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The Information Technology Laboratory (ITL) of the National Institute of
Standards and Technology (NIST) is developing a new intramural research pro-
gram on the mathematical foundations of measurement science for information
systems. Among the long-term goals of this program is the understanding, and
ultimately the measurement, of fundamental properties of information systems
which relate to the reliability and security of our cyberinfrastructure.

As part of the startup of this program, NIST invited a group of subject-area
experts for an informal one-day workshop to discuss the state of the art in this
area and to consider the path forward. This workshop was held on May 25, 2007
in Gaithersburg, MD.

1 Attendees

The external panelists were

George Cybenko (GC)
Thayer School of Engineering
Dartmouth College

John Gilbert (JG)
Computer Science Department
University of California at Santa Barbara

*This report was compiled by Isabel Beichl and Ronald F. Boisvert of NIST. For further
information, contact boisvert@nist.gov.

"Disclaimers: Certain commercial products are referenced in this report in order to faithfully
document the discussions that took place at the workshop. The mention of such products
does not imply any recommendation or endorsement by NIST. Opinions expressed by workshop
participants are their own and do not represent the official views of NIST.



Brian Hunt (BH)
Department of Mathematics and Inst. for Physical Science and Technology
University of Maryland

Andrew Odlyzko
Director, Digital Technology Center
University of Minnesota

Edward Ott
Institute for Research in Electronics and Applied Physics
University of Maryland

Gregory Sorkin (GS)
Department of Mathematical Sciences
IBM T. J. Watson Research Center

Francis Sullivan (FS)
Director, IDA Center for Computing Sciences

Walter Willinger (WW)
AT&T Labs — Research

Attendees from within NIST included the following:

e Mathematical and Computational Sciences Division (ITL)

Isabel Beichl

Ronald Boisvert (RB), Chief
Fern Hunt (FH)

Manny Knill

e Computer Security Division (ITL)

William Burr
Donna Dodson
Rene Peralta

e Advanced Networking Technology Division (ITL)

Vladimir Marbukh (VM)
Kevin Mills
David Su, Chief

e Software Diagnostics and Conformance Testing Division (ITL)

Paul E. Black



e Statistical Engineering Division (ITL)

James Filliben
Antonio Possolo, Chief

e Information Technology Laboratory (ITL)
Sandy Ressler, Manager, Complex Systems Program
e Manufacturing Engineering Laboratory

Albert Jones

2 Organization of the Workshop

Ronald Boisvert opened the workshop with an introduction to measurement sci-
ence at NIST. He also provided a brief description of the NIST FY2007 Cyber
Security initiative which is providing funding for the proposed program. His slides
are included in the Appendix of this report. The external participants were in-
vited to make brief presentations on their views of relevant mathematical research
in this domain. Summaries of those presentations are provided in Section 3. The
balance of the day was spent in directed discussions centered around questions
distributed to the participants in advance. A summary of the main points from
that discussion is provided in Section 4.

3 Contributed Talks

3.1 Quantitative Evaluation of Risk
George Cybenko

George Cybenko spoke about quantitative evaluation of risk to aid in decision
making for investment in software protection strategies. For example, companies
can invest in technologies to protect intellectual property marketed to the gen-
eral public such as music or video games. Some strategies may be expensive to
implement and deploy, but afford a great deal of protection, while other are less
expensive, but may be more easily broken. Given that any protection scheme is
likely to be broken at some point, the question asked is: what is the return on a
given level of investment?

In this project, undertaken with Jeff Hughes at the Air Force Research Lab
(Dayton), the aim was to develop a model that predicts how long it takes for a
protection scheme to be broken. This, in effect, provides a measure of the security
of such a protection scheme.

In particular, a probability distribution function for the time of first successful
attack is sought. A typical way get at such information is to hire one or more



“Red teams” to attempt to defeat the security mechanism. Unfortunately, such a
process obtains, at best, a single data point rather than a distribution. Instead,
Cybenko and colleagues modeled the work of an attacker as a Markov process, i.e.,
the attacker moves from one state to another according to certain probabilities.
(The process is a “partially observed” one, since as the attacker is unaware of the
current state at any point in time.) Cybenko and colleagues used an “information
market” approach with a collection of expert colleagues to develop the parameters
needed by the model.

With the attacker model in place, Cybenko and colleagues use dynamic pro-
gramming techniques to get an optimal policy given that the attackers have costs
and benefits. This is, in effect, related to stock options pricing analyses.

Key message: The field of risk analysis in statistics is a mature discipline which
holds promise as a means to provide metrics for cybersecurity. Security is a
property of a system which is very difficult to precisely measure. Risk analysis
has always had to deal with such uncertainties. Thus, it may be fruitful to consider
a well-characterized measure of risk as a derived measure of “security”.

3.2 Network Science in Need of Measurement Science
Walter Willinger

Walter Willinger spoke on the need for measurement science for computer net-
works, relating some lessons learned from his own work in modeling of the Internet.
His main message is that much of the existing work in the emerging area of net-
work science is severely lacking in rigor, and that network science can only become
a true “science” when accompanied by an appropriate measurement science.

As a concrete example, he cited studies of Internet router-level connectivity.
Many of these studies have been based on data that map connectivity using large-
scale trace-route experiments. From this data researchers have inferred power-
law node-degree distribution and verified preferential attachment growth models.
They have also observed hub-like cores which make the network vulnerable to
planned attack. Such studies have been highly publicized.

However, Willinger argued that much of this work has been wrong at a fun-
damental level. He states that traceroute data are ambiguous, inaccurate, and
incomplete, and hence cannot support any scientific conclusions about the real
Internet. He also complained about a lack of statistical rigor in these studies, as
well as the absence of any serious model validation. Bad models are dangerous
because they can distort public opinion and cause bad policy to be made.

He believes that measurement science needs to step in to answer critical ques-
tions such as whether available Internet-related connectivity measures actually
support the claims made in the complex networks literature. In other words, for
what purpose can the measurements at hand be safely used? In particular, a good
measurement science must play a role in



1. raising the level of data hygiene
2. matching statistical rigor to the quality of the data
3. promoting serious model validation

Finally, Willinger makes the point that researchers must be more specific about
what aspects of the Internet that they are modeling, and then bring in much more
detailed domain knowledge in order for the models to be useful. (For example,
models of the router-level Internet that admit unbounded node degree are unre-
alistic, since real routers must have finite size.)

A copy of Willinger’s slides are included in the Appendix of this report.

Key message: A rigorous measurement science for networks is critically needed.
Improved data, more detailed models, and serious model validation are necessary
to make network science a real science.

3.3 Economics of Security
Andrew Odlyzko

Andrew Odlyzko spoke about the economics of information security. He stated
that cryptography is mostly irrelevant to issues of day-to-day information security.
People will always be involved, and so economics, psychology, and usability are
critical to the understanding of practical security of systems.

Since absolute security is probably unattainable, it is important to understand
the actual relationship between actual (imperfect) security controls and the level
of risk they engender. He suggested by way of analogy the cat-and-mouse game
played by original and after-market manufacturers. For example, printers are
priced quite low, with the original manufacturer expecting to make most of its
profits on consumables, like ink cartridges. Originally, it is the only vendor for the
cartridges, but eventually after-market manufacturers will reverse engineer these
and develop cheaper versions, thus stealing a good deal of the market. The original
manufacturer can choose to invest alot initially to make the design complex so
that reverse engineering is difficult. In computer security, code obfuscation and
related technologies can be used to make software more difficult to understand and
exploit for nefarious purposes. It would be useful to measure the value of such
strategies, that is, to understand more clearly the tradeoff between investment in
security technologies to the cost required to break them.

An interesting observation in this regard is that the efforts required to break
into systems can vary, and that if the effort required is large then any attempt to
do so is bound to leave traces. Can we measure these?

Other possible research directions he suggested were (a) to measure how long it
takes information to disseminate around the web, and (b) to develop institutional



mechanisms for collecting and distributing data that can be used by cyber security
researchers.

Finally, Odlyzko made the point that even rough models can be useful in
guiding decision making. (He quipped that economists have managed to make
great careers in spite of the fact that the predictions of their models are rarely
accurate. )

Key message: Since cyber attacks are often economically motivated, it may be
useful to consider economic models. Since no system can be made absolutely im-
penetrable, it is of particular interest to measure the impact of imperfect security.

3.4 Some Issues of Network Topology
Edward Ott

Ed Ott explained that simple graph models of information systems can be quite
useful for defining questions, formulating solution techniques, and for gaining
intuition. This is related to the principle of universality in physics, i.e., that
solutions in simple cases can many times be applicable to more complex problems.
He described a recent series of studies of the network models that he and his
colleagues have undertaken, including the following.

e Characterization of the dynamical importance of network nodes and links
using the largest eigenvalue of the associated adjacency matrix. See Juan G.
Restrepo, Ed Ott, and Brian R. Hunt, Physical Review Letters 97, 094102
(2006), as well as arXiv:0705.4503.

e Studies of the emergence of synchronization in complex networks of in-
teracting dynamical systems. See Juan G. Restrepo, Ed Ott, and Brian
R. Hunt, Physica D: Nonlinear Phenomena 224 pp. 114-122, as well as
arXiv:0706.4454.

e Studies of percolation on large-scale networks. Here one considers how
many nodes need to be broken in order to break a large graph into small
disconnected components. This would have relevance to network degrada-
tion or attack, or to immunization and protection against epidemics. See
arXiv:0704.0491.

e A similar problem is finding “communities” in networks, that is, a group
of nodes with many connections to other nodes in the group. Hierarchi-
cal clustering and Laplacian spectral methods have been used to solve this
problem.

Some discussion ensued about whether such simple models can actually be
useful in predicting behavior of large-scale computer networks. Ron Boisvert made
a comment that many other information systems have network structure, and



such simple models might well be appropriate for their study. He cited the graphs
associated with the static and dynamical structure of large computer programs
as an example. Al Jones noted that manufacturing systems, health care systems,
and web services also have such a structure. He explained that in some cases
connections are not permanent. They change. But understanding the topology
might nevertheless lead to useful performance metrics.

A copy of Ott’s slides are provided in the Appendix of this report.

Key message: Searching for simple relationships between system topology and
behavior is an important means for developing fundamental understanding of
information systems.

3.5 Horizontal Integration
Francis Sullivan

Francis Sullivan began his presentation noting that real networks do not seem
to fit the statistical mechanical model. Although one can compute a power law
exponent for a network model, it is not clear that this gives you any useful informa-
tion. Nevertheless, he suggests that there may be other combinatorial quantities
to measure which can provide real insight, such as distributions of cliques and
independent sets, but these are much more challenging to compute.

He said that in a sense security is impossible because everybody is using the
same technology. No matter how much Microsoft spends, attackers will eventu-
ally win if only because the ethos of attacking the most visible target draws in
more people. He suggested that a greater diversity of operating systems would
indirectly help security. Another approach to foil hackers would be technologies
like virtualization which serve to disguise the real system running underneath.

He agreed with Andrew Odlyzko that cryptography is not the answer, although
it still remains an important tool. If you have data it has to be unencrypted some-
time, and since cryptography must be used by people, mistakes will be made. It is
here where systems are the most vulnerable, and there may never be technological
solutions that can overcome weaknesses in human behavior.

Sullivan related a theory of security called “horizontal integration”, which was
developed in a recent JASON study!. The study considers more agile mechanisms
for managing classified data than the traditional hierarchical approach. The study
focuses on measurement of risk rather than security. They turn risk into a com-
modity by tokenizing it and passing out the tokens to people who need it. Those
with tokens expend them in the disclosure of information. There is a trade-off
between convenience (e.g., expediency) and security that is made in an ad-hoc
way at each transaction. Such a system would provide a more flexible means

LA “release” copy of this report was made available to us and is available to workshop
participants on request.



of regulating information flow in battlefield situations, for example. It was sug-
gested that computer operating systems could be the “battlefield” and a research
direction could be to develop a theory and model of risk, like actuarial science.

3.6 Global Properties of Networks
John Gilbert

John Gilbert spoke about the need for measurement of global properties of net-
works and the tools that might be necessary to do this. He suggests going beyond
measuring properties that have been the topic of most recent studies, such as
density, diameter and degree distributions, and instead consider a more compre-
hensive set of graph-theoretic measures. The development of effective algorithms
and software for computing (or estimating) such properties of graphs represents
an important new research area.

Gilbert suggests work on developing the fundamentals of high-performance
combinatorial computing would provide the underlying basis for a measurement
science for information systems. Such techniques and tools are largely unavail-
able today. Such fundamental issues as what are the most efficient and effective
computational primitives upon which to develop high performance software tools
for graph-theortic computations remains unresolved. (Both he and Bruce Hen-
drickson of Sandia Labs have been studying this.) To support such work, he also
suggested that NIST develop standard reference data sets and data generators for
combinatorial computing.

Finally, he also suggested that more complex network models were needed to
represent modern information systems. Such systems (e.g., the Internet) typically
have a multi-level structure, and hence new abstract models of multi-level systems
need to be constructed.

A copy of Gilbert’s slides are provided in the Appendix of this report.

Key message: A measurement science for information systems needs the ability
to perform non-trivial computations on large-scale graphs. To enable this, funda-
mentals of high-performance combinatorial computing must be developed.

4 Discussion

A series of general questions were posed to the panelists to elicit discussion re-
lated to potential goals and topics for NIST’s program. A summary of the main
threads of discussion is provided here. Speakers are identified by their initials;
correspondence to full names is provided in Section 1.



General topic: Technical goals for NIST s program.

e GC said that decision markets and information markets are very important
and thinking of networks in terms of economics may be fruitful. He men-
tioned Michael Kearns’ Penn-Lehman Automated Trading Project at the
University of Pennsylvania as an example.

e Modeling unknown threats was posed as a very difficult challenge. One ap-
proach would be to characterize is the “normal” behavior of a computer
network. By monitoring deviations from normality we could potentially de-
tect threats of various kinds. Could this be scaled to network-wide measure-
ments that could be used to characterize overall communications structure?
The question of what measurements to make and where to make them is
an interesting one. RB noted that DARPA? has put resources into anomaly
detection for identifying intrusions, but that even in this simpler case the
problem remains quite difficult.

e GS noted that IBM has had an effort in so-called autonomic computing for
some time. One of the goals is to be able to automate the determination of
dynamic control parameters for routers. One needs good measurements of
network activity in order to design such controls.

e RB asked if insights from biological systems would help. WW stated that
this has not gone beyond metaphor. BH brought up modeling of the spread
of computer viruses. WW noted that there is nice mathematical work on the
spread of viruses in scale-free networks, but that it would be more useful
to consider the case of real networks. FS commented that the spread of
a computer virus is not like a biological virus. The origins are different.
Suppose you locate the origin of the computer virus, so what? RB suggested
that understanding how the structure of the network might lend itself to
controlling viruses would be interesting.

GS explained that at IBM biological insights motivated both theoretical and
practical work: biology was more than just metaphor. A computer virus
can be characterized by a bit string, like DNA and real viruses, and typical
commercial anti-virus packages include quarantine procedures. Computer
virus bit strings, like organisms’ DNA, can be used to create phylogenies;
since computer viruses are often patched together from several parents, their
phylogenies are not trees but directed acyclic graphs. These are interesting
from a theoretical perspective, and also because they indicate common viral
structures useful for efficient detection of many viruses. (If this means that
a biological notion leads on to something non-biological, that’s fine too, he
said.) In the realm of metaphor, as hosts may first attack intruders with

2Defense Advanced Research Projects Agency



white blood cells and then develop specific immunity, machine-learning tech-
niques can recognize likely computer viruses, which can then be subjected
to automated techniques for recognizing them more efficiently, and also for
“curing” infected programs. (Such analysis is currently done in a labora-
tory but could be done on end-user computers). Epidemiological notions
then become even more relevant. Viruses spread by communication be-
tween machines. If a machine recognizes that it is infected and develops
its own antidote, it can promptly communicate the antidote to machines it
may have infected. This can lead to a much more favorable epidemiolog-
ical model (and is another case of biology leading to something seemingly
non-biological).

e GC thought that it is not the network itself but the information on the
network that should be modeled. How much information fluidity is there?
The network is interesting but it is only the dish; the actual food is what is
really of interest.

e F'S suggested that monitoring for unexpected file changes would be impor-
tant. Suppose we have a huge file: is it the same as it was 10 minutes ago?
Are there sampling techniques that could be developed that would allow
continuous monitoring of the state of files without significant degradation of
system performance? For example, Michael Rabin considered the use of the
first few coefficients of the Fourier transform as a rough measure of change.

General topic: Technical skills required to staff NIST’s program.

o GC mentioned Jon Kleinberg’s graduate and undergraduate Network Sci-
ence courses at Cornell as good background for the type of person that NIST
might want to hire. Besides looking at information theorists and computer
engineers familiar with networks, GC also suggested looking at other disci-
plines which might be quite relevant, such as the social sciences, economics,
and statistics.

e GS suggests someone in random structures, discrete methods, probability,
statistics, statistical mechanics, and computational combinatorics. F'S con-
curred that probability and combinatorics will be very important. JG ex-
plained that these skills are also very applicable to biology and nanotechnol-
ogy. He cited Berkeley, MIT, Georgia Tech, and the University of Maryland
as centers for work in computational graph theory.

e GS added that machine learning and data mining are relevant to intrusion
detection and probably in the general area of making sense of the behavior
of a complex communications network.
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e F'H asked about the relevance of queuing theory. WW said that networks
that can be described in closed form by queueing theory are too simplistic
to be useful. He went on to explain that places like Bell Labs, Bellcore,
and IBM used to have research groups that worked almost exclusively on
queueing theory. However today if you look today at places like AT&T Labs-
Research, Microsoft Research, or Google such groups don’t exist any longer
(which may say something about the relevance of that area). VM suggested
that approximate queueing models can be used in much more complicated
situations.

o WW suggested that stochastic control theory was a very highly relevant area
for network modeling. Centers of excellence for such work include Cal Tech
(Stephen Low, John Doyle), UTUC, and Cambridge. Operations research
and optimization were also cited as related relevant skills. Ultimately, one
is trying to steer a system toward optimality.

e Game theory was suggested as another tool useful in modeling network
growth and dynamics. Tim Roughgarden of Stanford and Eva Tardos of
Cornell are leaders in this area.

o 'S suggests seeking people who are broad, flexible, and smart. We should
value people who have the ability to look at real systems and form models.

General topic: Potential unique contributions of NIST.

o JG suggested that there would be real value for NIST to (a) compare sim-
ple mathematical models to real systems, (b) provide measurements of real
systems for use by the research community, and (c¢) provide reference data
on the properties of real systems.

e It was suggested that NIST might provide a center for the sharing of data
on real networks. For example, there is no reliable information on how
much data goes between different Internet service providers. It is unlikely
to be able to persuade companies to release this information generally, but
perhaps they would release to NIST provided the data could be properly
anonymized. WW mentioned some relevant work by Matthew Roughan on
privacy-preserving measurements®.

e WW also mentioned that there is a special measurement component of the
GENTI effort, with a separate working group headed by Paul Barford of
Wisconsin that is trying to ensure that measurements are not again an after-
thought (as is the case with the current Internet), but are built in from the
beginning?.

3See  http://internal.maths.adelaide.edu.au/people/mroughan/Papers/minenet06.pdf —or
browse his web page.
4For a recent working group document see http://www.geni.net/GDD/GDD-06-12.pdf.
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e 'S noted that one of the great things about NIST is that it is unbiased, and
what NIST says will be taken well by industry.

e GS summarized his views as follows: no one knows how to solve the original
problem; the proper scientific or engineering abstractions are not there yet.
In this case the best approach may be to build the science from bottom up.
Bring together a group of experts in the nitty-gritty details of security and
practical systems, with a body of experience to draw on. Have theoreticians
from the areas mentioned (graph theory, economics, queuing theory, etc.)
talk to and look over the shoulders of experienced practitioners, and try to
abstract and generalize.
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Appendix

Slides from Presentations

Foundations of Measurement Science for Information Systems (Ronald F.
Boisvert)

Network Science in Need of Measurement Science (Walter Willinger)
Some Issues of Network Topology (Edward Ott)

Foundations of Measurement Science for Information Technology (John Gilbert)
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A-1 Foundations of Measurement
Science for Information Systems
Ronald F. Boisvert



Welcome!

Foundations of Measurement
Science for Information Systems

NIST — o

=

Information
Technology !
Laboratory

May 25, 2007

Ron Boisvert, Chief, Mathematical & Computational Sciences Division

This Talk

o Background
NIST and Measurement Science
NIST Information Technology Lab (ITL)

o FYO7 Research Initiative
Original Motivation
Proposed Directions




NIST’s Origins

o Constitutional
authority: 1788

o Founded in 1901 as
Bureau of Standards

o First “national lab”

o Expanded role, new
name in 1988

Early Measurement, Standards Needs

1904

| Out-of-town fire companies arriving
at a Baltimore fire cannot couple
their hoses to local hydrants.

1526 buildings razed.

1912

41,578 train derailments in
the previous decade lead to
NBS measurement and test
program.




NIST Assets and Mission

o Laboratories Technologypim o =
=~
Gaithersburg, MD N - %}- he
Boulder, Colorado i 22 m ;

o $843 million FY 2007 budget
($677M Congressional appropriation) Maabiirements

& Standards

2,800 employees
1,800 associates

850 users of facilities
1,500 affiliated field agents

Mission
“To promote innovation and industrial competitiveness by advancing
measurement sclience, standards, and technology in ways that enhance
economic security and improve our quality of life.”

Measurement

“l often say that when you can
measure what you are speaking
about, and express it in numbers,
you know something about it; but
when you cannot measure it, when
you cannot express it in numbers,
your knowledge is of a meagre and
unsatisfactory kind; it may be the
beginning of knowledge, but you
have scarcely in your thoughts
advanced to the state of Science.”

Lord Kelvin
1824-1907

"If you can not measure it, you can
not improve it.“




Metrology

Metrology: science of measurement, embracing both
experiment and theoretical determinations at any level
of uncertainty in any field of science and technology*

Scientific or fundamental metrology -- establishment of measurement units
and systems, development of hew measurement methods, realization of
measurement standards, and traceability from these standards to users.

Applied or industrial metrology -- application of measurement science to
manufacturing and other processes, ensuring the suitability of
measurement instruments, their calibration and quality control.

Legal metrology -- regulatory requirements of measurements and
measuring instruments for the protection of health, public safety, the
environment, enabling taxation, protection of consumers and fair trade.

Key concepts
traceability (through calibrations)
characterization of uncertainty

* Bureau International des
Poids et Measures (BIPM)

NIST’s Laboratories

Research to advance the nation’s infrastructure for innovation:
measurements, test methods, evaluated data

Manufacturing Physics
Engineering _ :

Information
Building and .
Fire Researchy

Nanoscale Science
& Technology

Chemical
Science and
Technology

Services

Materials Science Electronics and Neutron Research
and Engineering Electrical Engineering




Output of the NIST Laboratories

Measurement Science Research
» 2,100 publications / year
Calibrations and Accreditations
» 3,200 items calibrated / year
» 826 Labs accredited
National, International Standards
» 450 committees

Standard Reference Materials standard Reference Data
> 1,200 products available > 90 databases

Measurement Science: The Second

NBS Ammonia
Pendulum resonator
clock (1949) cesium beam
(1904) 1s in 300 years (1993)
1sin 3 years 1s in 6M years
NIST F1
Optical clock cesium fountain
(20xx) (1999)

1s in 30 billion years 1s in 30M years




Scientific Foundations

Three NIST Nobel Prize winners in Physics ...

Bill Phillips Eric Cornell Jan Hall

Development of methods ~ Landmark 1995 creation of the  Laser-based precision spectroscopy,
to cool and trap atoms Bose-Einstein condensate and  including the optical frequency comb
with laser light. early studies of its properties. technique

Needs are widespread ...

o The electric power grid that links the 10,000 US
generating stations must be synchronized to within 106
sec/day and the Global Positioning System to 10-°.

o U.S. semiconductor industry will spend $9B in 2007
on measurement equipment, citing measurement
challenges as a major barrier to continued
miniaturization of circuits.

o The U.S. Army requires calibrations traceable to national
standards for 58,000 different types of equipment to
maintain the readiness of its weapons systems.

o Improved accuracy of reference measurements for
emissions of sulfur in oil refining and steel
production has been estimated to have produced
$440M in cost savings and other benefits.

From: An Assessment of the US Measurement System, NIST Special Publication 1048, 2007.




NIST metrology enables innovation in ...

... manuftacturing ... health science

Interoperability
and data
exchange.
Testbeds.

Quantitative
microscopy verifies
indicator cell
response.

... electronics
Nano electronics A ‘ |
Integrated circuits ditr?1r:rl105 if)(r:s:\ :3
pm——— silicon, copper,
¥ £1 i standard

exotic dielectrics,
L S/Ngle molecules, ...

....4|
'

NIST metrology enables innovation in ...

...public safety and security

Measurements and standards infrastructure to ensure the accuracy,
reliability, and security of systems critical to public safety

Develop, compare, and test new technologies.

Enable safe and effective response to incidents. World Trade Center
Investigation

gas mask biometrics

performance
standards

mail irradiation




NIST metrology enables innovation in
. Information technology

quantum computing
and communications

micromagnetic
modelin gs stem . \;%?Jﬁ
g sy A Crypto Algarithm for the Twenfy-first Cemtury _ . . Wb%,?

information retrieval
performance

CMVP @ TREC: evgluatior_1 of

e Metrics and Tool Evaluation

Software Assurance

NIST’s Laboratories

Research to advance the nation’s infrastructure for innovation:
measurements, test methods, evaluated data

Manufacturing Physics
Engineering L

Information

Building and
Fire Research ]

Chemical
Science and
Technology

Services

Materials Science Electronics and
and Engineering Electrical Engineering




Information Technology NIST
Laboratory [ pripe

To promote US innovation and industrial competitiveness by advancing measurement science, standards,
and technology through research and development in information technology, mathematics, and statistics.

o Measurement and Technical Programs
Standards for
IT development industry
IT users in industry
IT users in government

e Trustworthy Computing
e Trustworthy Software
 Trustworthy Networking
» Cyber Security

Identity Management

o Collaborative research
in math, statistics and
computer science

Pervasive Computing

Info Discovery, Use & Sharing

Enabling Scientific Discovery

Virtual Measurements

Complex Systems

Information Technology NIST
Laboratory ITRrct and ooty

To promote US innovation and industrial competitiveness by advancing measurement science, standards,
and technology through research and development in information technology, mathematics, and statistics.

Technical Divisions ITL Staff

- Advanced Networking 325 Total Staff*
: 128 Associates
Technologies
- Computer Security ITL Funding $78M

= Software Diagnostics and

Other
Agency
$19.7M
(25%)

Conformance Testing

= Information Access

= Statistical Engineering Direct

. %ppropriaﬁons for
* Mathematical and Other NIST Labs

NIST $57.1M (73%)

Computational Sciences $(12§h)ﬂ

*Includes full-time and part-time staff, postdocs, students, faculty, and temporary workers.




Math & Computational Science

Applied Mathematics
High Performance Computing
Scientific Visualization
Ron Boisvert

Mathematical Software Division Chief
boisvert@nist.gov

o Collaborative Research

— within NIST: interdisciplinary, peer to peer
— bring expertise, facilities / high local payoff

o Underlying R&D
— research in math, CS anticipating NIST needs
— tools, facilities to make us, customers more efficient

o Work with community
— community-based measurement, standards

— Web-based information services
— wide distribution of tools

Examples

o Deblurring of images from
scanning electron microscopes
Deconvolution
Inverse and ill-posed problems

o Software for modeling in

nanomagnetics

Applied PDEs, Numerical analysis

b

Problem-solving environments

o Online handbook of special
functions of applied math
Real and complex analysis
Mathematics on the Web
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NIST FYO7 Cyber Security Initiative

Innovative Technologies for National Security

The nation’s IT infrastructure has grown phenomenally.
Critical infrastructures—transportation, financial, power
grids, military, intelligence systems, and health and
safety—rely on computer, communication networks.

o In spite of efforts to secure, these systems remain
vulnerable.

o Today’s cyber security efforts are aimed at identifying
particular vulnerabilities and determining whether well-
known security controls are in place.

o There is no known way to measure the absolute security
of a given system. Without metrics and measurement
technologies, we can’t determine the overall
effectiveness of our controls.

http://www.nist.gov/public_affairs/factsheet/cybersecurity.htm

FY 2007 Cyber Security Initiative

NIST proposes to work with industry and
academia to develop measurement science
and technologies to

identify the level of vulnerability of IT systems
assess the effectiveness of cyber security controls
test system functionality

address vulnerabilities

identify vulnerabilities in real-time

mitigate attacks

“The development of metrics for the security of real-world
systems is an extraordinarily difficult task. However, such a
metric would be a high-payoff result ...” -- Infosec Research
Council, 1999

http://www.nist.gov/public_affairs/factsheet/cybersecurity.htm




Problem is More Fundamental

We build, deploy large-scale information
systems without complete understanding
of their range of behaviors.

“[Despite] society’s profound dependence on networks,
fundamental knowledge about them is primitive. [G]lobal
communication ... networks have quite advanced
technological implementations but their behavior under stress
still cannot be predicted reliably.... There is no science today
that offers the fundamental knowledge necessary to design
large complex networks [so] that their behaviors can be
predicted prior to building them.” — Network Science,
National Research Council, 2006

Science Foundation is Prerequisite

Experiment — Model — Understand — Measure — Improve
X Validate Theory,
Physical Model
System
& Insight
OC
@)

Desired Practice Needed Foundation




Focus on Foundations

o To develop metrics we need to know
what to measure

how measurements relate to properties we care
about

o Need: a science-based foundation for the
understanding / characterization of
information systems on par with that of
the physical sciences

the science behind information technology

challenge: information systems fundamentally
different: man-made, less discipline than nature

Science Foundations: Examples

o Information Theory

Mathematical theory of communication

Information entropy, channel capacity -
Claude Shannon

Quantum: information is physical

o Theory of Computation

What is computable?

How hard? ... complexity classes Alan Turing

NETWORK

o Network Science

13



Foundations of Measurement
Science for Information Systems

Mathematics-based program

Model, characterize large-scale distributed
information systems

o structure
o protocols & dynamics
o feedback & control

Goals

o understand relationships among structure,
protocols, and performance
o characterize robustness, fragility

o identify key (computable) measures

Connection to Cyber Security

o “Security”
(cryptography: out-of-scope)

Integrity vulnerability: natural (inherent)
Availability or under systematic attack

o Questions

Are there fundamental limits to our ability to
secure a system?

How can we characterize the absolute security
of a system: resilience against threats /
vulnerabilities known and unknown?

14



Reality Check

o This is a really hard problem: there

may be no solution.

though any progress in quantitative methods
for characterizing information systems is
undoubtedly worthwhile

o We have only $2M/year for an

intramural research program
6-7 FTEs
new base funding: sustained long-term effort

Non-technical Goals  more reatistioy

o Short term

Develop mathematical competence within NIST
necessary to contribute to the modeling and
analysis of information systems

o Mid-term

Provide the scientific basis for NIST to begin the
development of a measurement science for
information systems

o Long-term

Work to address fundamental issues related to
cyber security

15



Partnerships

o Leverage internal startups
ITL Complex Systems Program
NIST Innovations in Measurement Science project

o Connect to applications

Collaborate with ITL Divisions: Networking,
Computer Security, Software

o Engage external researchers

Advice, collaborations
Guest researcher program

ITL Computer Security Division

o Cryptographic Standards & Applications
Advanced Encryption Standard, Secure Hash
Personal Identity Verification (PI1V)
Public Key Infrastructure (PKI)

o Security Testing
Cryptographic Module Validation Program
National Vulnerability Database

o Security Research / Emerging Technologies

Smart card security, RFID
Access control models

o Security Management & Assistance

Computer security guidance

FISMA implementation
Curt Barker

Division Chief
wbarker@nist.gov

16



ITL Complex Systems Program

o Develop metrics for description, prediction
and control of complex systems.

o ldentify and fund (internally) projects

o Work with other NIST laboratories towards
interdisciplinary efforts & seek out external

partners.
) “In spite of society’s profound dependence on
NETWORK networks, fundamental knowledge about them is
SCIENCE primitive. [G]lobal communication networks have

quite advanced technological implementations, but
their behavior under stress still cannot be predicted
reliably.”

“There is no science today that offers the

fundamental knowledge necessary to design large, iormaton Technology Laboratory
complex networks in such a way that their behaviors Sandy Ressler
can be predicted prior to building them.” Program Manager

sressler@nist.gov

NIST Innovations in Measurement
Science Program

/V@h/

o Project: Measurement Science for //7'%
Complex Information Systems %>
o Lead: ITL Advanced Networking
Technologies Division

o Goal: measure, predict, control macroscopic
behavior in complex information systems (e.g.,
Internet and distributed systems like the Grid)

Establish models and analysis methods that (1) are
computationally tractable, (2) reveal macroscopic

behavior, and (3) establish causality.

Characterize distributed control techniques,

including: (1) economic mechanisms to elicit

desired behaviors and (2) biological mechanisms Kevin Mills

to organize components _PFOith Lead
kmills@nist.gov

17



Goals for Today’s Meeting

o Obtain advice from external experts

o What are appropriate long-term goals for
a mathematics research program in this
space?

o What mathematical approaches are likely
to lead to progress?
What skills do we need to develop/acquire?
What external work is relevant?

o What might the unique role for NIST in
this effort be?

18



A-2 Network Science in Need of
Measurement Science
Walter Willinger



Network Science in Need of Measurement Science:

Lessons Learned from Modeling the Internet

Walter Willinger
AT&T Labs-Research
walter@Qresearch.att.com

Recap: What Network Science says about the Internet

Concrete example: Router-level connectivity

- Data: Large-scale traceroute experiments
Inference: Power-law node degree distribution
Modeling: Preferential attachment-type growth model

Model validation: “fits” the data (i.e., node degree
distribution)

- Highly publicized claims
* High-degree nodes form a hub-like core
* Fragile/vulnerable to targeted node removal
* Achilles’ heel
e Zero epidemic threshold

e Similar examples
- Autonomous System or AS-level connectivity
- Overlay networks (e.g., P2P, WWW)




Fact: Network Science got it all wrong!

The Internet is exactly the opposite of what the “theory”
of Network Science claims in essentially every
meaningful aspect

These claims are not controversial, they are simply wrong)!
So much for “Network Science” as a “science” ...
Main Question:
What went wrong when applying Network Science to the Internet?

Network Science can only become a “science” when
accompanied by an appropriate Measurement Science!

Measurement Science

* Provide answers to the following type of questions

- “Do the available Internet-related connectivity
measurements support the sort of claims that can be
found in the existing complex networks literature?”

- “For what purpose can the measurements at hand
be safely used?

* Basic requirements (among others)
- Insist on high level of data hygiene

- Insist on a level of statistical rigor that matches the
quality of the available data

- Insist on taking model validation serious
* [llustration: ISP router-level topology




MISTAKE #1: Lack of Data Hygiene

* traceroute-based measurements are ambiguous
- traceroute is strictly about IP-level connectivity

- traceroute cannot distinguish between high connectivity
nodes that are for real and that are fake and due to
underlying Layer 2 (e.g., Ethernet, ATM) or Layer 2.5
technologies (e.g., MPLS)

e traceroute-based measurements are inaccurate

- Requires some guesswork in deciding which IP
addresses/interface cards refer to the same router
(“alias resolution” problem)

e traceroute-based measurements are incomplete/biased

- IP-level connectivity is more easily/accurately inferred
the closer the routers are to the traceroute source(s)

- Node degree distribution is inferred to be of the power-
law type even when the actual distribution is not

ul"' o ""'

e s e R
e gt SR M.

S N "r-\""." -Q' ,.;-,‘
: »;Nbﬁ.,% W a fully-meshed
~., *u‘::\‘e que to use of MPLS

Ay Backeround image cowrtesy JHU. applied physics labs an
http: //www cs.washington.edu/research/networking/rocketfuel/




http://www.caida.org/tools/measurement/skitter/

= www.sawis.net

= managed IP and
hosting company

= founded 1995

= offering “private IP
with ATM at core”

This “node” is an
entire network!
(not just a router)

MISTAKE #2: Lack of Statistical Rigor

Given: Samples from an exponential

distribution

Want: Claim power law behavior
Recipe: Use size-frequency plots!

102

Freq.
101 L

100

Given: Samples from a Pareto

distribution with o.=1.0

Want: Claim power law with a.=1.5
Recipe: Use size-frequency plots!
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MISTAKE #3: Lack of serious Model Validation

* Mathematical Modeling 101

- For one and the same observed phenomenon, there
are usually many different explanations/models

- All models are wrong, but some are “damned lies”
* Model validation # data fitting

- The ability to reproduce a few graph statistics does not
constitute “serious” model validation

- Which of the observed properties does a proposed
model have to satisfy before it is deemed “valid”?

* What constitutes “serious” model validation?

- What new kinds of measurements does the proposed
model suggest for the purpose of model validation

11

Cisco 12000 Series Routers

* Modular in design, creating flexibility in configuration.

* Router capacity is constrained by the number and speed of line
cards inserted in each slot.

Chassis Rack size Slots S(J\l;i;:::ii?f
12416 Full 16 320 Gbps
12410 1/2 10 200 Gbps
12406 1/4 6 120 Gbps
12404 1/8 4 80 Gbps

Source: www.cisco.com
12




Router Technology Constraint

0° Cisco 12416 GSR, circa 2002
high BW
: low degree
—~~ L .
w 10 P low BW
o Re
O ","
1
= 10 -
O -~
= el
O -~
cC . - 9\4 15 x 1-port 10 GE
-
CCB 10 ””1 Q 15 x 3-port 1 GE
- D 15 x 4-port OC12
’¢” V 15 x 8-port FE
'¢” = Technology constraint
17
10 ‘ S
10° 10" Degree 107
13
AT&T Router Deployment (¢.2003)
“high speed”
1.E+06 access routers core routers
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©
=
o] i
c
g 1.E+03 E
‘_3 ]
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1 —— Access Router Config Region
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Router Degree
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Network Science and the Internet: “Lies, damned lies and statistics”

* How to lie with statistics ...
- Power-law (scale-free) node degree distribution
* (White) lies ...
- Preferential attachment-type models
e Damned lies ...
— Achilles’ heel
- Fragile/vulnerable to targeted node removal
- Zero epidemic threshold
e Bad analysis of bad data = bad models (“damned lies”)

- “Bad [models] are potentially important: they can be
used to stir up public outrage or fear; they can
distort our understanding of our world; and they can
lead us to make poor policy choices.” (J. Best)

15

How to avoid such fallacies: A case for Measurement Science

* Make node degree distribution a non-issue
- Good reasons
* High-quality data but low variability (e.g., exponential)
* Low-quality data
* High-quality data and high variability (e.g., power-laws)
- Preferential attachment-type models
¢ dead on arrival
- Only reasonable alternative
* Bring in and rely on domain knowledge

* What new kinds of measurements does the proposed model
suggest for the purpose of model validation

- Preferential attachment-type models: None

- HOT models: Check router configs against existing router
technology

16




What about other applications of Network Science? Same story!

Network Size ] K Yout Yin | £real |Erand | £pow Reference Nr.
WWW 325,720 451 000 2.45 21 11.2 | 8.32 |4.77 |[Albert, Jeong, Barahdsi 1099] 1
WWW 4 107 T 2.38 21 Kumar et al. 1999 2
WWW 2 107 7.5 4,000 | 2.72 2.1 16 | 8.85]7.61 Broder et al. 2000 3
WWW, site 260, 000D 1.94 Huberman, Adamic 2000 4
Internet, domain+ |3,015 - 4,380|3.42 - 3.76|30 —40|2.1- 22|21 -22] 4 | 63 |52 Faloutsos 1999 5
Internet, routers 3,888 2.57 30 248 248 [12.15] 8.75 |7.67 Faloutsos 1999 6
Internet, routers 150, 000 2.66 60 2.4 2.4 11 |12.8 |7.47 Govindan 2000 7
Movie actors+ 2112, 250 28.78 000 2.3 2.3 4541 3.65 |4.01 Barabdsi, Albert 1999 8
Coauthors, SPIRES« 56,627 173 1,100 1.2 1.2 4 |212]195 Newman 2001b,e 9
Coauthors, neuro, + 2009, 293 11.54 400 2.1 2.1 6 |5.01]3.86 Barabdsi ef of, 2001 10
Coauthors, maths 70,075 3.9 120 2.5 2.5 95 | 82 |6.53 Barabdsi et al. 2001 11
Sexual contactss 2810 34 3.4 Liljercs et al. 2001 12
Metabolic, E. coli T8 T4 110 2.2 2.2 3.2 [332]280 Jeong ef ol 2000 13
Protein, 5. cerev.« 1870 2,39 24 2.4 Mason et al, 2000 14
Ythan estuarys 134 8.7 35 1.05 105 2431226171 Montoya, Solé 2000 14
Silwood parks 154 4.75 27 1.13 1.13 | 3.4 |3.23] 2 Montoya, Solé 2000 16
Citation 783,330 857 3 Redner 1998 7
Phone-call 53 x 10° 3.16 2.1 2.1 Aiello ef ol 2000 18
Waords, cooceurences | 460, 902 T0.13 T 27 Canecho, Solé 2001 19
Words, synonymss 22,311 13.48 2.8 2.8 Yook et ol 2001 20

17




A-3 Some Issues of Network Topology
Edward Ott
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A-4 Foundations of Measurement
Science for Information Technology
John Gilbert
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Foundations of Measurement Science for
Information Technology

A few research areas in measurement science for complex networks:

»  Measurement of global properties of networks:

Not just density, diameter, degree distribution, etc.
Connectivity, robustness

Spectral properties: Laplacian eigenvectors, Cheeger bounds, ...

Other global measures of complexity?
Sensitivity analysis of all of the above
Stochastic settings for all of the above

Multiscale modeling of complex networks

Building useful reference data sets and generators
Fundamentals of high-performance combinatorial computing
»  Tools: How will results be used by nonspecialists?

NIST 25 May 2007 -- Gilbert -- 1

UCSB

SSCA Benchmark Graph (scale 10)

NIST 25 May 2007 -- Gilbert -- 2
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RMAT Approximate Power-Law Graph
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Matnix nr= 32760, nc = 2760, nnz = 12140477
Bucket nnz: max = 256097, min = 35, avg = 118559, tofel = 12140477, maxievg = 22
NIST 25 May 2007 -- Gilbert -- 3 S

Strongly Connected Components

RMAT strongly con components

R

UCSB

NIST 25 May 2007 -- Gilbert -- 4




Toolbox for Graph Analysis
and Pattern Discovery

Layver 1: Graph Theoretic Tools

. Graph operations

. Global structure of graphs

. Graph partitioning and clustering
. Graph generators

. Visualization and graphics

. Scan and combining operations
. Utilities

e

NIST 25 May 2007

Distributed Sparse Array Structure

S 8

P > 113|123 |1

41

0 g ; I//' el s 53
> 26 3
I:)1
Each processor stores local vertices &
P edges in a compressed row
2 structure.
Pn Scaled to >108 vertices, >10° edges

in interactive session.

UCSB
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Sample Application Stack

Computational ecology, CFD, data exploration

Applications

CG, BiCGStab, etc. + combinatorial preconditioners (AMG, Vaidya)

Preconditioned Iterative Methods

Graph querying & manipulation, connectivity, spanning trees,

geometric partitioning, nested dissection, NNMF, . . .

Graph Analysis & PD Toolbox

Arithmetic, matrix multiplication, indexing, solvers (\, eigs)

Distributed Sparse Matrices

AT

NIST 25 May 2007 -- Gilbert -- 7




