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Mathematical Foundations of Measurement
Science for Information Systems

Report of a Planning Workshop∗†

October 24, 2007

The Information Technology Laboratory (ITL) of the National Institute of
Standards and Technology (NIST) is developing a new intramural research pro-
gram on the mathematical foundations of measurement science for information
systems. Among the long-term goals of this program is the understanding, and
ultimately the measurement, of fundamental properties of information systems
which relate to the reliability and security of our cyberinfrastructure.

As part of the startup of this program, NIST invited a group of subject-area
experts for an informal one-day workshop to discuss the state of the art in this
area and to consider the path forward. This workshop was held on May 25, 2007
in Gaithersburg, MD.

1 Attendees

The external panelists were

George Cybenko (GC)
Thayer School of Engineering
Dartmouth College

John Gilbert (JG)
Computer Science Department
University of California at Santa Barbara

∗This report was compiled by Isabel Beichl and Ronald F. Boisvert of NIST. For further
information, contact boisvert@nist.gov.

†Disclaimers: Certain commercial products are referenced in this report in order to faithfully
document the discussions that took place at the workshop. The mention of such products
does not imply any recommendation or endorsement by NIST. Opinions expressed by workshop
participants are their own and do not represent the official views of NIST.
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Brian Hunt (BH)
Department of Mathematics and Inst. for Physical Science and Technology
University of Maryland

Andrew Odlyzko
Director, Digital Technology Center
University of Minnesota

Edward Ott
Institute for Research in Electronics and Applied Physics
University of Maryland

Gregory Sorkin (GS)
Department of Mathematical Sciences
IBM T. J. Watson Research Center

Francis Sullivan (FS)
Director, IDA Center for Computing Sciences

Walter Willinger (WW)
AT&T Labs – Research

Attendees from within NIST included the following:

• Mathematical and Computational Sciences Division (ITL)

Isabel Beichl
Ronald Boisvert (RB), Chief
Fern Hunt (FH)
Manny Knill

• Computer Security Division (ITL)

William Burr
Donna Dodson
Rene Peralta

• Advanced Networking Technology Division (ITL)

Vladimir Marbukh (VM)
Kevin Mills
David Su, Chief

• Software Diagnostics and Conformance Testing Division (ITL)

Paul E. Black
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• Statistical Engineering Division (ITL)

James Filliben
Antonio Possolo, Chief

• Information Technology Laboratory (ITL)

Sandy Ressler, Manager, Complex Systems Program

• Manufacturing Engineering Laboratory

Albert Jones

2 Organization of the Workshop

Ronald Boisvert opened the workshop with an introduction to measurement sci-
ence at NIST. He also provided a brief description of the NIST FY2007 Cyber
Security initiative which is providing funding for the proposed program. His slides
are included in the Appendix of this report. The external participants were in-
vited to make brief presentations on their views of relevant mathematical research
in this domain. Summaries of those presentations are provided in Section 3. The
balance of the day was spent in directed discussions centered around questions
distributed to the participants in advance. A summary of the main points from
that discussion is provided in Section 4.

3 Contributed Talks

3.1 Quantitative Evaluation of Risk
George Cybenko

George Cybenko spoke about quantitative evaluation of risk to aid in decision
making for investment in software protection strategies. For example, companies
can invest in technologies to protect intellectual property marketed to the gen-
eral public such as music or video games. Some strategies may be expensive to
implement and deploy, but afford a great deal of protection, while other are less
expensive, but may be more easily broken. Given that any protection scheme is
likely to be broken at some point, the question asked is: what is the return on a
given level of investment?

In this project, undertaken with Jeff Hughes at the Air Force Research Lab
(Dayton), the aim was to develop a model that predicts how long it takes for a
protection scheme to be broken. This, in effect, provides a measure of the security
of such a protection scheme.

In particular, a probability distribution function for the time of first successful
attack is sought. A typical way get at such information is to hire one or more
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“Red teams” to attempt to defeat the security mechanism. Unfortunately, such a
process obtains, at best, a single data point rather than a distribution. Instead,
Cybenko and colleagues modeled the work of an attacker as a Markov process, i.e.,
the attacker moves from one state to another according to certain probabilities.
(The process is a “partially observed” one, since as the attacker is unaware of the
current state at any point in time.) Cybenko and colleagues used an “information
market” approach with a collection of expert colleagues to develop the parameters
needed by the model.

With the attacker model in place, Cybenko and colleagues use dynamic pro-
gramming techniques to get an optimal policy given that the attackers have costs
and benefits. This is, in effect, related to stock options pricing analyses.

Key message: The field of risk analysis in statistics is a mature discipline which
holds promise as a means to provide metrics for cybersecurity. Security is a
property of a system which is very difficult to precisely measure. Risk analysis
has always had to deal with such uncertainties. Thus, it may be fruitful to consider
a well-characterized measure of risk as a derived measure of “security”.

3.2 Network Science in Need of Measurement Science
Walter Willinger

Walter Willinger spoke on the need for measurement science for computer net-
works, relating some lessons learned from his own work in modeling of the Internet.
His main message is that much of the existing work in the emerging area of net-
work science is severely lacking in rigor, and that network science can only become
a true “science” when accompanied by an appropriate measurement science.

As a concrete example, he cited studies of Internet router-level connectivity.
Many of these studies have been based on data that map connectivity using large-
scale trace-route experiments. From this data researchers have inferred power-
law node-degree distribution and verified preferential attachment growth models.
They have also observed hub-like cores which make the network vulnerable to
planned attack. Such studies have been highly publicized.

However, Willinger argued that much of this work has been wrong at a fun-
damental level. He states that traceroute data are ambiguous, inaccurate, and
incomplete, and hence cannot support any scientific conclusions about the real
Internet. He also complained about a lack of statistical rigor in these studies, as
well as the absence of any serious model validation. Bad models are dangerous
because they can distort public opinion and cause bad policy to be made.

He believes that measurement science needs to step in to answer critical ques-
tions such as whether available Internet-related connectivity measures actually
support the claims made in the complex networks literature. In other words, for
what purpose can the measurements at hand be safely used? In particular, a good
measurement science must play a role in
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1. raising the level of data hygiene

2. matching statistical rigor to the quality of the data

3. promoting serious model validation

Finally, Willinger makes the point that researchers must be more specific about
what aspects of the Internet that they are modeling, and then bring in much more
detailed domain knowledge in order for the models to be useful. (For example,
models of the router-level Internet that admit unbounded node degree are unre-
alistic, since real routers must have finite size.)

A copy of Willinger’s slides are included in the Appendix of this report.

Key message: A rigorous measurement science for networks is critically needed.
Improved data, more detailed models, and serious model validation are necessary
to make network science a real science.

3.3 Economics of Security

Andrew Odlyzko

Andrew Odlyzko spoke about the economics of information security. He stated
that cryptography is mostly irrelevant to issues of day-to-day information security.
People will always be involved, and so economics, psychology, and usability are
critical to the understanding of practical security of systems.

Since absolute security is probably unattainable, it is important to understand
the actual relationship between actual (imperfect) security controls and the level
of risk they engender. He suggested by way of analogy the cat-and-mouse game
played by original and after-market manufacturers. For example, printers are
priced quite low, with the original manufacturer expecting to make most of its
profits on consumables, like ink cartridges. Originally, it is the only vendor for the
cartridges, but eventually after-market manufacturers will reverse engineer these
and develop cheaper versions, thus stealing a good deal of the market. The original
manufacturer can choose to invest alot initially to make the design complex so
that reverse engineering is difficult. In computer security, code obfuscation and
related technologies can be used to make software more difficult to understand and
exploit for nefarious purposes. It would be useful to measure the value of such
strategies, that is, to understand more clearly the tradeoff between investment in
security technologies to the cost required to break them.

An interesting observation in this regard is that the efforts required to break
into systems can vary, and that if the effort required is large then any attempt to
do so is bound to leave traces. Can we measure these?

Other possible research directions he suggested were (a) to measure how long it
takes information to disseminate around the web, and (b) to develop institutional
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mechanisms for collecting and distributing data that can be used by cyber security
researchers.

Finally, Odlyzko made the point that even rough models can be useful in
guiding decision making. (He quipped that economists have managed to make
great careers in spite of the fact that the predictions of their models are rarely
accurate.)

Key message: Since cyber attacks are often economically motivated, it may be
useful to consider economic models. Since no system can be made absolutely im-
penetrable, it is of particular interest to measure the impact of imperfect security.

3.4 Some Issues of Network Topology

Edward Ott

Ed Ott explained that simple graph models of information systems can be quite
useful for defining questions, formulating solution techniques, and for gaining
intuition. This is related to the principle of universality in physics, i.e., that
solutions in simple cases can many times be applicable to more complex problems.
He described a recent series of studies of the network models that he and his
colleagues have undertaken, including the following.

• Characterization of the dynamical importance of network nodes and links
using the largest eigenvalue of the associated adjacency matrix. See Juan G.
Restrepo, Ed Ott, and Brian R. Hunt, Physical Review Letters 97, 094102
(2006), as well as arXiv:0705.4503.

• Studies of the emergence of synchronization in complex networks of in-
teracting dynamical systems. See Juan G. Restrepo, Ed Ott, and Brian
R. Hunt, Physica D: Nonlinear Phenomena 224 pp. 114-122, as well as
arXiv:0706.4454.

• Studies of percolation on large-scale networks. Here one considers how
many nodes need to be broken in order to break a large graph into small
disconnected components. This would have relevance to network degrada-
tion or attack, or to immunization and protection against epidemics. See
arXiv:0704.0491.

• A similar problem is finding “communities” in networks, that is, a group
of nodes with many connections to other nodes in the group. Hierarchi-
cal clustering and Laplacian spectral methods have been used to solve this
problem.

Some discussion ensued about whether such simple models can actually be
useful in predicting behavior of large-scale computer networks. Ron Boisvert made
a comment that many other information systems have network structure, and
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such simple models might well be appropriate for their study. He cited the graphs
associated with the static and dynamical structure of large computer programs
as an example. Al Jones noted that manufacturing systems, health care systems,
and web services also have such a structure. He explained that in some cases
connections are not permanent. They change. But understanding the topology
might nevertheless lead to useful performance metrics.

A copy of Ott’s slides are provided in the Appendix of this report.

Key message: Searching for simple relationships between system topology and
behavior is an important means for developing fundamental understanding of
information systems.

3.5 Horizontal Integration
Francis Sullivan

Francis Sullivan began his presentation noting that real networks do not seem
to fit the statistical mechanical model. Although one can compute a power law
exponent for a network model, it is not clear that this gives you any useful informa-
tion. Nevertheless, he suggests that there may be other combinatorial quantities
to measure which can provide real insight, such as distributions of cliques and
independent sets, but these are much more challenging to compute.

He said that in a sense security is impossible because everybody is using the
same technology. No matter how much Microsoft spends, attackers will eventu-
ally win if only because the ethos of attacking the most visible target draws in
more people. He suggested that a greater diversity of operating systems would
indirectly help security. Another approach to foil hackers would be technologies
like virtualization which serve to disguise the real system running underneath.

He agreed with Andrew Odlyzko that cryptography is not the answer, although
it still remains an important tool. If you have data it has to be unencrypted some-
time, and since cryptography must be used by people, mistakes will be made. It is
here where systems are the most vulnerable, and there may never be technological
solutions that can overcome weaknesses in human behavior.

Sullivan related a theory of security called “horizontal integration”, which was
developed in a recent JASON study1. The study considers more agile mechanisms
for managing classified data than the traditional hierarchical approach. The study
focuses on measurement of risk rather than security. They turn risk into a com-
modity by tokenizing it and passing out the tokens to people who need it. Those
with tokens expend them in the disclosure of information. There is a trade-off
between convenience (e.g., expediency) and security that is made in an ad-hoc
way at each transaction. Such a system would provide a more flexible means

1A “release” copy of this report was made available to us and is available to workshop
participants on request.
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of regulating information flow in battlefield situations, for example. It was sug-
gested that computer operating systems could be the “battlefield” and a research
direction could be to develop a theory and model of risk, like actuarial science.

3.6 Global Properties of Networks

John Gilbert

John Gilbert spoke about the need for measurement of global properties of net-
works and the tools that might be necessary to do this. He suggests going beyond
measuring properties that have been the topic of most recent studies, such as
density, diameter and degree distributions, and instead consider a more compre-
hensive set of graph-theoretic measures. The development of effective algorithms
and software for computing (or estimating) such properties of graphs represents
an important new research area.

Gilbert suggests work on developing the fundamentals of high-performance
combinatorial computing would provide the underlying basis for a measurement
science for information systems. Such techniques and tools are largely unavail-
able today. Such fundamental issues as what are the most efficient and effective
computational primitives upon which to develop high performance software tools
for graph-theortic computations remains unresolved. (Both he and Bruce Hen-
drickson of Sandia Labs have been studying this.) To support such work, he also
suggested that NIST develop standard reference data sets and data generators for
combinatorial computing.

Finally, he also suggested that more complex network models were needed to
represent modern information systems. Such systems (e.g., the Internet) typically
have a multi-level structure, and hence new abstract models of multi-level systems
need to be constructed.

A copy of Gilbert’s slides are provided in the Appendix of this report.

Key message: A measurement science for information systems needs the ability
to perform non-trivial computations on large-scale graphs. To enable this, funda-
mentals of high-performance combinatorial computing must be developed.

4 Discussion

A series of general questions were posed to the panelists to elicit discussion re-
lated to potential goals and topics for NIST’s program. A summary of the main
threads of discussion is provided here. Speakers are identified by their initials;
correspondence to full names is provided in Section 1.
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General topic: Technical goals for NIST’s program.

• GC said that decision markets and information markets are very important
and thinking of networks in terms of economics may be fruitful. He men-
tioned Michael Kearns’ Penn-Lehman Automated Trading Project at the
University of Pennsylvania as an example.

• Modeling unknown threats was posed as a very difficult challenge. One ap-
proach would be to characterize is the “normal” behavior of a computer
network. By monitoring deviations from normality we could potentially de-
tect threats of various kinds. Could this be scaled to network-wide measure-
ments that could be used to characterize overall communications structure?
The question of what measurements to make and where to make them is
an interesting one. RB noted that DARPA2 has put resources into anomaly
detection for identifying intrusions, but that even in this simpler case the
problem remains quite difficult.

• GS noted that IBM has had an effort in so-called autonomic computing for
some time. One of the goals is to be able to automate the determination of
dynamic control parameters for routers. One needs good measurements of
network activity in order to design such controls.

• RB asked if insights from biological systems would help. WW stated that
this has not gone beyond metaphor. BH brought up modeling of the spread
of computer viruses. WW noted that there is nice mathematical work on the
spread of viruses in scale-free networks, but that it would be more useful
to consider the case of real networks. FS commented that the spread of
a computer virus is not like a biological virus. The origins are different.
Suppose you locate the origin of the computer virus, so what? RB suggested
that understanding how the structure of the network might lend itself to
controlling viruses would be interesting.

GS explained that at IBM biological insights motivated both theoretical and
practical work: biology was more than just metaphor. A computer virus
can be characterized by a bit string, like DNA and real viruses, and typical
commercial anti-virus packages include quarantine procedures. Computer
virus bit strings, like organisms’ DNA, can be used to create phylogenies;
since computer viruses are often patched together from several parents, their
phylogenies are not trees but directed acyclic graphs. These are interesting
from a theoretical perspective, and also because they indicate common viral
structures useful for efficient detection of many viruses. (If this means that
a biological notion leads on to something non-biological, that’s fine too, he
said.) In the realm of metaphor, as hosts may first attack intruders with

2Defense Advanced Research Projects Agency
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white blood cells and then develop specific immunity, machine-learning tech-
niques can recognize likely computer viruses, which can then be subjected
to automated techniques for recognizing them more efficiently, and also for
“curing” infected programs. (Such analysis is currently done in a labora-
tory but could be done on end-user computers). Epidemiological notions
then become even more relevant. Viruses spread by communication be-
tween machines. If a machine recognizes that it is infected and develops
its own antidote, it can promptly communicate the antidote to machines it
may have infected. This can lead to a much more favorable epidemiolog-
ical model (and is another case of biology leading to something seemingly
non-biological).

• GC thought that it is not the network itself but the information on the
network that should be modeled. How much information fluidity is there?
The network is interesting but it is only the dish; the actual food is what is
really of interest.

• FS suggested that monitoring for unexpected file changes would be impor-
tant. Suppose we have a huge file: is it the same as it was 10 minutes ago?
Are there sampling techniques that could be developed that would allow
continuous monitoring of the state of files without significant degradation of
system performance? For example, Michael Rabin considered the use of the
first few coefficients of the Fourier transform as a rough measure of change.

General topic: Technical skills required to staff NIST’s program.

• GC mentioned Jon Kleinberg’s graduate and undergraduate Network Sci-
ence courses at Cornell as good background for the type of person that NIST
might want to hire. Besides looking at information theorists and computer
engineers familiar with networks, GC also suggested looking at other disci-
plines which might be quite relevant, such as the social sciences, economics,
and statistics.

• GS suggests someone in random structures, discrete methods, probability,
statistics, statistical mechanics, and computational combinatorics. FS con-
curred that probability and combinatorics will be very important. JG ex-
plained that these skills are also very applicable to biology and nanotechnol-
ogy. He cited Berkeley, MIT, Georgia Tech, and the University of Maryland
as centers for work in computational graph theory.

• GS added that machine learning and data mining are relevant to intrusion
detection and probably in the general area of making sense of the behavior
of a complex communications network.
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• FH asked about the relevance of queuing theory. WW said that networks
that can be described in closed form by queueing theory are too simplistic
to be useful. He went on to explain that places like Bell Labs, Bellcore,
and IBM used to have research groups that worked almost exclusively on
queueing theory. However today if you look today at places like AT&T Labs-
Research, Microsoft Research, or Google such groups don’t exist any longer
(which may say something about the relevance of that area). VM suggested
that approximate queueing models can be used in much more complicated
situations.

• WW suggested that stochastic control theory was a very highly relevant area
for network modeling. Centers of excellence for such work include Cal Tech
(Stephen Low, John Doyle), UIUC, and Cambridge. Operations research
and optimization were also cited as related relevant skills. Ultimately, one
is trying to steer a system toward optimality.

• Game theory was suggested as another tool useful in modeling network
growth and dynamics. Tim Roughgarden of Stanford and Eva Tardos of
Cornell are leaders in this area.

• FS suggests seeking people who are broad, flexible, and smart. We should
value people who have the ability to look at real systems and form models.

General topic: Potential unique contributions of NIST.

• JG suggested that there would be real value for NIST to (a) compare sim-
ple mathematical models to real systems, (b) provide measurements of real
systems for use by the research community, and (c) provide reference data
on the properties of real systems.

• It was suggested that NIST might provide a center for the sharing of data
on real networks. For example, there is no reliable information on how
much data goes between different Internet service providers. It is unlikely
to be able to persuade companies to release this information generally, but
perhaps they would release to NIST provided the data could be properly
anonymized. WW mentioned some relevant work by Matthew Roughan on
privacy-preserving measurements3.

• WW also mentioned that there is a special measurement component of the
GENI effort, with a separate working group headed by Paul Barford of
Wisconsin that is trying to ensure that measurements are not again an after-
thought (as is the case with the current Internet), but are built in from the
beginning4.

3See http://internal.maths.adelaide.edu.au/people/mroughan/Papers/minenet06.pdf or
browse his web page.

4For a recent working group document see http://www.geni.net/GDD/GDD-06-12.pdf.
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• FS noted that one of the great things about NIST is that it is unbiased, and
what NIST says will be taken well by industry.

• GS summarized his views as follows: no one knows how to solve the original
problem; the proper scientific or engineering abstractions are not there yet.
In this case the best approach may be to build the science from bottom up.
Bring together a group of experts in the nitty-gritty details of security and
practical systems, with a body of experience to draw on. Have theoreticians
from the areas mentioned (graph theory, economics, queuing theory, etc.)
talk to and look over the shoulders of experienced practitioners, and try to
abstract and generalize.
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Appendix

A Slides from Presentations

1. Foundations of Measurement Science for Information Systems (Ronald F.
Boisvert)

2. Network Science in Need of Measurement Science (Walter Willinger)

3. Some Issues of Network Topology (Edward Ott)

4. Foundations of Measurement Science for Information Technology (John Gilbert)
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A-1 Foundations of Measurement
Science for Information Systems
Ronald F. Boisvert
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Foundations of Measurement Foundations of Measurement 
Science for Information SystemsScience for Information Systems

NIST

Information 
Technology 
Laboratory

May 25, 2007

Ron Boisvert, Chief, Mathematical & Computational Sciences Division

Welcome!

This Talk

Background
NIST and Measurement Science

NIST Information Technology Lab (ITL)

FY07 Research Initiative
Original Motivation

Proposed Directions
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Sect. 8. The Congress shall have power

To coin money, regulate the value thereof, and of foreign coin

and fix the standard of weights and measures;

Constitutional 
authority: 1788

Founded in 1901 as 
Bureau of Standards

First “national lab”

Expanded role, new 
name in 1988

NIST’s Origins

1904
Out-of-town fire companies arriving 
at a Baltimore fire cannot couple 
their hoses to local hydrants.  
1526 buildings razed.

1912
41,578 train derailments in 
the previous decade lead to 
NBS measurement and test 
program.

Early Measurement, Standards Needs
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Laboratories
Gaithersburg, MD
Boulder, Colorado

$843 million FY 2007 budget
($677M Congressional appropriation)

2,800 employees
1,800 associates

850 users of facilities
1,500 affiliated field agents

Mission
“To promote innovation and industrial competitiveness by advancing 
measurement science, standards, and technology in ways that enhance 
economic security and improve our quality of life.”

NIST Assets and Mission

Measurement 

“I often say that when you can 
measure what you are speaking 
about, and express it in numbers, 
you know something about it; but 
when you cannot measure it, when 
you cannot express it in numbers, 
your knowledge is of a meagre and 
unsatisfactory kind; it may be the 
beginning of knowledge, but you 
have scarcely in your thoughts 
advanced to the state of Science.”

"If you can not measure it, you can 
not improve it.“

Lord Kelvin
1824-1907
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Metrology

Metrology: science of measurement, embracing both 
experiment and theoretical determinations at any level 
of uncertainty in any field of science and technology*

Scientific or fundamental metrology -- establishment of measurement units 
and systems, development of new measurement methods, realization of 
measurement standards, and traceability from these standards to users. 

Applied or industrial metrology -- application of measurement science to 
manufacturing and other processes, ensuring the suitability of 
measurement instruments, their calibration and quality control. 

Legal metrology -- regulatory requirements of measurements and 
measuring instruments for the protection of health, public safety, the 
environment, enabling taxation, protection of consumers and fair trade. 

Key concepts
traceability (through calibrations)

characterization of uncertainty

* Bureau International des 
Poids et Measures (BIPM)

Research to advance the nation’s infrastructure for innovation: 
measurements, test methods, evaluated datameasurements, test methods, evaluated data

Nanoscale Science 
& Technology

Neutron Research

NIST’s Laboratories
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Measurement Science Research
2,100 publications / year

Calibrations and Accreditations
3,200 items calibrated / year

826 Labs accredited
National, International Standards

450 committees

Standard Reference Materials
1,200 products available

Standard Reference Data
90 databases

Output of the NIST Laboratories

Optical clock
(20xx)
1s in 30 billion years 

NIST F1
cesium fountain

(1999)
1s in 30M years

Ammonia 
resonator
(1949)

1s in 300 years 

NBS
Pendulum

clock
(1904)

1s in 3 years 

NIST 7
cesium beam

(1993)
1s in 6M years 

Measurement Science: The Second
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Bill Phillips
1997

Eric Cornell
2001

Jan Hall
2005

Three NIST Nobel Prize winners in Physics …Three NIST Nobel Prize winners in Physics …

Laser-based precision spectroscopy, 
including the optical frequency comb 
technique 

Landmark 1995 creation of the 
Bose-Einstein condensate and 
early studies of its properties. 

Development of methods 
to cool and trap atoms 
with laser light.

Scientific Foundations

Needs are widespread …

The electric power grid that links the 10,000 US 
generating stations must be synchronized to within 10-6

sec/day and the Global Positioning System to 10-9.

U.S. semiconductor industry will spend $9B in 2007 
on measurement equipment, citing measurement 
challenges as a major barrier to continued 
miniaturization of circuits.

The U.S. Army requires calibrations traceable to national 
standards for 58,000 different types of equipment to 
maintain the readiness of its weapons systems.

Improved accuracy of reference measurements for 
emissions of sulfur in oil refining and steel 
production has been estimated to have produced 
$440M in cost savings and other benefits.

From: An Assessment of the US Measurement System, NIST Special Publication 1048, 2007.
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Interoperability 
and data 
exchange.
Testbeds.

... manufacturing... manufacturing

…… nanotechnologynanotechnology

Atomic scale 
dimensional 
standard

…… electronicselectronics
Nano electronics
Integrated circuits
silicon, copper, 
exotic dielectrics,
single molecules, ...

Quantitative 
microscopy verifies 
indicator cell 
response.

…… health sciencehealth science

NIST metrology enables innovation in …

Measurements and standards infrastructure to ensure the accuracy, 
reliability, and security of systems critical to public safety

Develop, compare, and test new technologies.
Enable safe and effective response to incidents. World Trade Center 

Investigation

mail irradiation

biometricsgas mask 
performance 

standards

……public safety and securitypublic safety and security

DNA
standards

NIST metrology enables innovation in … 
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quantum computing
and communications

NIST metrology enables innovation in …
…… information technologyinformation technology

TREC: evaluation of 
information retrieval 
performance

micromagnetic 
modeling system

NIST’s Laboratories
Research to advance the nation’s infrastructure for innovation: 

measurements, test methods, evaluated datameasurements, test methods, evaluated data
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Measurement and 
Standards for

IT development industry
IT users in industry
IT users in government

Collaborative research 
in math, statistics and 
computer science

Technical Programs

• Trustworthy Computing
• Trustworthy Software

• Trustworthy Networking

• Cyber Security

• Identity Management

• Pervasive Computing

• Info Discovery, Use  & Sharing

• Enabling Scientific Discovery

• Virtual Measurements

• Complex Systems

Technical Divisions

• Advanced Networking 

Technologies

• Computer Security

• Software Diagnostics and 

Conformance Testing

• Information Access

• Statistical Engineering

• Mathematical and 

Computational Sciences

ITL Staff
325 Total Staff*
128 Associates

*Includes full-time and part-time staff, postdocs, students, faculty, and temporary workers.

Other 
Agency
$19.7M   
(25%)

Direct 
Appropriations for 

NIST Labs 
$57.1M  (73%)

Other 
NIST
$1.2M
(2%)

ITL Funding $78M
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Math & Computational Science 

Work with community
– community-based measurement, standards

– Web-based information services
– wide distribution of tools

Underlying R&D
– research in math, CS anticipating NIST needs

– tools, facilities to make us, customers more efficient

Collaborative Research
– within NIST: interdisciplinary, peer to peer

– bring expertise, facilities / high local payoff

Ron Boisvert
Division Chief

boisvert@nist.gov

Applied Mathematics
High Performance Computing
Scientific Visualization
Mathematical Software

Deblurring of images from 
scanning electron microscopes

Deconvolution
Inverse and ill-posed problems

Software for modeling in 
nanomagnetics

Applied PDEs, Numerical analysis
Problem-solving environments

Online handbook of special 
functions of applied math

Real and complex analysis
Mathematics on the Web

Examples
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NIST FY07 Cyber Security Initiative

The nation’s IT infrastructure has grown phenomenally. 
Critical infrastructures—transportation, financial, power 
grids, military, intelligence systems, and health and 
safety—rely on computer, communication networks.

In spite of efforts to secure, these systems remain 
vulnerable. 

Today’s cyber security efforts are aimed at identifying 
particular vulnerabilities and determining whether well-
known security controls are in place. 

There is no known way to measure the absolute security
of a given system. Without metrics and measurement 
technologies, we can’t determine the overall 
effectiveness of our controls.

To
da

y’s
 

su
bje

ct

Innovative Technologies for National SecurityInnovative Technologies for National Security

http://www.nist.gov/public_affairs/factsheet/cybersecurity.htm

FY 2007 Cyber Security Initiative

NIST proposes to work with industry and 
academia to develop measurement science 
and technologies to 

identify the level of vulnerability of IT systems

assess the effectiveness of cyber security controls

test system functionality

address vulnerabilities

identify vulnerabilities in real-time 

mitigate attacks

“The development of metrics for the security of real-world 
systems is an extraordinarily difficult task.  However, such a 
metric would be a high-payoff result …” -- Infosec Research 
Council, 1999

http://www.nist.gov/public_affairs/factsheet/cybersecurity.htm
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Problem is More Fundamental

“[Despite] society’s profound dependence on networks, 
fundamental knowledge about them is primitive. [G]lobal
communication … networks have quite advanced 
technological implementations but their behavior under stress 
still cannot be predicted reliably.… There is no science today 
that offers the fundamental knowledge necessary to design 
large complex networks [so] that their behaviors can be 
predicted prior to building them.”  — Network Science, 
National Research Council, 2006

We build, deploy large-scale information 
systems without complete understanding 
of their range of behaviors.

Science Foundation is Prerequisite

Theory,
Model

Metrics

C
on

tr
ol

M
easure

Physical 
System

Validate

Insight

Needed FoundationNeeded FoundationDesired PracticeDesired Practice

Experiment  – Model  – Understand  – Measure  – Improve 
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Focus on Foundations

To develop metrics we need to know
what to measure
how measurements relate to properties we care 
about

Need: a science-based foundation for the 
understanding / characterization of 
information systems on par with that of 
the physical sciences

the science behind information technology

challenge: information systems fundamentally 
different: man-made, less discipline than nature

Cha
rg

e f
ro

m 

NIS
T D

ire
cto

r

Science Foundations: Examples

Information Theory
Mathematical theory of communication

Information entropy, channel capacity

Quantum: information is physical

Theory of Computation
What is computable?

How hard? … complexity classes

Network Science

Claude Shannon

Alan Turing



14

Foundations of Measurement 
Science for Information Systems

Mathematics-based program

Model, characterize large-scale distributed 
information systems

structure

protocols & dynamics 

feedback & control 

Goals

understand relationships among structure, 
protocols, and performance

characterize robustness, fragility 

identify key (computable) measures

Pr
op

os
ed

pr
og

ra
m

Connection to Cyber Security

“Security”
Confidentiality (cryptography: out-of-scope)

Integrity
Availability

Questions
Are there fundamental limits to our ability to 
secure a system?
How can we characterize the absolute security 
of a system: resilience against threats / 
vulnerabilities known and unknown?

vulnerability: natural (inherent) 
or under systematic attack}
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Reality Check

This is a really hard problem: there 
may be no solution.

though any progress in quantitative methods 
for characterizing information systems is 
undoubtedly worthwhile

We have only $2M/year for an 
intramural research program

6-7 FTEs

new base funding: sustained long-term effort

Non-technical Goals

Short term
Develop mathematical competence within NIST 
necessary to contribute to the modeling and 
analysis of information systems

Mid-term
Provide the scientific basis for NIST to begin the 
development of a measurement science for 
information systems 

Long-term
Work to address fundamental issues related to 
cyber security

(more realistic)
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Partnerships

Leverage internal startups
ITL Complex Systems Program

NIST Innovations in Measurement Science project

Connect to applications
Collaborate with ITL Divisions: Networking, 
Computer Security, Software 

Engage external researchers
Advice, collaborations

Guest researcher program

ITL Computer Security Division

Cryptographic Standards & Applications
Advanced Encryption Standard, Secure Hash
Personal Identity Verification (PIV)
Public Key Infrastructure (PKI)

Security Testing
Cryptographic Module Validation Program
National Vulnerability Database

Security Research / Emerging Technologies
Smart card security, RFID
Access control models

Security Management & Assistance
Computer security guidance
FISMA implementation

Curt Barker
Division Chief

wbarker@nist.gov
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ITL Complex Systems Program

Develop metrics for description, prediction 
and control of complex systems.

Identify and fund (internally) projects

Work with other NIST laboratories towards 
interdisciplinary efforts & seek out external 
partners.

complex

systems

Information Technology Laboratory

“In spite of society’s profound dependence on 
networks, fundamental knowledge about them is 
primitive. [G]lobal communication networks have 
quite advanced technological implementations, but 
their behavior under stress still cannot be predicted 
reliably.”

“There is no science today that offers the 
fundamental knowledge necessary to design large, 
complex networks in such a way that their behaviors 
can be predicted prior to building them.”

Sandy Ressler  
Program Manager
sressler@nist.gov

New in FY2007

NIST Innovations in Measurement 
Science Program

Project: Measurement Science for 
Complex Information Systems 
Lead: ITL Advanced Networking 
Technologies Division

Goal: measure, predict, control macroscopic 
behavior in complex information systems (e.g., 
Internet and distributed systems like the Grid)

Establish models and analysis methods that (1) are 
computationally tractable, (2) reveal macroscopic 
behavior, and (3) establish causality. 

Characterize distributed control techniques,      
including: (1) economic mechanisms to elicit       
desired behaviors and (2) biological mechanisms         
to organize components

Kevin Mills
Project Lead

kmills@nist.gov

New in FY2007
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Goals for Today’s Meeting

Obtain advice from external experts

What are appropriate long-term goals for 
a mathematics research program in this 
space?

What mathematical approaches are likely 
to lead to progress?

What skills do we need to develop/acquire?
What external work is relevant?

What might the unique role for NIST in 
this effort be?



A-2 Network Science in Need of
Measurement Science
Walter Willinger



Network Science in Need of Measurement Science:

Lessons Learned from Modeling the Internet

Walter Willinger
AT&T Labs-Research

walter@research.att.com

2

Recap: What Network Science says about the Internet
• Concrete example: Router-level connectivity

– Data: Large-scale traceroute experiments
– Inference: Power-law node degree distribution
– Modeling: Preferential attachment-type growth model
– Model validation: “fits” the data (i.e., node degree 

distribution)
– Highly publicized claims

•High-degree nodes form a hub-like core
•Fragile/vulnerable to targeted node removal
•Achilles’ heel
•Zero epidemic threshold

• Similar examples
– Autonomous System or AS-level connectivity
– Overlay networks (e.g., P2P, WWW)
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Fact: Network Science got it all wrong!
The Internet is exactly the opposite of what the “theory”

of Network Science claims in essentially every 
meaningful aspect

These claims are not controversial, they are simply wrong!

So much for “Network Science” as a “science” …

Main Question: 

What went wrong when applying Network Science to the Internet?

Network Science can only become a “science” when 
accompanied by an appropriate Measurement Science!

4

Measurement Science
• Provide answers to the following type of questions

– “Do the available Internet-related connectivity 
measurements support the sort of claims that can be 
found in the  existing complex networks literature?”

– “For what purpose can the measurements at hand 
be safely used?

• Basic requirements (among others)
– Insist on high level of data hygiene
– Insist on a level of statistical rigor that matches the 

quality of the available data
– Insist on taking model validation serious

• Illustration: ISP router-level topology
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MISTAKE #1:  Lack of Data Hygiene
• traceroute-based measurements are ambiguous

– traceroute is strictly about IP-level connectivity
– traceroute cannot distinguish between high connectivity 

nodes that are for real and that are fake and due to 
underlying Layer 2 (e.g., Ethernet, ATM) or Layer 2.5 
technologies (e.g., MPLS)

• traceroute-based measurements are inaccurate
– Requires some guesswork in deciding which IP 

addresses/interface cards refer to the same router 
(“alias resolution” problem)

• traceroute-based measurements are incomplete/biased
– IP-level connectivity is more easily/accurately inferred 

the closer the routers are to the traceroute source(s)
– Node degree distribution is inferred to be of the power-

law type even when the actual distribution is not 

6
http://www.cs.washington.edu/research/networking/rocketfuel/

Illusion of a fully-meshed 
Network due to use of MPLS
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http://www.caida.org/tools/measurement/skitter/

� www.savvis.net
� managed IP and 

hosting company
� founded 1995
� offering “private IP 

with ATM at core”

This “node” is an 
entire network! 

(not just a router)

8

MISTAKE #2:  Lack of Statistical Rigor

10
2

10
3100

101

102

Freq.

yk

Ye
Ys

Size
0 1 2 3 4100

101

102

103

α+1 = 1.5

Freq.

Size

Given:  Samples from an exponential
distribution

Want:  Claim power law behavior
Recipe: Use size-frequency plots!

Given: Samples from a Pareto 
distribution with α=1.0

Want:  Claim power law with α=1.5
Recipe: Use size-frequency plots!
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MISTAKE #3: Lack of serious Model Validation
• Mathematical Modeling 101

– For one and the same observed phenomenon, there 
are usually many different explanations/models

– All models are wrong, but some are “damned lies”
• Model validation ≠ data fitting

– The ability to reproduce a few graph statistics does not 
constitute “serious” model validation

– Which of the observed properties does a proposed 
model have to satisfy before it is deemed “valid”?

• What constitutes “serious” model validation?
– What new kinds of measurements does the proposed 

model suggest for the purpose of model validation

12

Cisco 12000 Series Routers

80 Gbps41/812404

120 Gbps61/412406

200 Gbps101/212410

320 Gbps16Full12416

Switching 
CapacitySlotsRack sizeChassis

• Modular in design, creating flexibility in configuration.
• Router capacity is constrained by the number and speed of line 

cards inserted in each slot.

Source: www.cisco.com
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AT&T Router Deployment (c.2003)
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Access Router Config Region

core routers

“low speed”
access routers

“high speed”
access routers
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Network Science and the Internet: “Lies, damned lies and statistics”
• How to lie with statistics …

– Power-law (scale-free) node degree distribution 
• (White) lies …

– Preferential attachment-type models
• Damned lies …

– Achilles’ heel
– Fragile/vulnerable to targeted node removal
– Zero epidemic threshold 

• Bad analysis of bad data = bad models (“damned lies”)
– “Bad [models] are potentially important: they can be 

used to stir up public outrage or fear; they can 
distort our understanding of our world; and they can 
lead us to make poor policy choices.” (J. Best)

16

How to avoid such fallacies: A case for  Measurement Science
• Make node degree distribution a non-issue

– Good reasons
• High-quality data but low variability (e.g., exponential)
• Low-quality data
• High-quality data and high variability (e.g., power-laws)

– Preferential attachment-type models
• dead on arrival

– Only reasonable alternative
• Bring in and rely on domain knowledge

• What new kinds of measurements does the proposed model 
suggest for the purpose of model validation
– Preferential attachment-type models: None
– HOT models: Check router configs against existing router 

technology
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What about other applications of Network Science?  Same story!



A-3 Some Issues of Network Topology
Edward Ott











A-4 Foundations of Measurement
Science for Information Technology
John Gilbert
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NIST 25 May 2007 -- Gilbert  -- 1

Foundations of Measurement Science for 
Information Technology

A few research areas in measurement science for complex networks:

Measurement of global properties of networks:

– Not just density, diameter, degree distribution, etc.

– Connectivity, robustness

– Spectral properties:  Laplacian eigenvectors, Cheeger bounds, …

– Other global measures of complexity?

– Sensitivity analysis of all of the above

– Stochastic settings for all of the above

Multiscale modeling of complex networks

Building useful reference data sets and generators

Fundamentals of high-performance combinatorial computing

Tools:  How will results be used by nonspecialists?

NIST 25 May 2007 -- Gilbert  -- 2

SSCA Benchmark Graph (scale 10)
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NIST 25 May 2007 -- Gilbert  -- 3

RMAT Approximate Power-Law Graph

NIST 25 May 2007 -- Gilbert  -- 4

Strongly Connected Components
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NIST 25 May 2007 -- Gilbert  -- 5

Toolbox for Graph Analysis 
and Pattern Discovery

Layer 1: Graph Theoretic Tools

• Graph operations

• Global structure of graphs

• Graph partitioning and clustering

• Graph generators

• Visualization and graphics

• Scan and combining operations

• Utilities

NIST 25 May 2007 -- Gilbert  -- 6

P0

P1

P2

Pn

5941 532631

23 131

Each processor stores local vertices & 
edges in a compressed row 
structure.

Scaled to  >108 vertices,  >109 edges 
in interactive session.

Distributed Sparse Array Structure

1

2 326

53

41

31

59
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NIST 25 May 2007 -- Gilbert  -- 7

Sample Application Stack

Distributed Sparse Matrices
Arithmetic, matrix multiplication, indexing, solvers (\, eigs)

Graph Analysis & PD Toolbox

Graph querying & manipulation, connectivity, spanning trees,

geometric partitioning, nested dissection, NNMF, . . .

Preconditioned Iterative Methods

CG, BiCGStab, etc. + combinatorial preconditioners (AMG, Vaidya)

Applications
Computational ecology, CFD, data exploration


