINGER_REC structures specified by finger_recs which 

was allocated during a call to extract_image_data(). 
 
Parameters 

finger_recs (input): A pointer to an array of FINGER_REC structures. 
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Return Value 

None. 

C.2.3 SDK Provided Functions 

C.2.3.1 Enroll Background 

 
INT32 

enroll_background(const INT32  num_recs, 

const char   **filenames, 

const char  *enrollment_dir, 

    char   *error_msg); 

 
Description 

This function performs the conversion of all background ten-print records into a proprietary dataset.  No 

format is prescribed for this data, but it could be a set of proprietary templates.  Pre-computation of 

background data avoids reprocessing of the original images upon subsequent calls to 

image_search() .   

The SDK shall use the function extract_image_data() (see 2.2.1 above) provided by NIST to 

extract the raw grayscale image and metadata from each ten-print record file specified in the  filenames 

array.  Note that each call to extract_image_data() allocates memory to hold the extracted 

image and metadata, so this memory should be de-allocated using the NIST provided 

free_image_data() (see 2.2.2 above) function when no longer needed. 

The format of the filenames pointed to by the filenames array will be canonical Unix style pathnames 

using forward slash directory separators (e.g. “/mnt1/xyz/foo-22/image00205.an2k”). 

All data produced by the SDK shall be stored exclusively to the directory specified by enrollment_dir.  

The contents of this directory are at the discretion of the vendor. 

Non-fatal error conditions shall be tolerated and shall not result in pre-mature halting (i.e. non-

completion of background enrollment).  These error conditions include missing fingers in ten-print 

records, and failure-to-enroll (FTE) any portion of a ten-print record.  If any of the above non-fatal error 

conditions are encountered, the SDK may optionally return a documented non-zero warning code (after 

completing background enrollment), though this is not required. 

Upon entry the error_msg parameter will point to a pre-allocated and pre-zeroized string buffer of 

length 513 bytes (512 + 1 for the NULL terminator) which the SDK may use for outputting detailed 

information regarding fatal errors which have occurred (signaled by a non-zero return code).  This may 

be useful for debugging any problems that might occur after the SDK is received by NIST.  For example, if 

the enrollment process encounters a fatal or non-fatal error during processing of a specific background 

ten-print record file, the SDK could output an error message including the ten-print record filename to 

error_msg and return a documented non-zero error or warning code respectively. 

Note 1:  The order of the ten-print record file names in filenames defines (implicitly) the indexing 

scheme that shall be used henceforth for recording the ten-print record indices of all candidates 

returned by image_search().  The index of the first ten-print record is 1. 

Note 2:  During subsequent calls to image_search() the SDK is permitted to access the original 

background images.  To support this access, the path information supplied by filenames regarding the 

original background images should be stored in the proprietary background set in enrollment_dir. 

 
Parameters 

num_recs (input): The number of ten-print records to enroll. 
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filenames (input): Array of pointers to all ten-print record filenames. 
 

enrollment_dir (input): The directory used to store enrollment data output. 
 
error_msg (output): Pointer to a detailed error message string. 
 

Return Value 

This function returns zero on success or a documented non-zero error code otherwise. 

 

C.2.3.2 Set Background 

 
INT32 

set_background(const char  *enrollment_dir); 

 
Description 

This function selects the background that shall be used by all subsequent calls to image_search() .  

The directory specified by enrollment_dir shall contain the enrollment data produced by a prior call to 

enroll_background(). 

 
Parameters 

enrollment_dir (input): The directory to be used by image_search(). 
 

Return Value 

This function returns zero on success or a documented non-zero error code otherwise. 

 

C.2.3.3 Enroll Latent 

 
INT32 

enroll_latent(const FINGER_REC *latent_finger, 

              const BYTE       *roi_mask, 

    const UINT16     orientation, 

   const BYTE  offset, 

  BYTE             *enrolled_latent, 

  INT32            *enroll_length); 

 

Description 
This function enrolls the latent image pointed to by latent_finger, and writes the enrollment data to the 
memory location pointed by enrolled_latent.  The latent image itself shall be in “raw” uncompressed 8-
bit grayscale format.  No format is prescribed for the enrollment data.  
 
The fields latent_finger->width and latent_finger->height specify the width and height of the latent 
image in pixels.  The field latent_finger->resolution  specifies the horizontal and vertical resolution of 
the latent image in pixels per centimeter (e.g. 500 pixels per inch is specified as 197 ppcm ; 1000 ppi is 
specified as 394 ppcm).  The fields latent_finger->impression_type and latent_finger->finger_position 
will always be set equal to 0.   
 
The function may be optionally supplied with a “region of interest” in the form of an image mask.  In 
cases where no “region of interest” information is provided, the input roi_mask parameter shall be a 
NULL pointer.  Otherwise, roi_mask shall point to a “raw” uncompressed raw 8-bit grayscale image with 
the same dimensions as the latent fingerprint image.  The region (or regions) of interest in the latent 
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fingerprint image are identified by the corresponding x,y locations in the roi_mask  having non-zero 
pixels. 
 
The orientation parameter specifies the estimated angle of the fingerprint in degrees (0 to 359).  The 
offset (0 to 180) specifies the offset (+ or -) in degrees around this angle of allowable variance.  Taken 
together these values inform the SDK as to fingerprint image’s range of rotational variance which may be 
useful to the matching algorithm.  The angle is expressed in standard mathematical format, with zero 
degrees to the right and angles increasing in the counterclockwise direction.  Thus “upright” fingerprint 
images are said to have an orientation of 90 degrees.  For example, if orientation and offset are specified 
as 75 and 5 respectively, the fingerprint image is estimated to have an orientation between 70 and 80 
degrees.  The offset 180 will only be used in conjunction with an orientation of 90 to convey complete 
uncertainty as to the fingerprint’s orientation, and in that case full rotational variance (0 to 359) shall be 
assumed. 
 
The memory for enrolled_latent is allocated prior to the call (i.e. by the application linked with the SDK) 
as a pre-zeroized 10 megabyte array. 
 
Upon return from this function,  enroll_length shall be set by the SDK to the length (in bytes) of the 
enrollment data stored in enrolled_latent.  The memory for enroll_length is allocated by the caller prior 
to calling this function. 
 
Failure-to-enroll a latent shall result in a non-zero return code and upon return from this function the 
enrollment data written to enrolled_latent shall contain non-zero length data defined by the SDK as 
representing “null enrollment data.”  This “null enrollment data” shall be usable in subsequent searches 
for the corresponding latent, and result in the output of a candidate list with all entries set to 0.   
 
Note that during the call to this function the directory containing the current background and its contents 
are read-only.  
 
 

Parameters 
 

latent_finger (input): Pointer to a latent fingerprint image record. 
 
roi_mask (input): Pointer to optional image mask identifying ROI(s). 
 
orientation (input): The estimated orientation (in degrees) of the latent fingerprint. 
 
offset (input):  The range of variance (in degrees) + or - the orientation. 
 
enrolled_latent (output): Pointer to memory block receiving  the enrollment data. 
 
enroll_length  (output): Pointer to length of enrolled_latent in bytes. 
 
 

Return Value 

This function returns zero on success or a documented non-zero error code on failure. 

 

 

C.2.3.4 Image Search  

 
INT32 

image_search(const BYTE    *enrolled_latent, 

  CANDIDATE_LIST    *candidates, 

   char              *error_msg); 
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Description 
This function searches the current background (as selected by set_background()) for zero or more 

candidates matching the input enrolled_latent parameter. The selection of features on which to 

match is entirely at the discretion of the SDK.  Note that during the call to this function the directory 

containing the current background and its contents are read-only.  
 
When this function is called, the candidates parameter will point to a pre-initialized 

CANDIDATE_LIST (see 2.1 above) with candidates->num_entries set equal to M, the number of 

background records (N) multiplied by 10 (i.e. M = N x 10), and candidates->list pointing to a pre-

allocated M  length array of (pre-zeroized) CANDIDATE structures. 
 
During execution of this function the SDK shall modify the CANDIDATE_LIST structure such that 

candidates->num_entries is set equal to the number of candidates found (S), and the first S 

members of the array specified by candidates->list contain all candidate information.  In other 

words, the first S structures of type CANDIDATE (see 2.1 above) pointed to by candidates->list 

shall contain the original background record file index, finger position, similarity score, and 

probability (range 0 to 100) for each candidate found by the search.  For Phase I and II testing, the 

number of candidates found, S, shall equal 50 (and M will always be greater than 50).  Additionally, 

the CANDIDATE structures in candidates->list shall be stored in decreasing order of 

similarity_score.  Note that before returning from this function the SDK must set candidates-

>num_entries equal to 50, even if less than 50 candidates are actually written to candidates->list.  

In the event that less than 50 candidates are actually written to candidates->list, the pre-zeroized 

CANDIDATE structures in the array will effectively provide “padding” (with NULL candidates) to 

the required length of 50. 

 

The background_index field for each CANDIDATE shall be set equal to the relative offset of the 

original ten-print record file processed by enroll_background().  The finger_position for each 

CANDIDATE shall be set equal to the finger position information extracted from its associated ten-

print record file.  And the similarity_score for each CANDIDATE shall be set to a value greater than 

or equal to 0 which represents the similarity of the input latent finger image to the respective 

candidate finger image in the background.  Note that any background fingerprint images not 

represented by an entry in candidates->list shall be implicitly assigned a similarity score equal to 

0. 

The probability field for each CANDIDATE shall be set equal to the probability (0-100) that the 

candidate is a “likely hit.”  

Non-fatal error conditions shall be tolerated and shall not result in pre-mature halting (i.e. non-

completion of the search).  These error conditions include encountering “gaps” in the background 

resulting from prior failure-to-enroll (FTE) events, and searching with an enrolled_latent  

containing “null enrollment data.”  In the latter case, the candidate list returned shall have all 

entries set to 0.  If any of the above non-fatal error conditions are encountered, the SDK may 

optionally return a documented non-zero warning code (after completing the search), though this 

is not required. 

 

Duplicate CANDIDATE entries or entries whose background_index field values are out of range (i.e. 

not between 1 and the N inclusive) shall not be accepted. 

Upon entry the error_msg parameter will point to a pre-allocated and pre-zeroized string buffer of 

length 513 bytes (512 + 1 for the NULL terminator) that the SDK may use for outputting detailed 

information regarding fatal errors which have occurred (signaled by a non-zero return code).  This 

may be useful for debugging any problems that might occur after the SDK is received by NIST. 

 

Optionally, the quality of the latent print, the number of minutiae found in the latent print, the 

number of latent minutiae matching each candidate print, and the quality of the each candidate 

print may be returned (respectively) via the fields candidates->latent_quality , candidates-

>num_latent_minutiae, candidate->num_matching_minutiae,  and candidate-
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>candidate_quality.  If image quality values are supplied for either the latent or candidate print, 

the table below indicates the required range of values and their associated meanings: 
 

Image Quality Value Description 

20 Poor 

40 Fair 

60 Good 

80 Very Good 

100 Excellent 

 

Note 1: Matcher architectures in which “advanced matchers” are selectively invoked (depending 

upon initial screening results for the latent) are allowed. The SDK might decide to invoke (call) 

computationally intensive matchers only for those comparisons which show initial good results. 

However, the SDK must decide if the additional features (if any) used by these “advanced matchers” 

will be written to persistent storage during the call to enroll_background().  

Note 2: Since it may not be possible to keep all background images in memory, it might be 

necessary for the software to repeatedly retrieve the data from disk, and this extra fetch time will 

be included in the execution time measurement. 

Note 3: The candidate list shall only depend on the inputs to this function and the currently selected 

background (not on any previous results from this function).  Thus, identical inputs and 

background shall produce identical candidate lists independent of all prior calls to this function. 

 
Parameters 
 

enrolled_latent (input): Pointer to the latent image’s enrollment data. 
 

candidates (input/output): A list of candidates matching the latent fingerprint image. 
 
error_msg (output): Pointer to a detailed error message string. 
 

Return Value 

This function returns zero on success or a documented non-zero error code on failure. 

C.2.4 Error Codes and Handling 

The participant shall provide documentation of all (non-zero) error or warning return codes (see section C.3.3, 

Documentation). 

The application should include error/exception handling so that in the case of a fatal error, the return code is 

still provided to the calling application. 

All messages which convey errors, warnings or other information shall be suppressed.  Information 

supplemental to the documented error codes returned by the SDK shall be conveyed via the error_msg 

parameter (see 2.3 above) only. 

 

At minimum the following return codes shall be used. 

 

Return 

code 

Function Explanation 

0 All Success 
-1 extract_image_data()  unable to open file 
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-2 extract_image_data() Incorrect file format 
-3 extract_image_data() error parsing ten-print file 
-4 extract_image_data() error decompressing image 
-5 extract_image_data() insufficient memory error 
-6 extract_image_data() unspecified error 

100 enroll_background() enrollment directory not found 
101 enroll_background() error extracting image(s) from ten print 
102 enroll_background()  error writing enrollment data                          
103 enroll_background() insufficient memory error 
200 set_background() enrollment directory not found 
300 enroll_latent() image size not supported 
301 enroll_latent() image resolution not supported 
302 enroll_latent() insufficient features found in latent 
400 image_search() enrollment directory not set 
401 image_search() insufficient memory available for search 
402 image_search() unable to access original ten-print record 

C.3 Software and Documentation 

C.3.1 SDK Library and Platform Requirements 

Individual SDKs shall not include multiple “modes” of operation, or algorithm variations which require explicit 

activation by the calling application.  If participants wish to separately compare the performance of such 

features, they must submit separate SDKs.  Note that this requirement does not preclude implementation of 

internally (i.e. autonomously) selected modes or algorithm variations within a single SDK.  Only such features 

requiring external selection by the calling application are forbidden. 

Participants shall provide NIST with binary code only (i.e. no source code) − supporting files such as header 

(“.h”) files notwithstanding.  It is preferred that the SDK be submitted in the form of a single static library file 

(i.e. “.LIB” for Windows or “.a” for Linux).  However, dynamic/shared library files are permitted.   

If dynamic/shared library files are submitted, it is preferred that the API interface specified by this document 

be implemented in a single “core” library file with the base filename ‘liblatent’ (for example, ‘liblatent.dll’ for 

Windows or ‘liblatent.so’ for Linux).  Additional dynamic/shared library files may be submitted that support 

this “core” library file (i.e. the “core” library file may have dependencies implemented in these other libraries). 

Note that dependencies on external dynamic/shared libraries such as compiler-specific development 

environment libraries are discouraged.  If absolutely necessary, external libraries must be provided to NIST 

upon prior approval by the Test Liaison. 

The SDK will be tested in non-interactive “batch” mode (i.e. without terminal support).  Thus, the library code 

provided shall not use any interactive functions such as graphical user interface (GUI) calls, or any other calls 

which require terminal interaction (e.g. calls to “standard input” or “standard output”). 

The use of multi-threading by the SDK is encouraged as the NIST test platform includes dual-processor support.  

The SDK need not be “thread safe” as the NIST test driver itself is single threaded.  If multi-threading is utilized 

by the SDK is shall be documented. 

NIST will link the provided library file(s) to a C language test driver application (developed by NIST) using the 

GCC compiler (for Windows platforms Cygwin/GCC version 3.3.1 will be used; for Linux platforms GCC version 

2.96 and GNU ld 2.11.90.0.8 will be used.  All GCC compilers  use Libc 6).  For example, 

 

gcc  –o latenttest  latenttest.c  -L. –llatent 
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Participants are required to provide their library in a format that is linkable using GCC with the NIST test driver, 

which is compiled with GCC.  All compilation and testing will be performed on x86 platforms running either 

Windows 2000 Professional SP4 (or higher) or Linux (kernel 2.4.7-10 or higher) dependent upon the operating 

system requirements of the SDK.  Thus, participants are strongly advised to verify library-level compatibility 

with GCC (on an equivalent platform) prior to submitting their software to NIST to avoid linkage problems later 

on (e.g. symbol name and calling convention mismatches, incorrect binary file formats, etc.). 

C.3.2 Installation and Usage 

The SDK must install easily (i.e. one installation step with no participant interaction required) to be tested, and 

shall be executable on any number of machines without requiring additional machine-specific license control 

procedures or activation. 

The SDK’s usage shall be unlimited. No usage controls or limits based on licenses, execution date/time, number 

of executions, etc. shall be enforced by the SDK. 

It is requested that the SDK be installable using simple file copy methods, and not require the use of a separate 

installation program.  Contact the Test Liaison for prior approval if an installation program is absolutely 

necessary. 

C.3.3 Documentation 

Complete documentation of the SDK shall be provided, and shall detail any additional functionality or behavior 

beyond what is specified in this document.  The documentation must define all error and warning codes. 

Multi-threading behavior by an SDK shall be documented. 

C.3.4 Speed Requirement 

All times given assume the use of a 2.8GHz Pentium IV equivalent or faster processor.  Time will be measured 

as “wall clock” elapsed time. 

The average time to enroll a single background ten-print record shall take no more than 150 seconds (15 

sec/image). 

The average time to enroll a single latent image shall take no more than 600 seconds. 

The average time to search a single background ten-print record shall take no more than 0.25 seconds (0.025 

sec/image). 
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Appendix D- Complete Set of Accuracy Characteristic s 

This appendix presents an exhaustive catalog of the DET characteristics.  This consists of sixteen computed 

from the SDKs' raw matcher score, and the remainder from the reported probability estimate.   All providers' 

DET curves are displayed together.  There is a separate set of four plots (for ranks 1, 10, 20, and 50) for each of 

the four tests. 
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