

NISTIR 7481

An Evaluation of Description Logic for
the Development of Product Models

Xenia Fiorentini
Sudarsan Rachuri

Mahesh Mani
Steven J. Fenves

Ram D. Sriram

NISTIR 7481

An Evaluation of Description Logic for
the Development of Product Models

Xenia Fiorentini
Sudarsan Rachuri

Mahesh Mani
Steven J. Fenves

Ram D. Sriram
Manufacturing Systems Integration Division

Manufacturing Engineering Laboratory

APRIL 2008

U.S. Department of Commerce
Carlos M. Gutierrez, Secretary

National Institute of Standards and Technology

 James M. Turner, Director

 i

Abstract

The languages and logical formalisms developed by information scientists and logicians
concentrate on the theory of languages and logical theorem proving. These languages,
when used by domain experts to represent their domain of discourse, most often have
issues related to the level of expressiveness of the languages and need specific
extensions. In this paper we analyze the levels of logical formalisms and expressivity
requirements for the development of ontologies for manufacturing products. We first
discuss why the representation of a product model that needs to be shared across globally
networked enterprises is inherently complex and prone to inconsistencies. We then
explore how these issues can be overcome through a structured knowledge representation
model. We report our evaluation of OWL-DL (Ontology Web Language-Description
Logic) in terms of expressivity and of the use of SWRL (Semantic Web Rule Language)
for representing domain-specific rules. We present a case study of product assembly to
document this evaluation and further show how the OWL-DL reasoner together with the
rule engine can enable reasoning of the product ontology. We discuss how the proposed
product ontology can be used within a manufacturing context.

 ii

Table of Contents

1 Introduction... 1

2 DL expressivity in product modeling ... 3

2.1 DL for information representation .. 3

2.2 DL for inference mechanisms... 3

2.3 Domain-specific rules ... 4

3 Languages and tools.. 5

3.1 Modeling Languages... 5

3.2 Modeling Tools... 6

4 Description of the information model... 7

4.1 Core Product Model.. 7

4.2 Open Assembly Model ... 7

5 Description of the model inference mechanisms .. 11

5.1 Description logic... 11

5.2 Rule-Based Inference.. 13

6 Product Model Example ... 16

6.1 Example of DL reasoning ... 17

6.2 Example of rule-based reasoning.. 18

6.3 Example of combining DL and rule-based reasonings 19

7 Usage scenario of the product model in manufacturing ... 20

8 Conclusions... 23

9 Disclaimer ... 24

10 References... 25

 iii

List of Figures

Figure 1: Connection between the OWL ontology and SWRL rules 6

Figure 2: Core Product Model .. 9

Figure 3: Open Assembly Model.. 10

Figure 4: Example of a case where rules are needed .. 13

Figure 5: Example of a property rule.. 14

Figure 6: Example of an association rule.. 14

Figure 7: Example of a partOf rule ... 15

Figure 8: Example of an acyclic rule .. 15

Figure 9: Case study: planetary gear system... 16

Figure 10: Manufacturing Information flow. Adopted/modified from [21] 20

Figure 11: Prismatic part example .. 21

Figure 12: Sequence of drilling operations in OWL-DL... 22

List of Tables

Table 1: Examples of inference mechanisms.. 3

Table 2: Examples of DL expressivity in product modeling .. 11

Table 3: Example of DL reasoning... 17

Table 4: Example of rule-based reasoning.. 18

Table 5: Rules needed to connect Assembly with its ArtifactAssociations...................... 19

Table 6: Example of combining DL and rule-based reasonings....................................... 19

 1

1 Introduction

In a typical industrial scenario a number of organizational entities collaborate to
accomplish various tasks by sharing resources, applications and services throughout the
product lifecycle. The immediate issue is the interoperability of these resources,
applications and services. Interoperability requires a common high level and
interoperable model of the product across the extended and networked enterprise.

The development of such a high level interoperable model poses many challenges, for
example: i) complex nature of interactions in product modeling and ii) representation of
the information content and abstraction principles used.

The information model for representing mechanical assemblies (products) is inherently
complex owing to:

• The variety of information elements to be represented: function, behavior, structure,

geometry and material, assembly features, tolerances and various levels of
interaction of these concepts,

• The abstraction principles needed to represent the information model:
generalization, grouping, classification, and aggregation [1].

The following partial list sketches some of the issues with respect to each information
element:

• Function: one aspect of what the artifact is supposed to do. The artifact satisfies the

engineering requirements largely through its function [2].
• Behavior: information supporting the simulation of the product under some given

conditions. This simulation could be, for example, kinematics, dynamics and control
systems.

• Structure: the individual parts that constitute the assembly, the hierarchy of the
composition tree (parts-subassemblies-assembly) and the associated Bill of
Materials (BOM).

• Geometry and material: a generic shape, chosen by the designer at early stages of
the lifecycle and a particular geometry captured in one or more CAD (Computer-
Aided Design) models.

• Features: a portion of the artifact’s form that has some specific function assigned to
it. An artifact may have design features, analysis features, manufacturing features,
etc., as determined by their respective functions [2].

• Tolerances: tolerance design is the process of deriving a description of geometric
tolerance specifications for a product from a given set of desired properties of the
product. Tolerancing includes both tolerance analysis and tolerance synthesis [2].

The second source of complexity is due to the abstraction principles needed to represent
the information on products. The model may incorporate the following mechanisms:

 2

• Generalization versus specialization: relationships built through intentional
properties, e.g., “gear shifts are mechanical assemblies.” This abstraction principle
involves a hierarchical mechanism where concepts are categorized through the
general knowledge of the problem.

• Grouping versus individualization: relationships built through extensional properties,
e.g., “manual gear shifts are gear shifts.” In this case concepts are categorized through
the specific knowledge of the represented domain and the group can even be not
homogeneous meaning that the group can contain disparate things.

• Classification versus instantiation: relationships between a real object (individual)
and the concept it belongs to, e.g., “my gear shift is a gear shift.” In modeling,
particular attention needs to be paid to the establishment of the boundary between
concepts and real objects.

• Aggregation versus decomposition: part-of relationships between an element and its
constituents, e.g., “gear shifts are part-of cars” and “my gear shift is part-of my car.”

Other types of mechanisms may be required, for example, a given chemical compound
“consists of” many other chemicals. For more details regarding general part-whole
formalisms readers can refer to the General Extensional Mereology [3].

This paper outlines a method for evaluating the appropriate level of expressiveness to
capture both the information content and the abstraction principles discussed above, with
the aim of developing a consistent formal model for product assemblies. We use the
terms expressiveness to mean both language expressiveness and processible
expressiveness [4]. The language expressiveness is related to the language symbols, rules,
conventions and vocabulary while the processible expressiveness is related to the
computability. For more detailed discussion on the issues related to the computational
complexity, please refer to [5] [6].

The procedure one has to follow to represent product models can be summarized as
follows:

1. Select Description Logic (DL).
2. Select a language that well support DL.
3. Evaluate extensions (to incorporate domain specific rules) to the language and

pick the appropriate rule language.
4. Build the model and evaluate inference mechanisms.

We believe that this study may aid in understanding the considerations involved in
choosing appropriate logical frameworks for product ontologies.

This paper is structured as follows. We first describe how the expressivity of DL can help
in developing a consistent formal model for product assemblies. We then find the
language that captures most of the expressivity of DL. We use that language to build a
product model and to show how the DL expressivity is used in the product representation.
For practical purposes, we finally illustrate how the resulting product model can be used
within a design context and a manufacturing context.

 3

2 DL expressivity in product modeling

Description Logic is a family of knowledge representation languages used to represent
the knowledge of a domain in a structured fashion. The domain is modeled by means of
concepts and roles, which denote, respectively, classes of objects and relationships
between objects. The concepts and roles, together with knowledge specification
mechanisms, form the knowledge base. Automatic reasoning procedures can be
performed on the knowledge base.

DL is decidable, that is, there exists an automatic reasoning procedure such that, for
every knowledge specification mechanism in the logic, the reasoning procedure is
capable of deciding whether the mechanism is valid or not [7].

We have to choose the level of expressiveness needed to represent the product
information content and to include the abstraction principles needed to represent it.
Expressiveness should enable explicit information representation (product model) and
support inference mechanisms, i.e., mechanisms to find implicit consequences based on
the explicit information.

2.1 DL for information representation

The DL formalism allows us to create a concept level hierarchy of the knowledge using
is-a relationships (e.g., car is-a vehicle), to express complex roles (properties) between
concepts (e.g., cars have exactly four wheels while bicycles have exactly two wheels) and
to declare the membership of an individual in a concept (e.g., myCar belongs to the
concept of cars).

2.2 DL for inference mechanisms

For inference mechanisms, consider the examples in Table 1. In the second column we
use the concepts of Vehicle, Car, Bicycle and Wheel to create our knowledge base and to
query it. In the third column we present the DL mechanisms that allow for answers to
those queries. In the fourth column we show answers to those queries.

Table 1: Examples of inference mechanisms

 Question DL mechanisms Answer
1 We subsume the concept

of Car1 in the concept of
Bicycles2. Is it logically
correct?

The “consistency
checking” mechanism
finds whether a concept
admits at least one
individual.

No, the model is
inconsistent. There cannot be
an individual that has four
wheels and is a bicycle at the
same time.

2 We introduce the
concept of ElectricCar.
What is its position in
the hierarchy?

The “subsumption”
mechanism finds
implicit sub-concept
relationships.

In the concept’s hierarchy,
the ElectricCar concept is a
sub-concept of Car.

 4

3 We declare myCar as an
individual of the concept
of Vehicle with four
wheels. Is it a Car or a
Bicycle?

The “realization
reasoning” mechanisms
finds the most specific
concept for each
individual.

myCar has four wheels, so it
is an instance of the concept
of Car.

4 Which cars have the
same kind of wheels?

The “retrieval”
mechanism finds the
individuals that are
instances of a given
concept or intersection
of concepts.

The set of different instances
of Car that have matched
wheels.

5 We declare a wheel part-
of a car but the engine
powering that wheel is
part-of another car. Is it
logically correct?

DL can not help here
since the roles do not
pertain to concepts but
particular individuals.

The individual of the Wheel
concept is connected to the
wrong individual of Car. The
part-of property between the
concepts of Wheel and Car is
still correct.

1 Vehicle with four wheels
2 Vehicle with two wheels

The DL formalism consists of four reasoning mechanisms [7]: consistency checking,
subsumption, realization, and retrieval. Each of them provides the answer for one of the
first four questions. The fifth question represents a different situation, it falls outside of
DL. To answer this question we need to represent appropriate role paths between
instances and not between classes as in the case of the first four questions. In other words
it is the role path, going from the instance of Wheel to the instance of Car passing
through the instance of Engine, which has to be constrained. To answer the fifth question,
we have to introduce in the representation new elements: domain-specific rules.

2.3 Domain-specific rules

Domain-specific rules are defined to add specific constraints in the knowledge base.
These rules are in the form of implications between an antecedent (body) and a
consequent (head): whenever the conditions specified in the antecedent hold, then the
conditions specified in the consequent must also hold. These rules not only allow the
declaration of the membership of an individual to a concept, but also the declaration of
properties between individuals. In the fifth example given in Table 1, a rule can state that
if a wheel is powered by an engine and that engine is part-of a car, then the wheel has to
be part-of the same car.

In order to represent knowledge in the assembly domain, i.e., to answer all five questions
in Table 1, we need to combine both DL expressivity and domain-specific rules.

 5

3 Languages and tools

Our next goal is to find modeling languages and tools able to implement both the DL
expressivity and the domain-specific rules.

3.1 Modeling Languages

The most common languages used for product modeling are:

• Unified Modeling Language (UML) [8]
• Entity-Relationship diagrams (ERD) [9]
• EXPRESS [10]
• Ontology Web Language (OWL-DL, version 1.0) [11].

In UML, the modeling elements are substantially aligned with the needs of object-
oriented programming so that the correspondence with DL expressivity is low [12]. On
the other hand, the expressivity of UML is embedded in its meta-modeling architecture
called Meta-Object Facility (MOF). This architecture is organized in four layers, from
M3 to M0, where each layer provides precise constructs and rules for creating models in
the successive layers [13].

ERD was developed for the organization of information within databases, therefore the
correspondence with DL expressivity is even lower than for UML [9].

In EXPRESS the correspondence with DL is not high but the expressive power is
enhanced with algorithms not captured in the DL expressivity. These algorithms define
the entities’ behavior using functions, procedures, and rules.

Among the listed languages, OWL is the most appropriate to implement the DL
constructs needed for product modeling. Each DL sublanguage is named with a
combination of letters (acronyms), e.g., ALC, SHOIN, and SHIQ ,: each letter associates to

the sublanguage its expressivity. OWL-DL is classified as SHOIN(D). Although decidable,

OWL-DL could become intractable, especially when dealing with large ontologies: for
this reason, part of our effort is still focusing on its computational complexity. Its meta-
modeling architecture is flat (i.e., not organized in layers) but the expressiveness is
contained in the language elements themselves. These language elements have been
designed with the aim of using DL for the semantic web to enable interoperability
between systems through semantic data representation.

The use of the XML (Extensible Markup Language) syntax within OWL facilitates the
exchange of models between agents, while the OWL features give the model the
expressive power needed for ontological representation. The word “ontology” in this
paper is meant as a collection of concepts on which a set of axioms is specified for
performing logical inference.

 6

3.2 Modeling Tools

We decided to test the OWL expressiveness for product modeling by building a product
ontology (see Section 4) and by performing inference mechanisms on it (see Section 5).
We developed the ontology in OWL-DL version 1.0, using Protégé-OWL 3.3 [14] to edit
it. We excluded OWL Lite and OWL Full from consideration because of their low formal
complexity and the hard computational problems, respectively. The Protégé ontology
editor supports SHOIN(D). OWL-DL provides the expressiveness of SHOIN(D) , and

OWL 1.1 is based on SROIQ(D).

For DL inference, we used the reasoning engine RACERPro [15]. We chose this
reasoning engine because it is easily accessible through the OWL Plug-in in Protégé. For
rule-based inference, we used the Semantic Web Rule Language (SWRL) to write the
rules [16]. Since the combination SWRL and OWL-DL is undecidable, we selected only
the DL-safe portion of SWRL. The rules are edited directly in Protégé-OWL through the
SWRLTab, an extension to the editor, and then executed by Jess, a rule engine for the
Java platform that supports rule-based programming. We used the Jess Bridge in order to:

• merge SWRL rules and relevant OWL data
• input them to the Jess engine, and
• return the new inferred information to the ontology.

Figure 1 depicts how the OWL data and the SWRL rules are connected. The bold arrows
indicate the flow of information (initial data, rules and final data) while the dashed
arrows indicate how the Jess Bridge enables that flow.

Jess Engine
Rules running

Jess Bridge

OWL
ontology

SWRL
rules

Results in JAVA Results in the
OWL ontology

Jess Engine
Rules running

Jess Bridge

OWL
ontology

SWRL
rules

Results in JAVA Results in the
OWL ontology

Figure 1: Connection between the OWL ontology and SWRL rules

 7

4 Description of the information model

Core Product Model (CPM) [2] was intended to form a base for representing a product
model that could respond to the demands of the next generation CAD systems besides
providing improved interoperability among future software. Based on the Core Product
Model and Open Assembly Model (OAM), [17] presents two ontological models. These
two models were developed at the National Institute of Standards and Technology (NIST)
as part of the ongoing work related to product representation for lifecycle management
[2]. A brief description of these two models is given below.

4.1 Core Product Model

The model is composed of two ontologies: which are OWL versions of CPM and OAM.
The concepts (classes in OWL) in CPM are grouped into four categories (see Figure 2):

• Classes that provide supporting information for the objects (abstract classes):

CoreProductModel, CommonCoreObject, CommonCoreRelationship, CoreProperty
and CoreEntity.

• Physical or conceptual objects classes: Artifact, Feature, Port, Specification,
Requirement, Function, Flow, Behavior, Form, Geometry and Material.

• Classes that describe associations (relationships) among the objects: Constraint,
EntityAssociation, Usage and Trace.

• Classes that are commonly used by other classes (utility classes): Information,
ProcessInformation and Rationale.

The hierarchy of classes begins from CommonCoreEntity. This class represents real
objects and relationships or associations between them. The two subclasses of
CommonCoreEntity are CommonCoreObject and CommonCoreRelationship.
CommonCoreObject is the parent class for all the object classes.
CommonCoreRelationship and its specializations, the EntityAssociation, Constraint,
Usage and Trace relationships, can be applied to individuals of classes derived from this
class. CommonCoreRelationship is the base class from which all association classes are
specialized. It also serves as an association to the CommonCoreObject class. CoreEntity
is an abstract class from which the classes Artifact and Feature are specialized.
EntityAssociation relationships may be applied to entities in this class. CoreProperty is
an abstract class from which the classes Function, Flow, Form, and Material are
specialized. Constraint relationships may be applied to individuals of this class.
For further details, please, refer to [2].

4.2 Open Assembly Model

OAM incorporates information about assembly relationships and component
composition; the representation of the latter is by the class ArtifactAssociation, which
represents the assembly relationship that generally involves two or more artifacts.
ArtifactAssociation is specialized into the following classes: PositionOrientation,

 8

Relative-Motion and Connection. ArtifactAssociation is directly connected to Assembly to
allow the possibility to check the assembly relationship involved in the Assembly through
the property ArtifactAssociation2Assembly (see Figure 3).

An assembly is a composition of its subassemblies and parts. The Assembly and Part
classes are sub-classes of the CPM Artifact class. A Part is the lowest level component.
Each assembly component (whether a sub-assembly or part) is made up of one or more
features, represented in the model by OAMFeature, a subclass of the CPM Feature class.
OAMFeature has tolerance information, represented by the class Tolerance.

The class AssemblyFeatureAssociation (AFA) represents the association between mating
assembly features through which relevant artifacts are associated. The class
ArtifactAssociation is the aggregation of AssemblyFeatureAssociation. The class
AssemblyFeatureAssociationRepresentation (AFAR) represents the assembly relationship
between two or more assembly features. This class is an aggregation of
ParametricAssemblyConstraints, KinematicPair, and/or KinematicPath between
assembly features. KinematicPair defines the kinematic constraints between two adjacent
artifacts (links) at a joint. KinematicPath provides the description of the kinematic
motion. For further details, please, refer to [2].

 9

Figure 2: Core Product Model

U
til

ity
 c

la
ss

es

A
ss

oc
ia

tio
n

cl
as

se
s

Ph
ys

ic
al

 c
la

ss
es

A
bs

tra
ct

 c
la

ss
se

s

Le
ge

nd U
til

ity
 c

la
ss

es

A
ss

oc
ia

tio
n

cl
as

se
s

Ph
ys

ic
al

 c
la

ss
es

A
bs

tra
ct

 c
la

ss
se

s

Le
ge

nd

 10

Figure 3: Open Assembly Model

O
A

M
 c

la
ss

se
s

Le
ge

nd O
A

M
 c

la
ss

se
s

Le
ge

nd

 11

5 Description of the model inference mechanisms

The main benefit of using an ontology for product modeling is the possibility of
performing inference on the declared classes and individuals. In this section we will
discuss the two different inference mechanisms used in our product ontology: inference
based on description logic and inference based on domain specific rules

5.1 Description logic

In Table 2 we give some examples on how the DL expressivity included in OWL is used
within the axioms defined in the model. In the first column of the table, the DL
expressivity of OWL-DL, i.e., SHOIN(D) , is divided according to the DL notation [7].

The third column in Table 2 indicates the expressivity associated with each letter of the
DL notation.

Table 2: Examples of DL expressivity in product modeling

Notation No Expressivity Description Examples of Axioms using the
Expressivity

1 Universal
concept

The concept that contains
all the individuals.

The concept of Thing: included in every
OWL ontology.

2 Bottom concept The concept without any
individual.

The concept of Nothing: included in
every OWL ontology.

3 Atomic concept A concept name. The concept of Assembly.

4 Atomic
negation

The negation of an atomic
concept.

The concept of Part consists of those
individuals that are not Assemblies.

5
Value
restriction

All the individuals that
are in the relationship
with the described
concept belong to a
specified concept.

A Feature can be connected through the
property
Feature2ParametricAssemblyConstraint
only to the concept
ParametricAssemblyConstraint.

AL

6 Intersection of
concepts

The set of individuals
belonging to both the
concepts.

An OAMFeature is the intersection
between the concept of Feature and the
concept of the individuals connected at
least with one AFA through the property
feature2AFA. An OAMFeature can be
automatically recognized by giving the
definition of that concept.

S 7 Transitive
properties

For all individuals a, b,
and c, if a is related to b
and b is related to c, then
a is related to c.

The property artifactHasPart, used to
connect an Assembly with all its
components, is transitive. Since for
transitive properties it is impossible to
specify cardinalities, the model includes
also the property artifactHasPart_direct to
connect the Assembly to its direct
subassemblies or Parts.

 12

Notation No Expressivity Description Examples of Axioms using the
Expressivity

H 8 Role hierarchy

If P1 is a subproperty of
P2, then the property
extension of P1 (a set of
pairs) should be a subset
of the property extension
of P2 (also a set of pairs).

The property artifactHasPart_direct is a
subproperty of the property
artifactHasPart. When the direct property
holds, the indirect one holds as well.

O 9 Enumerated
classes

The concept is made of
exactly the enumerated
individuals.

Two CommonCoreObject can be linked
through the CommonCoreRelationships
“AlternativeOf”, “IsSameAs”,
“VersionOf”, “IsBasedOn”,
“DerivedFrom”: these are the enumerated
individuals of the range class of the link.

I 10 Inverse
properties

For all individuals a and
b, iff a is related to b, then
b is related to a through
the inverse property.

The property partOf is the inverse of
artifactHasPart. When an Assembly is
connected to its component through
artifactHasPart, the component will be
connected to the Assembly through
partOf.

N 11 Cardinality
restrictions

The concept is
constrained to have a
number of values of a
particular property.

An ArtifactAssociation has to link at least
2 Artifacts. An inconsistency will be
identified if not.

F 12 Functional
properties

The individuals of certain
concepts have unique
property fillers for a given
property.

A KinematicPair can be referred only to
one AFAR.

E 13 Full existential
quantification

The set of all individuals
in the domain which has
at least one specified R-
successor.

A DatumFeature has to have some
connections with
AssemblyFeatureAssociation. If it doesn’t
the reasoner will recognize an
inconsistency.

U 14 Concept union
(disjunction)

The set of the individuals
belonging at least to one
of the disjointed concepts.

The property that connects
ArtifactAssociation to the assembled
components has as range the concept
union of Assembly and Part.

(D) 15 Datatype
properties

Property for which the
value is a data literal,
such as a string or a
number.

CommonCoreEntities have names: the
property links CommonCoreEntity to a
string.

All OWL constructs (SHOIN(D)) are used in OAM but only the inference mechanisms of

SHIN (D) are performed since the reasoning capability of RacerPro in the presence of

enumerated classes (O) is incomplete [18]. In our ongoing research we are evaluating the

Pellet reasoner (SHOIQ(D)) because it is more compatible with OWL 1.1 (SROIQ(D)), the

newest version of OWL [19].

Following the axioms, some examples are given in Table 2. With this set of axioms the
reasoner is able to:

 13

• Query and search the model.
• Check its consistency.
• Perform inference on the classes’ hierarchy.
• Perform inference on the membership of the individuals to the classes.

In OWL-DL 1.0 a property is declared in terms of its domain, range and characteristics
such as transitivity or reflexivity. In cases where it is required to impose specific
conditions or restrictions we need to specify them using some rules. For example, if class
Car and class Person are connected through the property hasOwner and class Person and
class Garage are connected through the property isRenter and class Car and class Garage
are connected through the property isParked (see Figure 4) then to infer that a particular
person’s car is parked in the garage the person rents we need a rule to specify this
explicitly.

Car Person
hasOwner

Garage

isRenter
isParked

Car Person
hasOwner

Garage

isRenter
isParked

Figure 4: Example of a case where rules are needed

In OWL 1.1 the above rule can also be achieved through property chains but in our
opinion not in all cases the rules can be replaced by property chains.

5.2 Rule-Based Inference

We use SWRL [16] rules in order to:

• associate individuals to new classes: we use this capability to associate an
individual to a class creating inconsistencies in the ontology

• create properties between individuals.

We classify these rules into four groups:

• property rules
• association rules
• partOf rules, and
• acyclic rules.

In the diagrams representing the rules (Figures from 5 to 8), we use rectangles to identify
classes and ovals to identify individuals.

Property rules create new properties between individuals once some other properties are
declared. The property rules incorporate the meaning into the ontology. For example, the
Jess engine associates the ArtifactAssociation directly to the Assembly once the structure

 14

of the Assembly and the ArtifactAssociation between its subassembly are declared. Figure
5 shows how the rule connects the master Assembly 1 to the ArtifactAssociations
existing between its subcomponents Assembly 2, Part 1, and Assembly 3. The legend in
Figure 5 is shared also by Figure 6,7 and 8.

Assembly 2 Assembly 3

ArtifactAssociation α ArtifactAssociation β

Assembly 1

Part 1

artifactHasPart_direct

artifactAssociation2Artifact

artifactAssociation2Assembly: inferred property

Assembly 2 Assembly 3

ArtifactAssociation α ArtifactAssociation β

Assembly 1

Part 1

artifactHasPart_directartifactHasPart_direct

artifactAssociation2Artifact

artifactAssociation2Assembly: inferred propertyartifactAssociation2Assembly: inferred property
Figure 5: Example of a property rule

Association rules represent the binary relationships between association classes and
object classes (see Figure 6). A minimum cardinality 2 is applied in the OWL model, and
then a SWRL rule specifies that if two different individuals of the association class are
connected to the same individuals of the object class, then these two association
individuals are the same (sameAs). In this way a unique ArtifactAssociation can be
connected to the same individuals of Artifact.

ArtifactAssociation α
sameAs

ArtifactAssociation β

ArtifactAssociation α
Artifact 1

Artifact 2

ArtifactAssociation β
Artifact 1

Artifact 2

ArtifactAssociation Artifact
min 2

ArtifactAssociation α
sameAs

ArtifactAssociation β

ArtifactAssociation α
Artifact 1

Artifact 2

Artifact 1

Artifact 2

ArtifactAssociation β
Artifact 1

Artifact 2

Artifact 1

Artifact 2

ArtifactAssociation Artifact
min 2

Figure 6: Example of an association rule

 15

PartOf rules create the right structure of assembly, i.e., enable the assemblies to
distinguish between the direct and indirect part-of properties. After executing the partOf
rules, the indirect property links an assembly with all its parts (example in Figure 7).

Assembly 2

Assembly 1 Part 3

Part 2Part 1

Assembly 2

Part 3Part 2Part 1

artifactHasPart_direct

artifactHasPart: inferred property

Assembly 2

Assembly 1 Part 3

Part 2Part 1 Part 2Part 1

Assembly 2

Part 3Part 2Part 1

artifactHasPart_directartifactHasPart_direct

artifactHasPart: inferred property
Figure 7: Example of a partOf rule

Acyclic rules instantiate classes of the kind not-allowed, to identify the individuals that,
although declared, are included in a part-of cycle. Since no inference mechanism can
delete wrong information from the ontology, we insert the wrong information in the not-
allowed classes through the acyclic rules. Since the not-allowed classes are declared
disjoint from the original ones, the reasoner will detect an inconsistency.

Take the example in Figure 8: the assembly 2 is composed by itself (assembly 2 is
composed by assembly 1 that is in turn composed by assembly 2).

Assembly 2

Assembly 1

Assembly 2

Figure 8: Example of an acyclic rule

In this example, both Assembly 2 and 1 are individuals of the same class, so no axioms
can be applied to the relationships between them. For this reason, we create the
NotAllowedAssembly class and instantiate it through the acyclic rules. Since the classes
NotAllowedAssembly and Assembly are disjoint, the reasoner detects an inconsistency.

 16

We give examples of the reasoning mechanisms employed in the next section, where a
case study is presented for the exploration of the potentialities of the ontology assembly
representation.

6 Product Model Example

To test the OAM with reasoning capabilities, we chose a planetary gear system as an
example. Figure 9 and the summary presented below are taken from [20]. For a more
detailed description, please refer to [2].

Figure 9: Case study: planetary gear system

The planetary gear system is composed of two parts and three sub-assemblies. The parts
include the input-housing and the sungear. The three subassemblies include: (1) the
output end assembly comprising two bearings, a washer, and the output housing; (2) the
ring gear assembly comprising a ring gear and two ring-gear pins; and (3) the planet gear
holder assembly comprising three planet gears and a planet carrier assembly, which
further decomposes into the output shaft and three planet-gear pins. In total there are 30
different parts. The connections and pairs between different artifacts are of different
types: fixed connection (fc), movable connection (mc) or position orientation (po).

To represent the use case we declare in total 187 individuals and 277 properties between
the individuals. These individuals comprise not only the Artifacts but also their Features,
their Geometries, their Tolerances and their connections through the association classes.
Out of the 187 individuals, 70 are declared to belong to the class Thing, parent of all the
classes in the ontology. The reasoner, using the classes and properties axioms, classifies
these 70 individuals into their proper classes.
The inference mechanisms concern not only the individuals in the ontology but also the
properties between the individuals. The editor Protégé-OWL automatically defines the
inverse and the parent properties. Since all the properties in the model have their inverse,

 17

the editor defines 277 inverse properties, one for each declared direct property.
Moreover, the editor defines all the properties parents of the asserted properties.
After performing the DL reasoner, the rule-based inference found additional 170
properties that are added to the ontology.
In the following sections, we provide three examples of the inference mechanisms we
used: the first is based on description logic, the second is based on domain-specific rules
while the third combines both of the previous ones.

6.1 Example of DL reasoning

Table 3 presents an example of description logic reasoning from the case study. The class
Artifact and its subclasses are the main focus. In OAM we describe the class Part with a
necessary and sufficient condition: Parts are Artifacts without subassemblies. In other
words, in DL expressivity, the concept of Part is the intersection between the concept of
Artifact and the concept of the Thing having cardinality 0 on the property
artifactHasPart_direct (AL expressivity, number 6 in Table 2). This property has as

domain (the class owning the property) and as range (the class of the values of the
property) the class Artifact.

Moreover, we describe the class Assembly with a necessary condition: Assemblies must
have at least two Artifacts connected through the inherited property
artifactHasPart_direct. In other words, in DL expressivity, we apply a cardinality
restriction (N expressivity, number 11 in Table 2) applied to the concept of Assembly.

We then define Assembly and Part as partitions of the class Artifact, i.e., the concept of
Artifact is made by the union (U expressivity, number 14 in Table 2) of the disjoint

concepts Assembly and Part. As a result, an individual of Artifact
(Planet_Carrier_Assembly in this example) composed by other Artifacts (Output_Shaft,
Planet_Gear_Pin_1, Planet_Gear_Pin_2, Planet_Gear_Pin_3) is inferred to be an
individual of Assembly.

Table 3: Example of DL reasoning

AIM Infer that an Artifact composed by other Artifacts is an Assembly
CLASSES Artifact, Assembly
PROPERTIES artifactHasPart_direct (Range: Artifact , Domain: Artifact)
RESTRICTION

On Assembly: artifactHasPart_direct min 2
(an Artifact is an Assembly only if it is related with at least 2 other
Artifacts)

INPUT

An individual of Artifact (Planet_Carrier_Assembly) is composed
through artifactHasPart_direct by 4 individuals of Part
(Output_Shaft, Planet_Gear_Pin_1, Planet_Gear_Pin_2,
Planet_Gear_Pin_3)

OUTPUT Planet_Carrier_Assembly is reclassified as an individual of the class
Assembly

 18

6.2 Example of rule-based reasoning

Table 4 presents an example of rule-based reasoning from the case study: the structure of
an Assembly is described by its parts/subassemblies and by the relationship between its
components.

Table 4: Example of rule-based reasoning

AIM Infer the relation between Assembly and ArtifactAssociation
CLASSES Assembly, Part, ArtifactAssociation
PROPERTIES artifactAssociation2Assembly (Range: ArtifactAssociation, Domain:

Assembly)
RULES If the components of an Assembly are linked through an

ArtifactAssociation, then relate that ArtifactAssociation to the
Assembly (see Table 5)

INPUT An individual of Assembly (Output_Housing_Assembly) is composed
of Bearing_1, Bearing_2, Output_Housing and Washer through
artifactHasPart_direct. These individuals are connected with
individuals of the class ArtifactAssociation

OUTPUT Output_Housing_Assembly is linked with the corresponding
individuals of ArtifactAssociation (fc_1, fc_2, fc_3, mc_4) through
the ArtifactAssociation2Assembly property.

In this example, Output_Housing_Assembly is composed by Bearing_1, Bearing_2,
Output_Housing and Washer. The ArtifactAssociations connect Washer with
Output_Housing (fc_1), Bearing_1 with OutputHousing (fc_2), Bearing 2 with
Output_Housing (fc_3) and Bearing_1 with Bearing_2 (mc_4).

The aim of the reasoning is to correctly relate the Output_Housing_Assembly to the
ArtifactAssociations involved in the assembly. In this case we can not use OWL
declarations since the condition for creating the new relation is dependent on the specific
properties each individual possesses. For this reason we have to resort to SWRL rules.
In this example we need four different property rules (see Table 5). Each of them takes
into account a different scenario:

• Rule 1 is applied when the description of the Assembly is detailed (the

AssemblyAssociation connects two or more Parts) and the Assembly has at least one
subassembly that is a Part. The antecedent of the rule indicates that one Part is
directly part-of the Assembly while the other Part is indirectly connected to the
Assembly.

• Rule 2 is applied when the description is detailed but the ArtifactAssociation exists
between Parts that are not directly subassemblies of the Assembly. This means that
the Assembly is composed by other subassemblies and each subassembly has a Part
involved in the Assembly. In the antecedent of Rule 2 we explore the indirect property
to search these Parts in the subassemblies.

• Rule 3 is applied when the description is not detailed so that the Assembly is
composed by two or more subassemblies connected together.

 19

• Rule 4 is similar to the third but is useful when the Assembly is made by a Part and a
subassembly.

Table 5: Rules needed to connect Assembly with its ArtifactAssociations

Rule 1 Rule 2 Rule 3 Rule 4
artifactHasPart_direct(?x, ?y)
Part(?y)
artifactHasPart(?x, ?z)
Part(?z)
differentFrom(?y, ?z)
part2AA(?y, ?a)
part2AA(?z, ?a)

artifactHasPart_direct(?x, ?y)
Assembly(?y)
artifactHasPart_direct(?x, ?z)
Assembly(?z)
differentFrom(?y, ?z)
artifactHasPart(?y, ?q)
Part(?q)
artifactHasPart(?z, ?r)
Part(?r)
differentFrom(?q, ?r)
part2AA(?q, ?a)
part2AA(?r, ?a)

artifactHasPart_direct(?x, ?y)
Assembly(?y)
artifactHasPart_direct(?x, ?z)
Assembly(?x)
part2AA(?y, ?a)
part2AA(?z, ?a)

artifactHasPart_direct(?x, ?y)
Assembly(?y)
artifactHasPart_direct(?x, ?z)
Part(?z)
part2AA(?y, ?a)
part2AA(?z, ?a)

 Assembly2ArtifactAssociation(?x, ?a)

6.3 Example of combining DL and rule-based reasonings

Table 6 presents an example of combining both DL and rule-based reasoning. The focus
is the composition hierarchy of an Assembly. The goal in this example is to avoid cyclic
composition hierarchies, i.e., hierarchies in which an assembly contains itself. Since
composition hierarchies are constituted by individuals of the same class Assembly, we
can not use any DL axiom to impose the acyclicity constraint on the hierarchy. The use of
domain-specific rules is then the only solution (see Section 2).

We create in the product ontology the class NotAllowedAssembly, disjoint from the class
Assembly. NotAllowedAssembly will contain all the individuals of the Assembly involved
in a cyclic hierarchy composition (Planetary_Gear_System_Assembly in the case of
Table 6). We create a SWRL rule to automatically instantiate this class. After executing
the rule, the individuals involved in the cyclic hierarchy will belong to both the classes
Assembly and NotAllowedAssembly. Since these two classes are declared disjoint, the DL
reasoner will detect an inconsistency.

Table 6: Example of combining DL and rule-based reasonings

AIM Infer an inconsistency in case of a cyclic composition of an Assembly
CLASSES Assembly, NotAllowedAssembly
PROPERTIES artifactHasPart (Range: Artifact , Domain: Artifact)
RULES If an Assembly is composed of itself, then the Assembly will belong to

the class NotAllowedAssembly
RESTRICTION Assembly and NotAllowedAssembly are disjoint classes
INPUT An individual of Assembly (Planetary_Gear_System_Assembly)

contains the subassembly Planet_Gear_Holder, that in turn contains the
Planetary_Gear_System_Assembly

OUTPUT Planetary_Gear_System_Assembly belongs to both the classes
Assembly and NotAllowedAssembly: an inconsistency is detected

 20

7 Usage scenario of the product model in manufacturing

To demonstrate the application of the proposed model, let us consider a scenario of a
distributed manufacturing facility where different manufacturing tasks like
manufacturability evaluation, resource coordination, process planning, scheduling,
fabrication, and logistics, have to be seamlessly integrated for product and process
development. Here, the individual manufacturing tasks are modeled as functional
software agents. To collaborate efficiently, these agents must be able to understand,
communicate and negotiate for successful manufacturing tasks. This necessitates a need
to formalize, encode and share manufacturing related knowledge. In other words,
information represented must be semantically interoperable. Figure 10 presents an
example scenario where collaboration takes place between a Design Mediator Agent
(DMA), Manufacturing Evaluation Agent (MEA), Manufacturing Resource Agent
(MRA) and possibly Other Manufacturing Agents (OMA). DMA is in charge of
processing the job information. MEA is responsible for design evaluation and
manufacturing best practices. MRA is responsible for resources (machines/ tools)
allocation. For a detailed description of such an agent framework, refer to [21].

Figure 10: Manufacturing Information flow. Adopted/modified from [21]

Legend: DMA: Design Mediator Agent, MEA: Manufacturing Managing Agent, manufacturing Resource Agent, OMA: Other
Manufacturing Agents

To process a manufacturing job we require information such as part features, naming
conventions, location and dimensions, material specifications, associated manufacturing
specific process information, including machine-tool information and associated
tolerances. The proposed product ontology acts as a source for such product related data.
This data, represented in an owl file, will be dynamically updated when exchanged
between agents.

 21

Figure 11: Prismatic part example

In this example scenario, consider the job to fabricate a simple prismatic part (pp),
essentially a square boss with a hole in it as shown in the Figure 11. The instantiation of
the product ontology specific to the prismatic part is represented in the pp.owl file. DMA
processes the job request and sends the file (pp.owl) to the MEA for the purpose of
manufacturability evaluation. An interpreter in MEA extracts the feature-related
information from the pp.owl file and performs manufacturability evaluation. MEA
supports inference-reasoning mechanisms that consider good manufacturing principles
and machining processes for individual features [21]. Then MEA sends the results to the
MRA for mapping of resources. MRA supports inference-reasoning mechanisms
considering the availability of resources. Both the inference-reasoning mechanisms are
based on description logic reasoning and rule-based reasoning.

Of the various feature level operations, we specifically consider the drilling operation to
fabricate the hole. For implementation, note that in the pp.owl the hole in the prismatic
part will be an individual of the class Hole, which is a subclass of the class Feature in the
product ontology. For drilling, MEA considers the following manufacturing principle: for
drilling a big hole with tight tolerances, a center drill is first used followed by a pilot drill.
For a manufacturing drilling operation a center drill usually provides a starting hole for a
larger-sized drill bit, like a pilot drill. To implement this principle, MEA must create a
connection between the hole in the pp.owl and the sequence of drilling operations.
Specifically, the DL expressivity will be useful to create the sequence of drilling
operations while the rule-based reasoning mechanism will be useful to connect the
operation sequence to the hole.

For creating the sequence of drilling operations, we use the patterns for sequences
suggested in [22].The detailed implementation in OWL-DL is represented in Figure 12.

 22

Figure 12: Sequence of drilling operations in OWL-DL

To implement the patterns we use specific DL expressivity (see Table 2) like:

 value restriction: OWLList can be connected through the property hasNext only
to OWLList

 intersection of concepts: EmptyList is the intersection between OWLList and the
concept of the individuals without the properties hasNext and hasContent.

 functional property: hasNext, hasContent
 cardinality restrictions: applied to EmptyList

Accordingly MEA will create (in the pp.owl) list1 and list2 as individuals of the class
OWLList, list3 as individual of EmptyList, and pilot drill and center drill as individuals
of the class Tool.

Now that the sequence is created, the connection to the hole is made through the
following SWRL rule:
if (Hole hasdiameter Size bigger than x) and (Hole hasTolerance CilindricityTolerance
less than z) Hole isManufacturedThrough List1
hasDiameter and isManufacturedThrough are the properties of the Hole used to identify
the diameter and the manufacturing operation respectively. After MEA executes the rule,
it infers the corresponding operation sequence for the hole in the prismatic part.

Now, the updated pp.owl becomes available to the MRA for manufacturing resource
allocation. The MRA will check if either the center drill or the pilot drill is not available.
If one of those tools is currently used by a machine, the MRA creates an inconsistency in
the pp.owl and sends the updated pp.owl to MEA for alternate solutions.

The following SWRL rule is executed in MRA:
if (center drill isUsedBy some Machine) Hole isManufacturedTrough list3
The class Feature has cardinality 1 on the property isManufacturedThrough. Now, when
the hole in pp.owl is connected to both list1 and list3, an inconsistency is generated.

center drill pilot drill

list 1 list 2 list 3

Type: Tool

Type: OWLList

Type: EmptyList

hasNext hasNext

hasContent hasContent

 23

When the MRA and MEA find a successful solution the results are updated in the pp.owl
which becomes available to the OMA for further processing.

In this example scenario the content of the file pp.owl plays a central role. In the pp.owl
file, description logic is used to represent the semantics of the product information, e.g., a
value restriction is used to represent the connection between the hole feature in the
prismatic part and the sequence of drilling operations. Description logic mechanisms and
domain specific rules allow for reasoning on the product information. While using
description logic mechanisms in this example, the consistency checking reasoning
mechanism is specifically applied to investigate the availability of the resources to
manufacture the hole. While using domain-specific rules, a SWRL rule is specifically
applied to relate a manufacturing principle to that hole. This example suggests a future
research direction on the role of ontological product models for semantic interoperability
and reasoning in manufacturing-related processes.

8 Conclusions

To ensure interoperability of different systems and applications sharing product
information across its different stages of lifecycle, a multiple view of the product model
is required. Developing such a model is influenced by three factors: logical formalisms,
computer interpretable languages and product information.

Usually logicians focus on logical theorem proving, computer scientists focus on theory
of languages while product engineers focus on product information representation. The
aim of this paper is to understand the issue that exists between these three research areas.

As a first step, we chose description logic as the logical formalism to represent product
knowledge in a structured fashion. DL provides mechanisms for both explicit knowledge
specification and implicit knowledge inference. These mechanisms, in the case of DL, are
decidable, so that a model user can safely check and query the model. We choose OWL-
DL language for implementing DL constructs in the product modeling domain.

As a second step, we chose domain-specific rules to increase the expressivity in the
product model. Description logic and domain-specific rules are combined together to
understand the level of expressivity required in product modeling. For the domain-
specific rules, we chose SWRL, because it is compatible with the OWL editor Protégé.
We then use OWL and SWRL to build product ontologies: Ontological Core Product
Model for representing a generic product and Ontological Open Assembly Model to
extend the previous one for representing mechanical assemblies. We use these ontologies
to show how the expressivity of DL and domain-specific rules are used within the
product modeling context. We finally use the planetary gear system example to
instantiate the ontology. In this use case we show how the level of expressivity in the
model allows both for explicit knowledge specification and implicit knowledge inference.

 24

This paper outlined how to evaluate DL to capture both the information content and the
abstraction principles with an aim of developing a consistent formal model for product
assemblies. We believe this study can be extended to understand how to choose
appropriate logical frameworks (OWL DL to OWL Full) for developing product ontology
using OWL. Moreover, since OWL, the reasoners and the available tools are evolving we
are constantly evaluating our approach.

9 Disclaimer

No approval or endorsement of any commercial product by NIST is intended or implied.
Certain commercial equipment, instruments or materials are identified in this report to
facilitate better understanding. Such identification does not imply recommendations or
endorsement by NIST nor does it imply the materials or equipment identified are
necessarily the best available for the purpose.

 25

10 References
References

 1. Taivalsaari, A., "On the notion of inheritance," ACM Computing Surveys, Vol. 28,

No. 3, 1996, pp. 438-479.

 2. Sudarsan, R., Baysal, M. M., Roy, U., Foufou, S., Bock, C., Fenves, S. J.,
Subrahmanian, E., Lyons K.W, and Sriram, R. D., "Information models for product
representation: core and assembly models," International Journal of Product
Development, Vol. 2, No. 3, 2005, pp. 207-235.

 3. Artale, A., Franconi, E., Guarino, N., and Pazzi, L., "Part-whole relations in object-
centered systems: an overview," Data & Knowledge Engineering, Vol. 20, No. 3,
1996, pp. 347-383.

 4. Sudarsan, R., Subrahmanian, E., Bouras, A., Fenves, S., Foufou, S., and Sriram, R.
D., "Information sharing and exchange in the context of product lifecycle
management: Role of standards," Computer-Aided Design, Vol. to appear, 2008.

 5. Ma, L., Mei, J., Pan, Y., Kulkarni, K., Fokoue, A., and Ranganathan, A.. Semantic
Web Technologies and Data Management.
http://www.w3.org/2007/03/RdfRDB/papers/ma.pdf . 2008.

 6. Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas,
K., and Ma, L.. Scalable Semantic Retrieval Through Summarization and
Refinement.
http://domino.research.ibm.com/comm/research_projects.nsf/pages/iaa.index.html/$
FILE/techReport2007.pdf . 2008.

 7. Baader, F., Calavanese, D., McGuinnes, D., Nardi, D., and Patel-Schneider, The
description logic handbook, Cambridge University Press2003.

 8. OMG. UML 2.0 Superstructure Specification. http://www.omg.org/cgi-
bin/doc?ptc/03-08-02 . 2003.

 9. Chen, P. P., "The Entity-Relationship Model: Toward a Unified View of Data,"
ACM Transactions on Database Systems, Vol. 1, No. 1, 1976, pp. 9-36.

 10. Schenck, D., and Wilson, P. R., Information modeling: the EXPRESS way, Oxford
University Press, New York,1994.

 11. Web Ontology Language (OWL). http://www.w3.org/2004/OWL/ . 2005.

 12. Berardi, D., Cal, A., Calvanese, D., and De Giacomo, G.. Reasoning on UML Class
Diagrams. http://www.dis.uniroma1.it/~degiacom/didattica/esslli03/ . 2003.
Dipartimento di Informatica e Sistemistica, Università di Roma "La Sapienza".

 26

 13. Meta Object Facility (MOF) Specification. http://www.omg.org/docs/formal/02-04-
03.pdf . 2002.

 14. Protégé. http://protege.stanford.edu/ . 2008.

 15. RacerPro. http://www.racer-systems.com/index.phtml . 2008.

 16. SWRL. http://www.w3.org/Submission/SWRL/ . 2004.

 17. Fiorentini, X., Gambino, I., Liang, V., Foufou, S., Rachuri, S., Bock, C., and
Mahesh, M., "Towards an ontology for open assembly model," International
Conference on Product Lifecycle Management 2007,2007, pp. 445-456.

 18. W3C. Representing Specified Values in OWL: "value partitions" and "value sets".
http://www.w3.org/TR/swbp-specified-values/ . 2005.

 19. Liebig, T., "Reasoning with OWL: System Support and Insights," Computer
Science Faculty, Ulm University, Technical report 2006-04, Sept. 2006.

 20. Fenves, S., Foufou, S., Bock, C., Bouillon, N., and Sriram, R. D., "CPM2: A
Revised Core Product Model for Representing Design Information ," National
Institute of Standards and Technology, NISTIR 7185, Gaithersburg, MD 20899,
USA, 2004.

 21. Mahesh, M., Ong, S. K., Nee, A. Y. C., Fuh, J. Y. H., and Zhang, Y. F., "Towards
A Generic Distributed and Collaborative Digital Manufacturing," Robotics and
Computer Integrated Manufacturing, Vol. 23, No. 3, 2007, pp. 267-275.

 22. Drummond, N., Rector, A., Stevens, R., Moulton, G., Horridge, M., Wang, H., and
Seidenberg, J.. Putting OWL in order. http://ftp.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-216/ 216. 2006. OWLED '06 OWL:
Experiences and Directions 2006.

