
!

!"#$%&$'("$)*'%+,-*'(%.,(%/,0*'1$),02

3)..4#),0+5#$'6#%7)$8%+9'1$("-%

:-'6'0$#

"#$%&'()$*(++

,(-&'.$/01&)

;&+<&=%>?>@

!

!"#$"%&'(')

*+,-&"-./+-01.ç./&42/&5261.7-0268

9044:,026#;,-.<,&=0->&#?.7-/+3&

@3.<.6-,&

"#$%&'()$*(++
!"#$%&"'()&*#$#+#,(%-(.#"&/"0/*("&/(1,23&%'%45

)&-%06"#$%&(1,23&%'%45(7"8%0"#%05

9"#3,6"#$2"'("&/(:%6;+#"#$%&"'(.2$,&2,*(<$=$*$%&

,(-&'.$/01&)
>&$=,0*$#5(%-(9"05'"&/

:%'',4,(?"0@A(9<

2&'34$!556

7#8#$9:;&'+1:)+$(<$=(11:'3:
B"05(7%2@,A(.,20,#"05

>&+?()&0$@)A+?+B+:$(<$8+&).&'.A$&).$C:34)(0(DE

?"#0$2@(<C(B"''"43,0A(<,;+#5(<$0,2#%0

FAST ITERATIVE SOLVER FOR CONVECTION-DIFFUSION SYSTEMS WITH
SPECTRAL ELEMENTS

P. AARON LOTT∗ AND HOWARD ELMAN†

Abstract. We introduce a solver and preconditioning technique based on Domain Decomposition and the Fast
Diagonalization Method that can be applied to tensor product based discretizations of the steady convection-diffusion
equation. The method is based on iterative substructuring where fast diagonalization is used to efficiently eliminate
the interior degrees of freedom and subsidiary subdomain solves. We demonstrate the effectiveness of this method
in numerical simulations using a spectral element discretization.

Key words. Convection-Diffusion, Domain Decomposition, Preconditioning, Spectral Element Method

1. Introduction. Numerical simulation of fluid flow allows for improved prediction and
design of natural and engineered systems such as those involving water, oil, or blood. The
interplay between inertial and viscous forces in a fluid flow dictates the length scale where
energy is transferred, thus determining the resolution required to capture flow information
accurately. This resolution requirement poses computational challenges in situations where
the convective nature of the flow dominates diffusive effects. In such flows, convection and
diffusion occur on disparate scales, causing sharp flow features that require fine numerical
grid resolution. This leads to a large system of equations which is often solved using an
iterative method. Exacerbating the challenge of solving a large linear system, the discrete
convection-diffusion operator is non-symmetric and poorly conditioned. This leads to slow
convergence of iterative solvers. In total, as convection dominates the flow the discrete fluid
model becomes exceedingly challenging to solve.

In recent years, the spectral element method has gained popularity as a technique for nu-
merical simulation of fluids [9],[18]. This is due in part to the method’s high-order accuracy,
which produces solutions with low dissipation and low dispersion with relatively few degrees
of freedom. Also important is the inherent computational efficiency gained through the use of
a hierarchical grid structure based on unstructured macro-elements with fine tensor-structured
interiors. This structure has enabled the development of efficient multi-level solvers and pre-
conditioners based on Fast Diagonalization and Domain Decomposition [8],[10],[21]. Appli-
cation of these techniques, however, has been restricted to symmetric systems.

One way to apply such methods to non-symmetric systems is through use of time-
splitting techniques, which split the system into symmetric and non-symmetric components.
For convection-diffusion systems, the standard method for performing steady and unsteady
flow simulations with spectral elements is operator integration factor splitting (OIFS) [12],
which requires time integration even in steady flow simulations. Using this standard ap-
proach, convection and diffusion are treated separately; convection components are tackled
explicitly using a sequence of small time steps that satisfy a CFL (Courant-Friedrichs-Lewy)
condition, and diffusive components are treated implicitly with larger time steps via a back-
ward differencing formula that couples the convection terms to the diffusion system. In this
framework, the diffusive system is symmetric allowing fast solvers based on Fast Diago-
nalization and Domain Decomposition to be employed. However, to simulate fast moving
flows the discretization must be refined to capture sharp flow features accurately; this in turn

∗Mathematical and Computational Sciences Division, National Institute of Standards and Technology, Gaithers-
burg, Maryland 20899; Aaron.Lott@nist.gov. This work was supported in part by a National Research Council
Postdoctoral Fellowship.

†Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, Col-
lege Park, MD 20742; elman@cs.umd.edu. This work was supported in part by the U. S. Department of Energy
under grant DEFG0204ER25619, and by the U. S. National Science Foundation under grant CCF0726017.

1

2 P. A. LOTT AND H. ELMAN

leads to severe constraints on the time-step size of the semi-implicit method. Such methods
can become prohibitively expensive when simulating highly convective flows over long time
periods.

An alternative approach to simulating convective flows is to perform implicit time in-
tegration, or to solve the steady state system directly. Such methods, however, require fast
solvers that are able to resolve the disparate convective and diffusive scales efficiently. The
steady convection-diffusion equation for the 2D transport of a scalar u(x,y) can be written as

− ε∇2u+(!w ·∇)u = f in Ω (1.1)

where the vector field !w = (wx(x,y),wy(x,y))T represents the given wind speed at each point
in the domain Ω, f represents a source term, and ε represents the diffusivity. In addition to
(1.1), we have the associated boundary conditions

u = uD on ∂ΩD, ∇ui ·!n = 0 on ∂ΩN , (1.2)

where!n is the outward facing normal on the boundary, and subscripts D and N denote Dirich-
let and Neumann boundary regions respectively. To measure the relative contributions of
convection and diffusion, equation (1.1) can be non-dimensionalized by emphasizing the in-
ertial terms through characteristic velocity and length scales, W and L respectively. That
is, points in Ω can be normalized by dividing by a characteristic length L, the source term
is non-dimensionalized by taking f ∗ := f L/W 2, and the scalar u∗ and wind w∗ are non-
dimensionalized by dividing by W . This leads to the equation in the normalized domain,

− 1
Pe

∇∗2u∗+(!w∗ ·∇∗)u∗ = f ∗. (1.3)

The quantity Pe := WL
ε is termed the Peclet number. This dimensionless number quantifies

the contributions of convection and diffusion for a given flow. In diffusion-dominated flows,
0≤ Pe≤O(1), whereas in convection-dominated flows Pe$ 1. We see in (1.3) that as Pe→
∞ the flow becomes dominated by convection and the diffusion term vanishes, leading to a
hyperbolic system. Solutions to these nearly hyperbolic systems often exhibit sharp gradients
in order to satisfy boundary conditions, thus requiring a fine numerical grid to resolve the flow
accurately. We also observe that as Pe→ 0, (1.3) does not produce the Poisson equation, since
the non-dimensionalization emphasizes the inertial terms. A similar non-dimensional form
of the convection-diffusion equation can be written for slow moving flows by accentuating
the viscous forces. In this form the source term is replaced with f ∗ = f L

Wε , whereas the other
quantities are normalized as above, leading to the dimensionless form

−∇∗2u∗+Pe(!w∗ ·∇∗)u∗ = f ∗. (1.4)

Now, as Pe→ 0 one is left with the Poisson equation to model the flow.
In this article, we introduce a new approach for simulating flows with spectral elements

by developing efficient solvers for the steady convection-diffusion system (1.1). We empha-
size the case where Pe is large, although these techniques apply to diffusion-dominated flows
as well. Similar ideas are explored in [13] for stabilized spectral element discretizations via
overlapping domain decomposition. Our method is based on non-overlapping domain de-
composition and takes advantage of Fast Diagonalization to eliminate degrees of freedom in
element interiors. The efficiency of our solution method is centered on two advancements:
the first is the use of an accurate high-order matrix-free discretization to construct accurate
discrete solutions while minimizing memory requirements; the second is the use of fast itera-
tive solvers, which are accelerated by domain decomposition based preconditioners that take
advantage of the local tensor product structure by exploiting Fast Diagonalization.

FAST SOLVER FOR CONVECTION-DIFFUSION SYSTEMS 3

2. Spectral Element Method applied to the Convection-Diffusion Equation. The
spectral element method is a numerical method for discretizing differential equations that
uses a finite polynomial basis to represent the solution on a set of non-overlapping subdo-
mains. The technique is a Galerkin method derived from the method of weighed residu-
als, in which a weak form equation is solved. The computational domain is tessellated by
subdomains Ωe called elements, and the associated integrals are divided into a sum of in-
tegrals on individual elements which are then approximated by numerical quadrature. In
one dimension, an orthogonal nodal spectral basis πN is constructed in each element as a
Lagrange interpolation polynomial based on a set of Gauss-Legendre-Lobatto (GLL) nodes,
(ΞN+1 := ξ1,ξ2, ...ξN+1). In higher dimensions, the basis is formed as a tensor product of
these one-dimensional basis functions. This allows functions defined on Ωe to be written
in terms of their spectral basis on each element. Using this nodal basis representation and
applying numerical quadrature results in a system of linear matrix equations that numeri-
cally represents the original integral equation on each element. Solving this system allows
one to obtain the solution at the GLL interpolation points. Inter-element coupling of these
equations ensures continuity along elemental boundaries. These inter-element couplings can
be enforced either by constructing a fully coupled sparse linear system of equations, or by
performing a gather-scatter operation that sums the solution along element boundaries after
element-based matrix-vector products are performed. As described in [4], this gather-scatter
operation, called “direct-stiffness-summation,” coupled with the tensor product formulation
of elemental operators, yields a matrix-free discretization, in which only local matrices asso-
ciated with one-dimensional phenomena need to be stored.

The weak formulation of (1.1) is: Find u ∈ X such that:

ε
Z

Ω
∇u ·∇v+

Z

Ω
(!w ·∇u)v =

Z

Ω
f v ∀v ∈ X0, (2.1)

where the continuous solution and test spaces are defined as

X :=
{

u ∈ H1(Ω)2|u = uD on ∂ΩD
}

(2.2)

X0 :=
{

u ∈ H1(Ω)2|u = 0 on ∂ΩD
}

, (2.3)

which are based on L2(Ω) - the space of all square integrable functions on Ω. H1(Ω) is the
space of all functions in L2(Ω) with first derivatives also in L2(Ω). Existence and uniqueness

Definition 1 Coercivity
A bilinear form a(·, ·) is coercive with respect to the norm ‖ · ‖V in a space V if there is a
positive constant c such that a(u,u)≥ c‖u‖2

V ∀u ∈V (see [7] p. 121).

Definition 2 Continuity
A bilinear form a(·, ·) is continuous with respect to the norm ‖ ·‖W in a space W if there is a
positive constant C such that |a(u,v)|≤ c‖u‖W‖v‖W ∀u,v ∈W (see [7] p. 121).

of a corresponding weak solution can be demonstrated by establishing the coercivity and
continuity of the bilinear form

a(u,v) := ε
Z

Ω
∇u ·∇v+

Z

Ω
(!w ·∇u)v. (2.4)

4 P. A. LOTT AND H. ELMAN

For Dirichlet problems, coercivity can be established by observing that the convection term
is skew-self-adjoint when ∇ ·!w = 0 and !w ·!n = 0 along the outflow, so a(u,u) = ε‖∇u‖2 for
all admissible u, and continuity is verified over X0 using

|a(u,v)|≤ ε
∣∣∣∣
Z

Ω
∇u ·∇v

∣∣∣∣+
∣∣∣∣
Z

Ω
(!w ·∇u)v

∣∣∣∣, (2.5)

and bounding the terms using the Cauchy-Schwarz inequality. We refer the reader to [3] for
details.

Using the spectral element method, we construct a finite-dimensional basis for X and X0
by dividing the domain Ω into E non-overlapping sub-domains (elements) Ω =∪E

e=1Ωe; each
sub-domain is then discretized using tensor products of Lagrangian interpolants on degree N
Legendre polynomials πN . The corresponding discrete approximation space for the solution
and test functions is defined as

XN = X ∩P2
N,E(Ω), XN

0 = X0∩P2
N,E(Ω) (2.6)

where

P2
N,E(Ω) = {v(xe(r))|Ωe ∈ PN(r1)⊗PN(r2), e = 1, ...,E} (2.7)

and PN(r) is the space of Lagrangian interpolants of degree less than or equal to N defined
on the Gauss-Legendre-Lobatto points on the reference domain [−1,1].

The discrete weak form is: Find u ∈ XN such that:

ε
Z

Ω
∇u ·∇v+

Z

Ω
(!w ·∇u)v =

Z

Ω
f v ∀v ∈ XN

0 . (2.8)

The solution is then written as a sum of a known function uD, that satisfies the Dirichlet
boundary conditions at the nodes corresponding to points on the Dirichlet boundary and is
zero otherwise, and an unknown function u0 that is zero on the Dirichlet boundaries, u =
u0 +uD. Moving the known quantities to the right-hand side we have:

Find u ∈ XN
0 such that:

ε
Z

Ω
∇u0 ·∇v+

Z

Ω
(!w ·∇u0)v =

Z

Ω
f v− ε

Z

Ω
∇uD ·∇v−

Z

Ω
(!w ·∇uD)v ∀v ∈ XN

0 . (2.9)

On each element the solution is of the form

ue
0(x,y) =

N+1

∑
i=1

N+1

∑
j=1

ui jπi(x)π j(y), (2.10)

and after obtaining ue
0 on each element, this solution can be combined with uD to form the dis-

crete solution satisfying (1.1) and (1.2). The coefficients ui j correspond to the nodal values of
u on the tensored Gauss-Legendre-Lobatto (GLL) points. After inserting u and v represented
via the bases indexed by i j and î ĵ respectively into (2.9) we obtain the system of equations

MeΣ′Fe(!we)︸ ︷︷ ︸
F

ue
0 = MeΣ′(Me f e−Fe(!w)ue

D)︸ ︷︷ ︸
b

. (2.11)

Here, a mask matrix Me sets ue
0 to zero at all Dirichlet boundary nodes. The convection-

diffusion operator Fe is represented on each element with dimensions hx × hy through this

FAST SOLVER FOR CONVECTION-DIFFUSION SYSTEMS 5

basis as

Fe
x = ε hy

hx
(
Z 1

−1
π jπ ĵ)

︸ ︷︷ ︸
M̂ j ĵ

(
Z 1

−1
π′iπ′î)

︸ ︷︷ ︸
Âiî

+we
x

hy
2 (

Z 1

−1
π jπ ĵ)

︸ ︷︷ ︸
M̂ j ĵ

(
Z 1

−1
π′iπî)

︸ ︷︷ ︸
Ĉiî

= ε(M̂⊗
hy

hx
Â)

︸ ︷︷ ︸
Diffusion in x

+W e
x (M̂⊗

hy

2
Ĉ)

︸ ︷︷ ︸
Convection in x

Fe
y = ε hx

hy
(
Z 1

−1
π′jπ′ĵ)

︸ ︷︷ ︸
Â j ĵ

(
Z 1

−1
πiπî)

︸ ︷︷ ︸
M̂iî

+we
y

hx
2 (

Z 1

−1
π′jπ ĵ)

︸ ︷︷ ︸
Ĉ j ĵ

(
Z 1

−1
πiπî)

︸ ︷︷ ︸
M̂iî

= ε(hx

hy
Â⊗ M̂)

︸ ︷︷ ︸
Diffusion in y

+W e
y (

hx

2
Ĉ⊗ M̂)

︸ ︷︷ ︸
Convection in y

Fe(we) = Fe
x +Fe

y .
(2.12)

The discrete two-dimensional diffusion operator is formed via tensor products of the one-
dimensional second derivative operator Â with the one-dimensional mass matrix M̂. Similarly,
the discrete convection operator is formed via a tensor product of the weak one-dimensional
derivative operator Ĉ with the mass matrix M̂, then scaled by the wind speed at each node via
the (N +1)2× (N +1)2 diagonal matrices W e

x = diag(wx(ξi,ξ j)) and W e
y = diag(wy(ξi,ξ j)).

The mass matrix, M = diag(Me) is composed of local mass matrices, Me, represented via a
tensor product of one-dimensional operators, M̂, namely:

Me =
hxhy

4
(
Z 1

−1
πiπî)

︸ ︷︷ ︸
M̂iî

(
Z 1

−1
π jπ ĵ)

︸ ︷︷ ︸
M̂ j ĵ

=
hxhy

4
M̂⊗ M̂. (2.13)

Due to the orthogonality of the basis functions πi and π j, the mass matrix is a diagonal matrix.
The global system matrices can be defined by assembling the elemental matrices Me

and Fe across multiple elements via a boolean connectivity matrix Q that maps global nodal
values to local nodal values; that is F(w) = MQT FeQM, is the global non-symmetric dis-
crete convection-diffusion operator, and M = MQT MeQM the global diagonal mass matrix.
However, in practice, the local form given in (2.11) is more convenient computationally since
tensor-product operations can be readily applied without a scatter operation first being ap-
plied. In this format the direct-stiffness-summation operator Σ′ = QQT is applied to sum all
elemental contributions. Thus (2.11) is a matrix-free formulation in the sense that no global
matrix is assembled, allowing the discrete system to be written in terms of element-defined
operators such that on each element several discrete operators are applied. We refer the reader
to [4] for a detailed description of this formulation.

The system in (2.11) can be solved using an iterative scheme, such as preconditioned
GMRES (Generalized Minimal Residual Method) [16]. In the case of constant wind, fast di-
rect solvers in conjunction with domain decomposition with iteration for subsidiary problems
are available as a more efficient solver. In the next section, we explain how to solve constant
coefficient problems by this technique, and provide empirical results in section 4. Then, in
section 5 we discuss how this domain decomposition scheme can be used as a preconditioner
to accelerate convergence convection-diffusion problems with non-constant wind.

3. Domain Decomposition via Iterative Substructuring. In this section we outline the
use of a matrix-free domain decomposition method based on iterative substructuring to solve
the discrete convection-diffusion problem with constant coefficients. The solution method
obtains the discrete solution on a set of non-overlapping subdomains by first solving for un-
knowns on inter-element interfaces, and then performing back substitution to compute the
interior degrees of freedom. For large systems, the solution on elemental interfaces is ob-
tained by an iterative method. The system that governs the elemental interfaces may be poorly

6 P. A. LOTT AND H. ELMAN

conditioned, and thus requires preconditioning. We describe here a domain decomposition
method that we use in conjunction with a Robin-Robin preconditioner for the interface solve.
In addition we present a generalization of the Fast Diagonalization Method for obtaining
interior degrees of freedom.

3.1. Algorithm Overview. As discussed in the previous section, the domain is subdi-
vided into E spectral elements. Let Γ denote the degrees of freedom contained on the union
of elemental interfaces, and let the sets Ie denote the degrees of freedom belonging to the
interior of the eth element. The discrete system (2.11) can be written in the form

F̄1
II 0 . . . 0 F̄1

IΓ
0 F̄2

II 0 . . . F̄2
IΓ

...
.

...
0 0 . . . F̄E

II F̄E
IΓ

F̄1
ΓI F̄2

ΓI . . . F̄E
IΓ F̄ΓΓ

uI1

uI2

...
uIE

uΓ

=

bI1 − F̄uD|I1

bI2 − F̄uD|I2

...
bIE − F̄uD|IE

bΓ− F̄uD|Γ

=

b̂I1

b̂I2

...
b̂IE

b̂Γ

. (3.1)

Note that the unknowns here are ordered by block in a specific way: those associated with
the interiors of an individual element are listed first, followed in the end by those lying on
element interfaces. The term F̄ΓΓ is the sum of the individual element operators F̄e

ΓΓ defined
on each element. We denote the discrete constant coefficient convection-diffusion operator
by F̄ because in section 5 we will use this operator as a preconditioner for variable wind
convection-diffusion problems.

As we mentioned in the last section, Dirichlet boundary conditions are implemented
outside of the system operator in (3.1), by subtracting F̄uD from the right hand side vector.
F̄uD denotes the full convection-diffusion system matrix applied to the Dirichlet boundary
vector uD.

The goal is to solve for interface values uΓ and then to perform back substitution and
solve for uIe on each sub-domain interior. The solution algorithm is based on a formal factor-
ization of (3.1) into the product of lower and upper block matrices

I 0 . . . 0 0
0 I 0 . . . 0
...

.
...

0 . . . 0 I 0
F̄1

ΓI F̄1
II
−1 F̄2

ΓI F̄2
II
−1

. . . F̄E
ΓI F̄E

II
−1 I

F̄1
II 0 . . . 0 F̄1

IΓ
0 F̄2

II 0 . . . F̄2
IΓ

...
.

...
0 0 . . . F̄E

II F̄E
IΓ

0 0 . . . 0 F̄S

(3.2)

where

F̄S =
E

∑
e=1

F̄e
S =

E

∑
e=1

(F̄e
ΓΓ− F̄e

ΓI F̄e
II
−1 F̄e

IΓ) (3.3)

represents the Schur complement of the system. By multiplying both sides of (3.1) with the
inverse of the lower triangular matrix, one obtains the system

F̄1
II 0 . . . 0 F̄1

IΓ
0 F̄2

II 0 . . . F̄2
IΓ

...
.

...
0 0 . . . F̄E

II F̄E
IΓ

0 0 . . . 0 F̄S

uI1

uI2

...
uIE

uΓ

=

b̂I1

b̂I2

...
b̂IE

gΓ

(3.4)

FAST SOLVER FOR CONVECTION-DIFFUSION SYSTEMS 7

with

gΓ =
E

∑
e=1

(b̂Γe − F̄e
ΓI F̄e

II
−1 b̂Ie). (3.5)

The interface variables are then obtained by solving

F̄SuΓ = gΓ, (3.6)

and interior variables are obtained by solving

F̄e
IIuIe = b̂Ie − F̄e

IΓue
Γ (3.7)

on each element. This involves a three-step procedure:
• Perform E subdomain solves to apply the action of F̄e

II giving gΓ, in (3.5)
• Perform interface solve for F̄SuΓ = gΓ, as in (3.6)
• Perform E subdomain solves to apply the action of F̄e

II yielding uI , as in (3.7).
The Schur complement operator, F̄S, can be constructed element-by-element by writing

F̄S = ∑ F̄e
S . This allows for efficient tensor-product based (see appendix (7)) computation of

the elemental matrix-vector products, which can be used to apply the matrix on each element
inside an iterative solver. Once uΓ is obtained it is substituted back into (3.4) to provide ele-
mental boundary conditions for the interior solves. Note that the subdomain solves required
for step 1 (to compute gΓ) and step 3 (to compute uI) entail the same operations, a set of
independent solves for applying the action of F̄e

II
−1 on each element e. Moreover, the same

operation is required to apply the elemental matrix-vector products in the iteration used for
step 2. Each of these operations is performed using the element-wise Fast Diagonalization
Method (FDM), which we discuss in section 3.3.

3.2. Interface Solve. To compute the interface variables in (3.6) we use preconditioned
GMRES. Our choice of preconditioner is the Robin-Robin preconditioner developed in [1],
which extends the popular Neumann-Neumann preconditioner used to accelerate the conver-
gence of interface solvers corresponding to the Poisson equation, [14], [17], [20] to non-
symmetric systems. This technique uses a pseudo-inverse of the locally defined Schur com-
plement operator, with Robin and Neumann boundary conditions applied to elemental inter-
faces. The preconditioning matrix is given by

E

∑
e=1

D(e)RT
e (F̄e

S)−1 ReD(e), (3.8)

where F̄e
S from equation (3.3) is a modified Schur complement operator on the eth element,

the matrices De are chosen to provide an appropriate inverse scaling factor, and Re restricts a
vector to the eth element. The number of iterations required for the preconditioned system to
converge is bounded by C

H (1 + log(N))2 ([20], p. 321) where N is the order of the spectral
element basis functions, H is the diameter of a typical element Ωe, and the constant C depends
on the Peclet number. One may gain insight into this preconditioner by considering a simple
two-domain case. In the case of two subdomains, the Schur complement of equation (3.3) is
F̄S = F̄1

S + F̄2
S . If the two domains are of equal size, and the wind is constant on the domain

such that the matrices F̄1
S ≈ F̄2

S are of similar character, then the preconditioned system is
approximately a scaled identity

(F̄1
S
−1 + F̄2

S
−1)(F̄1

S + F̄2
S) = 2I + F̄2

S
−1 F̄1

S + F̄1
S
−1 F̄2

S (3.9)

= 2I + F̄2
S
−1 F̄1

S + (F̄2
S
−1 F̄1

S).
−1

8 P. A. LOTT AND H. ELMAN

As shown in [17], when applying the preconditioner, it is not necessary to form F̄e
S
−1 on

each element, since the matrix

F̄e =
[

F̄e
II F̄e

IΓ
F̄e

ΓI F̄e
ΓΓ

]
. (3.10)

can be factored as

F̄e =
(

I 0
F̄e

ΓI F̄e
II
−1 I

)(
F̄e

II 0
0 F̄e

S

)(
I F̄e

II
−1 F̄e

IΓ
0 I

)
, (3.11)

which means that

F̄e−1 =
(

I − F̄e
II
−1 F̄e

IΓ
0 I

)(
F̄e

II
−1 0

0 F̄e
S
−1

)(
I 0

−F̄e
ΓI F̄e

II
−1 I

)
. (3.12)

Thus F̄e
S can be applied to a vector by applying the inverse of F̄e to the vector restricted to

the elemental boundary, and then restricting the resulting vector to the elemental boundary,
namely

F̄e
S
−1 xΓ = (0 I) F̄e−1

(
0
xΓ

)
. (3.13)

Note that with this methodology, the matrices F̄e correspond to discretizations of the
operator with Neumann boundary conditions applied on elemental boundaries. The Neumann
boundary conditions applied at elemental boundaries produces a preconditioning operator that
corresponds to the bilinear form

ae(u,v) =
Z

Ωe
(ε∇u ·∇v+(!w ·∇u)v), (3.14)

which can be derived from the element-based Neumann problem

− ε∇2u+(!w ·∇)u = f in Ωe, (3.15)

−ε∂u
∂n

= 0 on Γe. (3.16)

Using F̄e
S as a preconditioner corresponds to the Neumann-Neumann domain decomposition

method which is commonly used in solving Poisson’s equation. Because of the Neumann
boundary conditions in the elemental operators, F̄e

II contains a zero eigenvalue and a pseudo-
inverse operation can be performed via Fast Diagonalization.

However, as convection becomes dominant, these Neumann element interface conditions
(3.16) cause the bilinear form (3.14) to lose coercivity [14], thus rendering the Neumann-
Neumann method ineffective. Achdou et al. [1] adapted the Neumann-Neumann precondi-
tioner to non-symmetric convection-diffusion systems by choosing interface boundary con-
ditions that reflect the movement of the flow across element boundaries. In particular, Robin
boundary conditions are used instead of Neumann conditions at inflow boundaries where
!w ·n < 0; Neumann boundary conditions are still imposed at outflows where !w ·n > 0. This
strategy is known as a Robin-Robin preconditioner. It ensures that the symmetric part of the
preconditioning operator is positive-definite (see [1] & [20]), since the underlying bilinear
form,

ae(u,v) =
Z

Ωe
(ε∇u ·∇v+(!w ·∇u)v)−

Z

Γi
(!w ·!n)uv, (3.17)

FAST SOLVER FOR CONVECTION-DIFFUSION SYSTEMS 9

derived from the element-based Robin problem

− ε∇2u+(!w ·∇)u = f in Ωe, (3.18)

−ε∂u
∂n

+(!w ·!n)u = 0 on Γe, (3.19)

is coercive.
The difference between Neumann-Neumann and Robin-Robin preconditioners is the ad-

ditional (!w ·!n)u term at the element interfaces; thus the two preconditioners are equivalent
when !w = 0. This added term allows the flow to move between elements, and ensures that the
preconditioned system matrix is positive definite, as described in [1] and [20]. In practice,
the elemental boundary conditions are determined by considering the sign of the convection
term at each element boundary. This involves modifying the one-dimensional convection-
diffusion operators F̂x and F̂y from equation (2.12) by a single entry corresponding to the
inflow condition

F̂xRR(1,1) = F̂x(1,1)+wxM̂(1,1) if wx > 0
F̂xRR(N +1,N +1) = F̂x(N +1,N +1)−wxM̂(N +1,N +1) if wx < 0

F̂yRR(1,1) = F̂y(1,1)+wyM̂(1,1) if wy > 0
F̂yRR(N +1,N +1) = F̂y(N +1,N +1)−wyM̂(N +1,N +1) if wy < 0.

In section 4 we provide empirical results comparing the Neumann-Neumann and Robin-
Robin preconditioning schemes using our solution method. We note that in both cases the
operation is performed using Fast Diagonalization, which we introduce in the following sub-
section.

3.3. Fast Diagonalization Method (FDM) . Throughout this section we have seen that
the domain decomposition strategy requires interior solves during calculations involving F̄S
and gΓ as well as in solving (3.4), and computing the pseudo-inverse (3.13) in the application
of the interface preconditioner. In this section we describe an efficient technique known as the
Fast Diagonalization Method (FDM) for performing these solves. The Fast Diagonalization
Method was originally constructed to solve problems arising from tensor-product based finite
difference discretizations of constant coefficient partial differential equations. This method
only depends on the inverses of diagonal matrices, and of small matrices corresponding to
one-dimensional phenomena. We exploit this in the application of our solvers and precondi-
tioners as discussed in this section. In particular, we show how to generalize the FDM de-
scribed in [11], to non-symmetric discrete convection-diffusion systems with constant wind
!w. We then examine the use of FDM applied to (2.11) on a single element.

The spectral element discretization enables the convection-diffusion equation to be writ-
ten as sums of tensor products on each element. This form is particularly useful when per-
forming matrix-vector products, and when solving certain elemental systems of equations.
For systems in which the coefficient matrix is of order nd and has a tensor product structure,
where d represents the number of spatial dimensions and n represents the number of grid
points used along each dimension on a single element, the FDM enables the solution to be
computed in O(nd+1) operations.

Consider equation (2.12) in the special case where W e
x = cx and W e

y = cy are both constant
on each element. In this special case, the convection-diffusion operator on each element can
be be written as

Fe(cx,cy) = M̂⊗ F̂x + F̂y⊗ M̂ =: F̄e. (3.20)

10 P. A. LOTT AND H. ELMAN

We use the fact that M̂ is diagonal to apply a transformation to F̄e that will allow for Fast
Diagonalization. That is, we can write F̄e = M1/2F̃eM1/2 where M = M̂⊗ M̂, and

F̃e = M−1/2F̄eM−1/2 (3.21)
= (M̂−1/2⊗ M̂−1/2)(M̂⊗ F̂x + F̂y⊗ M̂)(M̂−1/2⊗ M̂−1/2)

= (I⊗ M̂−1/2F̂xM̂−1/2)+(M̂−1/2F̂yM̂−1/2⊗ I)
= (I⊗B)+(A⊗ I).

Assuming both A and B are diagonalizable, we have A = SΛyS−1, B = T ΛxT−1. This gives

F̃e = (S⊗T)(Λy⊗ I + I⊗Λx)(S−1⊗T−1) (3.22)

so that

F̃e−1 = (S⊗T)(Λy⊗ I + I⊗Λx)−1(S−1⊗T−1). (3.23)

That is, the transformed matrix F̃ can be diagonalized cheaply and the action of the inverse
of F̄e can also be inexpensively applied as

F̄e−1 = (M̂−1/2⊗ M̂−1/2)(S⊗T)(Λy⊗ I + I⊗Λx)−1(S−1⊗T−1)(M̂−1/2⊗ M̂−1/2). (3.24)

We use this method to apply the action of F̄e
II
−1 for each element in the domain decom-

position method described earlier in this section. In flows where the wind coefficient !w is
constant, the resulting algorithm defined by (3.5)-(3.7) can be viewed as a direct solver for
equation (2.11), although it should be noted that in practice, an iteration is needed to obtain
the solution to the Schur complement system (3.6) on the union of element interfaces. We
demonstrate the use of this methodology for solving constant coefficient problems in two ex-
amples in the next section. We then describe in section 5 how this method can be used to
accelerate convergence of GMRES for computing solutions of more general flows. Included
in this discussion is the impact and convergence properties of the inner iteration for the Schur
complement system (3.6).

4. Solution of Problems with Constant Wind. In this section we demonstrate the ef-
fectiveness of our solvers applied to two test problems with constant coefficients.

4.1. Closed-Form solution with outflow boundary layer. We consider a problem with
a closed-form solution; this problem has a zero source term and a constant wind in the vertical
direction. The solution is

u(x,y) = x

(
1− e(y−1)/ε

1− e−2/ε

)
. (4.1)

Plots of the computed solution and its contours are displayed in Figure 4.1. These were
obtained using a spectral element discretization with 2 elements in each dimension, and poly-
nomial degree 16 on each element. The solution exhibits dramatic change near the outflow
boundary y = 1; the width of this exponential boundary layer is proportional to ε (see [5] &
[15]), so as the Peclet number increases the width of this boundary layer narrows.

We test the accuracy of our numerical scheme by comparing with the analytic solution
and record the results in Tables 4.1 and 4.2. In the first table, a 2×2 element grid is fixed as the
polynomial degree on each element ranges from 4 to 32. We see that as the polynomial degree
is doubled, the error decays exponentially, as expected from p-refinement. In the second table
the polynomial degree on each element is fixed at N = 2 as the number of elements range from
16 to 1024. Here we see that the solution converges algebraically as E is increased. These
results are in agreement with the cubic convergence rate for quadratic elements [2].

FAST SOLVER FOR CONVECTION-DIFFUSION SYSTEMS 11

Fig. 4.1: Computed solution (left) and contours (right) of steady convection diffusion flow
corresponding to example 4.1 with constant wind !w = (0,1) and moderate convection Pe =
40.

N ‖u−uN‖2

4 5.535×10−2

8 2.505×10−3

16 2.423×10−7

32 7.931×10−13

Table 4.1: Exponential convergence for
example 4.1 with moderate convection
(Pe = 40), as polynomial degree is varied
on a fixed 2×2 element grid.

E ‖u−uN‖2 13h3

16 8.594×10−2 2.031×10−1

64 2.593×10−2 2.523×10−2

256 3.558×10−3 3.174×10−3

1024 3.610×10−4 3.967×10−4

Table 4.2: Algebraic convergence for
example 4.1 with moderate convection
(Pe = 40), as the number of quadratic ele-
ments are varied.

4.2. Oblique wind with internal and outflow boundary layers. In our second exam-
ple we use a flow that exhibits two layers, one characteristic boundary layer along the top
wall proportional to ε and a second internal layer of width proportional to

√
ε that results

from a jump discontinuity in the boundary at (0,−1) (see Figure 4.2). Dirichlet boundary
conditions are imposed along each boundary. The wind field in this test case is constant
!w = (−sin(π/6),cos(π/6)), but unlike the previous example, here the wind is not aligned
with the grid.

4.3. Constant wind results. We now focus on the iterative solution of the interface
problem (3.6). We examine the influence of changes in the discretization and the Peclet
number on the iterations by performing three sets of experiments for each example problem.
First we modify the number of elements in the discretization for a fixed polynomial basis and
Peclet number. Next we refine the polynomial degree while keeping the number of elements
and the Peclet number fixed. Finally, we fix the number of elements and the polynomial basis,
while modifying the Peclet number.

GMRES is used to perform the interface solve. In each experiment, we test three choices
of preconditioner for the interface solve: no preconditioner (None), Neumann-Neumann pre-
conditioning (N-N), and Robin-Robin preconditioning (R-R). The results are summarized in
Tables 4.3, 4.4, and 4.5. There we record the number of iterations needed for GMRES to
converge within a tolerance of 10−12.

For the first experiment we set the Peclet number to 40 and fix the polynomial degree at

12 P. A. LOTT AND H. ELMAN

Fig. 4.2: Computed solution (left) and contours (right) of a convection-dominated steady
convection-diffusion flow, Pe = 250, corresponding to example 4.2.

N = 2. We then increase the number of elements from E = 16 (as a 4×4 grid) to E = 1024
(32×32 grid). We record the iterations in Table 4.3. Each method depends on the increased
grid resolution. The table shows that performance of the Robin-Robin method compares
well with theory and is superior to the other two methods. We see that the number of (R-R)
iterations for both test cases are essentially of the form C

h (1 + log(N))2, for C ≈ 1. Where h
is the diameter of a single element.

E None N-N R-R 1
h (1+ log(N))2

16 13 13 12 11.5
Example 64 49 47 25 22.9

4.1 256 108 88 45 45.9
1024 312 180 85 91.7

16 29 33 21 11.5
Example 64 40 63 26 22.9

4.2 256 69 117 46 45.9
1024 132 > 200 87 91.7

Table 4.3: Convergence results for examples 4.1 (top) and 4.2 (bottom) with moderate con-
vection Pe=40, as the number of quadratic (N=2) elements are varied.

In our next experiment, we again set the Peclet number to 40, but now we fix the number
of elements to 4 as a 2×2 element grid, and view the influence of the polynomial degree on
the number of interface solve iterations. The iterations are recorded in Table 4.4. We note
that for this test problem with moderate convection and few subdomains, (N-N) and (R-R)
converge in roughly the same number of steps, and here the iterations in both test cases are
C
h (1+ log(N))2, for C ≈ 1.

Finally, we examine how changes in the Peclet number affect convergence. For this
study, we compare the number of iterations needed to obtain the interface solution as the
Peclet number is increased. We use a fixed grid with polynomial degree N=8, and the num-
ber of elements at E = 1024 (32× 32 element grid). In Table 4.5, we compare conver-
gence results when different preconditioners are used to obtain the interface solution. The
Neumann-Neumann preconditioner (N-N) is no more effective than when no preconditioning
is used (None), whereas the Robin-Robin preconditioner (R-R) shows little dependence on
changes in the Peclet number. Indeed, for moderate values, as the Peclet number is increased

FAST SOLVER FOR CONVECTION-DIFFUSION SYSTEMS 13

N None N-N R-R 1
h (1+ log(N))2

4 3 3 3 5.6
Example 8 7 7 7 9.4

4.1 16 15 11 14 14.2
32 30 16 18 19.9

4 13 13 13 5.6
Example 8 25 25 18 9.4

4.2 16 36 28 20 14.2
32 50 29 21 19.9

Table 4.4: Convergence results for examples 4.1 (top) and 4.2 (bottom) with a moderate
convection Pe = 40, as polynomial degree is varied on a fixed 2×2 element grid.

the Robin-Robin preconditioner actually improves. For higher Peclet numbers, the iteration
counts with Robin-Robin preconditioning increase only mildly with the Peclet number.

Pe None N-N R-R
125 161 165 64
250 126 144 52

Example 500 107 147 46
4.1 1000 109 164 43

2000 135 > 200 42
5000 > 200 > 200 50
125 184 186 70
250 140 158 61

Example 500 107 148 52
4.2 1000 88 166 46

2000 96 > 200 52
5000 > 200 > 200 70

Table 4.5: Comparison of iteration counts for examples 4.1 (top) and 4.2 (bottom) with in-
creasingly convection-dominated flows. N=8, E=1024 using 32×32 element grid.

We conclude that Robin-Robin preconditioner performs well for both grid-aligned and
non-grid aligned flows. In cases where the Peclet number is small, this technique behaves
like the Neumann-Neumann preconditioner, which is often used to precondition the discrete
Poisson equation [17]. We observed that when using the Robin-Robin preconditioner, the
number of iterations required for F̄−1

S had little dependence on the mesh size as well as the
Peclet number.

As a final note for this section we point out that for constant-wind problems this solu-
tion strategy based on iterative substructuring is significantly cheaper than naively applying
GMRES directly to (2.11). The domain decomposition strategy allows one to solve highly
convective systems, where in contrast without preconditioning, we have found that GMRES
fails to converge. This is accomplished, in part, by eliminating interior degrees of freedom
using FDM, thereby reducing memory overhead in high resolution cases by nearly an order
of magnitude. For example, in the simulation above using N = 8 and E = 32× 32, there
are roughly five times fewer degrees of freedom along elemental interfaces than in the com-
plete system. In three dimensions with large N, savings in memory would be even greater.
For non-symmetric systems solved using GMRES this is very important since one must hold
all computed iterates in memory to obtain an orthogonal search direction at each iterate. In
the next section we attempt to take advantage of this inexpensive computational method as a

14 P. A. LOTT AND H. ELMAN

preconditioning technique for solving non-constant wind convection-diffusion systems.

5. Non-Constant Wind Systems. When the convection coefficient !w is not constant
in each component, the domain decomposition solution technique described in the previous
two sections does not directly apply. In this section we present a way to use our domain de-
composition solver as a preconditioner to accelerate the convergence of GMRES or Flexible
GMRES (FGMRES) for solving discrete convection-diffusion systems (2.11) arising from
non-constant winds.

In the case of non-constant wind, the matrix F(!w) from equation (2.12) cannot be written
in the tensor product form (3.20) where Fast Diagonalization can be applied element-wise.
However, if we approximate F(!w) on each element in a certain way, we can construct an
element-based matrix of this form to be used as a preconditioner for F(!w). In particular, we
consider the approximation to F(!w) where !w is approximated locally as a constant on each
element. To determine this constant, we take the average of !w in each component to construct
a new piecewise constant wind vector approximation w̄. Using this vector we can construct a
constant-wind approximation to F(!w), which we call F̄ .

In order to apply the preconditioner F̄ for multiple elements, we follow the domain de-
composition strategy developed in section 3. The only difference is that F̄ is now an approx-
imation to F based on average elemental wind speeds. Because of this, we note that it is
not necessary to resolve the F̄S interface solution to high precision, since these values are not
likely to reflect the values of the non-constant wind solution accurately. Instead, we seek a
rough estimate of the interface values that we can obtain from a few iterations of the Schur
complement solve for (3.6). That is, we apply F̄−1

S inexactly through a few steps of GMRES.
It is also important to point out that the iteration used to solve the Schur complement prob-
lem in F̄S makes F̄ a non-linear operator. Since the preconditioning operator is non-linear,
the outer GMRES iteration must be replaced with a variant such as Flexible GMRES [16],
which allows for arbitrary changes in the preconditioner at each step of the iteration. Thus,
FGMRES is used to solve the right-preconditioned system

[MeΣ′Fe(!w)︸ ︷︷ ︸
F

F̄−1][F̄ue
0] = MeΣ′(Me f e−Fe(!w)ue

D)︸ ︷︷ ︸
b

. (5.1)

In summary, to solve convection-diffusion problems with non-constant wind we use Flex-
ible GMRES . At each step of FGMRES, a preconditioner, F̄ , based on an element-wise av-
erage wind is used. In addition, during each FGMRES iteration we allow for the possibility
of using an inexact inner iteration for the interface nodes associated with (3.6). This inner
iteration is coupled with FDM to obtain interior degrees of freedom on each element.

5.1. Double Glazing Problem. We examine our non-constant wind solver by applying
it to a flow that has a recirculating wind !w = (2y(1− x2),−2x(1− y2)) and discontinuities
in parts of the boundaries, which lead to boundary layers. This example is known as the
double-glazing problem, and serves as a simple model of the spread of heat in a box with a
hot wall.

The left pane of Figure 5.1 shows the computed solution for an example flow with Pe =
400 using FGMRES, and the right pane shows an approximate solution obtained by replacing
the coefficient matrix with the preconditioning matrix F̄ . It can be seen in the figure that
in the approximate solution the constant wind approximation produces an error in regions
where the convection field changes direction, such as at the corners and around the internal
boundary layer.

5.2. Variable wind with curved open streamlines. For our second example, we use a
test case from [13] with a variable flow field !w = 1

2 ((1−x2)(1+y),x((1+y)2−4)). Boundary

FAST SOLVER FOR CONVECTION-DIFFUSION SYSTEMS 15

Fig. 5.1: Comparison of exact solution (left) and inexact solution (right) obtained by applying
F̄−1 as an inexact solver for example 5.1 with Pe = 400.

conditions are zero except along the inflow region (x,1) :−1 < x < 0, where u = 1. The left
pane of Figure 5.2 shows the computed solution for an example flow with Pe = 125, and the
right pane shows a depiction of the wind field.

5.3. Variable wind results. We compare the use of F̄ as a preconditioner for FGMRES
with unpreconditioned GMRES and block-Jacobi preconditioned GMRES. To construct the
block Jacobi preconditioner, we use the block diagonal of F̄ . So on each element the interior
nodes are obtained by solving a system using F̄e

II via FDM, and the boundary nodes are
obtained by solving a system with F̄BB via GMRES.

The left pane of Figure 5.3 shows the number of FGMRES iterations required to solve
(5.1) to a tolerance of 10−12 for example 5.1. The top two curves show that unpreconditioned
GMRES and block Jacobi preconditioned GMRES are ineffective at solving this system.
Next, we study the effect of inexactly applying F−1

S using an inner iteration with unprecondi-
tioned GMRES. The latter four curves show the results of using various approximations of F̄
to precondition the system. These curves show the influence of accuracy of the Schur com-
plement solve F̄−1

S on the performance of the outer FGMRES iteration. The ◦ curve shows
that applying F̄−1

S with 1 step of GMRES to obtain an approximate solution of the interface

Fig. 5.2: Computed solution (left) and wind field (right) of flow corresponding to example
5.2 with Pe = 125.

16 P. A. LOTT AND H. ELMAN

Fig. 5.3: Comparison of preconditioned Flexible GM-
RES iterations with varied inner iteration counts, Block
Jacobi iterations and unpreconditioned GMRES itera-
tions for solving equation (2.11) with Pe = 400.

Preconditioner Time (s)
None 53

Block Jacobi 67
DD Schur1 32
DD Schur3 20
DD Schur5 17
DD Schur8 19

Table 5.1: Timings correspond-
ing to the experiments in Figure
5.3.

allows the outer FGMRES to converge in 102 steps. In the opposite extreme, the ! curve
shows that computing an inexact interface solution uΓ by performing 8 GMRES iterations
in the inner iteration allows the outer iterations via FGMRES to converge in 23 steps. It is
evident from Figure 5.3 that only a few inner iterations for the preconditioner are required
in order for the outer iteration to converge quickly. We provide a comparision of timings for
this experiment in Table 5.1. Note that in this experiment, the fastest run is performed when
using 5 GMRES inner iterations, even though this run takes a few more outer iterations than
using 8 GMRES inner iterations.

Note that the results described in the previous paragraph come from using unprecon-
ditioned GMRES for the Schur complement problem. We saw in the previous section that
Robin-Robin preconditioning improves the performance for constant coefficient problems.
However, here our conclusions are somewhat different. In Figure 5.3 we observed that us-
ing a few steps of unpreconditioned GMRES for the inner iteration allowed the outer itera-
tion to converge rapidly. The left pane of Figure 5.4 shows the residual during the first 40
steps of the interface solve using GMRES without preconditioning (top) and GMRES with
Robin-Robin preconditioning. We see that both solvers reduce the residual by nearly one
order of magnitude in the first 10 steps before convergence slows significantly. The Robin-
Robin preconditioned solver further reduces the residual around the 25th iteration, while the
non-preconditioned system shows little improvement. Achdou et al. point out in [1] that in
convection-dominated flows, the continuous Robin-Robin preconditioned system operator is
close to an idempotent (or periodic) operator of order E/2 where E is the number of elements.
They argue that this causes GMRES to stagnate for E/2 steps before converging asymptoti-
cally1. However, the right pane of Figure 5.4 shows that the residual of the outer FGMRES
iteration is essentially unaffected by the difference in these two inner iteration residuals. The
top curve represents the residual of the outer FGMRES iteration using unpreconditioned GM-

1Elman and Chernesky [6] report a similar convergence delay when applying block Gauss-Seidel line relaxation
to node orderings that do not follow the flow in 1D convection-diffusion simulations.

FAST SOLVER FOR CONVECTION-DIFFUSION SYSTEMS 17

RES for the inner iteration. In comparison, the bottom curve represents the residual of the
outer FGMRES iteration when the Robin-Robin preconditioner is applied to the inner GM-
RES iteration. Although the Robin-Robin system (bottom curve) converges slightly faster
(by 3 iterations), it requires an extra matrix-vector product at each inner iteration, thus in this
example it is roughly 40 times more expensive to use Robin-Robin preconditioning instead
of using no preconditioner to obtain an inexact interface solution.

Fig. 5.4: Comparison of residuals for interface iterations obtained by GMRES without pre-
conditioning and with Robin-Robin preconditioning (left) for example 5.1. Effect on FGM-
RES residuals with inexact F̄−1 using no interface preconditioner and Robin-Robin (right).

Next we look at how the number of FGMRES iterations are influenced by mesh refine-
ment. In Tables 5.2 and 5.3 we show the dependence of FGMRES iterations as the mesh
is refined using both h-refinement and p-refinement. We use a stopping tolerance for FGM-
RES set at 10−12, and for the F̄−1

S interface solve we stop the iterations when the residual
is less than 10−1 or when a maximum of 20 steps are reached. We see that outer iterations
for both p-refinement (Table 5.2 middle column) and h-refinement (Table 5.3 middle col-
umn) are roughly constant, whereas the inner iterations (right columns) require show a mild
dependence on the mesh size.

Number of FGMRES Number of
N Outer Iterations Inner Iterations
4 40 5

Example 8 51 5
5.1 16 44 13

32 48 20
4 34 7

Example 8 35 8
5.2 16 34 18

32 34 20

Table 5.2: Iteration counts for examples 5.1 (top) and 5.2 (bottom) as polynomial degree is
increased with Pe = 400 and E = 16.

Finally, we consider the dependence of the Peclet number on this solution method. In
Table 5.4 we show how the number of FGMRES iterations are affected as the Peclet number
is increased from 125 up to 5000. In this study we use a grid where N = 8 and E = 1024

18 P. A. LOTT AND H. ELMAN

Number of FGMRES Number of
E Outer Iterations Inner Iterations

16 40 5
Example 64 25 12

5.1 256 17 19
1024 28 20

16 34 7
Example 64 18 8

5.2 256 11 20
1024 16 20

Table 5.3: Iteration counts for examples 5.1 (top) and 5.2 (bottom) as the number of elements
are increased with Pe = 400 and N = 4.

Number of FGMRES Number of
Pe Outer Iterations Inner Iterations

125 27 20
250 28 20

Example 500 30 20
5.1 1000 32 20

2000 37 20
5000 48 20

125 19 20
250 16 20

Example 500 16 20
5.2 1000 16 20

2000 17 20
5000 21 20

Table 5.4: Iteration counts for examples 5.1 (top) and 5.2 (bottom) as the Peclet number is
increased on a fixed grid with N = 8 and E = 1024.

on a 32× 32 element grid. We use the same stopping criteria as in the mesh refinement
study above. We see that outer iterations (middle column) are mildly dependent on the Peclet
number whereas the inner iterations (right columns) reach the maximum number of iterations
(20) for each Peclet number.

6. Summary. We have introduced two solution strategies for convection-diffusion sys-
tems. The first strategy applies to problems with constant wind coefficients. This method
uses an extension to the Fast Diagonalization Method that we developed in order to solve
convection-diffusion problems with constant wind coefficients on single domains. We cou-
pled this result with Robin-Robin preconditioned Domain Decomposition to develop a matrix-
free solution method for tensor-product based discretizations of the steady convection-diffu-
sion equation with constant wind on each element.

This method uses iterative substructuring to resolve elemental interface values, together
with Fast Diagonalization to eliminate interior degrees of freedom on each element via a di-
rect solve. We demonstrated that this solution method has a weak dependence on Peclet num-
ber, and mild dependence on mesh refinement for both h-refinement and p-refinement. Simi-
lar conclusions have been reported in [1], [13] and [19] for overlapping and non-overlapping
domain decomposition strategies. The use of FDM in our method significantly reduces the
computational cost of the subsidiary interior solves throughout the calculation.

We then developed a solver for variable winds by demonstrating how the domain decom-

FAST SOLVER FOR CONVECTION-DIFFUSION SYSTEMS 19

position method we developed for constant-winds can be used as a preconditioner for general
convection-diffusion systems when combined with Flexible GMRES. This variable wind so-
lution strategy showed significant improvement over non-preconditioned GMRES and Block-
Jacobi preconditioning techniques. We showed that only an inexact interface solve is needed
to significantly accelerate convergence of the outer iteration. Using F̄ as a preconditioner
allowed FGMRES to obtain convergence rates independent of the mesh size, and mildly de-
pendent of changes in convection strength. Our results compare favorably with those reported
in [1], [7], [13] and [19].

7. Appendix: Tensor-Based Nodal Ordering for Domain Decomposition. In section
3.3 we explained how the tensor product basis of the spectral element method allows for effi-
cient matrix-vector products and Fast Diagonalization. In Domain Decomposition Methods,
however, it is common to use node orderings that enumerate interior degrees of freedom and
then boundary degrees of freedom. In this section we provide the one-dimensional build-
ing blocks needed to formulate the two-dimensional operators in terms of their interior and
boundary couplings within a lexigraphically ordered tensor product framework. We let N be
the degree of the polynomial basis for a given discretization.

We write F̂(N+1)×(N+1) as the full 1D convection-diffusion (or diffusion) matrix, and
M̂(N+1)×(N+1) as the diagonal 1D mass matrix. F(N+1)2×(N+1)2 = F̂⊗M̂ +M̂⊗ F̂ is the sparse
2D convection-diffusion matrix on a single element. We can decompose F̂ and M̂ into their
interior and boundary couplings.

F̂ii = F̂(2 : N,2 : N) Interior-Interior
F̂ib = F̂(2 : N,1 : N +1) Interior-Boundary
F̂bi = F̂(1 : N +1,2 : N) Boundary-Interior
F̂bb = F̂(1,1)+ F̂(1,N)+ F̂(N,1)+ F̂(N,N) Boundary-Boundary
M̂ii = M̂(2 : N,2 : N) Interior-Interior
M̂bb = M̂(1 : 1,!0,N +1 : N +1) Boundary-Boundary

This decomposition allows F to be written as F = FII +FΓΓ +FIΓ +FΓI with
FII = F̂ii⊗ M̂ii + M̂ii⊗ F̂ii
FΓΓ = F̂⊗ M̂bb + M̂bb⊗ F̂ + F̂bb⊗ M̂ii + M̂ii⊗ F̂bb
FIΓ = F̂ib⊗ M̂ii + M̂ii⊗ F̂ib
FΓI = F̂bi⊗ M̂ii + M̂ii⊗ F̂bi.

REFERENCES

[1] Y. ACHDOU, P. L. TALLEC, F. NATAF, AND M. VIDRASCU, A domain decomposition preconditioner for
an advection-diffusion problem, Computer Methods in Applied Mechanics and Engineering, 184 (2000),
pp. 145–170.

[2] D. BRAESS, Finite Elements Theory, fast solvers, and applications in solid mechanics, Cambridge University
Press, 2nd ed., 2001.

[3] S. C. BRENNER AND L. R. SCOTT, The Mathematical Theory of Finite Element Methods, Springer-Verlag,
New York, 1994.

[4] M. O. DEVILLE, P. F. FISCHER, AND E. H. MUND, High-Order Methods for Incompressible Fluid Flows,
Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press,
Cambridge, 2002.

[5] W. ECKHAUS, Asymptotic Analysis of Singular Perturbations, Elsevier Science, Amsterdam, 1979.
[6] H. C. ELMAN AND M. P. CHERNESKY, Ordering effects on relaxation methods applied to the discrete one-

dimensional convection-diffusion equation, SIAM Journal on Numerical Analysis, 30 (1993), pp. 1268–
1290.

[7] H. C. ELMAN, D. SILVESTER, AND A. WATHEN, Finite Elements and Fast Iterative Solvers with appli-
cations in incompressible fluid dynamics, Numerical Mathematics and Scientific Computation, Oxford
University Press, New York, 2005.

20 P. A. LOTT AND H. ELMAN

[8] P. FISCHER, An overlapping Schwarz method for spectral element solution of the incompressible Navier-
Stokes equations, Journal of Computational Physics, 133 (1997), pp. 84–101.

[9] P. F. FISCHER, F. LOTH, S. E. LEE, S. W. LEE, D. S. SMITH, AND H. S. BASSIOUNY, Simulation of
high Reynolds number vascular flows, Computer methods in Applied Mechanics and Engineering, 196
(2007), pp. 3049–3060.

[10] J. LOTTES AND P. FISCHER, Hybrid multigrid/Schwarz algorithms for the spectral element method, Journal
of Scientific Computing, 24 (2005), pp. 613–646.

[11] R. LYNCH, J. RICE, AND D. THOMAS, Direct solution of partial difference equations by tensor product
methods, Numerische Mathematik, 6 (1964), pp. 185–199.

[12] Y. MADAY, A. PATERA, AND E. RØNQUIST, An operator-integration-factor splitting method for time depen-
dent problems: Application to incompressible fluid flow.pplication to incompressible fluid flow., Journal
of Scientific Computation, 5 (1990), pp. 263–292.

[13] L. PAVARINO, Overlapping schwarz preconditioners for spectral element discretizations of convection-
diffusion problems, International Journal for Numerical Methods in Engineering, 53 (2002), pp. 1005–
1023.

[14] A. QUARTERONI AND A. VALLI, Domain Decomposition Methods for Partial Differential Equations, Nu-
merical Mathematics and Scientific Computation, Oxford University Press, 1999.

[15] H. G. ROOS, M. STYNES, AND L. TOBISKA, Numerical Methods for Singularly Perturbed Differential
Equations, Springer-Verlag, Berlin, 1996.

[16] Y. SAAD, A flexible inner-outer preconditioned gmres algorithm, SIAM Journal on Scientific Computing, 14
(1993), pp. 461–469.

[17] B. F. SMITH, P. BJØRSTAD, AND W. D. GROPP, Domain Decomposition Parallel Multilevel Methods for
Elliptic Partial Differential Equations, Cambridge University Press, 1996.

[18] S. J. THOMAS AND R. D. LOFT, The NCAR spectral element climate dynamical core: Semi-implicit Eulerian
formulation, Journal of Scientific Computing, 25 (2005), pp. 307–322.

[19] A. TOSELLI, Feti domain decomposition methods for scalar advection-diffusion problems, Computer Meth-
ods in Applied Mechanics and Engineering, 190 (2001), pp. 5759–5776.

[20] A. TOSELLI AND O. WIDLUND, Domain Decomposition Methods - Algorithms and Theory, Springer Series
in Computational Mathematics, Springer, 2005.

[21] H. TUFO AND P. FISCHER, Terascale spectral element algorithms and implementations, in Supercomputing
’99: Proceedings of the 1999 ACM/IEEE conference on Supercomputing (CDROM), New York, NY,
USA, 1999, ACM Press, p. 68.

