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Abstract

Lung cancer is a disease of uncontrolled cell growth in tissues of the lung. Computed to-
mography (CT) shows promise in detecting lung cancers at earlier, more operable stages, when
survival is better. CT scans generate multiple 2-D slice images of the lung and digital image
processing software is used to combine these images into a 3-D representation of the lung and,
in particular, an identified cancer lesion. Various CT scanners use, often different and usu-
ally proprietary, software to develop these 3-D images and generate parameters such as lesion
volume. Tracking lesion volume is considered a good diagnostic tool for evaluating the results
of patient treatment. The Food and Drug Administration (FDA) is conducting research on
developing reference cancer lesions, called phantoms, to test CT scanners and their proprietary
software. FDA loaned two semi-spherical phantoms to NIST, called Green and Pink, and asked
to have the phantoms measured by a coordinate measuring machine (CMM) and the volumes
estimated. This report describes in detail both the experimental and computational methods
used to estimate the phantoms’ volumes as well as a bootstrap method for estimating the uncer-
tainties of the computed volumes. Three sets of CMM measured data were produced. One set
of data involved data density measurements of a known calibrated metal sphere. The other two
sets were measurements of the two FDA phantoms at two densities, called the coarse set and
the dense set. Two computational approaches were applied to the data. In the first approach
spherical models were fit to the calibrated sphere data and to the phantom data. The second
approach was to model the data points on the boundaries of the spheres with surface B-splines
and then use the Divergence Theorem to estimate the volumes. The results for the coarse data
set tended to predict the volumes as expected with low expanded uncertainties and the results
did show that the Green phantom was very near spherical. This was confirmed by both compu-
tational methods. The spherical model did not fit the Pink phantom as well and the B-spline
approach provided a better estimate of the volume in that case. The results for the dense data
set did not provide as nice a prediction of volumes as the coarse data set and produced larger
expanded uncertainties. A discussion of some possible reasons for these results will be given in
the conclusion section. The report includes the MATLAB codes used in the study.
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1 Introduction

Lung cancer is a disease of uncontrolled cell growth in tissues of the lung. It is the most common
cause of cancer related deaths in men and second most in women and is responsible for an estimated
560,000 deaths in the US in 2007. It is classified as small cell (13%) and non-small cell (87%) [12].
The most common cause is long term exposure to tobacco smoke. Lung cancer lesions may be seen
in chest X-ray and computed tomography (CT), although chest X-ray analysis has shown limited
effectiveness in improving survival. Computed tomography has shown promising results in detecting
lung cancers at earlier, more operable stages, when survival is better [1].

Tomography is a method of imaging a single slice of the body, in this case the lung. Modern
CT is a medical imaging method that uses tomography but also employs digital image processing
techniques to generate three dimensional images built from a large sequence of two-dimensional X-
ray images made around a single axis. There are a number of current CT methods but the one that is
of most interest in this study is called a helical or spiral CT in which the X-ray source is connected to
a rotating gantry. The patient, on a table, moves smoothly through the scanner. The name, helical
or spiral CT, comes from the helical path traced out by the X-ray beam. The helical trajectory of
the data is converted into two-dimensional image slices of the patient’s body. The advantage of the
helical or spiral CT is speed, since the patients must remain perfectly still and hold their breath. A
large portion of the body can be scanned in 20-60 seconds [11]. CT provides excellent diagnostics for
detecting changes in the lungs, where two-dimensional X-rays do not clearly show the lung cancer
changes. A diagnosis is usually confirmed by biopsy. Treatments include surgery and chemotherapy.
With treatment, the one-year survival was 42% in 2002 but the five-year survival rate was only 16%
[1].

Evaluating the rate of growth/shrinkage of lung cancer lesions is important for pharmaceutical
research in order to compare drug effects, for clinical practice to determine time to use drugs or
surgery, and for patient follow up to quantify the effects of drugs or surgery. A goal then is to enable
CT scans to become a measurement device, providing quantitative rather than only qualitative
information. The current guidelines for measuring the increase or decrease of tumors involve linear
measurements of the greatest diameter of a lesion from the sequence of CT slices [19]. However, the
volume change of lesions is found to show more significant relative change than a relative diameter
change. As an example, for a sphere a 30% decrease in the relative diameter would produce a
65.7% decrease in relative volume whereas a 30% increase in the relative diameter would produce
approximately a 120% increase in relative volume.

The Food and Drug Administration (FDA) is conducting research on developing reference cancer
lesions, called phantoms, to test CTs and their proprietary software. Two samples were loaned to
NIST to estimate volumes. The material of which the phantoms are composed simulates lung cancer
material. They can be inserted into a simulated body torso for CT scans. The two phantoms are
shown in Fig. 1. Although they seem spherical they are slightly non-spherical. The larger one on
the right is referred to as the Green phantom and the one on the left is called the Pink phantom
due to the material colors

One approach to estimating the volume of the phantoms is to use what is called an Archimedes
test in which the phantoms would be immersed in a liquid bath in a well calibrated container with fine
measurement gradations to determine liquid displacement. However, in the case of these phantoms,
the material used to manufacture them is porous and the phantoms would have to be coated. This,
of course, would affect the ”ground truth” volume estimate. Furthermore, the potential expense
involved with the process was found to be sufficiently significant that another approach was chosen.

The approach chosen for this study is based on a fundamental theorem in calculus, called the
Divergence Theorem (see Taylor [17]), which is an analogue of Green’s Theorem in two dimensional
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Figure 1: Two simulated lung cancers, called phantoms.

space. In the Divergence Theorem a volume integral is shown to be equal to a surface integral.
Therefore, we surmised that, if a model of the surfaces of the phantoms could be developed, we could
use the Divergence Theorem to estimate their volumes. In order to develop a surface model we needed
to obtain data about the surface. This was done using a coordinate measuring machine (CMM) in
the Manufacturing Engineering Lab (MEL) at NIST. This machine produced a set of (x, y, z) points
on the surface of each phantom. The data were then transformed to spherical coordinates and
modeled using a set of basis functions, called B-splines. After fitting, the B-spline model was then
used to generate a grid of values on the surface. These values were used to form surface triangles
that were then used to compute the necessary surface integrals and finally the volume. The quality
of the volume estimates depended on the surface grid sizes, as will be clear from the discussion
below. The method is not new, in that it was suggested in the book by Dierckx [6]. A reader can
also consult the Dierckx references [4] and [5].

The report is divided as follows. Section 2 introduces B-splines and tensor products of B-splines.
Section 3 describes the surface point generation experiments using the CMM. Section 4 describes the
methods and results from applying the spherical and B-spline models to the CMM data. Appendices
include the MATLAB codes used in the study.

2 Introduction to B-splines

In this section we will define cubic B-splines and show the construction of bivariate or tensor products
of B-splines on a two dimensional array. We will then give a discussion of how B-splines are computed.
These specific computational algorithms will not be implemented in code, since they are available
as functions in the MATLAB spline toolbox. The algorithmic discussions are given, though, as
background to understanding the output from the MATLAB functions.

2.1 Cubic B-Splines in One Variable

Suppose that a function y = f(x) is known at the m points (x1, y1) , · · · , (xm, ym), where a < x1 <
x2 < · · · < xm < b, yk = f (xk). It is known that a polynomial of degree m − 1, P (x), can
be constructed to pass through these m points. In the case of highly accurate data points this
polynomial can be constructed to interpolate these points by, for example, Lagrange polynomial
or Newton divided difference algorithms. But, in the case of large m, it is also well known that
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Figure 2: Plot of a B-spline of Order 4.

polynomials of high degree can produce unwanted oscillations between the interpolated points. It is
crucial then to approximate sets of data with as low degree polynomials as possible. Of course these
polynomials may or may not interpolate the data points but may be made to come as close to them
as possible. This is a significant advantage of functions called splines.

Given a set of m real numbers, satisfying a < x1 < x2 < · · · < xm < b, a spline function, s(x),
of order n (or degree n− 1) with knots x1, x2, · · · , xm is a function that satisfies two properties: (1)
in each of the intervals x ≤ x1; xj−1 ≤ x ≤ xj, (j = 2, 3, · · ·, m); xm ≤ x, s(x) is a polynomial
of degree n − 1 or less. (2) s(x) and its derivatives of orders 1, 2, · · · , n − 2 are continuous. This
would mean, for example, a spline function of order four would be constructed from polynomials of
degree three (cubic) or less on the intervals x ≤ x1; xj−1 ≤ x ≤ xj, (j = 2, 3, · · · , m); xm ≤ x with
continuous derivatives of orders one and two. In this report only splines of order four will be used.

Instead of approximating data with one spline, another approach is to build an approximating
function by forming a linear combination of functions. These functions are usually referred to as basis
functions. This is a well known mathematical technique of constructing complex functions by forming
linear combinations of simpler functions. In the current report data sets will be approximated by
linear combinations of special spline functions, called B-splines, for Basis splines. Only B-splines
of order four will be considered here. B-splines of order four are cubic splines that are non-zero
only over four adjacent intervals between knots (see Fig. 2). The notation for a B-spline is Ni,k(x),
where Ni,k(x) is zero everywhere except in the range xi−k < x < xi, where in this work k = 4. As
a note, sometimes B-splines are denoted in the literature by Bi,k(x), but in this report we will use
Ni,k(x). To simplify notation let Ni(x) = Ni,4(x). Then a B-spline of order four, or cubic B-spline,
is a cubic spline with knots xi−4, xi−3, xi−2, xi−1, xi that is zero everywhere except in the range
xi−4 < x < xi. Ni(x) is defined uniquely except for a scaling factor and is conventionally taken to
be positive throughout the range xi−4 < x < xi and has a single maximum value. Since Ni(x) is a
cubic spline it has continuous derivatives of order one and two at xi−4 and xi. These derivatives are
zero at the endpoint knots.

To define a complete set of B-splines on the set of points a < x1 < x2 < · · · < xm < b it is
necessary to introduce eight additional points at the boundaries given by x−3, x−2, x−1, x0, xm+1,
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xm+2, xm+3, xm+4. It is usual to have x0 = a, xm+1 = b. With this augmented set of knots one
can define m + 4 fundamental cubic B-splines, Ni(x), i = 1, 2, · · · , m + 4. Then the general cubic
B-spline has a unique representation in the range a ≤ x ≤ b of the form

s(x) =
m+4∑
i=1

ciNi(x). (1)

There are computational advantages of cubic B-splines. For any given x, all but four adjacent
Ni(x) are zero. In particular, if x ∈ [xi−1, xi] the four non-zero cubic B-splines are
Ni(x), Ni+1(x), Ni+2(x), Ni+3(x).

A least squares curve fitting problem to a < u1 < u2 < · · · < um < b, yk = f (uk) becomes one
of determining the coefficients ci as the least squares solution to the equations

m+4∑
i=1

ciNi (ur) = fr , r = 1, 2, · · · , m. (2)

These may be written in matrix notation as

Ac = f, (3)

where A is the m×(m+4) matrix whose element in column i of row r is Ni (xr) and c, f are column
vectors with elements ci, fr respectively. If the data points are arranged in increasing order of x,
then the matrix A becomes a banded matrix with bandwidth four. For a more thorough discussion
of B-splines see de Boor [3].

2.2 Evaluation of B-splines

Let k be the order of the desired B-splines and let x1, x2, · · · , xm be mesh points. In order to develop
a complete set of B-splines we need to extend the mesh array by k points on each end as described
in the previous section. On the left end, extend the mesh by setting

x−(k−1) = x−(k−2) = · · · = x0 = a, (4)

and, on the right set
xn+1 = xn+2 = · · · = xn+k = b. (5)

Now define a working array that incorporates all of the mesh and the extended mesh points as

xt1 = x−(k−1), xt2 = x−(k−2), · · · , xtk = x0,

xtk+1 = x1, xtk+2 = x2, · · · , xtn+k = xn, (6)
xtn+k+1 = xn+1, xtn+k+2 = xn+2, · · · , xtn+2k = xn+k.

In this section the double subscript for B-splines will be used since it is needed to define the
computational algorithm. The B-splines, Nik(x), are constructed by a recursion formula given by

N1i(x) =
{

1 if xi ≤ x ≤ xi+1,
0 otherwise, (7)

and
Nki(x) =

(x − xi) Nk−1,i(x)
xi+k−1 − xi

+
(xi+k − x)Nk−1,i+1(x)

xi+k − xi+1
. (8)
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This formula is referred to in the literature as the Cox-deBoor formula (see Cox [2]).
To evaluate a B-spline of order k for a given t ∈ [x1, xn] the first step is to find i ∈ [k + 1, n + k]

so that t ∈ [xti, xti+1]. Note that if t = xn then i = n+k. Begin by initializing the array N(j, i) = 0
for i = 1, . . . , n + k, j = 1, · · · , k. By the Cox-deBoor formula set N(1, i) = 1, N(1, j) = 0, j �= i
and

N(j, i) =
(t − xt(i))N(j − 1, i)
xt(i + j − 1) − xt(i)

+
(xt(i + j) − t)N(j − 1, i + 1)

xt(i + j) − xt(i + 1)
. (9)

In any implementation of this formula care must be exerted due to the potential division by zero
problem in the coefficients. We have dropped the function representation here and chosen an array
form for the ease of algorithmic representattion.

Once an interval index i has been identified with a given t, the evaluation of the final B-spline
begins by setting N(1, i) = 1. It will happen that only k values N(k, i − k + 1), N(k, i − k +
2), · · · , N(k, i) will be nonzero. This occurs since there is a triangular dependency of B-splines as

N(1, i)
N(2, i− 1) N(2, i)

N(3, i − 2) N(3, i− 1) N(3, i)
· · · · · · · · ·

N(k, i − k + 1) · · · · · · N(k, i)

. (10)

From the discussion here it will become clear why the computations for the relevant B-splines
can be reduced to computing (10). In fact, the computation of the B-splines along the right leg
of the triangle depends only on the B-splines just above on the right leg. The computation of the
B-splines along the hypotenuse of the triangle depends only on the B-splines directly to the right
and above along the hypotenuse. Finally, the B-splines within the triangle depend on the B-splines
just above and to the right. This can easily be seen from the Cox-deBoor formula and (10). First of
all N(1, i) = 1 initializes the recursion. By Cox-deBoor, N(2, i) depends on N(1, i) and N(1, i + 1),
but N(1, i+ 1) = 0, so N(2, i) depends only on N(1, i). Now N(2, i− 1) depends on N(1, i− 1) and
N(1, i), but N(1, i− 1) = 0, so N(2, i− 1) depends only on N(1, i− 1). Now consider N(3, i). This
depends on N(2, i) and N(2, i+1), but N(2, i+1) depends on N(1, i+1) and N(1, i+2), which are
both zero. So N(3, i) depends only on N(2, i). N(3, i − 1) depends, by Cox-deBoor, on N(2, i − 1)
and N(2, i), which are both nonzero. Finally, N(3, i−2) depends on N(2, i−2) and N(2, i−1), but
N(2, i − 2) = 0 since it depends on N(1, i − 2) = 0 and N(1, i − 1) = 0. This argument can easily
be extended down the triangle, but the pattern is clear. Any implementation of the Cox-deBoor
formula can then be done by proceeding down the right leg, then down the hypotenuse and then fill
in the interior of the triangle.

There is a property of B-splines that can be used to check the calculation of the final k nonzero
B-splines. It is called a ”partition of unity” property in that

i∑
j=i−k+1

N(k, j) = 1. (11)

2.3 Tensor Products of Cubic B-splines in Two Variables

In Section 2.1 the problem of least squares approximation of data by one dimensional B-splines was
discussed. In this section the B-spline concept will be extended to two dimensions in order to fit
two dimensionsl scattered data by a surface function. In this surface-fitting problem data points
(ur, vr) , r = 1, 2, · · · , k and values at these points, zr = f (ur, vr) , r = 1, 2, · · ·, k are given. The
surface model used to fit these data points will involve sums of products of B-splines.

6



To introduce this model, define a rectangle, say R, by a ≤ x ≤ b, c ≤ y ≤ d in the (x, y)
plane. The definition does not restrict the data points to the Euclidean plane. They could, for
example be angular coordinates, as will be seen later in this report. The rectangle is subdivided by
sets of knots xi, i = 1, 2, · · · , m and yj , j = 1, 2, · · · , n, where a < x1 < x2 < · · · < xm < b and
c < y1 < y2 < · · · < yn < b. These knots divide the rectangle R into rectangular panels in the
plane given by Rij, i = 1, 2, · · ·, m, j = 1, 2, · · ·, n. Then, after extending the knots by eight in each
dimension as done in the one dimensionsl case, a basis set of splines for this pairing of coordinates
can be constructed as products of B-splines Ni(x)Nj(y). In fact the surface spline model will be
given by

s(x, y) =
m+4∑
i=1

n+4∑
j=1

cijNi(x)Nj(y), (12)

called a tensor product of splines.
As in the one dimensional case these tensor product splines have a number of advantages. First

of all, the basis functions Ni(x)Nj(y) are each non-zero only over a rectangle composed of sixteen
panels in a 4 × 4 arrangement. In particular Ni(x)Nj(y) is non-zero only when xi−4 ≤ x ≤ xi and
yj−4 ≤ y ≤ yj . Next, if (ur, vr) , r = 1, 2, · · ·, m and values at these points, zr = f (ur, vr) , r =
1, 2, · · · , m are given, then the least squares fitting problem can be formulated as finding the least
squares solution of

m+4∑
i=1

n+4∑
j=1

cijNi (ur)Nj (vr) = zr , r = 1, 2, · · · , k. (13)

Again, this can be written in a matrix form as

Ac = f, (14)

where A is now a matrix with k rows and (m + 4)(n + 4) columns. If the indexing has been
arranged so that Ni(x)Nj(y) and the corresponding cij are arranged in the order for fixed j, with
i = 1, 2, · · ·, m + 4, where j = 1, 2, · · · , n + 4, then A has as its element Ni (ur)Nj (vr) in row r of
column (j−1)(m+4)+i. If the data points are also arranged according to the panels Rij containing
them in the order for fixed j, i = 1, 2, · · · , m + 4, where j = 1, 2, · · · , n + 4, then the matrix A takes
the form

A =

⎡
⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14

A22 A23 A24 A25

A33 A34 A35 A45

. . . . . . . . . . . .
An+1,n+1 An+1,n+2 An+1,n+3 An+1,n+4

⎤
⎥⎥⎥⎥⎥⎦

. (15)

Here each Ars is a rectangular matrix of bandwidth four with m+4 columns and the number of rows
is equal to the total number of data points in the panels R1r, R2r, · · · , Rn+1,r. For a full discussion
of tensor products of B-splines see de Boor [3], Eberly [8], and Rogers and Adams [13].

2.4 Issues in Computing Tensor Product B-splines and the Relation to
Least Squares

Unfortunately this block format for the matrix A is only achievable if the knots, defining the B-
splines in the separate dimensions, can be ordered properly. If, for example, two dimensional points
are dependent, as in a set of coordinate points (xi, yi), i = 1, · · · , n on a surface, it may not be
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possible to order the variables as described above. In that case, the resulting tensor product matrix
might be rank deficient and it will not be possible to use the traditional normal equations to solve
a least squares problem. Another approach to solving the least squares problem in this case will be
discussed below.

In this section, though, we will first discuss the MATLAB function tensor prod spl that is given
in Appendix C.4. This function creates the tensor product matrix that will be called NM. The input
to this function includes the set of knots for both the θ and φ angular dimensions as well as the
vector arrays of θ and φ variables at which the tensor product of B-splines is to be evaluated.

The first thing done for each dimension is to augment the knots at each end. This is done by
calls to the MATLAB spline toolbox function augknt, where the order of the B-splines has been
set to four for cubic B-splines. This function is called for each of the two knot sets. The matrix
for each B-spline, N for θ and M for φ, is then created by a call to the MATLAB spline toolbox
function spcol. This function can create the entire B-spline matrix for a vector of variables, provided
the vector is ordered in ascending order. This is possible if the variables in both dimensions are
independent. But in the case of coordinates, the variable arrays are not independent. In this case,
although one dimension can be sorted in ascending order, the other one has to be ordered in such a
way that the coordinates are always linked. Thus, although the θ could be sorted, the φ array would
not necessarily be sorted properly. Therefore the approach taken in the program was to create the
individual B-spline matrices one row at a time.

Once the N and M matrices are created for the θ and φ arrays, the tensor product matrix NM
can be created. This is done by taking all possible products of the elements from the N and M
matrices.

Once the tensor product B-spline matrix is computed, a least squares fit can be done to the scat-
tered spherical coordinate data. Since the matrix NM could be rank deficient, with potentially zero
rows or columns, we cannot rely on the standard normal equations for determining the coefficients.
We will use the singular value decomposition (SVD) in this case. This is done in the MATLAB
function lsq 2D spline in Appendix C.5. The input to this function is the tensor product matrix
NM and the array of radial values at the scattered spherical coordinate points, along with a desired
data tolerance. The data tolerance is used to zero the small singular values. In this function the
matrix NM, with the number of rows larger than the number of columns, is decomposed by the
MATLAB function svd into the product of a column-orthogonal matrix U , a diagonal matrix S, and
the transpose V ′ of a square orthogonal matrix, so that NM = USV ′. In order to solve the problem
NMc = r we compute c = V S+U ′r, where S+ is the generalized inverse of S and U ′ is the transpose
of U .

2.5 A Knot Selection Algorithm

The selection of B-spline knots for an optimum fit is a nontrivial task. One would be extremely lucky
to manually select an initial set of knots and achieve an optimum fit. Therefore we approach knot
selection in an iterative fashion that moves us toward an optimum selection. The overall strategy
is to place knots in the vicinity of the fit where the local residuals are the largest. This process
involves not only the placement algorithm issue but also the iterative stopping criteria.

First we will discuss the placement algorithm. It is based on a suggested strategy by Dierckx [6].
At the beginning of each iteration the assumption is that there exists a current set of knots, call them
knts theta and knts phi. In the first iteration of the algorithm these would be an initial set chosen
by the user. The tensor product of the B-splines are computed at the data points, a least squares fit
is made to the data, and the current absolute residuals of the fit are computed at each data point.
The current knots divide the θ, φ plane into rectangles. Some rectangles have data points and others
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don’t. For each i from 1 to the number of data points minus 1 the array indices of θ are found so that
knts theta(i) <= theta <= knts theta(i+1). The sums of the residuals at these points are computed
and the maximum of these sums is chosen. A similar calculation is done for φ and the maximum of
the sums of the squares of the residuals is chosen. The maximum of these two maximums is chosen.
If the maximum in the θ dimension is chosen then a knot is added to the knts theta array, otherwise
a knot is added to the knts phi array. The algorithm steps are given below. For the sake of argument
assume that there are currently g θ knots and h φ knots that form a grid defined by the rectangles
[knts theta(i), knts theta(i + 1)] × [knts phi(j), knts phi(j + 1)], i = 1, · · · , g − 1, j = 1, · · · , h − 1.
Here is the placement algorithm used.

Rk = rk − S(θk , φk), k = 1, · · · , n
δθ
i =

∑
k

{
R2

k : knts theta(i) ≤ θ(k) ≤ knts theta(i + 1)
}

δφ
j =

∑
k

{
R2

k : knts theta(i) ≤ θ(k) ≤ knts theta(i + 1)
}

δθ = max
1≤i≤g−1

δθ
i (16)

δφ = max
1≤j≤h−1

δφ
j

new knt theta =
∑

k

{
R2

kθ(k)/δθ
}

, if δθ ≥ δφ

new knt phi =
∑

k

{
R2

kφ(k)/δφ
}

, if δφ ≥ δθ

The stopping criteria used in this algorithm is based on the use of the R2-statistic, called the
coefficient of multiple determination (see Draper and Smith [7]). R2 is the square of the correlation
between the vector of observed data, rk, k = 1, · · · , n, and the least squares predicted data, r̂k, k =
1, · · · , n. The statistic satisfies 0 ≤ R2 ≤ 1. This statistic is often used as a measure of how well
the regression equation explains the variation in the data. It is known that building models based
on adding terms in the regression equation, care must be taken in using this statistic. However, in
the current algorithm the statistic is used in a somewhat non-conventional manner. We use it as a
measure of the benefit of adding more knots to the tensor product spline model. The knot selection
algorithm is terminated once R2 > 0.98.

3 Surface Point Data Generation

In this section we discuss the experimental method by which boundary data was generated in
Euclidean coordinates on each of the phantoms. Figure 3 shows the CMM system used to measure
the phantoms and a calibrated sphere used to check the probe. The system is computer controlled
and touches an object to be measured at programmend points in order to produce (x, y, z) values
at the probed points.

The effective diameter of the CMM probe was measured by first measuring the high quality
steel sphere, with a well-calibrated diameter. This sphere is separate from the calibrated one used
to generate the sphere data in Section 4.2.1 below. The calibration sphere can be seen in the
background of Fig. 4. The difference between the known diameter and the apparent diameter of the
measured referrence metal sphere gave the calibrated effective probe diameter. A similar pattern
of probe touches was used for the measurement of the calibrated sphere and for all of the phantom
sphere measurements.

9



Figure 3: Computer controlled CMM.

The FDA phantoms were created by a molding process and the mold marks on both spheres
were visible. These mold marks were used to align the phantoms with the coordinate system of the
CMM. The marks were laid out like lines of latitude, leading to the use of a natural nomenclature
of latitude and longitude like those of the Earth. For each phantom, the north pole was chosen to
be the one with darker, deeper, or more obvious mold marks.

The phantoms were held by a vacuum chuck (see Fig. 4) to minimize distortion and reduce the
chance of damaging the spheres’ surfaces. The chuck has a shallow cone, so contact is made around a
circle of latitude at about −45o. The wall vacuum was strong enough to hold the spheres sufficiently
that they did not move significantly, as shown by the repeatable results from run to run at the 1
μm level.

Visually, the pink sphere was noticeably out of round, in the shape of an oblate spheroid. A dial
caliper gave diameter measurements given in Table 1.

Figure 4: Lung nodule phantom on the vacuum chuck.
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Equatorial Polar
Pink 20.0 mm 18.4 mm
Green 20.0 mm 20.1 mm

Table 1: Dial Caliper Measurements of Phantoms’ Diameters

The uncertainty of caliper measurements on hard steel surfaces is about 0.1 mm, and is estimated
to be about 0.3 mm on the sample spheres due to the potential that the contact force would distort
the soft surfaces of the spheres (all estimated uncertainties were k = 2 expanded uncertainties
according to the guidelines of Taylor and Kuyatt [18]). Since the CMM is primarily used to measure
metallic artifacts produced by machining operations, we will see in this report some of the possible
consequences of using the CMM to measure the non-metallic phantoms.

Two probing experiments were performed on each of the phantoms and the calibrated sphere.
They created what we will call a coarse data set and a dense data set. In the next two sections we
will discuss the methods used in the two experiments since they were slightly different.

3.1 Experiment 1: Coarse Data Set

In this experiment the plan was to measure each phantom on the CMM three times in each position,
with 61 coordinate points per hemisphere. For the green sphere, each measurement set consisted of
three separate sets of points: North pole up, South pole up, and prime meridian/equator intersection
up. The pink sphere could not be held sideways in the first experiment, as the out-of-roundness
prevented an effective vacuum seal. Therefore, a measurement data set for this sphere had only the
North pole up and South pole up data.

Although 183 points were measured on the green sphere, 121 were selected in order to make the
data sets for the green and pink phantoms consistent in terms of probed points. All 121 points from
both hemispheres were merged together, and the plots in Fig. 5 and 6 show the radial deviation
from a best-fit sphere for the full data sets. The figures show the radial residuals obtained by
fitting sphere models to the Green and Pink data with an algorithm ordinarily used during sphere
calibration work. In particular, they represent the residual errors between the distance from the
fitted sphere center to the probed points and the fitted radius of the sphere model. The residuals,
in the case of the Green phantom, range from approximately −0.1 mm to +0.1 mm, whereas the
residuals, in the case of the Pink phantom, range from approximately −0.57 mm to +0.23 mm. This
indicates the non-spherical nature of the Pink phantom. A separate nonlinear algorithm for sphere
fitting will be described in Section 4. It produces consistent results. Figure 7 shows the typical
distribution of the probe points on a sphere. The plot is a transparency so that probe points on the
opposite side of the sphere are visible. The calibated sphere on the shaft, with a diameter of 19.05
mm, was also measured with 121 points, repeated five times.

3.2 Experiment 2: Dense Data Set

In this experiment 181 points were taken on the phantoms and the calibrated sphere, with five
repeats in each position. The positions were taken the same as those in Experiment 1. That is,
the alignment was selected with North pole up (position 1), South pole up (position 2), and prime
meridian/equator intersection up (position 3). In this case it was possible to hold the Pink phantom
in the sidways position 3. The calibrated sphere was measured in only one position, with five repeats,
since it was permanently mounted on a support shaft.
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Figure 5: Residual Measure CMM Errors for the Green Phantom Sphere: Experiment 1.

Figure 6: Residual Measure CMM Errors for the Pink Phantom Sphere: Experiment 1.
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Figure 7: Distribution of the CMM Probe Points on a Sphere: Experiment 1.

4 Data Modeling and Volume Estimation

In this section two forms of data modeling will be discussed. Since the phantoms seemed to be nearly
spherical the natural tendency was to first consider fitting a spherical model to each phantom and
estimating the volume of the fitted spheres. Second, in order to develop a potentially more accurate
volume estimation model the surface data was fit using tensor products of B-splines and the volumes
estimated by the Divergence Theorem.

4.1 A Spherical Model

Since the phantoms were nearly spherical it was natural, as noted above, to consider how close the
data could be modeled by first assuming spherical models for the data. The calibrated sphere, of
course, could clearly be modeled with a spherical model.

In particular, let c = (c1, c2, c3, c4)) and set

f(x, y, z, c) = (x − c1)
2 + (y − c2)

2 + (z − c3)
2 − c4

2. (17)

The unknown parameters c1, c2, c3 represent the center of the sphere and c4 is the radius. All of the
data were measured in millimeters so that the parameters naturally have millimeter units. Define

S(c) =
n∑

i=1

{
(xi − c1)

2 + (yi − c2)
2 + (zi − c3)

2 − c4
2
}

. (18)

Since the function S is a nonlinear implicit function of the parameters we needed to use a nonlinear
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mimimization algorithm to solve the problem

min
c

S(c). (19)

There are a number of algorithms for fitting least squares models to data on geometric shapes.
The reader can consult Shakarji [16]. There are also various algorithms for minimizing general
nonlinear functions, such as (18). All of the algorithms involve iterative minimization of some form.
Many require computing derivatives of the objective function in order to generate minimization
search directions. Others do not involve derivatives but may be somewhat slower in the minimization
search. The algorithm selected here, because of the relatively few parameters involved, and the
fact that derivatives are not required, is a form of polygon search method called the Nelder-Mead
method (see Sauer [14]). It should be noted here that the Newton’s method, requiring derivatives,
was initially used to estimate the parameters, but the Nelder-Mead tended to produce the smallest
value to (18).

The Nelder-Mead method begins with an initial vector guess for the minimum in R4, although the
method works for Rn, but due to the ”curse of dimension”, becomes prohibitive beyond R10. From
the initial vector guess a polygon of five vertices is built. The function evaluations at the vertices,
wi = S (vi), of the polygon are tested and put into ascending order, w1 < w2 < · · · < w5 = wh. The
polygon vertex, vh, with the largest function value, wh, is replaced as follows. The centroid, v, of
the face of the polygon that does not contain vh is chosen. The function (18) is evaluated at, vr, the
reflection point about the centroid, given by vr = 2v − vh, is selected. If the value wr = S (vr) lies
in the range w1 < wr < w4, then vr replaces vh, the function values of the vertices are again sorted,
and the iterative step is repeated. If wr < w1, extrapolation is continued in the direction of wr by
setting ve = 3v − 2vh. The better of ve or vr is selected to replace vh. Finally, if wr > wn then a
contraction of points is attempted. Two points are selected. The outer contraction point is taken
as voc = 1.5v − 0.5vr and the inner contraction is vic = 0.5v + 0.5vh. The function (18) is evaluated
at both contraction points. If there is no reduction in the value of (18) then the polygon is shrunk
by a factor of 2 in the direction of the current minimum, v1. The iterations of sorting and testing
continue until the volume of the polygon becomes less than some prespecified tolerance. Given a
set of (x, y, z) points, a MATLAB code to estimate the center and radius of the best fit sphere is
given in Appendix A. The output of the program produces a vector that is the median value of the
vertex values of the final polyhedron, whose volume satisfies the tolerance specification. The volume
is computed as a determinant involving the polygon vertices.

The uncertainties of the estimated center and radius were computed using the methods proposed
in Draper and Smith [7] for nonlinear regression. In particular, if ĉ = (ĉ1, ĉ2, ĉ3, ĉ4), then define the
matrix with elements

Ẑij =
∂f

∂ci
(xi, yi, zi, ĉ) , i = 1, · · · , n, j = 1, 2, 3, 4. (20)

The matrix Ẑ is an n × 4 matrix. The i-th row is given by

Ẑi = [−2 (xi − ĉ1) − 2 (yi − ĉ2) − 2 (zi − ĉ3) − 2ĉ4] . (21)

If we then form Ẑ′Ẑ the standard error of ĉi, s.e. (ĉi), is given by the i-th diagonal element of(
Ẑ′Ẑ

)−1

s2 where s = S (ĉ) /(n − 4). The expanded uncertainty is given by 2s.e. (ĉi) as defined in
Taylor and Kuyatt [18]. The uncertainty limits of ĉi are ĉi ± 2s.e. (ĉi). All units are in millimeters
except volume, which is in cubic millimeters.
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4.2 Computational Results for the Spherical Model

Tables 2, 3, and 4 present the results obtained by fitting spherical models to the data from the
calibrated sphere and the two phantoms. In Experiment 1 there were three data sets for each of the
Green and Pink phantoms, designated Green 4, 5, and 6 and Pink 5, 6, and 7. Since the output
of the Nelder-Mead algorithm was a final polytope surrounding the minimum with the polytope
vertices representing the final parameter esimates, the final reported parameters were selected as
the median values of the vertex values. These are the first four entries in the table: Center x, Center
y, Center z, and Radius. The units are millimeters. The fifth table entry is the spherical volume
based on the median radius value in cubic millimeters. The radius residuals were computed as

residi =
√

(xi − ĉ1)
2 + (yi − ĉ2)

2 + (zi − ĉ3)
2 − ĉ4. (22)

The sixth entry in the tables gives the mean value of these residuals. The unit is millimeters.
The seventh and eighth table entries give the mean and standard deviation of the absolute values of
the residuals in millimeters. The ninth through the twelfth entries are the expanded uncertainties
for the estimated Center x, Center y, Center z, and radius.

The results in these sections on spherical model fitting involve strictly fitting the non-linear
model (22) to the sparse data sets generated by the CMM. This process does not involve the B-
spline algorithm used later in this report. Therefore any differences between coarse and dense results
are most likely the consequence of the point selection in the metrology of the artifacts.

4.2.1 Results for the Spherical Model Fit to the Calibrated Sphere with Coarse and
Dense Data

Table 2 gives the results of the fit of the sphere model to both the coarse (121 points) and the dense
(181 points) data sets for the calibrated sphere. In both cases the average of the five repeat data sets
was used for the fitting process. As can be seen, the two volume estimates differ by approximately
0.04%. The radii estimates differ by about 0.01%. It would seem that these differences are within
the operating regime of the CMM. Although the estimated centers are slightly different, all other
values are of the same order of magnitude. Based on these results we can accept that the CMM
is producing accurate position data for spherical metallic artifacts. Tables 3 through 6, however,
begin to show the consequences involved with attempting to measure slightly non-spherical and
non-metallic artifacts with the CMM.

4.2.2 Results for the Spherical Model Fit to the Phantoms with Coarse Data

From Tables 3 and 4 it is clear that the Green phantom is more spherical than the Pink phantom as
indicated by the residuals and the expanded uncertainties. This simply confirms the fact that the
Pink phantom was more difficult to measure using the vacuum chuck due to its lack of sphericity. For
example, the Mean Radial Residual for the Pink data is two orders of magnitude larger than for the
Green data. The Standard Deviations for the Pink data are an order of magnitude greater, whereas
all of the Expanded Uncertainties are two orders of magnitude greater. It is not clear how much the
phantom material affected the results since it was difficult to set up a specific probe test for metallic
versus phantom material. The artifacts would have to have been exactly the same size, positioned
at exactly the right location, and probed at exactly the same coordinates to separate those factors
from the material factor difference. There were no such comparable artifacts. We can make a guess,
though, that there might be some affect due to probe force against the non-metalic material if we
look at Table 2 and Table 3, the most spherical of the two phantoms. The Expanded Uncertainties
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Spherical Fit Results for Calibrated Sphere
Properties Coarse Dense
Center x 0.2803× 10−4 −0.1331× 10−2

Center y −0.4881× 10−3 −0.2034× 10−2

Center z −0.6642× 10−2 −0.2564× 10−2

Radius 9.5326 9.5314
Est. Volume 3628.4 3627.1

Mean Rad. Residual 0.3232× 10−4 0.8720× 10−4

Mean Abs. Rad. Residual 0.1646× 10−2 0.1700× 10−2

Stand. Dev. Rad. Residual 0.2156× 10−2 0.22302× 10−2

Stand. Dev. Abs. Rad. Residual 0.1384× 10−2 0.1441× 10−2

Expanded Uncert. Center x 0.3676× 10−9 0.2779× 10−9

Expanded Uncert. Center y 0.3675× 10−9 0.2777× 10−9

Expanded Uncert. Center z 0.9313× 10−9 0.7059× 10−9

Expanded Uncert. Radius 0.2394× 10−9 0.1822× 10−9

Table 2: Results of a Spherical Fit to Coarse and Dense Data for Calibrated Sphere

for the sphere fit to the calibrated metalic sphere and the Expanded Uncertainties for the sphere
fit to the Green phantom data differ by five to six orders of magnitude. Since the repeatability of
the CMM measurements is at the 1 μm level, it is likely then that material difference had some
significant affect on the difference in the uncertainties. It is a guess that this and the non-spherical
shape of the Pink phantom account for a large part of the differences between the Pink phantom
Expanded Uncertainties in Table 4, the Green phantom Expanded Uncertainties in Table 3, and the
calibrated sphere Expanded Uncertainties in Table 2.

4.2.3 Results for the Spherical Model Fit to the Phantoms with Dense Data

We want to make some observations about the resulting measurements and the spherical fits to
the dense data. If we first look at the residuals for the sphere fits to the dense data sets we see
an interesting phenomenon occuring in the fits for both the Green and Pink phantoms in position
3 (prime meridian/equator intersection up). There appears to be a definite periodic oscillation in
the residual data in Figures 10 and 13. It is not clear what in the measurement process produced
these residual oscillations, although the points selected would have been chosen along longitudes as
the CMM moved from top to bottom of the positioned phantom. These periodicities are possible
considering the North to South symmetry across the equator in the sphere model fit. Next we
examined the possible affects of these residual oscillations on the sphere volume estimates.

If we compare the volume results for the coarse Green and dense Green data we get the following.
From Table 3 and Table 5 there appears to be only a change of about 1% from Green 4 volume to
Dense Green 1 and similarly for Green 5 to Dense Green 2. Green 6 and Dense Green 3 volumes
differ by about 0.08%. Therefore the oscillations in the residuals for the Dense Green 3 data do not
seem to have affected the volume estimate. The residuals themselves in Fig. 10 oscillate between
-0.15 mm and 0.1 mm. However, when we compare the Pink phantom volume estimates we get a
vastly different result. Whereas the residuals in Figures 11 and 12 fall within the range of -0.4 to 0.15
mm, the residuals as shown in Fig. 13 oscillate between -0.6 mm and 0.6 mm, about six times the
residual oscillations of the Dense Green 3 data. The damping of the oscillations may have been due
to the slight non-spherical shape of the Pink phantom, although this is a conjecture. The volume
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Spherical Fit Results
Properties Green 4 Green 5 Green 6
Center x 0.2150× 10−2 0.2128× 10−2 0.2579× 10−2

Center y −0.4694× 10−2 −0.4813× 10−2 −0.4611× 10−2

Center z −0.5482× 10−1 −0.5489× 10−1 −0.5442× 10−1

Radius 10.1124 10.1121 10.1118
Est. Volume 4331.7 4331.3 4330.8

Mean Rad. Residual −1.7530× 10−4 −1.764× 10−4 −1.4684× 10−4

Mean Abs. Rad. Residual 0.4592× 10−1 0.4607× 10−1 0.4586× 10−1

Stand. Dev. Rad. Residual 0.5521× 10−1 0.5538× 10−1 0.5518× 10−1

Stand. Dev. Abs. Rad. Residual 0.3038× 10−1 0.3043× 10−1 0.3041× 10−1

Expanded Uncert. Center x 0.1849× 10−3 0.9352× 10−4 0.1844× 10−3

Expanded Uncert. Center y 0.1849× 10−3 0.9351× 10−4 0.1844× 10−3

Expanded Uncert. Center z 0.2249× 10−3 0.1138× 10−3 0.2243× 10−3

Expanded Uncert. Radius 0.6551× 10−4 0.3314× 10−4 0.6535× 10−4

Table 3: Results of a Spherical Fit to Coarse Data for the Green Phantom

Spherical Fit Results
Properties Pink 5 Pink 6 Pink 7
Center x −0.8612× 10−2 −0.8235× 10−2 −0.8373× 10−2

Center y 0.1572× 10−1 0.1547× 10−1 0.1555× 10−1

Center z 0.2315× 10−1 0.2365× 10−1 0.2359× 10−1

Radius 9.7337 9.7334 9.7329
Est. Volume 3863.02 3862.61 3862.03

Mean Rad. Residual −0.2222× 10−2 −0.2721× 10−2 −0.2356× 10−2

Mean Abs. Rad. Residual 0.1748 0.1746 0.1746
Stand. Dev. Rad. Residual 0.2128 0.2127 0.2126

Stand. Dev. Abs. Rad. Residual 0.1203 0.1203 0.1203
Expanded Uncert. Center x 0.3617× 10−1 0.3607× 10−1 0.3602× 10−1

Expanded Uncert. Center y 0.3635× 10−1 0.3626× 10−1 0.3620× 10−1

Expanded Uncert. Center z 0.4428× 10−1 0.4415× 10−1 0.4407× 10−1

Expanded Uncert. Radius 0.1287× 10−1 0.1283× 10−1 0.1281× 10−1

Table 4: Results of a Spherical Fit to Coarse Data for the Pink Phantom
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Spherical Fit Results
Properties Dense Green 1 Dense Green 2 Dense Green 3
Center x −0.1073× 10−1 0.2112× 10−1 −0.1321× 10−1

Center y 0.5112× 10−1 0.8661× 10−2 −0.4700× 10−1

Center z 0.2550 0.4723× 10−1 0.2139
Radius 10.0706 10.0710 10.1146

Est. Volume 4278.1 4278.7 4334.5
Mean Rad. Residual −0.9344× 10−4 −0.7116× 10−4 −0.8881× 10−4

Mean Abs. Rad. Residual 0.3502× 10−1 0.3267× 10−1 0.3980× 10−1

Stand. Dev. Rad. Residual 0.4566× 10−1 0.3935× 10−1 0.4904× 10−1

Stand. Dev. Abs. Rad. Residual 0.2918× 10−1 0.2181× 10−1 0.2850× 10−1

Expanded Uncert. Center x 0.5320× 10−4 0.2980× 10−4 0.7197× 10−4

Expanded Uncert. Center y 0.5324× 10−4 0.2980× 10−4 0.7158× 10−4

Expanded Uncert. Center z 0.1233× 10−3 0.7006× 10−4 0.1670× 10−3

Expanded Uncert. Radius 0.3058× 10−4 0.1778× 10−4 0.4158× 10−4

Table 5: Results of a Spherical Fit to Dense Data for the Green Phantom

differences between Pink 5 in Table 4 and Dense Pink 1 in Table 6 as well as Pink 6 and Dense
Pink 2 in the same tables are approximately 6%. The volume estimates between the Pink 7 results
in Table 4 and the Dense Pink 3 results in Table 6, however, show about a 7% decrease. This last
comparison may not be a fair one in that the Pink 7 data did not have data for the Pink phantom
in position 3. Table 1 shows that the diameter of the Pink phantom falls approximately between 20
mm and 18.5 mm. This would imply that the sphere model should have a volume between 4188.8
mm3 and 3315.2 mm3. Table 4 for the Pink phantom shows that for the coarse data the volume
estimate falls from 3862 mm3 to about 3863 mm3. These volumes are within the expected range.
Whereas the volume estimates for Dense Pink 1, Dense Pink 2, and Dense Pink 3 from Table 6 are
also within the expected range. The Pink phantom in position 3 may have shown difficulties in the
data acquisition phase for the CMM. This could explain the lower volume estimate. In particular,
an approximate 4% difference in radius estimate between Dense Pink 3 and Dense Pink 2 causes
an approximate 13% decrease in volume estimate. This points how seemeingly small differences in
linear parameter estiamtes can make significant volumetric differences.

4.3 Data Modeling by B-Splines

In the following sections we plan to introduce a more general approach to estimate the phantom
volumes by modeling the surfaces with B-splines and using the Divergence Theorem to estimate the
volume, although in the case of the Green phantom the sphere model and the B-spline model will
confirm its near spherical nature.

4.3.1 Euclidean to Spherical Coordinate Transformation

The current study involves the modeling of the sets of CMM data points. These unstructured sets of
(x, y, z) data points are called point clouds. Therefore, in this section we assume that we are given
a set of n points, (xi, yi, zi) , i = 1, 2, · · · , n, for some n, on a surface. As measured, these points are
given relative to the CMM origin. The first step is to develop an origin for the data by using the
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Figure 8: Residuals for the Sphere Fit to the Dense Green Data Set 1.
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Figure 9: Residuals for the Sphere Fit to the Dense Green Data Set 2.
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Figure 10: Residuals for the Sphere Fit to the Dense Green Data Set 3.
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Figure 11: Residuals for the Sphere Fit to the Dense Pink Data Set 1.
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Figure 12: Residuals for the Sphere Fit to the Dense Pink Data Set 2.
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Figure 13: Residuals for the Sphere Fit to the Dense Pink Data Set 3.
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Spherical Fit Results
Properties Dense Pink 1 Dense Pink 2 Dense Pink 3
Center x 0.1472× 10−1 0.4573× 10−1 0.1496× 10−1

Center y 0.1448× 10−1 0.1557× 10−1 0.6815× 10−1

Center z 0.6848 0.7473 -0.3443
Radius 9.9234 9.9370 9.5045

Est. Volume 4093.2 4110.1 3596.5
Mean Rad. Residual −0.4393× 10−3 −0.4859× 10−3 −0.3282× 10−2

Mean Abs. Rad. Residual 0.7993× 10−1 0.7989× 10−1 0.2149
Stand. Dev. Rad. Residual 0.9764× 10−1 0.1001 0.2567

Stand. Dev. Abs. Rad. Residual 0.5576× 10−1 0.5996× 10−1 0.1397
Expanded Uncert. Center x 0.1060× 10−2 0.1162× 10−2 0.4686× 10−1

Expanded Uncert. Center y 0.1057× 10−2 0.1157× 10−2 0.5073× 10−1

Expanded Uncert. Center z 0.2398× 10−2 0.2610× 10−2 0.1178
Expanded Uncert. Radius 0.5662× 10−3 0.6129× 10−3 0.3137× 10−1

Table 6: Results of a Spherical Fit to Dense Data for the Pink Phantom

center-of-data mass of the point cloud. This point is given by

x =
1
n

n∑
i=1

xi

y =
1
n

n∑
i=1

yi (23)

z =
1
n

n∑
i=1

zi

We note here, implicitly, that we have assumed that the point cloud can be enclosed in a spherical
bounded region. In order to use spherical coordinates to represent points on the boundary of a
surface we need to restrict our analysis to surfaces that are called star-shaped. These are surfaces
in which a ray drawn from the center-of-data mass intersects the boundary in a unique point.

To each point in the point cloud there is a vector from (x, y, z) to (xi, yi, zi) given by Vi =
(xi, yi, zi)− (x, y, z). Furthermore, any point within the bounding sphere can be identified by spher-
ical coordinates of the form Q(θ, φ) = (r sin θ cosφ, r sin θ sin φ, r cos θ), where x = r sin θ cosφ, y =
r sin θ sin φ, z = r cos θ, for 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. θ is referred to as the colatitude and φ is referred
to as the azimuth. Table 7 associates the three dimensional octants with their spherical coordinates,
where we have suppressed r. The conversion to spherical coordinates was necessary since tensor
product B-splines need to be defined on rectangular regions. Therefore, the Euclidean coordinates
were converted to θ, φ angles on a rectangle [0, π] × [0, 2π]. The height at each θ, φ was taken as
the estimated radius from the center-of-data mass of all of the Euclidean coordinates.

Points, not necessarily on a spherical surface of radius r, will in general be a function of θ and
φ. At this point we will start with an (x, y, z) point from the point cloud and compute the value of
(r(θ, φ), θ, φ) relative to the center-of-data mass. There are eight cases to consider. In all cases we
assume that r(θ, φ) ≥ 0. r will always be taken so that r2 = x2 + y2 + z2.

Before considering individual cases there are some general relations that apply to multiple cases.
For example, in cases one through four in Table 7 we have z ≥ 0 so that 0 ≤ z ≤ r and we will
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Figure 14: Spherical Coordinate angles. θ is the colatitude and φ is the azimuth.

3-D Octants to Spherical Coordinates
Octant Number Cartesian Coordinate Spherical Coordinate

1 x ≥ 0, y ≥ 0, z ≥ 0 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ π/2
2 x < 0, y ≥ 0, z ≥ 0 0 ≤ θ ≤ π/2, π/2 ≤ φ ≤ π
3 x < 0, y < 0, z ≥ 0 0 ≤ θ ≤ π/2, π ≤ φ ≤ 3π/2
4 x ≥ 0, y < 0, z ≥ 0 0 ≤ θ ≤ π/2, 3π/2 ≤ φ ≤ 2π
5 x ≥ 0, y ≥ 0, z < 0 π/2 ≤ θ ≤ π/2, 0 ≤ φ ≤ π/2
6 x < 0, y ≥ 0, z < 0 π/2 ≤ θ ≤ π, π/2 ≤ φ ≤ π

7 x < 0, y < 0, z < 0 π/2 ≤ θ ≤ π, π ≤ φ ≤ 3π/2
8 x ≥ 0, y < 0, z < 0 π/2 ≤ θ ≤ π, 3π/2 ≤ φ ≤ 2π

Table 7: Octant Equivalence between Euclidean and Spherical Coordinates
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always have 0 ≤ z/r ≤ 1. For MATLAB this implies that

0 ≤ θ = arccos
(z

r

)
≤ π

2
. (24)

In cases five through eight in Table 7 z < 0 so that −1 ≤ z/r < 0. Then
π

2
≤ θ = arccos

(z

r

)
≤ π. (25)

There are also some special cases. In particular, if x = 0, y = 0, z = r, then we set θ = 0, and, if
x = 0, y = 0, z = −r, then we set θ = π.

In Octant 1, x ≥ 0, y ≥ 0, z ≥ 0. We assume (0, 0, 0) will not be considered. We estimate
r =

√
x2 + y2 + z2. We have θ from (24), so now we want to compute the associated φ. For

θ ∈ (0, π/2) we have 0 < x/(r sin θ) < 1. Then

0 < φ = arccos
( x

r sin θ

)
<

π

2
. (26)

In Octant 2, x < 0, y ≥ 0, z ≥ 0. Set r =
√

x2 + y2 + z2 and θ from (24). Since 0 ≤ θ < π/2,
then −1 < x/(r sin θ) < 0. Therefore

π

2
< φ = arccos

( x

r sin θ

)
< π, (27)

the desired interval.
In Octant 3, x < 0, y < 0, z ≥ 0. Set r =

√
x2 + y2 + z2 and θ from (24). We want π ≤ φ ≤ 3π/2.

Since −1 < x/(r sin θ) < 0 then π/2 < φ1 = arccos(x/(r sin θ)) < π and

π < φ = φ1 +
π

2
<

3π

2
. (28)

In Octant 4, x ≥ 0, y < 0, z ≥ 0. Set r =
√

x2 + y2 + z2 and θ from (24). We want 3π/2 ≤ φ ≤
2π. Since 0 < x/(r sin θ) < 1, then 0 < φ1 = arccos(x/(r sin θ)) < π/2

3π

2
≤ φ = φ1 +

3π

2
≤ 2π. (29)

In Octant 5, x ≥ 0, y ≥ 0, z < 0. Set r =
√

x2 + y2 + z2 and solve for θ from (24). Since
0 < x/(r sin θ) < 1,

0 < φ = arccos
( x

r sin θ

)
≤ π

2
. (30)

In Octant 6, x < 0, y ≥ 0, z < 0. Set r =
√

x2 + y2 + z2 and solve for θ from (24). We want
π/2 ≤ φ ≤ π. Since −1 < x/(r sin θ) < 0

π

2
< φ = arccos

( x

r sin θ

)
≤ π. (31)

In Octant 7, x < 0, y < 0, z < 0. Set r =
√

x2 + y2 + z2 and solve for θ from (24). We want
π ≤ φ ≤ 3π/2, but π/2 ≤ φ1 = arccos(x/(r sin θ)) ≤ π so we set

π ≤ φ = φ1 +
π

2
≤ π. (32)

In Octant 8, x ≥ 0, y < 0, z < 0. Set r =
√

x2 + y2 + z2 and solve for θ from (24). We want
3π/2 ≤ φ ≤ 2π, but 0 ≤ φ1 = arccos(x/(r sin θ)) ≤ π/2 so we set

3pi

2
< φ = φ1 +

3π

2
< 2π. (33)
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4.3.2 Transformation Algorithm

The algorithm is relatively straightforward.
1. Load the measured points (xi, yi, zi) into three arrays.
2. Compute length of the arrays and set = n. This assumes the arrays are of equal length.
3. Compute the center of data mass

x =
1
n

n∑
i=1

xi,

y =
1
n

n∑
i=1

yi, (34)

z =
1
n

n∑
i=1

zi.

4. Reset the (xi, yi, zi) points as

xi = xi − x,

yi = yi − y, (35)
zi = zi − z.

5. Begin loop from i = 1 to n
5.1. Compute ri =

√
x2

i + y2
i + z2

i .
5.2. Test for the special cases.

5.2.1. If xi = 0, yi = 0, zi = ri, set θi = 0, φi = 0.
5.2.1. If xi = 0, yi = 0, zi = −ri, set θi = π, φi = 0.

5.3. Test for the Octants
5.3.1. If xi ≥ 0, yi ≥ 0, zi ≥ 0

θi = arccos
(

zi

ri

)
,

φi = arccos
(

xi

ri sin θi

)
. (36)

5.3.2. If xi < 0, yi ≥ 0, zi ≥ 0

θi = arccos
(

zi

ri

)
,

φi = arccos
(

xi

ri sin θi

)
. (37)

5.3.3. If xi < 0, yi < 0, zi ≥ 0

θi = arccos
(

zi

ri

)
,

φi =
π

2
+ arccos

(
xi

ri sin θi

)
. (38)
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5.3.4. If xi ≥ 0, yi < 0, zi ≥ 0

θi = arccos
(

zi

ri

)
,

φi =
3π

2
+ arccos

(
xi

ri sin θi

)
. (39)

5.3.5. If xi ≥ 0, yi ≥ 0, zi < 0

θi = arccos
(

zi

ri

)
,

φi = arccos
(

xi

ri sin θi

)
. (40)

5.3.6. If xi < 0, yi ≥ 0, zi < 0

θi = arccos
(

zi

ri

)
,

φi = arccos
(

xi

ri sin θi

)
. (41)

5.3.7. If xi < 0, yi < 0, zi < 0

θi = arccos
(

zi

ri

)
,

φi =
π

2
+ arccos

(
xi

ri sin θi

)
. (42)

5.3.8. If xi ≥ 0, yi < 0, zi < 0

θi = arccos
(

zi

ri

)
,

φi =
3π

2
+ arccos

(
xi

ri sin θi

)
. (43)

6. End loop on i.

This algorithm is implemented in the MATLAB function program in Appendix C.2. The results
of the conversion of the probe points for the Green phantom from Euclidean coordinates to θ, φ
coordinates are shown in Fig. 15.

4.4 Volume Estimation by the Divergence Theorem

In this section we will state the Divergence Theorem and indicate how it can be used to estimate
the volume of a polyhedron.
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Figure 15: Plot of the θ, φ Coordinates of the Probe Points for the Coarse Data.

4.4.1 Divergence Theorem in 3-D and Volume Computation

Let R be a simply connected region in space and S the surface boundary. Then∫ ∫
R

∫
�∇ · F dxdydz =

∫
S

∫
F · n̂ dσ, (44)

where F (x, y, z) = (F1(x, y, z), F2(x, y, z), F3(x, y, z)) is a differentiable vector field,

�∇ · F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
, (45)

is the divergence of the vector field, n̂ is an outward-pointing unit normal vector to S, and dσ is an
infinitesimal element of the surface.

If we select F (x, y, z) = (1/3)(x, y, z) then �∇ · F = 1 and we can write

Vol(R) =
∫ ∫

R

∫
dxdydz =

1
3

∫
S

∫
n̂ · (x, y, z)dσ. (46)

Now, if S is approximated by disjoint polyhedron (surface patches), then

S =
N⋃

i=1

Si, (47)

and
1
3

∫
S

∫
n̂ · (x, y, z)dσ =

1
3

N∑
i=1

∫
Si

∫
n̂i · (x, y, z)dσ, (48)

where n̂i is the unit outer normal to Si. Here we will model the surface patches by planar facets
and, in particular, triangular facets. The plane Si is given by n̂i · (x, y, z) = ci for a constant ci
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associated with each triangular facet. Since this constant applies for all points on the triangular
facet, it applies for any vertex point Pi of the triangular facet. The sum of the integrals over the
facets reduces to

1
3

N∑
i=1

∫
Si

∫
n̂i · (x, y, z)dσ =

1
3

N∑
i=1

∫
Si

∫
cidσ =

1
3

N∑
i=1

ciArea(Si). (49)

This method of computing the volume of an object from a surface integral can be found in
Schneider and Eberly [15].

4.4.2 Area of a Planar Polyhedron in 3-D

We will describe the process of computing the area of a planar polyhedron in space by use of Stokes’
Theorem and then we will particularize it to a planar triangle in space. Stokes’ Theorem assumes
that if C is a piecewise smooth boundary curve, oriented positively, of a surface S, and if F is a
differentiable vector field defined on S and n̂ is a unit normal satisfying the right-hand rule relative
to the boundary orientation, then∫

S

∫
(�∇× F ) · n̂dσ =

∫
C

F · d �R, (50)

where the curl of F (x, y, z) = (F1(x, y, z), F2(x, y, z), F3(x, y, z)) is

�∇× F =
(

∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)
, (51)

and d �R = (dx, dy, dz). If we set F = (1/2)n̂ × (x, y, z) then �∇× F = n̂ and n̂ · n̂ = 1 so that

Area(S) =
∫
S

∫
dσ =

1
2

∮
C

(n̂ × (x, y, z)) · (dx, dy, dz),

=
1
2

∮
C

n̂ · ((x, y, z) × (dx, dy, dz)),

=
1
2

∮
C

n̂ · ((x(t), y(t), z(t)) × (x′(t), y′(t), z′(t))) dt, (52)

=
1
2

∮
C

n̂ · (y(t)z′(t) − z(t)y′(t), z(t)x′(t) − x(t)z′(t), x(t)y′(t) − y(t)x′(t)) dt.

We will now specialize the Stokes formula to find the area of a spatial triangle in terms of its
three vertices oriented positively. Let the three vertices, in positive orientation, be specified by
v1 = (x1, y1, z1), v2 = (x2, y2, z2), v3 = (x3, y3, z3). Parameterize the boundary of the triangle as
follows. On [0, 1] let v = v1 + t(v2 − v3) = (x1 + t(x2 − x1), y1 + t(y2 − y1), z1 + t(z2 − z1)). On [1, 2]
let v = v2 +(t−1)(v3−v2) = (x2 +(t−1)(x3 −x2), y2 +(t−1)(y3 −y2), z1 +(t−1)(z3 −z2)). Finally
on [2, 3] let v = v3 +(t−2)(v1−v3) = (x3 +(t−2)(x1−x3), y3 +(t−2)(y1 −y3), z3 +(t−2)(z1−z3)).
The area of the spatial triangle, in terms of the parameterized boundary, can be written as

Area(S) =
1
2

∮
C

n̂ · (y(t)z′(t) − z(t)y′(t), z(t)x′(t) − x(t)z′(t), x(t)y′(t) − y(t)x′(t)) dt,
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=
1
2
n̂ ·
(∫ 3

0

(y(t)z′(t) − z(t)y′(t))dt,

∫ 3

0

(z(t)x′(t) − x(t)z′(t))dt, (53)

∫ 3

0

(x(t)y′(t) − y(t)x′(t))dt

)
.

By straightforward integration over each of the parameterized segments it is easy to show that

Area(S) =
1
2
n̂ · ((y1z2 − y2z1) + (y2z3 − y3z2) + (y3z1 − y1z3),

(z1x2 − z2x1) + (z2x3 − z3x2) + (z3x1 − z2x3), (54)
(x1y2 − x2y1) + x2y3 − x3y2) + (x3y1 − x1y3))

The normal vector to the oriented triangle can be computed as follows. Let �v = (x2 − x1, y2 −
y1, z2 − z1) and �w = (x3 − x1, y3 − y1, z3 − z1). Then �n = �v × �w = ((y2 − y1)(z3 − z1) − (z2 −
z1)(y3 − y1), (z2 − z1)(x3 − x1) − (x2 − x1)(z3 − z1), (x2 − x1)(y3 − y1) − (y2 − y1)(x3 − x1)). If we
set n1 = (y2 − y1)(z3 − z1) − (z2 − z1)(y3 − y1), n2 = (z2 − z1)(x3 − x1) − (x2 − x1)(z3 − z1), n3 =
(x2 − x1)(y3 − y1) − (y2 − y1)(x3 − x1) then ‖�n‖ =

√
n2

1 + n2
2 + n2

3 and n̂ = �n/‖�n‖.

4.5 Volume Estimation for the Phantom Grid Data

We divided the phantom surfaces into triangular surface patches as follows. First of all we assumed
that the phantom surfaces had been partitioned into nh+1 latitude grid points and nv+1 longitude
grid points, where the latitude grid points were set as φ1 = 0 < φ2 < · · · < φnh < φnh+1 = 2π and
longitude grid points given by θ1 = 0 < θ2 < · · · < θnv < θnv+1 = π. At every grid point there was
a radius, r(φ, θ), calculated from the surface B-spline model. At the north and south poles the radii
was taken as the median value of the grid point radial values for the cases θ = 0 and θ = π.

The patches at the north and south poles were automatically triangular patches. In fact, at the
north pole, where we started, there were nh triangular patches. The Euclidean points at the triangle
corners for each patch were computed by

x = r sin(θ) cos(φ) 0 ≤ θ ≤ π,

y = r sin(θ) sin(φ) 0 ≤ φ ≤ 2π, (55)
z = r cos(θ).

For all of the triangle facets at the north pole we designated the pole as (x1, y1, z1) = (0, 0, rm),
where rm was the median value of the grid generated data for θ1 = 0. We looped through the
grid points at θ2 and φ1, φ2, · · · , φnh+1 = φ1. At each of these angle pairs there was a value
rk = r (φk, θ2) , k = 1, 2, · · · , nh+1. We generated the volume from the Green’s Theorem result by
adding up the contributions of each facet to the volume total. We did this by initializing a variable
for the volume, called vol. We then started to generate the contributions from the first layer of
facets at the north pole. We set, as noted above, the north pole as (x1, y1, z1) and then set

x2 = r (φ1, θ2) sin(θ2) cos(φ1),
y2 = r (φ1, θ2) sin(θ2) sin(φ1),
z2 = r (φ1, θ2) cos(θ2),

and

x3 = r (φ2, θ2) sin(θ2) cos(φ2),
y3 = r (φ2, θ2) sin(θ2) sin(φ2),
z3 = r (φ2, θ2) cos(θ2).
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These were set in a positive orientation. Next we computed the outward normal to the triangle
facet, formed the vectors v1 = (x2, y2, z2) − (x1, y1, z1) , v2 = (x3, y3, z3) − (x1, y1, z1), and then
formed the normalized cross product

n̂ =
v1 × v2

‖v1 × v2‖ (56)

We then computed the contribution that this facet made to the volume as

vol = vol + (57)

(n̂ · (x1, y1, z1))

⎧⎨
⎩n̂ ·

⎛
⎝ 2∑

j=1

(yj zj+1 − yj+1 zj) , (zj xj+1 − zj+1 xj) , (xj yj+1 − xj+1 yj)

⎞
⎠
⎫⎬
⎭ .

We proceeded to the next facet in the first layer. Again (x1, y1, z1) was the north pole and we then
used the previous computation to get x2 = x3, y2 = y3, z2 = z3 and set

x3 = r (φ3, θ2) sin(θ2) cos(φ3),
y3 = r (φ3, θ2) sin(θ2) sin(φ3),
z3 = r (φ3, θ2) cos(θ2).

We computed the normalized cross product as for the first facet and then computed the contribution
of the second facet to the volume using equation (57). We continued this process for θ2, φj, j =
1, · · · , nh.

We next computed the contributions of the next layers in a two step process. We looped through
the θ layers from 2 to nv − 1. The last layer at the south pole was handled separately. At each
layer there were nh four-vertex patches. Each patch was divided into two triangles. The four
vertices of the patches were identified counterclockwise as (θi, φj, r(i, j)), (θi+1, φj, r(i + 1, j)),
(θi+1, φj+1, r(i + 1, j + 1)), (θi, φj+1, r(i, j + 1)). For the first triangle in the patch we set

x1 = r(i, j) sin(θi) cos(φj),
y1 = r(i, j) sin(θi) sin(φj),
z1 = r(i, j) cos(θi).

x2 = r(i + 1, j) sin(θi+1) cos(φj),
y2 = r(i + 1, j) sin(θi+1) sin(φj),
z2 = r(i + 1, j) cos(θi+1).

x3 = r(i + 1, j + 1) sin(θi+1) cos(φj+1),
y3 = r(i + 1, j + 1) sin(θi+1) sin(φj+1),
z3 = r(i + 1, j + 1) cos(θi+1).

We then proceeded as above to compute the contribution of this triangle to the volume. For the
second triangle of the patch we maintained the same x1, y1, z1 and set x2 = x3, y2 = y3, z2 = z3

and then set

x3 = r(i, j + 1) sin(θi) cos(φj+1),
y3 = r(i, j + 1) sin(θi) sin(φj+1),
z3 = r(i, j + 1) cos(θi).
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Again, the volume increment due to this triangle was computed as it was above.
Finally, at the south pole there were nh triangles to compute. Their vertices were chosen as

follows.

x1 = r(nv, j) sin(θnv) cos(φj),
y1 = r(nv, j) sin(θnv) sin(φj),
z1 = r(nv, j) cos(θnv).

x2 = 0,

y2 = 0,

z2 = −r(nv + 1, 1).

x3 = r(nv, j + 1) sin(θnv) cos(φj+1),
y3 = r(nv, j + 1) sin(θnv) sin(φj+1),
z3 = r(nv, j + 1) cos(θnv).

The contribution of these triangles to the volume was computed as above. After all of the triangle
contributions to the volume were computed the final volume was then computed as vol = (1/6)vol.

4.6 Computational Results for the B-spline Model

In this section we will describe the method used to estimate volume uncertainties and discuss the
results of using a B-spline surface model and the Divergence Theorem to estimate the phantom
volumes. A nonparametric method to estimate the volume uncertainties was chosen since there did
not exist any ”ground truth” values for the Green and Pink FDA phantom volumes.

4.6.1 Estimating Volume Uncertainties

The nonparametric ”bootstrap” method is a computer intensive technique for estimating uncertain-
ties. It involves repeated Monte Carlo resampling from the original spherical coordinates with radii
values modified by the fitting residuals, refitting the model to estimate new volumes, and finally
computing an uncertainty for the process from the set of computed volumes. For a full discussion of
the bootstrap see Efron and Tibshirani [9]. We will give a brief description of the bootstrp method in
Section 4.6.2 in the discussion of the coarse data results, but will use the same method for estimating
the volume uncertainties in the case of the dense data.

4.6.2 Volume Estimates and Uncertainties for the Coarse Data

In this section we state the results of computing the volumes for the two phantoms using the six
coarse data sets. Sixteen surface grid cases were used and the results are shown in Tables 8 through
13. Figures 16 through 26 show the dramatic asymptotic trend of the volume estimates as the grid
sizes increase. It seems clear that the volume of the Green phantom may lie somewhere in the range
of 4337 mm3 and 4340 mm3 while the volume of the Pink phantom volume seems to lie somewhere
in the range 3910 mm3 and 3913 mm3. In terms of percentages these volume differences are in the
range of about 0.07%. Figures 16 to 20 show the clear increase of the volume estimate to a stable
value as the surface grid became finer. The volume estimates for the Green phantom differ from the
volume estimates for the sphere fit in Table 3 by approximately 0.1% to 0.2%. This is indicative
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of the fact that the Green phantom is near spherical. The fit to the Pink phantom in Tables 11 to
13 are all consistent and indicate the Pink phantom likely has a larger volume than that indicated
by the sphere fit in Table 4. The differences of the stabilized Pink volume estimates differ from the
spherical fit volume estimates by approximately 2%. Again this likely indicates the non-spherical
nature of the Pink phantom.

The object of the uncertainty estimation procedure (bootstrap) was to develop volume uncer-
tainty as a function of grid size. The process began with the conversion of the Euclidean data points
to spherical coordinates. An automatic selection of knots was done. These steps were done once
for a given data set. It was assumed that the modifications of the data made during the bootstrap
would be small and not affect the knot selection. During the first pass of the bootstrap algorithm
the radii of the spherical coordinates were fit by a tensor product of B-splines. The predicted val-
ues and residuals from this initial fit were called the master predicted values and master residuals
respectively. The computed volume was then put in a list of volumes that would be added to in
subsequent passes of the algorithm. The algorithm then iterated two hundred times as follows. In
the first iteration the master residuals were sampled randomly uniformly with replacement. The
resampled residuals were then added to the master predicted radii and a new fit was performed.
The new computed volume was added to the volume list and the master residuals sampled ran-
domly uniformly with replacement for the next iteration. The process continued for all two hundred
iterations. The standard deviation of the volumes in the volume list was then used as an estimate
of the volume uncertainty and the average volume was taken as the reference volume for the chosen
grid size.

From Tables 8 to 10 the uncertainties range from 7.4 mm3 on the coarse surface grid to 3.3
mm3 on the finer grid for the Green phantom. These uncertainty values represent an approximate
range of 0.2% to 0.07% of the estimated Green phantom volumes from the tables. Figures 17 to
21 graphically show the rapid descent to stable values for the uncertainties. Tables 11 to 13 show
uncertainties for the Pink phantom that are about twice those for the Green phantom. This is not
surprising, considering the non-spherical shape of the Pink phantom. The uncertainties for the Pink
phantom have an approximate range of 0.5% to 0.2% of the estimated volumes. Figures 23 to 27
show a similar descent of the uncertainties as a function of grid refinement. In a similar manner
to the volumetric behavior of the Green phantom as the grid refinement increases Figures 22 to 26
show the rapid increase to a stable value for the Pink phantom volume estimates.
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Green 4 Data Set
Volumes and Expanded Uncertainties vs Grid Size

Grid Case θ φ Volume
(
mm3

)
Uncertainty

(
mm3

)
1 10 20 4071.5 7.1
2 20 40 4278.6 5.1
3 30 60 4313.6 4.0
4 40 80 4325.5 4.0
5 50 100 4331.2 3.7
6 60 120 4334.4 3.6
7 70 140 4336.1 3.6
8 80 160 4337.5 3.7
9 90 180 4337.9 3.7
10 100 200 4338.8 3.7
11 110 220 4339.1 3.2
12 120 240 4339.4 3.7
13 130 260 4339.6 3.8
14 140 280 4339.9 3.9
15 150 300 4339.9 3.5
16 160 320 4340.0 3.3

Table 8: Estimated Volumes and Uncertainties for Green 4 Data
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Figure 16: Volume Estimates for Green 4 Data Set vs. Grid Size.
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Figure 17: Uncertainty Estimates for Green 4 Data Set vs. Grid Size.

Green 5 Data Set
Volumes and Expanded Uncertainties vs Grid Size

Grid Case θ φ Volume
(
mm3

)
Uncertainty

(
mm3

)
1 10 20 4068.5 7.4
2 20 40 4275.4 4.8
3 30 60 4311.4 4.2
4 40 80 4323.1 3.8
5 50 100 4328.5 3.7
6 60 120 4331.1 3.7
7 70 140 4333.2 3.5
8 80 160 4334.5 3.6
9 90 180 4335.1 3.4
10 100 200 4335.6 3.4
11 110 220 4336.1 3.6
12 120 240 4336.5 3.5
13 130 260 4336.8 3.1
14 140 280 4336.9 3.3
15 150 300 4337.0 3.4
16 160 320 4337.1 3.5

Table 9: Estimated Volumes and Uncertainties for Green 5 Data
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Figure 18: Volume Estimates for Green 5 Data Set vs. Grid Size.
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Figure 19: Uncertainty Estimates for Green 5 Data Set vs. Grid Size.
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Green 6 Data Set
Volumes and Expanded Uncertainties vs Grid Size

Grid Case θ φ Volume
(
mm3

)
Uncertainty

(
mm3

)
1 10 20 4071.3 7.4
2 20 40 4277.6 4.8
3 30 60 4312.9 3.8
4 40 80 4325.0 4.1
5 50 100 4330.6 3.4
6 60 120 4333.7 3.3
7 70 140 4335.6 3.4
8 80 160 4336.9 3.4
9 90 180 4337.4 3.9
10 100 200 4338.0 3.4
11 110 220 4338.5 3.8
12 120 240 4338.9 3.6
13 130 260 4339.1 3.4
14 140 280 4339.6 3.5
15 150 300 4339.5 3.4
16 160 320 4339.8 3.4

Table 10: Estimated Volumes and Uncertainties for Green 6 Data
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Figure 20: Volume Estimates for Green 6 Data Set vs. Grid Size.
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Figure 21: Uncertainty Estimates for Green 6 Data Set vs. Grid Size.

Pink 5 Data Set
Volumes and Expanded Uncertainties vs Grid Size

Grid Case θ φ Volume
(
mm3

)
Uncertainty

(
mm3

)
1 10 20 3697.8 18.7
2 20 40 3866.1 9.8
3 30 60 3899.2 8.7
4 40 80 3908.8 7.4
5 50 100 3914.9 7.4
6 60 120 3917.1 6.8
7 70 140 3919.4 6.9
8 80 160 3920.7 6.3
9 90 180 3921.2 6.8
10 100 200 3921.8 6.2
11 110 220 3922.3 6.7
12 120 240 3922.6 7.0
13 130 260 3922.8 6.7
14 140 280 3922.9 6.9
15 150 300 3922.9 5.8
16 160 320 3923.2 6.3

Table 11: Estimated Volumes and Uncertainties for Pink 5 Data
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Figure 22: Volume Estimates for Pink 5 Data Set vs. Grid Size.
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Figure 23: Uncertainty Estimates for Pink 5 Data Set vs. Grid Size.
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Pink 6 Data Set
Volumes and Expanded Uncertainties vs Grid Size

Grid Case θ φ Volume
(
mm3

)
Uncertainty

(
mm3

)
1 10 20 3698.3 17.8
2 20 40 3864.3 11.2
3 30 60 3898.2 8.0
4 40 80 3907.5 7.7
5 50 100 3913.5 7.2
6 60 120 3916.2 7.0
7 70 140 3917.6 6.5
8 80 160 3919.3 6.3
9 90 180 3919.8 6.6
10 100 200 3920.8 6.8
11 110 220 3921.0 6.3
12 120 240 3921.6 6.4
13 130 260 3921.2 6.3
14 140 280 3922.0 5.9
15 150 300 3921.4 5.8
16 160 320 3922.1 6.6

Table 12: Estimated Volumes and Uncertainties for Pink 6 Data
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Figure 24: Volume Estimates for Pink 6 Data Set vs. Grid Size.
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Figure 25: Uncertainty Estimates for Pink 6 Data Set vs. Grid Size.

Pink 7 Data Set
Volumes and Expanded Uncertainties vs Grid Size

Grid Case θ φ Volume
(
mm3

)
Uncertainty

(
mm3

)
1 10 20 3697.2 19.2
2 20 40 3865.3 10.8
3 30 60 3897.5 9.0
4 40 80 3907.6 7.6
5 50 100 3913.6 6.8
6 60 120 3915.9 6.6
7 70 140 3917.3 6.2
8 80 160 3919.2 6.5
9 90 180 3919.9 6.2
11 110 220 3920.8 6.4
10 100 200 3920.7 6.6
12 120 240 3921.1 6.4
13 130 260 3921.2 6.6
14 140 280 3921.7 6.4
15 150 300 3921.7 6.3
16 160 320 3921.9 6.8

Table 13: Estimated Volumes and Uncertainties for Pink 6 Data
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Figure 26: Volume Estimates for Pink 7 Data Set vs. Grid Size.
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Figure 27: Uncertainty Estimates for Pink 7 Data Set vs. Grid Size.
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Green 1 Dense Data Set
Volumes and Expanded Uncertainties vs Grid Size

Grid Case θ φ Volume
(
mm3

)
Uncertainty

(
mm3

)
1 10 20 3816.4 210.6
2 20 40 4014.0 135.8
3 30 60 4052.5 111.6
4 40 80 4065.4 105.0
5 50 100 4067.5 93.6
6 60 120 4070.6 94.0
7 70 140 4071.3 91.4
8 80 160 4073.0 91.4
9 90 180 4073.7 91.4
10 100 200 4073.5 89.6
11 110 220 4074.8 89.8
12 120 240 4074.5 88.4
13 130 260 4075.4 89.2
14 140 280 4075.0 87.2
15 150 300 4075.3 88.0
16 160 320 4075.2 87.4

Table 14: Estimated Volumes and Uncertainties for Green 1 Dense Data

4.6.3 Volume Estimates and Uncertainties for the Dense Data

In this section we report the results of volume estimates and the extended uncertainties for the dense
data sets of 181 probed points on the phantom surfaces. The results do not seem to be what one
would have expected. The volumes and the uncertainties have not been plotted since in general they
follow the pattern established by the volumes and uncertainties in the coarse data. We will just
consider the differences. The first thing of interest is that the stabilized volume estimates for the
Green dense data differ from the volume estimates for the Green coarse data by about 6%. This is in
the negative direction in that the volume estimates for the Green dense data were smaller than for
the Green coarse data. In the case of the volume estimates for the Pink dense data, the differences
with the volume estimates for the Pink coarse data are approximately 4% larger. These estimates
are clear from Tables 14 to 19. Another thing to notice is that the uncertainties are significantly
higher as shown in Tables 14 through 19 compared to those estimated from the coarse data. In
fact they appear to be an order of magnitude larger. It is not clear why the results for the dense
data differ from the results for the coarse data, but we are reporting it nonetheless. The complete
analysis of these differences is beyond the scope of this report but will be pursued in a coming study
related to a redesign of the fitting algorithm.

5 Summary

The B-spline surface model joined with the Divergence Theorem seems to be a viable approach for
estimating volumes of near spherical star-shaped artifacts, but the results seem to depend strongly
on the distribution of the data points on the surface. In the case of sparse data the problem of
extrapolating a surface fitted to the data to a grid on the surface leads potentially to unwanted
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Green 2 Dense Data Set
Volumes and Expanded Uncertainties vs Grid Size

Grid Case θ φ Volume
(
mm3

)
Uncertainty

(
mm3

)
1 10 20 3788.2 225.6
2 20 40 3989.5 137.4
3 30 60 4027.8 123.4
4 40 80 4034.4 112.2
5 50 100 4040.2 103.6
6 60 120 4041.2 99.8
7 70 140 4042.7 102.2
8 80 160 4043.7 100.4
9 90 180 4045.4 98.4
10 100 200 4044.9 98.6
11 110 220 4044.7 97.2
12 120 240 4044.9 96.8
13 130 260 4045.4 96.8
14 140 280 4045.3 95.8
15 150 300 4045.7 95.6
16 160 320 4046.3 95.2

Table 15: Estimated Volumes and Uncertainties for Green 2 Dense Data

Green 3 Dense Data Set
Volumes and Expanded Uncertainties vs Grid Size

Grid Case θ φ Volume
(
mm3

)
Uncertainty

(
mm3

)
1 10 20 3859.8 225.0
2 20 40 4064.0 138.0
3 30 60 4097.9 130.4
4 40 80 4102.7 115.4
5 50 100 4110.2 105.6
6 60 120 4113.2 105.6
7 70 140 4114.8 105.4
8 80 160 4116.3 100.2
9 90 180 4119.4 100.6
10 100 200 4119.1 101.6
11 110 220 4118.6 99.4
12 120 240 4118.6 99.8
13 130 260 4119.7 99.6
14 140 280 4118.7 99.2
15 150 300 4120.0 98.0
16 160 320 4119.3 99.6

Table 16: Estimated Volumes and Uncertainties for Green 3 Dense Data
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Pink 1 Dense Data Set
Volumes and Expanded Uncertainties vs Grid Size

Grid Case θ φ Volume
(
mm3

)
Uncertainty

(
mm3

)
1 10 20 3663.7 193.0
2 20 40 3847.9 105.6
3 30 60 3878.9 88.0
4 40 80 3891.9 83.8
5 50 100 3896.0 75.2
6 60 120 3898.5 73.2
7 70 140 3902.3 73.2
8 80 160 3903.0 72.0
9 90 180 3903.2 72.0
10 100 200 3903.8 71.8
11 110 220 3905.0 71.0
12 120 240 3905.0 70.8
13 130 260 3905.2 69.2
14 140 280 3904.7 69.6
15 150 300 3905.5 69.2
16 160 320 3905.3 69.0

Table 17: Estimated Volumes and Uncertainties for Pink 1 Dense Data

Pink 2 Dense Data Set
Volumes and Expanded Uncertainties vs Grid Size

Grid Case θ φ Volume
(
mm3

)
Uncertainty

(
mm3

)
1 10 20 3690.2 191.8
2 20 40 3881.2 110.6
3 30 60 3916.1 91.4
4 40 80 3923.5 83.6
5 50 100 3926.6 73.6
6 60 120 3932.6 74.4
7 70 140 3934.1 74.8
8 80 160 3934.8 73.6
9 90 180 3935.8 71.8
10 100 200 3934.2 71.2
11 110 220 3935.6 71.0
12 120 240 3935.8 70.4
13 130 260 3936.3 70.0
14 140 280 3936.1 69.0
15 150 300 3936.1 70.4
16 160 320 3936.1 70.0

Table 18: Estimated Volumes and Uncertainties for Pink 2 Dense Data
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Pink 3 Dense Data Set
Volumes and Expanded Uncertainties vs Grid Size

Grid Case θ φ Volume
(
mm3

)
Uncertainty

(
mm3

)
1 10 20 3274.6 236.8
2 20 40 3462.9 153.6
3 30 60 3488.5 130.8
4 40 80 3496.4 118.6
5 50 100 3498.3 110.8
6 60 120 3500.4 110.4
7 70 140 3502.8 108.0
8 80 160 3503.2 106.8
9 90 180 3505.9 105.2
10 100 200 3504.5 105.4
11 110 220 3506.2 104.0
12 120 240 3506.2 103.0
13 130 260 3507.5 103.2
14 140 280 3508.2 104.2
15 150 300 3508.5 103.4
16 160 320 3507.5 104.0

Table 19: Estimated Volumes and Uncertainties for Pink 3 Dense Data

oscillations in the neighborhood of some of the sparse data points. In the current algorithm this
problem was dealt with for convenience by a chopping operation, but this may not be a good
procedure and may have affected the differences between the coarse data results and the dense data
results, although this needs to be investigated further.

The results obtained from the coarse data distribution appear to be consistent with the results
from the spherical model fits. As shown in Tables 8, 9, and 10 in Section 4.6.2 the volume estimates
for the Green sphere are very close to the estimates obtained by the B-spline model suggesting that
the Green sphere is essentially spherical in shape. As expected the volume estimates in Table 4 for
the Pink sphere are significantly lower than the B-spline model estimates in Tables 11, 12, and 11,
in this case suggesting that the Pink sphere has a significant non-spherical shape.

The results from the dense data distribution were not what would have been expected. The
uncertainties were significntly higher than those for the coarse data. Tables 14 to 16 show volumes
smaller than those from 8, 9, and 10. Tables 17 and 18 show similar volume estimates but Table 19
shows significantly lower volume estimates. This, of course, could have been brought about by any
difficulty in holding the Pink phantom in position 3.

In summary we conclude that the combination of using the CMM to obtain surface data and
the B-spline/Divergence Theorem volume estimation method can produce useful results but that
there are some limitations. First, the CMM is primarily used for probing manufactured metalic
artifacts and its use in probing non-metalic artifacts such as the FDA phantoms can lead to some
large uncertainties in volume estimation. Second, the distribution of probed points can lead to
unexpected results. So there is a problem of consistency here. Third, the methods used may not
provide useful volume estimation for more complex artifacts that surely would arise in developing
simulated lung cancers. The current artifacts were near-spherical and even these did not provide
fully expected results based on data distribution. As a result of these limitations we think other
means of estimating ”ground truth” volumes for the current and any future phantoms be investigated
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by the FDA.
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A Fitting a Sphere to Probe Data

function sphere_fit_to_phantoms_simplex
%**************************************************************************
%This functions uses a nonlinear optimization procedure to fit a set of
%(x,y,z) data points determined by a CMM on the surface of two phantom lung
%cancer lesions supplied to NIST by the FDA.
%**************************************************************************
global x y z
format long;
%Open the CMM data file
%select the file desired by removing the % sign
%fid= fopen(’Tumor_Green_and_Pink_Results_Green_4.txt’,’r’);
%fid= fopen(’Tumor_Green_and_Pink_Results_Green_5.txt’,’r’);
%fid= fopen(’Tumor_Green_and_Pink_Results_Green_6.txt’,’r’);
%fid= fopen(’Tumor_Green_and_Pink_Results_Pink_5.txt’,’r’);
%fid= fopen(’Tumor_Green_and_Pink_Results_Pink_6.txt’,’r’);
%fid= fopen(’Tumor_Green_and_Pink_Results_Pink_7.txt’,’r’);
%fid= fopen(’Green_Results_dense_data_1.txt’,’r’);
%fid= fopen(’Green_Results_dense_data_2.txt’,’r’);
%fid= fopen(’Green_Results_dense_data_3.txt’,’r’);
%fid= fopen(’Pink_Results_dense_data_1.txt’,’r’);
%fid= fopen(’Pink_Results_dense_data_2.txt’,’r’);
fid= fopen(’Pink_Results_dense_data_3.txt’,’r’);
%fid= fopen(’Cal_121_sphere.txt’,’r’);
%fid= fopen(’Cal_181_sphere.txt’,’r’);
%reads file into a 3-by-inf matrix and takes the transpose. This is
%required due to the way Matlab reads an array.
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A=fscanf(fid, ’%f %f %f’, [3 inf])’;
[n,m] = size(A);
x=A(:,1);
y=A(:,2);
z=A(:,3);
A
fclose(fid);
mnx = mean(x);
mny = mean(y);
mnz = mean(z);
%Set initial center and radius
c = [mnx mny mnz 10]’;
[c_final,val_final,iter]=neldermead_mod(@f2,c,1,1.0e-14,1000)
%Choose the median values of the tetrahedron vertex coordinates
c_final_median = median(c_final’)’
Estimated_volume = (4/3)*pi*(c_final_median(4))^3
%Choose the median of the sum of squares of the function values at the
%vertices.
val_final_median = median(val_final’)’
%Compute the residual radial value between the data points to the computed
%center and the estimated sphere radius.
%First get the radial values to the data points
radius = sqrt((x-c_final_median(1)).^2 + (y-c_final_median(2)).^2 + (z-c_final_median(3)).^2);
Residual_radius = radius - c_final_median(4);
for i = 1:length(x)

disp(sprintf(’%f %f %f %f %f ’,x(i),y(i),z(i), radius(i), Residual_radius(i)));
end
Mean_residual_radius = mean(Residual_radius)
Mean_abs_residual_radius = mean(abs(Residual_radius))
Std_residual_radius = std(Residual_radius)
Std_abs_residual_radius = std(abs(Residual_radius))

%Estimating coefficient uncertainties
Z_hat = [-2*(x(:)-c_final_median(1)) -2*(y(:)-c_final_median(2)) -2*(z(:)-c_final_median(3)) -2*c
s = f2(c_final_median)/(length(x) - 4);
SE = inv(Z_hat’*Z_hat)*s^2;
for i = 1:4

se_c(i) = SE(i,i);
expand_uncert_c(i) = 2*se_c(i);

end
se_c
expand_uncert_c

%**************************************************************************
%This function computes the sum of ((x(i) - c(1))^2 + (y(i) - c(2))^2
%+ (z(i) - c(3))^2 - c(4)^2)^2 for i = 1:n
%**************************************************************************
function g = f2(c)
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%**************************************************************************
%F2 - Forms the sum of squares of the sphere model equations to be solved
%
%Input:
% c - Parameters defining a sphere. (c(1),c(2),c(3)) the center, c(4) the
% radius
%
%**************************************************************************

global x y z
n = length(x);
g = zeros(n,1);
for i = 1:n

p = x(i) - c(1);
q = y(i) - c(2);
r = z(i) - c(3);
p2 = p^2;
q2 = q^2;
r2 = r^2;
s2 = c(4)^2;
pqrs = p2 + q2 + r2 - s2;
g(i,1) = pqrs^2;

end
g = sum(g);

%**************************************************************************
%Nelder-Mead search algorithm for minimizing a nonlinear function without
%derivatives.
%**************************************************************************
function [x,y,iter]=neldermead_mod(f,xbar,rad,tol,maxit)
%**************************************************************************
% Modified Nelder-Mead Search (modified with comments and convergence test)
% Input: function handle f, best guess xbar (column vector),
% initial search radius rad , tolerance on iterative polyhedron volume,
% and maximum iterations allowed.
% Output: matrix x whose columns are vertices of simplex,
% function values y of those vertices, and iterations used.
%
%Author: T. Sauer, George Mason University
%Modified: D. Gilsinn, National Institute of Standards and Technology
%
%**************************************************************************
n=length(xbar);
x(:,1)=xbar; % each column of x is a simplex vertex
x(:,2:n+1)=xbar*ones(1,n)+rad*eye(n,n);
%determinant related to the volume of a polyhedron
v = zeros(n+1,n+1);
v(1,:) = 1;
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for j = 1:n+1
v(2:n+1,j) = x(:,j);

end
d = det(v);
for j=1:n+1

y(j)=f(x(:,j)); % evaluate obj function f at each vertex
end
%The output array r is the ascending order of the values in the original y
[y,r]=sort(y); % sort the function values in ascending order
x=x(:,r); % and rank the vertices the same way
iter = 1;
while ((abs(d) > tol)& (iter <= maxit))

iter = iter + 1;
%The mean function of a matrix produces a row vector of the column
%means. Since we want row means across vertices we have to
%transpose the matrix of vertices. We then transpose the row of
%means to form a column vector.

xbar=mean(x(:,1:n)’)’; % xbar is the centroid of the face
xh=x(:,n+1); % omitting the worst vertex xh
%First step in each iteration is to reflect through the centroid
%of the opposite face to the worst point and compute the function
%value at the reflected point
xr = 2*xbar - xh; yr = f(xr);
%There are two major cases to test: yr < y(n), y(n)<= yr
if yr < y(n)

%If yr is better than the current best value then this inicates
%that we might get better values by continuing in the same direction
%by an expansion

if yr < y(1) % try expansion xe, i.e. xe = xbar + 2*(xbar-xh)
xe = 3*xbar - 2*xh; ye = f(xe);
%If the expansion leads to a better value accept the point
%go to the end, resort the points and continue to the next iteration
if ye < yr % accept expansion
x(:,n+1) = xe; y(n+1) = f(xe); %resort and go to the next iteration

else % accept reflection point as the next best if yr<=ye
x(:,n+1) = xr; y(n+1) = f(xr);

end
else % xr is middle of pack, accept reflection

x(:,n+1) = xr; y(n+1) = f(xr);
end

else %Now test y(n) <= yr, use contractions
if yr < y(n+1) % try outside contraction xoc

xoc = 1.5*xbar - 0.5*xh; yoc = f(xoc);
if yoc < yr % accept outside contraction if the new point is better
x(:,n+1) = xoc; y(n+1) = f(xoc);

else % otherwise shrink polytope toward best point
for j=2:n+1

x(:,j) = 0.5*x(:,1)+0.5*x(:,j); y(j) = f(x(:,j));
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end
end

else %here y(n+1) <= yr and xr is even worse than the previous worst
xic = 0.5*xbar+0.5*xh; yic = f(xic); %contract towards the previous worst point
if yic < y(n+1) %if things are better accept inside contraction
x(:,n+1) = xic; y(n+1) = f(xic);

else % if y(n+1) <= yic then shrink polytope toward best point
for j=2:n+1

x(:,j) = 0.5*x(:,1)+0.5*x(:,j); y(j) = f(x(:,j));
end

end
end

end
[y,r] = sort(y); % resort the new obj function values
x=x(:,r); % and rank the vertices the same way
%determinant related to the volume of n-hedron
for j = 1:n+1

v(2:n+1,j) = x(:,j);
end
d = det(v);

end %go back for the next iteration.

B Main Volume Estimation Code

function Main_Phantom_Volume
%*************************************************************************
%MAIN_PHANTOM_VOLUME - This function is an interactive function that reads
% a data file of Cartesian coordinates, obtained from
% a CMM, converts them to spherical coordinates,
% adaptively selects a near optimum set of knots to
% fit a tensor product of B-splines to the data,
% generates a grid of points in theta and phi and
% extrapolates the B-spline function values to the
% grid and finally computes the volume of a phantom
% for that grid. A statistical bootstrap method is
% used to estimate volumetric uncertainties.
%
%Author:
% David E. Gilsinn
% Mathematical and Computational Sciences Division
% Information Technology Laboratory
% National Institute of Standards and Technology
% Gaithersburg, MD 20899-8910
%*************************************************************************

%*************************************************************************
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%Data initialization section, knot selection, and least squares fit.
%Executed once.
%*************************************************************************
%Get the Cartesian data. Choose a file name included in the function

[x,y,z] = Get_CMM_data;
N = length(x);

%Convert to spherical coordinates. The term base is used to indicate
%results not affected by any scaling of the radial data, otherwise the term
%shift will be used.

[theta_base,phi_base,rad_base] = Get_Spherical_Coordinates(x,y,z);

%Take the mean out of the radial data. It will be added back later.

mean_rad_base = mean(rad_base);
max_rad_base = max(rad_base);
min_rad_base = min(rad_base);
%rad_shift = rad_base - mean_rad_base;
rad_shift = rad_base;

%Adaptively select an optimum set of knots for theta and phi
%The final fit is made to the shifted radial data.

[rad_pred_shift,c_shift,NM_shift,resid_shift,knts_theta,knts_phi,iter]...
= adaptive_knot_selection(theta_base,phi_base,rad_shift);

disp(’**********************************************’);
disp(’Initial Fitting Statistics’);
disp(’**********************************************’);
disp(sprintf(’Maximum fitting residual, shifted data = %g ’, max(resid_shift)));
disp(sprintf(’Minimum of fitting residual, shifted data = %g ’, min(resid_shift)));
disp(sprintf(’Mean of fitting residual, shifted data = %g ’,mean(resid_shift)));
disp(sprintf(’Standard deviation of fitting residual, shifted data = %g ’,std(resid_shift)));

%*************************************************************************
%End data initialization, knot selection, and initial least squares fit
%*************************************************************************

%*************************************************************************
%Begin interactive volume determination for selected grid sizes
%*************************************************************************
disp(’***********************************************’);
disp(’Interactive Grid Selection and Volume Estimate’);
disp(’***********************************************’);

flag = 1;
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while (flag > 0)
flag = input(’To continue with a new grid type 1, else type -1 > ’);
if (flag <= 0)

break;
end
%Set up grid parameters for generating a longitudinal and latitudinal grid
nt_grid = input(’Enter desired number of theta grid points > ’);
np_grid = input(’Enter desired number of phi grid points > ’);
%This function adjusts the extrapolation due to the shifted
%coefficients by rescaling the predicted radial values on the grid.
[t_grid,p_grid,rad1_base, N1M1]...

= Generate_grid_data(c_shift,nt_grid,np_grid, knts_theta,knts_phi,rad_base);
%Compute the volume
vol(1) = volume(t_grid,p_grid,rad1_base);
disp(sprintf(’Initial volume in cubic mm = %g’,vol(1)));
Boot = 1;
Boot = input(’Type -1 to skip the bootstrap process > ’);
new_resid = zeros(N,1);
data_tol = 1e-14;
if(Boot > 0)

%Bootstrap process to estimate volume uncertainty and ref volume
for i = 2:200

disp(sprintf(’Bootstrap iteration %d out of 200.’,i));
for j = 1:N

u = rand;
ii = fix(u*N) + 1;
new_resid(j) = resid_shift(ii);

end
new_pred_shift = rad_pred_shift + new_resid;
%pred values are the extrapolated values to the grid based on
%the new coefficients c
c1 = lsq_2D_spline(NM_shift,new_pred_shift,data_tol);
pred = N1M1*c1 + mean_rad_base;
delta_plus = max_rad_base - mean_rad_base;
delta_minus = mean_rad_base - min_rad_base;
outlyer = find( (pred < mean_rad_base - delta_minus ) | (pred > mean_rad_base + delta_pl
rnd = rand(length(outlyer),1);
for ii =1:length(outlyer)

j = outlyer(ii);
if (rnd(ii,1) <= 0.5)

pred(j) = mean_rad_base - rnd(ii,1)*delta_minus;
else

pred(j) = mean_rad_base + rnd(ii,1)*delta_plus;
end

end
vol(i) = volume(t_grid,p_grid,pred);
%disp(sprintf(’Volume(%d) = %f’,i,vol(i)));

end
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vol_uncert = std(vol);
vol_ref = mean(vol);
disp(sprintf(’Volume uncertainty = %f cubic mm’,vol_uncert));
disp(sprintf(’Reference Volume = %f cubic mm’,vol_ref));

end
%clear variables for next pass
clear t_grid p_grid rad1_base

end

C Main Phantom Volume Support Programs

C.1 Function to Read CMM Data

function [x,y,z] = Get_CMM_data
%***********************************************************************
%GET_CMM_DATA - This function opens a file of (x,y,z) data from the CMM
% and recenters the data
%
%Output:
% x,y,z - Re-centered CMM data
%
%Author:
% David E. Gilsinn
% Mathematical and Computational Sciences Division
% Information Technology Laboratory
% National Institute of Standards and Technology
% Gaithersburg, MD 20899-8910
%***********************************************************************
%Open the CMM data file
%fid= fopen(’Tumor_Green_and_Pink_Results_Green_4.txt’,’r’);
%fid= fopen(’Tumor_Green_and_Pink_Results_Green_5.txt’,’r’);
%fid= fopen(’Tumor_Green_and_Pink_Results_Green_6.txt’,’r’);
%fid= fopen(’Tumor_Green_and_Pink_Results_Pink_5.txt’,’r’);
%fid= fopen(’Tumor_Green_and_Pink_Results_Pink_6.txt’,’r’);
%fid= fopen(’Tumor_Green_and_Pink_Results_Pink_7.txt’,’r’);
%fid= fopen(’Green_Results_dense_data_1.txt’,’r’);
%fid= fopen(’Green_Results_dense_data_2.txt’,’r’);
%fid= fopen(’Green_Results_dense_data_3.txt’,’r’);
%fid= fopen(’Pink_Results_dense_data_1.txt’,’r’);
%fid= fopen(’Pink_Results_dense_data_2.txt’,’r’);
%fid= fopen(’Pink_Results_dense_data_3.txt’,’r’);
%fid= fopen(’Cal_121_sphere.txt’,’r’);
fid= fopen(’Cal_181_sphere.txt’,’r’);
%fid= fopen(’pointcloud.txt’,’r’);
%reads file into a 3-by-inf matrix and takes the transpose. This is
%required due to the way Matlab reads an array.

A=fscanf(fid, ’%f %f %f’, [3 inf])’;
%Now center the data
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n=length(A(:,1));
meanx = sum(A(:,1))/n;
meany = sum(A(:,2))/n;
meanz = sum(A(:,3))/n;
x = zeros(n,1);
y = zeros(n,1);
z = zeros(n,1);
for i=1:n

x(i,1)=A(i,1)-meanx;
y(i,1)=A(i,2)-meany;
z(i,1)=A(i,3)-meanz;

end
fclose(fid);

C.2 Function to Euclidean to Spherical Coordinates

function [theta,phi,rad] = Get_Spherical_Coordinates(x,y,z)
%*************************************************************************
%GET_SPHERICAL_COORDINATES - Convert Cartesian to Spherical Coord and
% returns the spherical coordinates of data
%Output:
% theta (colatitude from +z axis)
% phi (azimuth from + x axis)
% rad (radial data)
%
%Author:
% Amelia Tebbe
% Department of Mathematics
% St. Mary’s College of Maryland
% St. Mary’s City, MD 20686-3001
%
%*************************************************************************
B = sph_coord(x,y,z);
%Read the columns of B into separate vectors.
theta = B(:,1);
phi = B(:,2);
rad = B(:,3);

function D=sph_coord(a,b,c)
%**************************************************************************
%SPH_COORD - Converts Cartesian coordinates to spherical coordinates
%INPUT:
% a - Vector of x Cartesian coordinates of points
% b - Vector of y Cartesian coordinates of points
% c - Vector of x Cartesian coordinates of points
%
%OUTPUT:
% D - Matrix of dimension length of a x 3 of Spherical coordinates
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% (r,theta,phi) where r is the radius,phi is the azimuth from the
% positive x-axis, 0<=phi<=2pi, and theta is the colatitude
% from the positive z-axis, 0<=theta<=pi. D(:,1) = theta, D(:,2) = phi,
% D(:,3) = r.
%
%**************************************************************************
n=length(a);

for i=1:n
x=a(i);
y=b(i);
z=c(i);
r=sqrt(x^2+y^2+z^2);

% If the point lies on the positive z-axis
if (abs(x)<= eps & abs(y) <=0 & abs(z-r)<=eps)

theta=0;
phi=0;

% If the point lies on the negative z-axis
elseif (abs(x)<=eps & abs(y)<=eps & abs(z+r)<=eps)

theta=pi;
phi=0;

% Cases for each octant
else

% 1st octant
if x>=0 & y>=0 & z>=0

theta= acos(z/r);
phi=acos(x/(r*sin(theta)));

% 2nd octant
elseif x<0 & y>=0 & z>=0

theta=acos(z/r);
phi=acos(x/(r*sin(theta)));

% 3rd octant
elseif x<0 & y<0 & z>=0

theta=acos(z/r);
phi=pi/2+acos(x/(r*sin(theta)));

% 4th octant
elseif x>=0 & y<0 & z>=0

theta=acos(z/r);
phi=3*pi/2+ acos(x/(r*sin(theta)));

% 5th octant
elseif x>=0 & y>=0 & z<0

theta=acos(z/r);
phi=acos(x/(r*sin(theta)));

% 6th octant
elseif x<0 & y>=0 & z<0

theta=acos(z/r);
phi=acos(x/(r*sin(theta)));
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% 7th octant
elseif x<0 & y<0 & z<0

theta=acos(z/r);
phi=pi/2+acos(x/(r*sin(theta)));

% 8th octant
elseif x>=0 & y<0 & z<0

theta=acos(z/r);
phi=3*pi/2+acos(x/(r*sin(theta)));

end
end

D(i,1)=theta;
D(i,2)=phi;
D(i,3)=r;

end

C.3 MATLAB Function to Adaptively Select θ and φ knots

function [rad_hat, c,NM, resid,knts_theta,knts_phi,iter]...
= adaptive_knot_selection(theta,phi,rad_shift)

%*************************************************************************
%ADAPTIVE_KNOT_SELECTION - Choose a good set of knots for the least squares
% fit of the scattered data.
%
%The selection algorithm is based on a suggested algorithm by P. Dierckx,
%Curve and Surface Fitting with Splines, Clarendon Press, Oxford, 2006.
%
%The object of the algorithm is to place knots in intervals where the
%residual errors are greatest.
%
%Input:
% theta, phi - Vectors of spherical coordinates for the probe
% points. theta and phi are in radians for theta in [0,pi]
% and phi in [0,2pi]
% rad_shift - rad_shift is in mm and is the radial data shifted by the
% mean value
%
%Output:
%
% rad_hat - Best fit radial values in mm. This is predicted values of
% shifted data.
% c - Best fit B-spline basis function coefficients
% resid - Best fit residuals between rad_hat and rad_shift
% knts_theta - Optimum theta knots
% knts_phi - Optimum phi knots
% iter - iteration counter
%
%Author:
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% David E. Gilsinn
% Mathematical and Computational Sciences Division
% Information Technology Laboratory
% National Institute of Standards and Technology
% Gaithersburg, MD 20899-8910
%
%*************************************************************************
%Set a tolerance for computing the pseudo inverse for diagonal matrix S in
%the Singular Value Decomposition (SVD) solution of the least squares
%problem.
data_tol = 1e-14;
%set initial knots with 4 evenly spaced in theta and 8 in phi
knts_theta =[0.0 1.3 1.7 2.0 3 pi]’; %Specified knots for theta
knts_phi = [0 1.7 1.9 2.7 3.5 4 4.5 5.5 2*pi]’; %Specified knots for phi
%compute the fit for the initial data set and define the R_squared
%statistic
NM = tensor_prod_spl(theta,phi,knts_theta,knts_phi); %Get tensor product
c = lsq_2D_spline(NM,rad_shift,data_tol); %Do a least squares fit by SVD
%Get the initial residual
resid = abs(NM*c-rad_shift);
%Compute the initial predicted values
rad_hat = NM*c;
%Compute the initail R squared statistic (coefficient of determination)
rad_bar = mean(rad_shift);
R_square = (sum((rad_hat - rad_bar).^2))/(sum((rad_shift - rad_bar).^2))
%Compute the degrees of freedom
n_dat = length(rad_shift);
df = n_dat - length(c);
%Initialize iteration counter
iter = 1;
while (R_square < 0.98)&(df >= 1)

iter = iter + 1; %Update iteration counter
%Begin the automatic knot adjustment algorithm
%Compute the sum of squares of the residuals of the fit to all points in
%the interval (knts_theta(i),knts_theta(i+1))
lkt = length(knts_theta);
for i = 1:lkt-1

t_index = find((knts_theta(i) <= theta) & (theta <= knts_theta(i+1)));
Res = resid(t_index);
del_t(i) = (norm(Res))^2;

end
%del_t
u = find((del_t >= max(del_t))); %Get the maximum of the sums for theta
%Compute the sum of squares of the residuals of the fit to all points in
%the interval (knts_phi(i),knts_phi(i+1))
lkp = length(knts_phi);
for i = 1:lkp-1

p_index = find((knts_phi(i) <= phi) & (phi <= knts_phi(i+1)));
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Res = resid(p_index);
del_p(i) = (norm(Res))^2;

end
%del_p
v = find(del_p >= max(del_p)); %Get the maximum of the sums for phi
%Test whether the maximum residuals are with respect to theta or phi and
%then form a weighted sum of the squares of the residuals. Update the knot
%arrays.
if del_t(u) >= del_p(v) %Enter here to select a new theta knot

t_index = find((knts_theta(u) <= theta) & (theta <= knts_theta(u+1)));
l_t_index = length(t_index);
res_t_index = resid(t_index);
theta_t_index = theta(t_index);
del_u = del_t(u);
new_t_knt = 0;
for k = 1:l_t_index

new_t_knt = new_t_knt + (res_t_index(k)^2)*...
(theta_t_index(k)/del_u);

end
knts_theta(lkt+1,1) = new_t_knt;
knts_theta = sort(knts_theta);

else %Otherwise select a new phi knot
p_index = find((knts_phi(v) <= phi) & (phi <= knts_phi(v+1)));
l_p_index = length(p_index);
res_p_index = resid(p_index);
phi_p_index = phi(p_index);
del_v = del_p(v);
new_p_knt = 0;
for k = 1:l_p_index

new_p_knt = new_p_knt + (res_p_index(k)^2)*...
(phi_p_index(k)/del_v);

end
knts_phi(lkp+1) = new_p_knt;
knts_phi = sort(knts_phi);

end
%Refit the original data with the new knots
NM = tensor_prod_spl(theta,phi,knts_theta,knts_phi);
c = lsq_2D_spline(NM,rad_shift,data_tol);
resid = abs(NM*c-rad_shift); %Compute the current residual
rad_hat = NM*c; %Compute the current predicted values
%Compute the new R-squared statistic and degrees of freedom
rad_bar = mean(rad_shift);
R_square = (sum((rad_hat - rad_bar).^2))/(sum((rad_shift - rad_bar).^2))
df = n_dat - length(c);

end
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C.4 Function to Compute the Tensor Product of Two B-splines

function NM = tensor_prod_spl(theta,phi,knts_theta,knts_phi)
%**************************************************************************
%TENSOR_PROD_SPL - This function creates the bicubic tensor product spline
% matrix for the spherical coordinate data points in theta
% and phi given specified knots in knts_theta and knts-phi
%
%Input:
% theta, phi - Spherical coordinate angles for CMM data
% knts_theta, knts_phi - theta and phi knots
%
%Output:
% NM - Tensor product B-spline matrix
%
%Author:
% David E. Gilsinn
% Mathematical and Computational Sciences Division
% Information Technology Laboratory
% National Institute of Standards and Technology
% Gaithersburg, MD 20899-8910
%
%**************************************************************************
kstheta = augknt(knts_theta,4); %Augment the knots at both ends
%
%The next generates four nonzero values for the four cubic B-splines that
%overlap at the specified point. The output is a matrix with a row
%associated with the argument. This will be done one row at a time
lt = length(theta);
lp = length(phi);
for i = 1:lt

t = theta(i,1);
N(i,:) = spcol(kstheta,4,t);

end
[row_N,col_N] = size(N);
%
%Create the associated M array for each data point
ksphi = augknt(knts_phi,4); %Augment the knots at the beginning and end
for j = 1:lp

p = phi(j,1);
M(j,:) = spcol(ksphi,4,p);

end
[row_M,col_M] = size(M);
%Create the tensor product matrix
for r = 1:lt

for i = 1:col_N
for j = 1:col_M

q = (i-1)*col_M + j;
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NM(r,q) = N(r,i)*M(r,j);
end

end
end

C.5 Least Squares by Singular Value Decomposition

function c = lsq_2D_spline(NM,rad_shift, data_tol)
%*************************************************************************
%LSQ_2D_SPLINE - Given the tensor product spline matrix NM and the right
% hand side data rad, this function produces the least
% square solution of NM*c = rad with minimum norm for c
% using the singular value decomposition. data_tol is the
% uncertainty in the scattered data being approximated.
%
%Input:
% NM - Tensor B-spline matrix
% rad_shift - radial data shifted by the mean

% Compute the singular value decomposition of NM, "economy" style,
% dropping unneeded columns in U and V.
%Authors:
% David E. Gilsinn
% Mathematical and Computational Sciences Division
% Information Technology Laboratory
% National Institute of Standards and Technology
% Gaithersburg, MD 20899-8910
%
% Dianne P. O’Leary
% Department of Computer Science
% University of Maryland
% College Park, MD 20742
%*************************************************************************
[U,S,V] = svd(NM,’econ’);

%NM = U*S*V’ and S is diagonal with nonnegative values [m,n] = size(S);
%Expect that ordinarily m > n

% Compute the pseudoinverse of S. It is a diagonal matrix
% with entries stored in the vector sinv.
% Elements of S less than data_tol are assumed to be zero.
[m,n] = size(S);
sdiag = diag(S);
sinv = zeros(n,1);
for i=1:n

if (sdiag(i) < data_tol)
break
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end

sinv(i) = 1 / sdiag(i);

end

% Form the solution vector as the pseudoinverse of NM times rad_shift.

c = V*(sinv.*(U’*rad_shift));

C.6 Generating Data Points on a Surface Grid

function [t_grid, p_grid, rad1, N1M1]...
= Generate_grid_data(c,nt_grid,np_grid,knts_theta,knts_phi,rad)

%*************************************************************************
%GENERATE_GRID_DATA - This function generates a grid of theta/phi points
% and extrapolates the radial values to these points
% given the coefficient vector c, optimum knots, and
% the spherical coordinate data radial values, rad
%
%Input:
% c - The B-spline coefficients from the least squares fit to the
% spherical coordinate data values
% nt_grid - The number of desired theta grid values
% np_grid - The number of desired phi grid values
% knts_theta - The optimum theta knots
% knts-phi - The optimum phi knots
% rad - Unshifted radial data from the spherical coordinates
%
%Output:
% t_grid - Theta values at the grid points along the theta coordinate
% p_grid - Phi values at the grid points along the phi coordinate
% rad1 - Extrapolated radial values at the (t_grid,p_grid) coordinates
%
%Author:
% David E. Gilsinn
% Mathematical and Computational Sciences Division
% Information Technology Laboratory
% National Institute of Standards and Technology
% Gaithersburg, MD 20899-8910
%
%*************************************************************************
%Select an evenly spaced grid of (theta, phi) pairs
t_grid = linspace(0,pi,nt_grid)’;
p_grid = linspace(0,2*pi,np_grid)’;

%Compute the tensor product matrix for the selected grid
lt = length(t_grid);
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lp = length(p_grid);
kstheta = augknt(knts_theta,4); %Augment the knots at both ends
ksphi = augknt(knts_phi,4); %Augment the knots at the beginning and end
%Generate the B-spline tensor product at the grid points. Do it point at a
%time to take care of non-sorted arrays
for i = 1:lt

t = t_grid(i);
N1(i,:) = spcol(kstheta,4,t);

end
[row_N1,col_N1] = size(N1);
for j = 1:lp

p = p_grid(j);
M1(j,:) = spcol(ksphi,4,p);

end
[row_M1,col_M1] = size(M1);
for r1 = 1:row_N1

for r2 = 1:row_M1
r = (r1-1)*row_M1 + r2;
for i = 1:col_N1

for j = 1:col_M1
q = (i-1)*col_M1 + j;
N1M1(r,q) = N1(r1,i)*M1(r2,j);

end
end

end
end
[r_n1m1,c_n1m1] = size(N1M1);

%Some important parameters of the unshifted radial data
mean_rad = mean(rad);
max_rad = max(rad);
min_rad = min(rad);

%Compute the new radii by adding back the mean of the original radial data
%rad1 = N1M1*c + mean_rad;
rad1 = N1M1*c;
%Adjust the values of rad1 values that fall outside of the original data
delta_plus = max_rad - mean_rad;
delta_minus = mean_rad - min_rad;
outlyer = find( (rad1 < mean_rad - delta_minus ) | (rad1 > mean_rad + delta_plus));
rnd = rand(length(outlyer),1);
for i =1:length(outlyer)

j = outlyer(i);
if (rnd(i,1) <= 0.5)

rad1(j) = mean_rad - rnd(i,1)*delta_minus;
else

rad1(j) = mean_rad + rnd(i,1)*delta_plus;
end
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C.7 Computing the Volume Based on Grid Values

function vol = volume(t_grid,p_grid,rad1)
%**************************************************************************
%VOLUME - This function computes the volume of a phantom based on a
% specified grid size using the Divergence Theorem. We accumulate
% the facet contributions to the volume estimate of the phantom.
%
%Input:
% t_grid - theta values at grid points
% p_grid - phi values at grid points
% rad1 - extrapolated radial values at grid points
%
%Output:
% vol - volume in cubic millimeters
%
%Author:
% David E. Gilsinn
% Mathematical and Computational Sciences Division
% Information Technology Laboratory
% National Institute of Standards and Technology
% Gaithersburg, MD 20899-8910
%*************************************************************************
lt = length(t_grid);
lp = length(p_grid);
%Transfer the rad1 array of estimated radii on a specified grid to a two
%dimensional array
nv = lt-1;
nh = lp-1;
for i = 1:nv+1

for j = 1:nh+1
p = (i-1)*(nh+1) + j;
r(i,j) = rad1(p);

end
end
r(1,1) = median(r(1,:));
r(nv+1,1) = median(r(nv+1,:));

%Initialize the volume
vol = 0;

%Loop through the layers of theta. Begin with the North Pole layer.
%Set up facet triangle vertices in counterclockwise manner. The top point
%will always be the north pole.
v1(1) = 0;
v1(2) = 0;
v1(3) = r(1,1);
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%loop through each facet in the first layer
for j = 1:nv

v2(1) = r(2,j)*sin(t_grid(2))*cos(p_grid(j));
v2(2) = r(2,j)*sin(t_grid(2))*sin(p_grid(j));
v2(3) = r(2,j)*cos(t_grid(2));
v3(1) = r(2,j+1)*sin(t_grid(2))*cos(p_grid(j+1));
v3(2) = r(2,j+1)*sin(t_grid(2))*sin(p_grid(j+1));
v3(3) = r(2,j+1)*cos(t_grid(2));
v = v2 - v1;
w = v3 - v1;
n = normal_vec(v,w);
term = facet_term(n,v1,v2,v3);
vol = vol + term;

end

%Next loop through layers 2 through nv-1. There are nh 4-vertex patches at
%each level. Each patch will be divided into two triangles. The four
%vertices of the patches will be identified in counterclockwise order as
%(t_grid(i),p_grid(j),r(i,j)),
%(t_grid(i+1),p_grid(j),r(i+1,j)), (t_gris(i+1),p_grid(j+1),r(i+1,j+1)),
%(t_grid(i),p_grid(j+1),r(i,j+1))

for i = 2:nv-1
for j = 1:nh

%Get contribution of left triangle
v1(1) = r(i,j)*sin(t_grid(i))*cos(p_grid(j));
v1(2) = r(i,j)*sin(t_grid(i))*sin(p_grid(j));
v1(3) = r(i,j)*cos(t_grid(i));
v2(1) = r(i+1,j)*sin(t_grid(i+1))*cos(p_grid(j));
v2(2) = r(i+1,j)*sin(t_grid(i+1))*sin(p_grid(j));
v2(3) = r(i+1,j)*cos(t_grid(i+1));
v3(1) = r(i+1,j+1)*sin(t_grid(i+1))*cos(p_grid(j+1));
v3(2) = r(i+1,j+1)*sin(t_grid(i+1))*sin(p_grid(j+1));
v3(3) = r(i+1,j+1)*cos(t_grid(i+1));
v = v2-v1;
w = v3-v1;
n = normal_vec(v,w);
term = facet_term(n,v1,v2,v3);
vol = vol + term;
v2 = v3;
v3(1) = r(i,j+1)*sin(t_grid(i))*cos(p_grid(j+1));
v3(2) = r(i,j+1)*sin(t_grid(i))*sin(p_grid(j+1));
v3(3) = r(i,j+1)*cos(t_grid(i));
v = v2-v1;
w = v3-v1;
n = normal_vec(v,w);
term = facet_term(n,v1,v2,v3);
vol = vol + term;
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end
end
%Loop through the final layer at the South Pole
for j = 1:nh

v1(1) = r(nv,j)*sin(t_grid(nv))*cos(p_grid(j));
v1(2) = r(nv,j)*sin(t_grid(nv))*sin(p_grid(j));
v1(3) = r(nv,j)*cos(t_grid(nv));
v2(1) = 0;
v2(2) = 0;
v2(3) = -r(nv+1,1);
v3(1) = r(nv,j+1)*sin(t_grid(nv))*cos(p_grid(j+1));
v3(2) = r(nv,j+1)*sin(t_grid(nv))*sin(p_grid(j+1));
v3(3) = r(nv,j+1)*cos(t_grid(nv));
v = v2-v1;
w = v3-v1;
n = normal_vec(v,w);
term = facet_term(n,v1,v2,v3);
vol = vol + term;

end
%Get the final volume
vol = 1/6*vol;

function n = normal_vec(v,w)
%*************************************************************************
%NORMAL_VEC - This function computes the unit normal vector n to the
% plane determine by v and w in counterclockwise form. The
% function computes the cross product of v and w using the
% right hand rule between v and w.
%
%*************************************************************************

n(1) = v(2)*w(3) - v(3)*w(2);
n(2) = v(3)*w(1) - v(1)*w(3);
n(3) = v(1)*w(2) - v(2)*w(1);
n = n/norm(n);
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