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Abstract  
 
The languages and logical formalisms developed by information scientists and logicians 
concentrate on the theory of languages and logical theorem proving. These languages, 
when used by domain experts to represent their domain of discourse, most often have 
issues related to the level of expressiveness of the languages and need specific 
extensions. In this paper we analyze the levels of logical formalisms and expressivity 
requirements for the development of ontologies for manufacturing products. We first 
discuss why the representation of a product model that needs to be shared across globally 
networked enterprises is inherently complex and prone to inconsistencies. We then 
explore how these issues can be overcome through a structured knowledge representation 
model. We report our evaluation of OWL-DL (Ontology Web Language-Description 
Logic) in terms of expressivity and of the use of SWRL (Semantic Web Rule Language) 
for representing domain-specific rules. We present a case study of product assembly to 
document this evaluation and further show how the OWL-DL reasoner together with the 
rule engine can enable reasoning of the product ontology. We discuss how the proposed 
product ontology can be used within a manufacturing context.  
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1 Introduction 
 
In a typical industrial scenario a number of organizational entities collaborate to 
accomplish various tasks by sharing resources, applications and services throughout the 
product lifecycle. The immediate issue is the interoperability of these resources, 
applications and services. Interoperability requires a common high level and 
interoperable model of the product across the extended and networked enterprise.  
 
The development of such a high level interoperable model poses many challenges, for 
example: i) complex nature of interactions in product modeling and ii) representation of 
the information content and abstraction principles used. 
 
The information model for representing mechanical assemblies (products) is inherently 
complex owing to: 
 
• The variety of information elements to be represented: function, behavior, structure, 

geometry and material, assembly features, tolerances and various levels of 
interaction of these concepts, 

• The abstraction principles needed to represent the information model: 
generalization, grouping, classification, and aggregation [1]. 

 
The following partial list sketches some of the issues with respect to each information 
element: 
 
• Function: one aspect of what the artifact is supposed to do. The artifact satisfies the 

engineering requirements largely through its function [2]. 
• Behavior: information supporting the simulation of the product under some given 

conditions. This simulation could be, for example, kinematics, dynamics and control 
systems.  

• Structure: the individual parts that constitute the assembly, the hierarchy of the 
composition tree (parts-subassemblies-assembly) and the associated Bill of 
Materials (BOM). 

• Geometry and material:  a generic shape, chosen by the designer at early stages of 
the lifecycle and a particular geometry captured in one or more CAD (Computer-
Aided Design) models.  

• Features: a portion of the artifact’s form that has some specific function assigned to 
it. An artifact may have design features, analysis features, manufacturing features, 
etc., as determined by their respective functions [2]. 

• Tolerances: tolerance design is the process of deriving a description of geometric 
tolerance specifications for a product from a given set of desired properties of the 
product. Tolerancing includes both tolerance analysis and tolerance synthesis [2]. 

 
The second source of complexity is due to the abstraction principles needed to represent 
the information on products. The model may incorporate the following mechanisms:  
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• Generalization versus specialization: relationships built through intentional 
properties, e.g., “gear shifts are mechanical assemblies.” This abstraction principle 
involves a hierarchical mechanism where concepts are categorized through the 
general knowledge of the problem. 

• Grouping versus individualization: relationships built through extensional properties, 
e.g., “manual gear shifts are gear shifts.” In this case concepts are categorized through 
the specific knowledge of the represented domain and the group can even be not 
homogeneous meaning that the group can contain disparate things. 

• Classification versus instantiation: relationships between a real object (individual) 
and the concept it belongs to, e.g., “my gear shift is a gear shift.” In modeling, 
particular attention needs to be paid to the establishment of the boundary between 
concepts and real objects. 

• Aggregation versus decomposition: part-of relationships between an element and its 
constituents, e.g., “gear shifts are part-of cars” and “my gear shift is part-of my car.”  

 
Other types of mechanisms may be required, for example, a given chemical compound 
“consists of” many other chemicals. For more details regarding general part-whole 
formalisms readers can refer to the General Extensional Mereology [3]. 
 
This paper outlines a method for evaluating the appropriate level of expressiveness to 
capture both the information content and the abstraction principles discussed above, with 
the aim of developing a consistent formal model for product assemblies.  We use the 
terms expressiveness to mean both language expressiveness and processible 
expressiveness [4]. The language expressiveness is related to the language symbols, rules, 
conventions and vocabulary while the processible expressiveness is related to the 
computability. For more detailed discussion on the issues related to the computational 
complexity, please refer to [5] [6]. 
  
The procedure one has to follow to represent product models can be summarized as 
follows: 

1. Select Description Logic (DL). 
2. Select a language that well support DL. 
3. Evaluate extensions (to incorporate domain specific rules) to the language and 

pick the appropriate rule language. 
4. Build the model and evaluate inference mechanisms. 

We believe that this study may aid in understanding the considerations involved in 
choosing appropriate logical frameworks for product ontologies.  
 
This paper is structured as follows. We first describe how the expressivity of DL can help 
in developing a consistent formal model for product assemblies. We then find the 
language that captures most of the expressivity of DL. We use that language to build a 
product model and to show how the DL expressivity is used in the product representation. 
For practical purposes, we finally illustrate how the resulting product model can be used 
within a design context and a manufacturing context. 
 



 3

2 DL expressivity in product modeling 
 
Description Logic is a family of knowledge representation languages used to represent 
the knowledge of a domain in a structured fashion. The domain is modeled by means of 
concepts and roles, which denote, respectively, classes of objects and relationships 
between objects. The concepts and roles, together with knowledge specification 
mechanisms, form the knowledge base.  Automatic reasoning procedures can be 
performed on the knowledge base. 
 
DL is decidable, that is, there exists an automatic reasoning procedure such that, for 
every knowledge specification mechanism in the logic, the reasoning procedure is 
capable of deciding whether the mechanism is valid or not [7]. 
 
We have to choose the level of expressiveness needed to represent the product 
information content and to include the abstraction principles needed to represent it. 
Expressiveness should enable explicit information representation (product model) and 
support inference mechanisms, i.e., mechanisms to find implicit consequences based on 
the explicit information.  

2.1 DL for information representation 
 
The DL formalism allows us to create a concept level hierarchy of the knowledge using 
is-a relationships (e.g., car is-a vehicle), to express complex roles (properties) between 
concepts (e.g., cars have exactly four wheels while bicycles have exactly two wheels) and 
to declare the membership of an individual in a concept (e.g., myCar belongs to the 
concept of cars). 

2.2 DL for inference mechanisms 
 
For inference mechanisms, consider the examples in Table 1. In the second column we 
use the concepts of Vehicle, Car, Bicycle and Wheel to create our knowledge base and to 
query it. In the third column we present the DL mechanisms that allow for answers to 
those queries. In the fourth column we show answers to those queries. 
 

Table 1: Examples of inference mechanisms 

 Question DL mechanisms Answer 
1 We subsume the concept 

of Car1 in the concept of 
Bicycles2. Is it logically 
correct? 

The “consistency 
checking” mechanism 
finds whether a concept 
admits at least one 
individual. 

No, the model is 
inconsistent. There cannot be 
an individual that has four 
wheels and is a bicycle at the 
same time. 

2 We introduce the 
concept of ElectricCar. 
What is its position in 
the hierarchy? 

The “subsumption” 
mechanism finds 
implicit sub-concept 
relationships. 

In the concept’s hierarchy, 
the ElectricCar concept is a 
sub-concept of Car. 
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3 We declare myCar as an 
individual of the concept 
of Vehicle with four 
wheels. Is it a Car or a 
Bicycle? 

The “realization 
reasoning” mechanisms 
finds the most specific 
concept for each 
individual. 

myCar has four wheels, so it 
is an instance of the concept  
of Car.  

4 Which cars have the 
same kind of wheels?        

The “retrieval” 
mechanism finds the 
individuals that are 
instances of a given 
concept or intersection 
of concepts.  

The set of different instances 
of Car that have matched 
wheels. 

5 We declare a wheel part-
of a car but the engine 
powering that wheel is 
part-of another car. Is it 
logically correct? 

DL can not help here 
since the roles do not 
pertain to concepts but 
particular individuals.  
 

The individual of the Wheel 
concept is connected to the 
wrong individual of Car. The 
part-of property between the 
concepts of Wheel and Car is 
still correct. 

1 Vehicle with four wheels 
2 Vehicle with two wheels 

 
The DL formalism consists of four reasoning mechanisms [7]: consistency checking, 
subsumption, realization, and retrieval. Each of them provides the answer for one of the 
first four questions. The fifth question represents a different situation, it falls outside of 
DL. To answer this question we need to represent appropriate role paths between 
instances and not between classes as in the case of the first four questions. In other words 
it is the role path, going from the instance of Wheel to the instance of Car passing 
through the instance of Engine, which has to be constrained. To answer the fifth question, 
we have to introduce in the representation new elements: domain-specific rules. 

2.3 Domain-specific rules 
 
Domain-specific rules are defined to add specific constraints in the knowledge base. 
These rules are in the form of implications between an antecedent (body) and a 
consequent (head): whenever the conditions specified in the antecedent hold, then the 
conditions specified in the consequent must also hold. These rules not only allow the 
declaration of the membership of an individual to a concept, but also the declaration of 
properties between individuals. In the fifth example given in Table 1, a rule can state that 
if a wheel is powered by an engine and that engine is part-of a car, then the wheel has to 
be part-of the same car.  
 
In order to represent knowledge in the assembly domain, i.e., to answer all five questions 
in Table 1, we need to combine both DL expressivity and domain-specific rules.  
 
 



 5

3  Languages and tools 
 
Our next goal is to find modeling languages and tools able to implement both the DL 
expressivity and the domain-specific rules. 

3.1 Modeling Languages 
 
The most common languages used for product modeling are: 
 
• Unified Modeling Language (UML) [8] 
• Entity-Relationship diagrams (ERD) [9] 
• EXPRESS [10] 
• Ontology Web Language (OWL-DL, version 1.0) [11].  
 
In UML, the modeling elements are substantially aligned with the needs of object-
oriented programming so that the correspondence with DL expressivity is low [12]. On 
the other hand, the expressivity of UML is embedded in its meta-modeling architecture 
called Meta-Object Facility (MOF). This architecture is organized in four layers, from 
M3 to M0, where each layer provides precise constructs and rules for creating models in 
the successive layers [13]. 
 
ERD was developed for the organization of information within databases, therefore the 
correspondence with DL expressivity is even lower than for UML [9]. 
 
In EXPRESS the correspondence with DL is not high but the expressive power is 
enhanced with algorithms not captured in the DL expressivity. These algorithms define 
the entities’ behavior using functions, procedures, and rules. 
 
Among the listed languages, OWL is the most appropriate to implement the DL 
constructs needed for product modeling. Each DL sublanguage is named with a 
combination of letters (acronyms), e.g., ALC, SHOIN, and SHIQ ,: each letter associates to 

the sublanguage its expressivity. OWL-DL is classified as SHOIN(D). Although decidable, 

OWL-DL could become intractable, especially when dealing with large ontologies: for 
this reason, part of our effort is still focusing on its computational complexity. Its meta-
modeling architecture is flat (i.e., not organized in layers) but the expressiveness is 
contained in the language elements themselves. These language elements have been 
designed with the aim of using DL for the semantic web to enable interoperability 
between systems through semantic data representation.  
 
The use of the XML (Extensible Markup Language) syntax within OWL facilitates the 
exchange of models between agents, while the OWL features give the model the 
expressive power needed for ontological representation. The word “ontology” in this 
paper is meant as a collection of concepts on which a set of axioms is specified for 
performing logical inference. 
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3.2 Modeling Tools 

We decided to test the OWL expressiveness for product modeling by building a product 
ontology (see Section 4) and by performing inference mechanisms on it (see Section 5). 
We developed the ontology in OWL-DL version 1.0, using Protégé-OWL 3.3 [14] to edit 
it. We excluded OWL Lite and OWL Full from consideration because of their low formal 
complexity and the hard computational problems, respectively. The Protégé ontology 
editor supports  SHOIN(D).  OWL-DL provides the expressiveness of SHOIN(D) , and 

OWL 1.1 is based on  SROIQ(D). 

For DL inference, we used the reasoning engine RACERPro [15]. We chose this 
reasoning engine because it is easily accessible through the OWL Plug-in in Protégé.  For 
rule-based inference, we used the Semantic Web Rule Language (SWRL) to write the 
rules [16]. Since the combination SWRL and OWL-DL is undecidable, we selected only 
the DL-safe portion of SWRL. The rules are edited directly in Protégé-OWL through the 
SWRLTab, an extension to the editor, and then executed by Jess, a rule engine for the 
Java platform that supports rule-based programming. We used the Jess Bridge in order to: 
 
• merge SWRL rules and relevant OWL data 
• input them to the Jess engine, and  
• return the new inferred information to the ontology.  
 
Figure 1 depicts how the OWL data and the SWRL rules are connected. The bold arrows 
indicate the flow of information (initial data, rules and final data) while the dashed 
arrows indicate how the Jess Bridge enables that flow.  
 

Jess Engine
Rules running

Jess Bridge

OWL 
ontology

SWRL 
rules

Results in JAVA Results in the 
OWL ontology

Jess Engine
Rules running

Jess Bridge

OWL 
ontology

SWRL 
rules

Results in JAVA Results in the 
OWL ontology

 
Figure 1: Connection between the OWL ontology and SWRL rules 
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4 Description of the information model 
 
Core Product Model (CPM) [2] was intended to form a base for representing a product 
model that could respond to the demands of the next generation CAD systems besides 
providing improved interoperability among future software. Based on the Core Product 
Model and Open Assembly Model (OAM), [17] presents two ontological models. These 
two models were developed at the National Institute of Standards and Technology (NIST) 
as part of the ongoing work related to product representation for lifecycle management 
[2]. A brief description of these two models is given below.  

4.1 Core Product Model 
 
The model is composed of two ontologies: which are OWL versions of CPM and OAM.  
The concepts (classes in OWL) in CPM are grouped into four categories (see Figure 2): 
 
• Classes that provide supporting information for the objects (abstract classes): 

CoreProductModel, CommonCoreObject, CommonCoreRelationship, CoreProperty 
and CoreEntity. 

• Physical or conceptual objects classes: Artifact, Feature, Port, Specification, 
Requirement, Function, Flow, Behavior, Form, Geometry and Material. 

• Classes that describe associations (relationships) among the objects: Constraint, 
EntityAssociation, Usage and Trace. 

• Classes that are commonly used by other classes (utility classes): Information, 
ProcessInformation and Rationale. 

 
The hierarchy of classes begins from CommonCoreEntity. This class represents real 
objects and relationships or associations between them. The two subclasses of 
CommonCoreEntity are CommonCoreObject and CommonCoreRelationship. 
CommonCoreObject is the parent class for all the object classes. 
CommonCoreRelationship and its specializations, the EntityAssociation, Constraint, 
Usage and Trace relationships, can be applied to individuals of classes derived from this 
class. CommonCoreRelationship is the base class from which all association classes are 
specialized. It also serves as an association to the CommonCoreObject class. CoreEntity 
is an abstract class from which the classes Artifact and Feature are specialized. 
EntityAssociation relationships may be applied to entities in this class. CoreProperty is 
an abstract class from which the classes Function, Flow, Form, and Material are 
specialized. Constraint relationships may be applied to individuals of this class. 
For further details, please, refer to [2]. 

4.2 Open Assembly Model 
 
OAM incorporates information about assembly relationships and component 
composition; the representation of the latter is by the class ArtifactAssociation, which 
represents the assembly relationship that generally involves two or more artifacts. 
ArtifactAssociation is specialized into the following classes: PositionOrientation, 
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Relative-Motion and Connection. ArtifactAssociation is directly connected to Assembly to 
allow the possibility to check the assembly relationship involved in the Assembly through 
the property ArtifactAssociation2Assembly (see Figure 3). 
 
An assembly is a composition of its subassemblies and parts. The Assembly and Part 
classes are sub-classes of the CPM Artifact class. A Part is the lowest level component. 
Each assembly component (whether a sub-assembly or part) is made up of one or more 
features, represented in the model by OAMFeature, a subclass of the CPM Feature class. 
OAMFeature has tolerance information, represented by the class Tolerance.  
 
The class AssemblyFeatureAssociation (AFA) represents the association between mating 
assembly features through which relevant artifacts are associated. The class 
ArtifactAssociation is the aggregation of AssemblyFeatureAssociation. The class 
AssemblyFeatureAssociationRepresentation (AFAR) represents the assembly relationship 
between two or more assembly features. This class is an aggregation of 
ParametricAssemblyConstraints, KinematicPair, and/or KinematicPath between 
assembly features. KinematicPair defines the kinematic constraints between two adjacent 
artifacts (links) at a joint. KinematicPath provides the description of the kinematic 
motion. For further details, please, refer to [2]. 
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Figure 2: Core Product Model 
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Figure 3: Open Assembly Model 
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5 Description of the model inference mechanisms 
 
The main benefit of using an ontology for product modeling is the possibility of 
performing inference on the declared classes and individuals. In this section we will 
discuss the two different inference mechanisms used in our product ontology: inference 
based on description logic and inference based on domain specific rules 

5.1 Description logic 
 
In Table 2 we give some examples on how the DL expressivity included in OWL is used 
within the axioms defined in the model. In the first column of the table, the DL 
expressivity of OWL-DL, i.e., SHOIN(D) , is divided according to the DL notation [7].  

The third column in Table 2 indicates the expressivity associated with each letter of the 
DL notation. 
 

Table 2: Examples of DL expressivity in product modeling 

Notation No Expressivity Description Examples of Axioms using the 
Expressivity 

1 Universal 
concept 

The concept that contains 
all the individuals. 

The concept of Thing: included in every 
OWL ontology. 

2 Bottom concept  The concept without any 
individual. 

The concept of Nothing: included in 
every OWL ontology. 

3 Atomic concept A concept name. The concept of Assembly. 

4 Atomic 
negation 

The negation of an atomic 
concept. 

The concept of Part consists of those 
individuals that are not Assemblies. 

5 
Value 
restriction 
 

All the individuals that 
are in the relationship 
with the described 
concept belong to a 
specified concept. 

A Feature can be connected through the 
property 
Feature2ParametricAssemblyConstraint 
only to the concept 
ParametricAssemblyConstraint. 

AL 

6 Intersection of 
concepts 

The set of individuals 
belonging to both the 
concepts. 

An OAMFeature is the intersection 
between the concept of Feature and the 
concept of the individuals connected at 
least with one AFA through the property 
feature2AFA. An OAMFeature can be 
automatically recognized by giving the 
definition of that concept. 

S 7 Transitive 
properties 

For all individuals a, b, 
and c, if a is related to b 
and b is related to c, then 
a is related to c. 

The property artifactHasPart, used to 
connect an Assembly with all its 
components, is transitive. Since for 
transitive properties it is impossible to 
specify cardinalities, the model includes 
also the property artifactHasPart_direct to 
connect the Assembly to its direct 
subassemblies or Parts. 
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Notation No Expressivity Description Examples of Axioms using the 
Expressivity 

H 8 Role hierarchy 

If P1 is a subproperty of 
P2, then the property 
extension of P1 (a set of 
pairs) should be a subset 
of the property extension 
of P2 (also a set of pairs). 

The property artifactHasPart_direct is a 
subproperty of the property 
artifactHasPart. When the direct property 
holds, the indirect one holds as well. 

O 9 Enumerated 
classes 

The concept is made of 
exactly the enumerated 
individuals. 

Two CommonCoreObject can be linked 
through the CommonCoreRelationships 
“AlternativeOf”, “IsSameAs”, 
“VersionOf”, “IsBasedOn”, 
“DerivedFrom”: these are the enumerated 
individuals of the range class of the link.  

I 10 Inverse 
properties 

For all individuals a and 
b, iff a is related to b, then 
b is related to a through 
the inverse property. 

The property partOf is the inverse of 
artifactHasPart. When an Assembly is 
connected to its component through 
artifactHasPart, the component will be 
connected to the Assembly through 
partOf. 

N 11 Cardinality 
restrictions 

The concept is 
constrained to have a 
number of values of a 
particular property. 

An ArtifactAssociation has to link at least 
2 Artifacts. An inconsistency will be 
identified if not. 

F 12 Functional 
properties 

The individuals of certain 
concepts have unique 
property fillers for a given 
property. 

A KinematicPair can be referred only to 
one AFAR. 

E 13 Full existential 
quantification 

The set of all individuals 
in the domain which has 
at least one specified R-
successor. 

A DatumFeature has to have some 
connections with 
AssemblyFeatureAssociation. If it doesn’t 
the reasoner will recognize an 
inconsistency. 

U 14 Concept union 
(disjunction) 

The set of the individuals 
belonging at least to one 
of the disjointed concepts. 

The property that connects 
ArtifactAssociation to the assembled 
components has as range the concept 
union of Assembly and Part. 

(D) 15 Datatype 
properties 

Property for which the 
value is a data literal, 
such as a string or a 
number. 

CommonCoreEntities have names: the 
property links CommonCoreEntity to a 
string. 

 
All OWL constructs (SHOIN(D)) are used in OAM but only the inference mechanisms of 

SHIN (D) are performed since the reasoning capability of RacerPro in the presence of 

enumerated classes (O) is incomplete [18]. In our ongoing research we are evaluating the 

Pellet reasoner (SHOIQ(D)) because it is more compatible with OWL 1.1 (SROIQ(D)), the 

newest version of OWL [19]. 
 
Following the axioms, some examples are given in Table 2. With this set of axioms the 
reasoner is able to: 
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• Query and search the model. 
• Check its consistency. 
• Perform inference on the classes’ hierarchy. 
• Perform inference on the membership of the individuals to the classes. 

 
In OWL-DL 1.0 a property is declared in terms of its domain, range and characteristics 
such as transitivity or reflexivity. In cases where it is required to impose specific 
conditions or restrictions we need to specify them using some rules. For example, if class 
Car and class Person are connected through the property hasOwner and class Person and 
class Garage are connected through the property isRenter and class Car and class Garage 
are connected through the property isParked (see Figure 4) then to infer that a particular 
person’s car is parked in the garage the person rents we need a rule to specify this 
explicitly. 

Car Person
hasOwner

Garage

isRenter
isParked

Car Person
hasOwner

Garage

isRenter
isParked

 
Figure 4: Example of a case where rules are needed 

 
In OWL 1.1 the above rule can also be achieved through property chains but in our 
opinion not in all cases the rules can be replaced by property chains. 
 

5.2 Rule-Based Inference 
 
We use SWRL [16] rules in order to:   
 

• associate individuals to new classes: we use this capability to associate an 
individual to a class creating inconsistencies in the ontology 

• create properties between individuals.  
 
We classify these rules into four groups:  

• property rules 
• association rules 
• partOf rules, and  
• acyclic rules.  

 
In the diagrams representing the rules (Figures from 5 to 8), we use rectangles to identify 
classes and ovals to identify individuals. 
 
Property rules create new properties between individuals once some other properties are 
declared. The property rules incorporate the meaning into the ontology. For example, the 
Jess engine associates the ArtifactAssociation directly to the Assembly once the structure 
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of the Assembly and the ArtifactAssociation between its subassembly are declared. Figure 
5 shows how the rule connects the master Assembly 1 to the ArtifactAssociations 
existing between its subcomponents Assembly 2, Part 1, and Assembly 3. The legend in 
Figure 5 is shared also by Figure 6,7 and 8. 
 

Assembly 2 Assembly 3

ArtifactAssociation α ArtifactAssociation β

Assembly 1

Part 1

artifactHasPart_direct

artifactAssociation2Artifact

artifactAssociation2Assembly: inferred property

Assembly 2 Assembly 3

ArtifactAssociation α ArtifactAssociation β

Assembly 1

Part 1

artifactHasPart_directartifactHasPart_direct

artifactAssociation2Artifact

artifactAssociation2Assembly: inferred propertyartifactAssociation2Assembly: inferred property  
Figure 5: Example of a property rule 

 
Association rules represent the binary relationships between association classes and 
object classes (see Figure 6). A minimum cardinality 2 is applied in the OWL model, and 
then a SWRL rule specifies that if two different individuals of the association class are 
connected to the same individuals of the object class, then these two association 
individuals are the same (sameAs). In this way a unique ArtifactAssociation can be 
connected to the same individuals of Artifact. 
 

ArtifactAssociation α
sameAs

ArtifactAssociation β

ArtifactAssociation α
Artifact 1

Artifact 2

ArtifactAssociation β
Artifact 1

Artifact 2

ArtifactAssociation Artifact
min 2

ArtifactAssociation α
sameAs

ArtifactAssociation β

ArtifactAssociation α
Artifact 1

Artifact 2

Artifact 1

Artifact 2

ArtifactAssociation β
Artifact 1

Artifact 2

Artifact 1

Artifact 2

ArtifactAssociation Artifact
min 2

 

Figure 6: Example of an association rule 
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PartOf rules create the right structure of assembly, i.e., enable the assemblies to 
distinguish between the direct and indirect part-of properties. After executing the partOf 
rules, the indirect property links an assembly with all its parts (example in Figure 7). 
 

Assembly 2

Assembly 1 Part 3

Part 2Part 1

Assembly 2

Part 3Part 2Part 1

artifactHasPart_direct

artifactHasPart: inferred property

Assembly 2

Assembly 1 Part 3

Part 2Part 1 Part 2Part 1

Assembly 2

Part 3Part 2Part 1

artifactHasPart_directartifactHasPart_direct

artifactHasPart: inferred property  
Figure 7: Example of a partOf rule 

 
Acyclic rules instantiate classes of the kind not-allowed, to identify the individuals that, 
although declared, are included in a part-of cycle. Since no inference mechanism can 
delete wrong information from the ontology, we insert the wrong information in the not-
allowed classes through the acyclic rules. Since the not-allowed classes are declared 
disjoint from the original ones, the reasoner will detect an inconsistency.  
 
Take the example in Figure 8: the assembly 2 is composed by itself (assembly 2 is 
composed by assembly 1 that is in turn composed by assembly 2). 
 
 

Assembly 2

Assembly 1

Assembly 2
 

Figure 8: Example of an acyclic rule 

 
In this example, both Assembly 2 and 1 are individuals of the same class, so no axioms 
can be applied to the relationships between them. For this reason, we create the 
NotAllowedAssembly class and instantiate it through the acyclic rules. Since the classes 
NotAllowedAssembly and Assembly are disjoint, the reasoner detects an inconsistency. 
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We give examples of the reasoning mechanisms employed in the next section, where a 
case study is presented for the exploration of the potentialities of the ontology assembly 
representation. 

6 Product Model Example 
 
To test the OAM with reasoning capabilities, we chose a planetary gear system as an 
example. Figure 9 and the summary presented below are taken from [20]. For a more 
detailed description, please refer to [2]. 
 

 
Figure 9: Case study: planetary gear system 

The planetary gear system is composed of two parts and three sub-assemblies. The parts 
include the input-housing and the sungear. The three subassemblies include: (1) the 
output end assembly comprising two bearings, a washer, and the output housing; (2) the 
ring gear assembly comprising a ring gear and two ring-gear pins; and (3) the planet gear 
holder assembly comprising three planet gears and a planet carrier assembly, which 
further decomposes into the output shaft and three planet-gear pins. In total there are 30 
different parts. The connections and pairs between different artifacts are of different 
types: fixed connection (fc), movable connection (mc) or position orientation (po). 
  
To represent the use case we declare in total 187 individuals and 277 properties between 
the individuals. These individuals comprise not only the Artifacts but also their Features, 
their Geometries, their Tolerances and their connections through the association classes. 
Out of the 187 individuals, 70 are declared to belong to the class Thing, parent of all the 
classes in the ontology. The reasoner, using the classes and properties axioms, classifies 
these 70 individuals into their proper classes. 
The inference mechanisms concern not only the individuals in the ontology but also the 
properties between the individuals. The editor Protégé-OWL automatically defines the 
inverse and the parent properties. Since all the properties in the model have their inverse, 
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the editor defines 277 inverse properties, one for each declared direct property. 
Moreover, the editor defines all the properties parents of the asserted properties.  
After performing the DL reasoner, the rule-based inference found additional 170 
properties that are added to the ontology. 
In the following sections, we provide three examples of the inference mechanisms we 
used: the first is based on description logic, the second is based on domain-specific rules 
while the third combines both of the previous ones. 

6.1 Example of DL reasoning 
 
Table 3 presents an example of description logic reasoning from the case study. The class 
Artifact and its subclasses are the main focus. In OAM we describe the class Part with a 
necessary and sufficient condition: Parts are Artifacts without subassemblies. In other 
words, in DL expressivity, the concept of Part is the intersection between the concept of 
Artifact and the concept of the Thing having cardinality 0 on the property 
artifactHasPart_direct (AL expressivity, number 6 in Table 2). This property has as 

domain (the class owning the property) and as range (the class of the values of the 
property) the class Artifact.  
 
Moreover, we describe the class Assembly with a necessary condition: Assemblies must 
have at least two Artifacts connected through the inherited property 
artifactHasPart_direct. In other words, in DL expressivity, we apply a cardinality 
restriction (N expressivity, number 11 in Table 2) applied to the concept of Assembly. 

 
We then define Assembly and Part as partitions of the class Artifact, i.e., the concept of 
Artifact is made by the union (U expressivity, number 14 in Table 2) of the disjoint 

concepts Assembly and Part. As a result, an individual of Artifact 
(Planet_Carrier_Assembly in this example) composed by other Artifacts (Output_Shaft, 
Planet_Gear_Pin_1, Planet_Gear_Pin_2, Planet_Gear_Pin_3) is inferred to be an 
individual of Assembly.   

Table 3: Example of DL reasoning 

AIM Infer that an Artifact composed by other Artifacts is an Assembly 
CLASSES Artifact, Assembly  
PROPERTIES artifactHasPart_direct (Range: Artifact , Domain: Artifact)  
RESTRICTION 
 

On Assembly:  artifactHasPart_direct min 2  
(an Artifact is an Assembly only if it is related with at least 2 other 
Artifacts)  

INPUT 
 

An individual of Artifact (Planet_Carrier_Assembly) is composed 
through artifactHasPart_direct by 4 individuals of Part 
(Output_Shaft, Planet_Gear_Pin_1, Planet_Gear_Pin_2, 
Planet_Gear_Pin_3)  

OUTPUT Planet_Carrier_Assembly is reclassified as an individual of the class 
Assembly 
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6.2 Example of rule-based reasoning 
 
Table 4 presents an example of rule-based reasoning from the case study: the structure of 
an Assembly is described by its parts/subassemblies and by the relationship between its 
components. 

Table 4: Example of rule-based reasoning 

AIM Infer the relation between Assembly and ArtifactAssociation 
CLASSES Assembly, Part, ArtifactAssociation 
PROPERTIES artifactAssociation2Assembly (Range: ArtifactAssociation, Domain: 

Assembly) 
RULES If the components of an Assembly are linked through an 

ArtifactAssociation, then relate that ArtifactAssociation to the 
Assembly (see Table 5) 

INPUT An individual of Assembly (Output_Housing_Assembly) is composed 
of Bearing_1, Bearing_2, Output_Housing and Washer through 
artifactHasPart_direct. These individuals are connected with 
individuals of the class ArtifactAssociation   

OUTPUT Output_Housing_Assembly is linked with the corresponding 
individuals of ArtifactAssociation (fc_1, fc_2, fc_3, mc_4) through 
the ArtifactAssociation2Assembly property. 

 
In this example, Output_Housing_Assembly is composed by Bearing_1, Bearing_2, 
Output_Housing and Washer. The ArtifactAssociations connect Washer with 
Output_Housing (fc_1), Bearing_1 with OutputHousing (fc_2), Bearing 2 with 
Output_Housing (fc_3) and Bearing_1 with Bearing_2 (mc_4).  
 
The aim of the reasoning is to correctly relate the Output_Housing_Assembly to the 
ArtifactAssociations involved in the assembly. In this case we can not use OWL 
declarations since the condition for creating the new relation is dependent on the specific 
properties each individual possesses. For this reason we have to resort to SWRL rules. 
In this example we need four different property rules (see Table 5). Each of them takes 
into account a different scenario: 
 
• Rule 1 is applied when the description of the Assembly is detailed (the 

AssemblyAssociation connects two or more Parts) and the Assembly has at least one 
subassembly that is a Part. The antecedent of the rule indicates that one Part is 
directly part-of the Assembly while the other Part is indirectly connected to the 
Assembly. 

• Rule 2 is applied when the description is detailed but the ArtifactAssociation exists 
between Parts that are not directly subassemblies of the Assembly. This means that 
the Assembly is composed by other subassemblies and each subassembly has a Part 
involved in the Assembly. In the antecedent of Rule 2 we explore the indirect property 
to search these Parts in the subassemblies.  

• Rule 3 is applied when the description is not detailed so that the Assembly is 
composed by two or more subassemblies connected together.  
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• Rule 4 is similar to the third but is useful when the Assembly is made by a Part and a 
subassembly.  

 
Table 5: Rules needed to connect Assembly with its ArtifactAssociations 

Rule 1 Rule 2 Rule 3 Rule 4 
artifactHasPart_direct(?x, ?y)  
Part(?y) 
artifactHasPart(?x, ?z) 
Part(?z) 
differentFrom(?y, ?z) 
part2AA(?y, ?a) 
part2AA(?z, ?a) 

artifactHasPart_direct(?x, ?y) 
Assembly(?y)  
artifactHasPart_direct(?x, ?z) 
Assembly(?z)  
differentFrom(?y, ?z)  
artifactHasPart(?y, ?q) 
Part(?q) 
artifactHasPart(?z, ?r) 
Part(?r) 
differentFrom(?q, ?r) 
part2AA(?q, ?a) 
part2AA(?r, ?a)   

artifactHasPart_direct(?x, ?y) 
Assembly(?y)  
artifactHasPart_direct(?x, ?z)  
Assembly(?x)  
part2AA(?y, ?a)  
part2AA(?z, ?a)   

artifactHasPart_direct(?x, ?y)  
Assembly(?y)   
artifactHasPart_direct(?x, ?z)  
Part(?z)   
part2AA(?y, ?a)  
part2AA(?z, ?a)    

 Assembly2ArtifactAssociation(?x, ?a) 

6.3 Example of combining DL and rule-based reasonings 
 
Table 6 presents an example of combining both DL and rule-based reasoning. The focus 
is the composition hierarchy of an Assembly. The goal in this example is to avoid cyclic 
composition hierarchies, i.e., hierarchies in which an assembly contains itself. Since 
composition hierarchies are constituted by individuals of the same class Assembly, we 
can not use any DL axiom to impose the acyclicity constraint on the hierarchy. The use of 
domain-specific rules is then the only solution (see Section 2).  
 
We create in the product ontology the class NotAllowedAssembly, disjoint from the class 
Assembly. NotAllowedAssembly will contain all the individuals of the Assembly involved 
in a cyclic hierarchy composition (Planetary_Gear_System_Assembly in the case of 
Table 6). We create a SWRL rule to automatically instantiate this class. After executing 
the rule, the individuals involved in the cyclic hierarchy will belong to both the classes 
Assembly and  NotAllowedAssembly. Since these two classes are declared disjoint, the DL 
reasoner will detect an inconsistency. 

 

Table 6: Example of combining DL and rule-based reasonings 

AIM Infer an inconsistency in case of a cyclic composition of an Assembly 
CLASSES Assembly, NotAllowedAssembly 
PROPERTIES artifactHasPart (Range: Artifact , Domain: Artifact) 
RULES If an Assembly is composed of itself, then the Assembly will belong to 

the class NotAllowedAssembly 
RESTRICTION Assembly and  NotAllowedAssembly are disjoint classes 
INPUT An individual of Assembly (Planetary_Gear_System_Assembly) 

contains the subassembly Planet_Gear_Holder, that in turn contains the 
Planetary_Gear_System_Assembly 

OUTPUT Planetary_Gear_System_Assembly belongs to both the classes 
Assembly and  NotAllowedAssembly: an inconsistency is detected 
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7 Usage scenario of the product model in manufacturing 
 
To demonstrate the application of the proposed model, let us consider a scenario of a 
distributed manufacturing facility where different manufacturing tasks like 
manufacturability evaluation, resource coordination, process planning, scheduling, 
fabrication, and logistics, have to be seamlessly integrated for product and process 
development. Here, the individual manufacturing tasks are modeled as functional 
software agents. To collaborate efficiently, these agents must be able to understand, 
communicate and negotiate for successful manufacturing tasks. This necessitates a need 
to formalize, encode and share manufacturing related knowledge. In other words, 
information represented must be semantically interoperable. Figure 10 presents an 
example scenario where collaboration takes place between a Design Mediator Agent 
(DMA), Manufacturing Evaluation Agent (MEA), Manufacturing Resource Agent 
(MRA) and possibly Other Manufacturing Agents (OMA). DMA is in charge of 
processing the job information. MEA is responsible for design evaluation and 
manufacturing best practices. MRA is responsible for resources (machines/ tools) 
allocation. For a detailed description of such an agent framework, refer to [21].  
 

 
Figure 10:  Manufacturing Information flow. Adopted/modified from [21] 

Legend: DMA: Design Mediator Agent, MEA: Manufacturing Managing Agent, manufacturing Resource Agent, OMA: Other 
Manufacturing Agents 
 
To process a manufacturing job we require information such as part features, naming 
conventions, location and dimensions, material specifications, associated manufacturing 
specific process information, including machine-tool information and associated 
tolerances. The proposed product ontology acts as a source for such product related data. 
This data, represented in an owl file, will be dynamically updated when exchanged 
between agents. 
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Figure 11: Prismatic part example 

  
In this example scenario, consider the job to fabricate a simple prismatic part (pp), 
essentially a square boss with a hole in it as shown in the Figure 11. The instantiation of 
the product ontology specific to the prismatic part is represented in the pp.owl file. DMA 
processes the job request and sends the file (pp.owl) to the MEA for the purpose of 
manufacturability evaluation. An interpreter in MEA extracts the feature-related 
information from the pp.owl file and performs manufacturability evaluation.  MEA 
supports inference-reasoning mechanisms that consider good manufacturing principles 
and machining processes for individual features [21]. Then MEA sends the results to the 
MRA for mapping of resources. MRA supports inference-reasoning mechanisms 
considering the availability of resources. Both the inference-reasoning mechanisms are 
based on description logic reasoning and rule-based reasoning.  
 
Of the various feature level operations, we specifically consider the drilling operation to 
fabricate the hole. For implementation, note that in the pp.owl the hole in the prismatic 
part will be an individual of the class Hole, which is a subclass of the class Feature in the 
product ontology. For drilling, MEA considers the following manufacturing principle: for 
drilling a big hole with tight tolerances, a center drill is first used followed by a pilot drill. 
For a manufacturing drilling operation a center drill usually provides a starting hole for a 
larger-sized drill bit, like a pilot drill. To implement this principle, MEA must create a 
connection between the hole in the pp.owl and the sequence of drilling operations. 
Specifically, the DL expressivity will be useful to create the sequence of drilling 
operations while the rule-based reasoning mechanism will be useful to connect the 
operation sequence to the hole. 
 
For creating the sequence of drilling operations, we use the patterns for sequences 
suggested in [22].The detailed implementation in OWL-DL is represented in Figure 12.  
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Figure 12:  Sequence of drilling operations in OWL-DL 

 
To implement the patterns we use specific DL expressivity (see Table 2) like: 

 value restriction: OWLList can be connected through the property hasNext only 
to OWLList 

 intersection of concepts: EmptyList is the intersection between OWLList and the 
concept of the individuals without the properties hasNext and hasContent. 

 functional property: hasNext, hasContent 
 cardinality restrictions: applied to EmptyList 

Accordingly MEA will create (in the pp.owl) list1 and list2 as individuals of the class 
OWLList, list3 as individual of EmptyList, and pilot drill and center drill as individuals 
of the class Tool.  
 
Now that the sequence is created, the connection to the hole is made through the 
following SWRL rule: 
if (Hole hasdiameter Size bigger than x) and (Hole hasTolerance CilindricityTolerance 
less than z)  Hole isManufacturedThrough List1 
hasDiameter and isManufacturedThrough are the properties of the Hole used to identify 
the diameter and the manufacturing operation respectively. After MEA executes the rule, 
it infers the corresponding operation sequence for the hole in the prismatic part.  
 
Now, the updated pp.owl becomes available to the MRA for manufacturing resource 
allocation. The MRA will check if either the center drill or the pilot drill is not available. 
If one of those tools is currently used by a machine, the MRA creates an inconsistency in 
the pp.owl and sends the updated pp.owl to MEA for alternate solutions. 
 
The following SWRL rule is executed in MRA:  
if (center drill isUsedBy some Machine)  Hole isManufacturedTrough list3 
The class Feature has cardinality 1 on the property isManufacturedThrough. Now, when 
the hole in pp.owl is connected to both list1 and list3, an inconsistency is generated.  
 

center drill pilot drill

list 1  list 2 list 3  

Type: Tool 

Type: OWLList 

Type: EmptyList 

hasNext hasNext 

hasContent hasContent 
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When the MRA and MEA find a successful solution the results are updated in the pp.owl 
which becomes available to the OMA for further processing.  
 
In this example scenario the content of the file pp.owl plays a central role. In the pp.owl 
file, description logic is used to represent the semantics of the product information, e.g., a 
value restriction is used to represent the connection between the hole feature in the 
prismatic part and the sequence of drilling operations. Description logic mechanisms and 
domain specific rules allow for reasoning on the product information.  While using 
description logic mechanisms in this example, the consistency checking reasoning 
mechanism is specifically applied to investigate the availability of the resources to 
manufacture the hole. While using domain-specific rules, a SWRL rule is specifically 
applied to relate a manufacturing principle to that hole. This example suggests a future 
research direction on the role of ontological product models for semantic interoperability 
and reasoning in manufacturing-related processes. 
 

8 Conclusions 
 
To ensure interoperability of different systems and applications sharing product 
information across its different stages of lifecycle, a multiple view of the product model 
is required. Developing such a model is influenced by three factors: logical formalisms, 
computer interpretable languages and product information.  
 
Usually logicians focus on logical theorem proving, computer scientists focus on theory 
of languages while product engineers focus on product information representation. The 
aim of this paper is to understand the issue that exists between these three research areas.  
 
As a first step, we chose description logic as the logical formalism to represent product 
knowledge in a structured fashion. DL provides mechanisms for both explicit knowledge 
specification and implicit knowledge inference. These mechanisms, in the case of DL, are 
decidable, so that a model user can safely check and query the model. We choose OWL-
DL language for implementing DL constructs in the product modeling domain. 
 
As a second step, we chose domain-specific rules to increase the expressivity in the 
product model. Description logic and domain-specific rules are combined together to 
understand the level of expressivity required in product modeling. For the domain-
specific rules, we chose SWRL, because it is compatible with the OWL editor Protégé.  
We then use OWL and SWRL to build product ontologies: Ontological Core Product 
Model for representing a generic product and Ontological Open Assembly Model to 
extend the previous one for representing mechanical assemblies. We use these ontologies 
to show how the expressivity of DL and domain-specific rules are used within the 
product modeling context.  We finally use the planetary gear system example to 
instantiate the ontology. In this use case we show how the level of expressivity in the 
model allows both for explicit knowledge specification and implicit knowledge inference. 
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This paper outlined how to evaluate DL to capture both the information content and the 
abstraction principles with an aim of developing a consistent formal model for product 
assemblies. We believe this study can be extended to understand how to choose 
appropriate logical frameworks (OWL DL to OWL Full) for developing product ontology 
using OWL. Moreover, since OWL, the reasoners and the available tools are evolving we 
are constantly evaluating our approach.  

9 Disclaimer 
 
No approval or endorsement of any commercial product by NIST is intended or implied. 
Certain commercial equipment, instruments or materials are identified in this report to 
facilitate better understanding. Such identification does not imply recommendations or 
endorsement by NIST nor does it imply the materials or equipment identified are 
necessarily the best available for the purpose. 
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