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Abstract

Most images f(x, y) are not smoothly differentiable functions of x and
y, but display edges, localized singularities, and other significant fine scale
roughness or texture. Correct characterization and calibration of image rough-
ness is vital in many image processing tasks. The L1 Lipschitz exponent α,
where 0 < α ≤ 1, measures fine scale image roughness provided the image is
relatively noise free. This paper describes a recently developed mathematical
technique for estimating α. The method is based on successively blurring the
image by convolution with increasingly narrower Gaussians, using commonly
available Fast Fourier Transform algorithms.

Instructive examples are used to illustrate the quantitative changes in
α that occur when an image is either degraded or restored. Of particular
interest are the documented changes in α that accompany APEX blind de-
convolution of real images from the Hubble space telescope, from MRI and
PET brain scans, and from state of the art nanoscale Scanning Electron Mi-
croscopy. (APEX is the actual name of a blind deconvolution procedure, and
is not an acronym or abbreviation).

Additional applications include monitoring of image sharpness and imag-
ing performance in imaging systems, evaluation of image reconstruction soft-
ware quality, detection of abnormal fine structure in biomedical images, and
monitoring of surface finish in industrial applications.

Subject terms image roughness; image metrology; Lipschitz exponents;
image restoration; APEX deconvolution; Hubble telescope; MRI and PET
brain scans; nanoscale microscopy.
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1 Introduction

This paper discusses an effective mathematical framework for quantifying the
unsmoothness of images, and then applies this methodology to some signif-
icant questions in image restoration.∗ An elegant computational technique,
based on Fast Fourier Transform (FFT) algorithms, translates this theory
into an important and practical image metrology tool. Interesting real im-
ages from such fields as astronomy, electron microscopy, and brain research
provide valuable illustrative examples. In all figures, the axis label ’log u’
refers to the natural logarithm of u.

Most natural images f(x, y) display edges, localized sharp features, and
other significant fine scale details or texture, and cannot be modeled as
smoothly differentiable functions of x and y. In many digital image pro-
cessing tasks, it is necessary to provide prior information that specifies the
degree of unsmoothness in the unknown desired true image. If an image is
incorrectly postulated to be too smooth, the processing algorithm may pro-
duce a smoothed out version of the true image, in which critical diagnostic
information has been lost. The class BV (R2) of functions of bounded vari-
ation includes functions with sharp edges, as well as smooth continuously
differentiable functions. That class has been used extensively to model im-
ages over the last fifteen years or so.1−4 However, it has become increasingly
evident that the class BV (R2) does not allow for the type of fine scale sharp
structures commonly found in natural images, in addition to edges. For this
reason, image deblurring based on the BV (R2) assumption notoriously pro-
duces imagery in which important fine scale texture has been severely eroded.
This is known as the staircase effect.3−7 It is now recognized that significantly
wider function classes, such as the so-called Lipschitz classes Λ(α, p,∞), are
necessary to adequately describe natural images.

The L1 Lipschitz exponent α, where 0 < α ≤ 1, is a mathematical index
that can capture the fine-scale content and degree of unsmoothness in an im-
age, provided that image is relatively noise free. Images that are of bounded
variation (including smoothly differentiable images) have α = 1. The value
of α decreases systematically with increasing roughness. Images with signifi-
cant non differentiable small scale structures typically have α ≪ 1. One may

∗The mathematical and computational techniques described in this paper are covered
by U.S. patent application number 10/928,308. Licensing inquiries should be directed to
Terry Lynch, jtlynch@nist.gov
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also consider Lp spaces with p > 1.
In a recent paper,7 a new computational approach for estimating image

Lipschitz exponents was developed, based on blurring the image with suc-
cessively narrower Lorentzian (Cauchy) probability density functions. This
theory was then used in Ref. 7 to construct a new image deblurring method,
the so-called Poisson Singular Integral (PSI) method. That method is based
on prior knowledge of the L2 Lipschitz exponent in the unknown true image.
An educated guess for that value, based on knowledge of exponent values
for similar images, is often sufficient to obtain useful sharpening. The major
result in Ref. 7 is the demonstration that the PSI method can recover texture
in cases where the BV (R2) approach fails completely.

The present paper is based on the use of technically more advantageous
Gaussian densities rather than Lorentzian densities. It complements the re-
sults in Ref. 7 by exploring further applications of Lipschitz exponents, in
particular the quantitative changes in α that occur when an image is either
degraded or restored. Of significant interest are the documented changes
in α that accompany APEX blind deconvolution of real images.6 Examples
include images from the Hubble space telescope, from magnetic resonance
imaging (MRI) brain scans, from functional cerebral positron emission to-
mography (PET) imaging, and from state of the art nanoscale scanning
electron microscopy (SEM). We also consider synthetically degraded images
and compare the changes in Lipschitz exponent that result from competing
restoration algorithms.

The above examples indirectly bear upon several other contexts where a
simple practical method of quantifying image roughness can be useful. Many
imaging systems suffer performance degradation over time and require peri-
odic maintenance. In scanning electron microscopes, the shape of the elec-
tron beam changes with time, often without the user’s knowledge. Periodic
performance testing can be accomplished by monitoring sharpness degrada-
tion in the micrograph of a specially designed test object.8 Such degradation
can be quantified by measuring the increase in Lipschitz exponent. In some
imaging systems, a decrease in α might indicate an increase in system noise.
Measuring the α of a test image can also be used to evaluate and compare
the performance of competing image reconstruction packages. Automatic
measurement of α might be useful in monitoring the smoothness of surface
finishes in certain industrial applications. In some medical applications, mea-
surement of α, along with other appropriate processing, might be helpful in
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prescreening for certain types of abnormalities.
Sections 2-4 develop the mathematical preliminaries, culminating in Eq.

(15) which can be evaluated using FFT algorithms. Sections 5-7 illustrate
the use of that technique in estimating Lipschitz exponents. Section 8 studies
the behavior of Lipschitz exponents as images are synthetically degraded and
restored. Section 9 demonstrates the value of that tool in confirming APEX
blind sharpening of real blurred imagery. Finally, Section 10 contains the
conclusion.

2 Lipschitz classes and image roughness

A function f(x, y) ∈ BV (R2) may not be differentiable at a given set of
points, but it is constrained to satisfy

∫

R2

|f(x + h1, y + h2) − f(x, y)|dxdy ≤ Const |h|, |h| → 0, (1)

where
|h| = (h2

1
+ h2

2
)1/2. (2)

However, from the standpoint of modeling texture, it is advantageous to
consider functions f(x, y) satisfying a weaker constraint, such as

∫

R2

|f(x + h1, y + h2) − f(x, y)|dxdy ≤ Const |h|α, |h| → 0, (3)

where α is fixed, and 0 < α < 1. Such an f is said to be of Lipschitz class
Λ(α, 1,∞). A function f(x, y) satisfying Eq. (1) necessarily satisfies Eq. (3),
but not vice versa in general. Thus BV (R2) ⊂ Λ(α, 1,∞).

One may also consider Lipschitz classes Λ(α, p,∞), 1 ≤ p < ∞, consist-
ing of functions f(x, y) satisfying

{
∫

R2

|f(x + h1, y + h2) − f(x, y)|pdxdy
}1/p

≤ Const |h|α, |h| → 0. (4)

The case p = 2 is important and was used in Ref. 7.
An effective method of estimating Lipschitz exponents can be based on

blurring the image by successive convolutions with increasingly narrower
Gaussians and evaluating the discrete Lp norm of the difference between
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the blurred and original images. This Lp norm tends to zero as the Gaussian
approaches the Dirac δ-function. An important mathematical theorem re-
lates the Lp Lipschitz exponent of the image to the rate at which the above
Lp norm tends to zero. Moreover, that theorem remains valid for the peri-
odized image problem, in which case the convolution can be accomplished
quite easily using commonly available FFT algorithms.

3 The spaces Λ(α, p,∞) and the Gaussian ker-

nel

Define the Fourier transform ĥ(ξ, η) of h(x, y) ∈ L1(R2) by

F{h} = ĥ(ξ, η) ≡
∫

R2

h(x, y) exp{−2πi(ξx + ηy)}dxdy. (5)

For each fixed t > 0, consider the Gaussian kernel in R2

γ(x, y, t) =
exp{−(x2 + y2)/4t}

4πt
, (x, y) ∈ R2. (6)

We have
γ̂(ξ, η, t) = exp{−t(ξ2 + η2)}. (7)

For each t > 0, define the linear operator Gt on Lp(R2), 1 ≤ p < ∞, by

Gtf =
∫

R2

γ(u, v, t)f(x− u, y − v)dudv. (8)

Since γ(x, y, t) approaches the Dirac δ-function as t tends to zero, it is not
surprising that ‖ Gtf − f ‖p→ 0 as t tends to zero. However, the rate at
which this happens depends on the smoothness (or lack thereof) of f(x, y),
and this rate can be used to characterize f(x, y). There is a large literature
on that subject.9,10 We have from Theorem 4 in Ref. 9,

Theorem 1 Let Gt, t > 0, be the Gauss integral operator in (8), and let
0 < α < 1, 1 ≤ p < ∞. Then, f ∈ Λ(α, p,∞) if and only if there is a
positive constant Kp such that

‖ Gtf − f ‖p ≤ Kp tα/2, 0 < t ≤ 1. (9)
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The above result can be used to fashion an image analysis tool. Theoretically,
given any image f(x, y) in L1(R2), one could use the Fourier transform in
Eq. (5) to form

F
{

Gtf
}

= exp{−t(ξ2 + η2)}f̂(ξ, η), (10)

for sequences of positive t-values tending to zero. Inverse transformation is
always possible on account of the factor exp{−t(ξ2 + η2)}, and this can be
used to produce an infinite sequence of positive numbers

µn =
{

‖ Gtnf − f ‖1 / ‖ f ‖1

}

, tn ↓ 0. (11)

If every such sequence (tn, µn), ultimately lies below the curve µ(t) =
C1 tα/2, with 0 < t ≤ t, and suitably chosen constants C1 > 0 and 0 < α < 1,
then

‖ Gtf − f ‖1 ≤ C1 ‖ f ‖1 tα/2, t ↓ 0, (12)

and f(x, y) ∈ Λ(α, 1,∞) by Theorem 1. However, this requires handling
infinite domain Fourier integrals and does not lead to a practical procedure.

4 Periodized problems and FFT algorithms

A practical procedure can be realized by using the fact that Theorem 1
remains valid in the periodic case.9 We now consider the periodized image
problem, 10−15 and obtain the Fourier series analog of Eq. (10). Let Ω denote
the unit square −1/2 < x, y ≤ 1/2 in R2. The image f(x, y) is now viewed
as originally defined on Ω from which it is extended by periodicity to all of
R2. We redefine the image Fourier transform f̂(ξ, η) by

f̂(ξ, η) =
∫

Ω

f(x, y) exp{−2πi(ξx + ηy)}dxdy. (13)

where ξ, η are now integers running from −∞ to +∞. The Poisson Sum-
mation Formula,10,16 can now be used to construct the periodized Gauss
operator Gt

∗. That operator is defined by specifying its action on any given
image f(x, y). As shown in Ref. 7, Gt

∗f is given by the complex Fourier
series

Gt
∗f =

∞
∑

ξ,η=−∞

exp{−t(ξ2 + η2)}f̂(ξ, η) exp{2πi(xξ + yη)}. (14)
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where ξ, η are integers running from −∞ to +∞. The factor exp{−t(ξ2+η2)}
assures uniform convergence of the Fourier series in Eq. (14).

Theorem 1 remains valid with Gt
∗ replacing Gt, and using Gt

∗f in Eq. (14)
in lieu of Gtf in Eq. (8). Next, consider the partial sum

SN(x, y) =
N

∑

ξ,η=−N

exp{−t(ξ2 + η2)}f̂(ξ, η) exp{2πi(xξ + yη)}. (15)

Because of uniform convergence, ‖ Gt
∗f − SN ‖p can be made arbitrarily

small by choosing N large enough in Eq. (15), and Gt
∗f in Eq. (14) can

be approximated by the finite sum SN . Given the 2J × 2J digitized image
f(x, y), the discrete Fourier transform17 is now the appropriate numerical tool
for approximating the finite Fourier series SJ . One can use FFT algorithms
to approximate the Fourier coefficients f̂(ξ, η), − J ≤ ξ, η ≤ J , and then
apply the filter exp{−t(ξ2 + η2)}. An inverse FFT then yields an accurate
approximation to Gt

∗f at each of the 2J ×2J pixels, for each small t > 0. We
may then examine the discrete Lp relative error in Gaussian approximation
as t ↓ 0, and locate constants Cp and α such that

‖ Gt
∗f − f ‖p≤ Cp ‖ f ‖p tα/2, 0 < t ≤ t. (16)

In summary, the results of this section lead to an accurate numerical proce-
dure, based on correct mathematical analysis, for assessing membership in
any Λ(α, p,∞) space.

Remark 1: Pitfall at very small t > 0. We deal with discretely defined
high resolution 8-bit images f(x, y), typically of size 512×512 or 1024×1024
pixels. Such an f(x, y) may be viewed as a piecewise constant or trigono-
metric polynomial approximation to the original continuously defined image
intensity field f∞(x, y), or as some other kind of finite dimensional repre-
sentation of the hypothetical infinite dimensional object f∞. The Lipschitz
exponent is predicated on a continuously defined image, and is, in fact, a
property of f∞(x, y). On the other hand, all norms are equivalent on a finite
dimensional space. Hence, even if f∞(x, y) is highly non smooth and not of
bounded variation, the discrete total variation norm for f(x, y) is always fi-
nite, though it may be very large. To estimate the non smoothness properties
of f∞(x, y) by examination of the finite dimensional representation f(x, y)
will require some sagacity. As explained theoretically in Ref. 7, there is a
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finite dimensionality pitfall in the above Gauss singular integral methodol-
ogy that requires the exclusion of very small values of t > 0. As will be
amply demonstrated in the examples below, the behavior of ‖ Gt

∗f − f ‖p

at very small t is a spurious artifact that must be ignored. This behavior
is disconnected from the true smoothness properties in the image intensity
field f∞(x, y), and it gives a false reading for the Lipschitz exponent α.

5 Application to real images; the character-

istic elbow

Our first example, in Figure 1, is the 512 × 512 Giza Pyramids image. The
FFT procedure discussed in Section 4 was used to obtain the L1 relative
errors in Gauss approximation

µ(t) =‖ Gt
∗f − f ‖1 / ‖ f ‖1, (17)

at 400 values of t given by tn = 0.5(0.95)n, n = 1, 400, where Gt
∗f is given by

Eq.(14). A plot of µ(t) versus t on a log-log scale produced the solid curve A
in Figure 1. Least squares fitting was used to find the two distinct majorizing
dashed straight lines Γ and Σ. For each dashed line, the y-axis intercept value
obtained by least squares was slightly increased so as to make each line lie vis-
ibly above the solid curve A; however, the slope of each line remains the same
as that obtained from least squares. The curve A exhibits a characteristic el-
bow shape. It consists of a straight line segment with slope ≈ 1 beginning near
log t = −20 and continuing to near log t = −10. There is then a transition
to a different regime, one that is more slowly increasing and that continues
to near log t = 0. The line Γ, defined by log µ(t) = 7.72 + 0.988 log t,
accurately captures the straight line trend in Eq. (17) for very small values
of t, while being grossly inaccurate at larger values of t. It was obtained by
excluding data corresponding to log t > −12 from the least squares fit. The
line Γ implies that ‖ Gt

∗f − f ‖1 < 2253 ‖ f ‖1 t0.988 for all t > 0. As
stressed in Remark 1, this correct statement primarily reflects the fact that
the 512 × 512 Giza Pyramids image lies in a finite dimensional space,7 but
does not reflect the smoothness properties of the intensity field f∞(x, y) that
gave rise to the digitized Pyramids image. The slope of Γ gives a false reading
for α. Such Γ line behavior is a feature of every example in this paper. The
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majorizing dashed straight line Σ, defined by log µ(t) = −1.31 + 0.159 log t,
accurately reflects behavior of Eq. (17) for −10 ≤ log t ≤ −1, while be-
ing grossly inaccurate at very small values of t. The line Σ was obtained
by excluding all data corresponding to log t < −10 from the least squares
fit. Note that this still leaves over 160 data points remaining. The behavior
along Σ indicates that ‖ Gt

∗f − f ‖1≤ 0.27 ‖ f ‖1 t0.159, 0 < t ≤ 0.1, and this
is taken to be the true behavior in the Pyramids image. From Eq. (9), this
implies α = 2.0 × 0.159 = 0.318. Thus the Pyramids image lies in the space
Λ(0.318, 1,∞), and is not of bounded variation, since this requires α = 1.
Estimates of α in any other discrete Lp norm can be obtained similarly. It
is recommended that data for very small values of t always be included in
log-log plots of µ(t), so as to enable clear identification of the spurious linear
trend, prior to rejecting that part of the data. This procedure of identifying
the Σ line by using least squares fitting on the ’slowly varying’ interval near
log t = 0, will be used throughout this paper. Blurring with Gaussians leads
to better defined elbows than does blurring with Lorentzians.

Remark 2: Parallel computation. The above blurring process with suc-
cessively narrower Gaussians can obviously be implemented in parallel. For
large images, such parallel computation would be significantly more efficient.

6 Lipschitz exponents of some typical images

An interesting collection of 512 × 512 8-bit images is shown in Figure 2.
These images include natural as well as man-made objects, extending from
the nanoscale to the planetary scale. As in Figure 1, least squares fitting was
used in the slowly increasing region of the graph of log µ(t) vs log t, to find
the majorizing Σ line in each case. This leads to positive constants C1 and
α for each image such that

‖ Gt
∗f − f ‖1≤ C1 ‖ f ‖1 tα/2, 0 < t ≤ 0.1, (18)

where Gt
∗ is the periodized Gauss operator in Eq.(14). As seen in Table 1,

these images have L1 Lipschitz exponents in the range 0.18 < α < 0.54.
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7 Low Lipschitz exponents

Clusters of galaxies are examples of objects whose images can have very low
Lipschitz exponents. In Figure 3, two 512 × 512 images of the Abell 426
(Perseus) cluster are shown side by side. These images were obtained from
the NASA Space Telescope Science Institute Digitized Sky Survey. Each
image is centered on the exact same point in the sky. However, image (a)
covers a 1/2 Mpc square of the sky, while image (b) covers a 1 Mpc square
and thus has a higher density of bright pixels. The solid curves A and B
are the corresponding plots of µ(t) =‖ Gt

∗f − f ‖1 / ‖ f ‖1 versus t, on a
log-log scale. Using least squares fitting on −6 ≤ log t ≤ 0, we find that
image (a) has an L1 Lipschitz exponent α = 0.116, while image (b) has
α = 0.042. The corresponding Σ lines were not plotted in Figure 3 to avoid
clutter. Notice that the solid curves A and B have identical slopes of near
unity for log t < −10, even though images (a) and (b) have sharply distinct
smoothness properties. This confirms the observation in Remark 1 that the
slope of the Γ line is a finite dimensionality artifact, and is not connected to
image smoothness.

8 Degrading and restoring images; the Lips-

chitz exponent as an image metrology tool

This section deals with synthetically degraded images, and studies the behav-
ior of Lipschitz exponents as images are degraded and restored. All Lipschitz
exponents in Figures 4 and 5 were estimated using least squares fitting of
the L1 traces on the interval −7 ≤ log t < 0. As in Figure 3, corresponding
Σ lines were not plotted to avoid clutter. Notice that all traces in Figures 4
and 5 have identical slopes for log t ≤ −10, irrespective of the parent image.
Once again, this is spurious Γ line behavior that must be ignored.

Our first example, in Figure 4, involves noising and denoising the 512×512
Marilyn Monroe image. The original image in Fig. 4(a) has trace A and an
L1 exponent α = 0.591. Salt and pepper noise with density 0.1 was added
to Fig. 4(a). This produced Fig. 4(b) with trace B. There is a very sharp
difference between traces A and B, and the Lipschitz exponent in Fig. 4(b)
has a substantially smaller value, α = 0.302. Obviously, the addition of noise
can significantly lower Lipschitz exponents, and this leads to two important
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observations. First, as mentioned in the introduction, the Lipschitz exponent
reflects true image smoothness only when the image is relatively noise free.
Secondly, the sensitivity of α to the presence of noise may be used to monitor
and detect noise in imaging systems, by periodically reevaluating α for a
suitable test image.

We now consider two distinct denoising methods. The first method used
was the ’total variation’ method.1 This method assumes that the original
Marilyn Monroe image is of class BV (R2), and it is based on nonlinear
partial differential equations. The Marquina-Osher scheme18 was used with
∆t = 0.1(∆x)2, β = 0.0001, and regularization parameter λ = 2.0. Forward
integration was pursued for 300 time steps ∆t. This resulted in Fig. 4(c)
and the L1 Gaussian trace C. Evidently, the total variation method has
eliminated a good deal of texture along with the noise in Fig. 4(c), and
trace C lies well below the original trace A. Fig. 5(c) has an L1 Lipschitz
exponent α = 0.714, larger than the original value of 0.591. The second
denoising method used was 2D median filtering with a 3 × 3 neighborhood.
This produced Fig. 4(d) and L1 trace D. Fig. 4(d) is a good approximation
to the original, and trace D is closer to trace A than is trace C. The L1

Lipschitz exponent in Fig. 4(d) is α = 0.645.
Our second example, summarized in Figure 5, involves blurring and de-

blurring the Marilyn Monroe image. Fig. 5(a) results from synthetic blur-
ring of Fig. 4(a) by convolution with a Lorentzian density. The solid curve
A in Figure 5 is the L1 Gaussian trace for that blurred image, and it has
α = 0.887. Blurring without adding noise increases α, as blurring is generally
a smoothing operation.

Three mathematically distinct methods of deblurring Fig. 5(a) are ex-
amined under the present ideal conditions of perfect knowledge of the point
spread function (psf) and no added noise. Such a study highlights the in-
trinsic reconstructive ability of each scheme, and the accompanying changes
in α are of interest. The first method used was again the Marquina-Osher
total variation partial differential equation procedure.18 Here, we used ∆t =
0.1(∆x)2, β = 0.0001, and regularization parameter λ = 1000. Forward in-
tegration was pursued for 100 time steps ∆t. This resulted in Fig. 5(b) and
the L1 Gaussian trace B. The second method used was the Lucy-Richardson
iterative procedure.19 That procedure was terminated after 200 iterations,
resulting in Fig. 5(c) and trace C. The third method used was the ”slow evo-
lution from the continuation boundary” (SECB) procedure,19 with s = 0.01
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and K = 1000. This produced Fig. 5(d) and trace D.
In Fig. 5(b), the BV (R2) assumption underlying the Marquina-Osher

method has resulted in a smoothed out reconstruction of the original. This is
particularly evident in the poorly resolved hair. As a result, the L1 Lipschitz
exponent from trace B has the value α = 0.695, higher than the original
value of 0.591. In Fig. 5(c), the Lucy-Richardson method is a Bayesian
approach based on maximum likelihood. That method does not presume
a-priori smoothness in the unknown original image. On the other hand,
the Lucy-Richardson method typically requires large numbers of iterations
(> 2000) to reconstruct fine detail.19 Terminating the procedure after 200
iterations, as is quite commonly done, and was done in Fig. 5(c), produces
a smoothed out result. Nevertheless, Fig. 5(c) appears more life-like than
Fig. 5(b), and the hair is better resolved. Trace C almost coincides with
trace B for log t > −6, but falls below trace B for smaller t. Surprisingly,
the Lipschitz exponent in Fig. 5(c), with a value α = 0.714, is slightly
higher than in Fig. 5(b). The SECB procedure in Fig. 5(d) is a noniterative
direct deblurring method, based on solving an ill-posed fractional diffusion
equation backwards in time. The ”slow evolution” constraint19 that is used
to regularize that problem does not require smoothness, and allows for non
smooth solutions not in BV (R2). For this reason, Fig. 5(d) appears to be
a higher quality approximation to the original image than the previous two
reconstructions. This is reflected in trace D which lies above traces B and
C and has a well-defined elbow. The L1 Lipschitz exponent in Fig. 5(d) has
the value α = 0.616, quite close to the original value of 0.591.

9 Real imagery, APEX blind deconvolution,

and Lipschitz exponents

The above experiments on synthetically degraded imagery with perfectly
known psfs are instructive, and they indicate the Lipschitz exponent to be a
useful image metrology tool. However, in many imaging situations that result
in blurred imagery, the system psf is generally only poorly known. Effective
methods of ”blind deconvolution” that do not require knowledge of the psf are
of considerable interest, but it must be emphasized that such procedures are
fraught with serious mathematical and computational difficulties regarding

13



uniqueness and convergence.
The APEX method is a recently developed blind deconvolution technique

that is targeted at a specific class of shift-invariant blurs, in the form of 2D
isotropic, bell-shaped, heavy-tailed, probability density functions. Not all
images can be usefully enhanced with the APEX method, but the method
has been found useful in a variety of applications, including astronomy,
nanoscale electron microscopy, and MRI and PET brain imaging.6,20,21 As
a rule, APEX-detected psfs that successfully sharpen these images turn out
to be low exponent Lévy stable laws.6,20,21 Such blurs are very far from Gaus-
sians or Lorentzians, and are not generally known in the imaging literature.

A-priori knowledge about the solution is a fundamental aspect of solving
inverse problems in applied mathematics. This is especially the case with
blind deconvolution where severe ill-conditioning is compounded with non
uniqueness of solutions. The plausibility of APEX reconstructions must be
gauged by experienced analysts using independent considerations. Successful
APEX deconvolution should produce an image that is visibly sharper than
the original, yet one where the newly enhanced features can be traced back
to the original. Such sharpening should be accompanied by a measurable
drop in Lipschitz exponent. A decrease in Lipschitz exponent reflects the
extent to which small scale information has been reconstructed. Quantita-
tive confirmation of sharpening is one of several elements that bear on the
plausibility of the APEX image. We now give several examples of Lipschitz
behavior before and after APEX processing. These examples involve real
images originating from significant areas of application.

Our first example, in Fig. 6, involves an iconic Hubble Space Tele-
scope Whirlpool galaxy (M51) image. The original full resolution image was
taken with NASA’s ultra sophisticated Advanced Camera for Surveys (ACS).
APEX processing of the stepped down 710×1024 color image is discussed in
detail in Ref. 21. Here, we examine Lipschitz behavior in the blue component
of that image, before and after APEX processing. Using least squares fitting
on the interval −11 ≤ log t < 0, we find that the original image 6(a) has the
L1 Gaussian trace A with Lipschitz exponent α = 0.416. The APEX image
6(b) again shows substantial additional detail, and it has the L1 Gaussian
trace B with Lipschitz exponent α = 0.191. This is a remarkable 54% drop
in α.

We next consider brain imaging. APEX processing of the 512 × 512
sagittal MRI brain image in Fig. 7 was previously discussed in Ref. 6.
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Using least squares fitting on the interval −7 ≤ log t < 0, we find that the
original MRI image 7(a) has the L1 Gaussian trace A with Lipschitz exponent
α = 0.447. The APEX image 7(b) is significantly sharper visually. It has the
L1 Gaussian trace B with Lipschitz exponent α = 0.296. This represents a
34% decrease in α.

In functional PET imaging, a positron emitting radionuclide is injected
into the patient, and used to tag glucose molecules in their course through the
brain. Performing specific mental tasks activates various parts of the brain,
causing increased glucose uptake and increased positron emission. Centers
of activity translate into relatively bright spots in the PET image. However,
blurring tends to attenuate such relative differences, resulting in a loss of
contrast. APEX processing of the transverse PET image in Fig. 8 was
previously discussed in Ref. 6. The 512×512 image in Fig. 8(a) is a stepped
up version of an original 128× 128 image. Using least squares fitting on the
interval −6 ≤ log t < 0, we find that image 8(a) has the L1 Gaussian trace A
with Lipschitz exponent α = 0.502. The APEX-processed image 8(b) shows
identical features as in 8(a), but contrast has been substantially increased.
Significantly, several bright spots appear in 8(b) that were not apparent
in 8(a). Image 8(b) has the L1 Gaussian trace B with Lipschitz exponent
α = 0.394. This is a 21% decrease in α. The low resolution initial 128× 128
PET format is a serious limitation in this example. Higher resolution PET
imagery would enable more substantial APEX sharpening.

The last example involves state of the art nanoscale SEM. Previous work
on applying APEX blind deconvolution to SEM imagery is discussed in Ref.
20. Since that time, significantly more powerful equipment has become
available.† It is an interesting fact that the high quality imagery produced
by this new instrumentation can still be usefully enhanced by the APEX
method. Moreover, Lipschitz analysis can be used to confirm such sharpen-
ing.

Fig. 9 deals with a Au/Pd decorated magnetic tape sample, taken with a
Hitachi S-4800 SEM using an accelerating voltage of 1 kV. The field of view is
1 µm. The original 1024×768 micrograph in 9(a) has the L1 Gaussian trace A
with Lipschitz exponent α = 0.303. The APEX-processed micrograph 9(b),

†Certain commercial equipment is identified in this paper to adequately describe experi-
mental procedures. Such identification does not imply recommendation or endorsement by
the National Institute of Standards and Technology, nor does it imply that the equipment
so identified is necessarily the best available for the purpose.
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which is noticeably sharper, has the L1 Gaussian trace B with Lipschitz
exponent α = 0.234. This is a 23% decrease in α. Least squares fitting on
the interval −7 ≤ log t < 0 was used.

Sharpening in Figs. 9(b) was confirmed independently, using a propri-
etary FEI software package.

Remark 3: Uncertainty in Lipschitz exponents. Estimated Lipschitz
exponent values in all examples in this paper, depend on the choice that was
made for the ’slowly varying’ interval in the trace of µ(t), as discussed in
Section 5. Least squares fitting on that interval produces the Σ line whose
slope is α/2. The particular choice of interval is a matter of judgment. A
somewhat larger or smaller interval might have been used in any given case,
resulting in a slightly different value for α. However, as was always the case
here, when Lipschitz exponents are used to evaluate the effectiveness of an
image processing algorithm on a given image, the same fitting interval should
be used in ’before and after’ comparisons.

10 Conclusion

A mathematical framework for quantifying the unsmoothness of images, lead-
ing to an effective computational tool for estimating image Lipschitz expo-
nents, has been presented. The L1 Lipschitz exponent α, where 0 < α ≤ 1, is
a useful image metrology tool that measures fine scale content, provided the
image is relatively noise free. It is found that natural images have L1 values
of α lying between 0.2 and 0.5, typically. Such images are not of bounded
variation, since this requires α = 1.0.

The use of Lipschitz exponents in the quantitative evaluation of image
reconstruction procedures was studied. Using synthetically degraded im-
ages, it was shown that Lipschitz exponents can measure the extent to which
competing denoising algorithms remove texture along with the noise. Like-
wise, Lipschitz exponents can measure the ability of competing deblurring
algorithms to recover texture. Quantitative confirmation of fine structure
recovery is particularly important in blind image deconvolution, where the
cause of the blur is unknown. This was illustrated in the case APEX blind
deconvolution applied to Hubble space telescope imagery, scanning electron
microscopy, and MRI and PET brain scans.
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List of Figure Captions

Fig. 1. 512 × 512 Giza Pyramids image is not of bounded variation, but
has an L1 Lipschitz exponent α ≈ 0.32. This follows from the graphical
use of Theorem 1, using the FFT techniques discussed in Section 4. Solid
curve A is a plot of µ(t) =‖ Gt

∗f − f ‖1 / ‖ f ‖1 versus t, on a log-log
scale, where Gt

∗f is defined in Eq.(14). Majorizing dashed straight line Γ,
defined by log µ(t) = 7.72 + 0.988 log t, accurately captures linear behavior
in Eq. (17) for very small values of t, but is grossly inaccurate at larger
values of t. Linear behavior at very small t is misleading, and is unrelated
to true image smoothness. (See Remark 1). Majorizing dashed straight line
Σ, defined by log µ(t) = −1.31 + 0.159 log t, accurately reflects behavior for
−10 ≤ log t ≤ −1, while being grossly inaccurate at very small t. Behavior
along Σ is taken to be true behavior in Giza Pyramids image, and indicates
‖ Gt

∗f − f ‖1≤ 0.27 ‖ f ‖1 t0.159, 0 < t ≤ 0.1. From Eq. (9), this implies
image ∈ Λ(0.318, 1,∞).

Fig. 2. The above 512 × 512 8-bit images have L1 Lipschitz exponents α
in the range 0.18 < α < 0.54, and are not of bounded variation. See Table 1.

Fig. 3. Galaxy clusters can have very low Lipschitz exponents. Above
images of Abell 426 (Perseus) cluster obtained from NASA STScI Digitized
Sky Survey. Images (a) and (b) are of size 512 × 512 and each is centered
on the exact same point in the sky. Image (a) covers a 1/2 Mpc square of
the sky, while image (b) covers a 1 Mpc square. Solid curves A and B are
the corresponding plots of µ(t) =‖ Gt

∗f − f ‖1 / ‖ f ‖1 versus t, on log-log
scale. Using least squares fitting on −6 ≤ log t ≤ 0, we find that image
(a) has an L1 Lipschitz exponent α = 0.116, while image (b) has α = 0.042.
Corresponding Σ lines were not plotted to avoid clutter. Solid curves A and
B have identical slopes ≈ 1 for log t < −10. This confirms the observation
in Remark 1 that the slope of the Γ line is a finite dimensionality artifact,
and is not connected to image smoothness.

Fig. 4. Image Denoising. Noise addition can artificially lower Lipschitz
exponent α, while some noise removal algorithms can eliminate texture and
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increase α. Gaussian traces A, B, C, and D correspond to images (a), (b), (c),
and (d) respectively. Least squares fitting on (−7, 0) produced the following
results. (Σ lines not plotted to avoid clutter). (a) Original Marilyn Monroe
image has L1 exponent α = 0.591. (b) Adding salt and pepper noise to image
(a) leads to α = 0.302, a very noticeable reduction. (c) Nonlinear partial dif-
ferential equation ‘total variation’ noise removal algorithm eliminates noise,
as well as texture, and results in α = 0.714, higher than in original. (d) 2D
median filtering produces closer approximation to original, with α = 0.645.

Fig. 5. Image Deblurring. Not all deblurring algorithms are equally ef-
fective. Gaussian traces A, B, C, and D correspond to images (a), (b), (c),
and (d) respectively. Least squares fitting on (−7, 0) produced the follow-
ing results. (Σ lines not plotted to avoid clutter). (a) Syntheticaly blurred
Marilyn Monroe image has L1 exponent α = 0.887. (b) Nonlinear partial dif-
ferential equation ‘total variation’ deblurring of (a) erodes texture and leads
to α = 0.695. (c) Lucy-Richardson deblurring has α = 0.714. (d) SECB
deblurring gives α = 0.616. This is closest to original image value α = 0.591.

Fig. 6. Evaluating the effectiveness of APEX blind deconvolution of Whirlpool
galaxy (M51) image. See Ref. 25. (a) Original Hubble Space Telescope
710×1024 image has Gaussian trace A and L1 Lipschitz exponent α = 0.416.
(b) APEX processed image has Gaussian trace B and L1 Lipschitz exponent
α = 0.191, a 54% decrease. Least squares fitting on (−11, 0) was used.

Fig. 7. Evaluating the effectiveness of APEX blind deconvolution of sagittal
brain MRI image. See Ref. 6. (a) Original 512 × 512 image has Gaussian
trace A and L1 Lipschitz exponent α = 0.447. (b) APEX processed image
has Gaussian trace B and L1 Lipschitz exponent α = 0.296, a 34% decrease.
Least squares fitting on (−7, 0) was used.

Fig. 8. Evaluating the effectiveness of APEX blind deconvolution of trans-
verse functional PET brain slice. See Ref. 6. (a) Original 512 × 512 image
has Gaussian trace A and L1 Lipschitz exponent α = 0.502. (b) APEX pro-
cessed image has Gaussian trace B and L1 Lipschitz exponent α = 0.394, a
21% decrease. Least squares fitting on (−6, 0) was used.

Fig. 9. Evaluating the effectiveness of APEX blind deconvolution in nanoscale
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Scanning Electron Microscopy. (a) Original 1024×768 micrograph of Au/Pd
decorated magnetic tape sample has Gaussian trace A and L1 Lipschitz ex-
ponent α = 0.303. (b) APEX processed image has Gaussian trace B and
L1 Lipschitz exponent α = 0.234, a 23% decrease. Least squares fitting on
(−7, 0) was used.
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TABLE 1.
Values of (C1, α) in Eq.(18) for each image f(x, y) in Figure 2.

Image Size L1 norm values of C1 and α
Sydney Opera House 5122 C1 = 0.42, α = 0.476

USS Theodore Roosevelt 5122 C1 = 0.69, α = 0.535
Washington DC Landsat 5122 C1 = 0.80, α = 0.236
Heart ventricle SPECT 5122 C1 = 0.70, α = 0.330
Transverse brain PET 5122 C1 = 1.07, α = 0.502

Sagittal brain MRI 5122 C1 = 0.83, α = 0.447
Weather satellite Hurricane 5122 C1 = 0.82, α = 0.411

Nanoscale electron micrograph 5122 C1 = 0.69, α = 0.183
USAF resolution chart 5122 C1 = 2.08, α = 0.203
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