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Abstract 
The ASME Performance Test Code, PTC 19.3, establishes the velocity ratings of thermowells in terms of 
a simplified resonant frequency estimate.  The theoretical basis for this is examined and compared with 
discrete element methods.  It is found that the code calculation fails to guarantee conservative velocity 
ratings for shorter thermowells. The implications of this finding and possible remedies are discussed.  
 
Keywords: Thermowell design, velocity ratings, vortex shedding, critical frequency estimates. 
 

Introduction 
The traditional starting point for thermowell design and application is the ASME Performance Test Code, 
PTC 19.3 [1].   While it is the formal basis for the static pressure and velocity ratings of thermowells used 
in performance testing, it is at the same time, the de facto standard for thermowells used throughout 
industry.  This rating is derived from a simplified analysis that describes the tendency for thermowell to 
experience flow-induced resonance when the vortex shedding rate coincides with the natural frequency of 
a transverse bending mode.   In spite of the widespread acceptance of the code, there is a growing body of 
evidence that thermowells designed to its criteria are subject to increased risk of failure at considerably 
lower velocities. There are a number of reasons for this including use of an out-dated description of 
vortex shedding, limitations of the critical frequency estimate, and reliance on an incomplete stress 
analysis [3].  Similar conclusions are reached for thermowells designed to the code criteria although used 
in non-code applications [4]. A more complete discussion of flow-induced vibration as it relates to 
thermowells and intrusive pipe fittings generally may be found in the literature [5]-[9]. The present 
discussion is restricted to that aspect of the code dealing with resonant frequency calculations.   
 
The code takes a tabular approach to the critical frequency estimates.  This is no longer justified given the 
range of computational tools now available, so it is beneficial to compare the theory used to develop these 
tables with the results of discrete element calculations. While the code estimate is found to be adequate 
for the longer thermowells, it is found to over-estimate the critical frequency (and thus velocity rating) of 
short thermowells commonly recommended for high velocity applications. It also lacks sufficient 
accuracy for use in more rigorous designs or in forensic studies.  These deficiencies can only be remedied 
through the use of modern analysis methods for both the critical frequency and stress estimates.  
 

Murdock’s Approximation 
The PTC 19.3 critical frequency calculation [1,2] combines a single-degree-of-freedom (SDOF), discrete-
mass model of the thermowell with a displacement variable taken as the tip deflection of a continuous 
beam.  This highly unusual approach differs significantly from accepted methods for estimating the 
critical frequencies of vibrating beams or establishing the forced response, yet it appears to be 
conservative.  The theoretical basis for this method is explained but not endorsed in the following.  
 
The traditional form of Rayleigh’s method is based on the fact that, in the absence of losses, the 
amplitudes of the kinetic and potential energies, in harmonically vibrating systems, are equal.  Following 
the treatment in reference [10] for beams in which the shear and rotation of the neutral axis are ignored, 
the resonant frequency of the beam may be written as:  
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The transverse deflection y(x), with x the spanwise coordinate for a beam, is characterized by an elastic 

 3



modulus, E, a moment of inertia, I, and lineal mass density, m.   
 
This relationship is exact where the deflection profile is a solution of the fourth-order Stürm-Liouville 
problem for the beam and forms the least upper bound for all estimates based on approximate mode 
shapes.  One variation of this method uses the static deflection y(x) of the thermowell (as a horizontal 
beam) sagging under its own weight.  Such a solution does satisfy the boundary conditions, but given that 
it is a particular integral for a weight-loaded beam, rather than an homogeneous mode shape, it can only 
provide a crude estimate. 
  
A discrete mass version of the latter results in a critical frequency estimate given by: 
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where yi is the static displacement of the individual masses, mi, and g is the acceleration of gravity.  This 
approach suffers from the same limitations as the continuous model but is less accurate and convergent 
only to the extent that the displacements represent actual dynamic modes of the system.   
 
The Rayleigh method by itself only produces a least upper bound for the resonant frequency.  For design 
purposes, given the imprecise method used in the code, a lower bound is preferred to minimize the risk of 
exposing the thermowell to flow-induced resonance.  Since the maximum deflection of a cantilever 
always occurs at its tip, a lower bound can be constructed by the expedient of replacing the SDOF 
displacement by the tip displacement of the continuous beam.   The resonant frequency is now bounded 
by: 

 0
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The lower bound constitutes the Murdock estimate used in PTC 19.3 while the upper bound is the SDOF 
Rayleigh estimate.  The analytical expression for the tip deflection, ytip, as derived in reference [2] is only 
valid for linearly tapered thermowells in which shear can be ignored. 
 

The Code Method 
To simplify the calculations, PTC 19.3 relies on tabulated frequency factors with the resonant frequency 
of the thermowell expressed as:  

  0 2
fK Ef

L γ
=  (4)   

where fo (=ω0/2π) is the resonant frequency of the thermowell, Kf is a frequency factor according to the 
Murdock approximation, E is the modulus of elasticity, L is the unsupported length of the thermowell, 
and γ is the specific weight of the material.  
 
Recasting the Murdock critical frequency estimate in the form of Eq. (4) results in an analytical 
expression for the frequency factors tabulated in the code.  They may also be determined by direct 
numerical integration of Eq. (11) of reference [2].  No evidence of a reported ill-condition [2] is observed. 
The frequency factors developed from the Murdock formula [2] are shown in Fig. (1) for the Design 
Classes currently recommended in the code.  The thermowell dimensions for these classes in both 
customary US units and in metric equivalents are summarized in Table I, below. 
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Table I: ASME PTC 19.3 Thermowell Dimensions (As adopted 1974).  Metric equivalents, in parentheses, are 
approximate. 

 
Size\Class I II III IV V 
Root 0.8125" 

(2.06 cm) 
0.9375" 
(2.38 cm) 

1.1250" 
(2.86 cm) 

1.2500" 
(3.18 cm) 

1.4375" 
(3.65 cm) 

Tip 0.6250" 
(1.59 cm) 

0.7500" 
(1.91 cm) 

0.9375" 
(2.38 cm) 

1.0625" 
(2.70 cm) 

1.2500" 
(3.18 cm) 

Bore 
(Nominal) 

0.2500" 
(0.64 cm) 

0.3750" 
(0.95 cm) 

0.5625" 
(1.43 cm) 

0.6875" 
(1.75 cm) 

0.8750" 
(2.22 cm) 

 
Note: Thermowell lengths used in the calculations and as suggested by the code are  2.5", 4.5", 7.5", 10.5", 16", and 
24". A metric conversion of: 1”=25.4 mm, applies. 
 
 

 
Fig. 1: PTC 19.3 frequency factors using the analytic expression in reference [2] for the design classes 
considered in the code (see Table I). 

 
For completeness, the equivalent Murdock estimate for a hollow cylinder is given by: 
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where D is the outside diameter at the base (root) and d the nominal inside diameter (or bore) of the 
thermowell.  This result is easily compared to the exact theory and suggests that in having ignored shear 
effects, the Murdock calculation under-estimates the actual resonant frequency of the uniform beam by 
some 25 %. 
 

Discrete Beam Comparisons 
The frequency factors for the PTC 19.3 designs can be inferred from discrete beam calculations in similar 
fashion.  Two beam models are considered to illustrate the importance of shear as the thermowell aspect 
ratio approaches unity.  The discrete beam calculations are based on the Euler-Bernoulli beam elements 
that allows only simple bending and the Timoshenko beam elements that includes both shear and rotation 
of the neutral axis. Transfer matrix methods are used to establish the mode shapes and critical frequencies 
[10,11], with numerical error of the method held to less than 0.2 % in comparison with independent 
calculations [12].  The resulting frequency factors for PTC 19.3 designs are presented in Fig. 2.  Rayleigh 
estimates for these designs [13] are shown as heavy dashed lines.  
 
 

 
Fig. 2: Comparison of the frequency factors developed from two discrete beam calculations one that includes 
simple bending only and the other that includes shear and rotation of the neutral axis. 

 
For aspect ratios L/D >5, the Murdock calculation under-estimates the critical frequency by some 15 % to 
20 % and therefore is sufficient for design.  This difference is also in line with that found for hollow 
cylinders. When shear and rotation of the neutral axis are included in the beam calculations, it is 
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discovered that the code estimate is no longer conservative for small aspect ratios.  While the lack of 
accuracy of the code method is a concern in forensic evaluations, arbitrary use of improved estimates 
should be approached cautiously to avoid a significant reduction in design margins [3].  In application 
critical, high velocity applications, a finite element based, dynamic analysis is recommended.  It is noted 
that finite element methods that fail to include shear and rotation of the neutral axis, although an 
considerable improvement, suffer from the same defect as the Murdock calculation for small aspect ratios. 
  

Conclusions   
The analytical expression for critical frequency developed by Murdock duplicates the frequency factors 
contained in PTC 19.3, and is better suited for direct calculations.  While it is generally conservative, 
discrete element calculations that include shear and rotation of the neutral axis are recommended where 
more accurate estimates are required or where severe service conditions are expected.  Caution is advised, 
however, in simply combining these improved estimates within the frame work of the current code, 
without consideration of tensile failure in bending. 
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