
From B-Spline Mesh Generation to Effective

Visualizations for the NIST Digital Library

of Mathematical Functions

Bonita Saunders and Qiming Wang

Abstract. We discuss the use of tensor product B-splines to generate
grids, or meshes, to facilitate the plotting of high level mathemati-
cal functions for the National Institute of Standards and Technology
(NIST) Digital Library of Mathematical Functions Project. The plot
data is placed inside a web based format such as VRML (Virtual
Reality Modeling Language) to create interactive visualizations that
allow users to carefully examine complicated function features such as
zeros, branch cuts, poles and other singularities. We discuss the grid
generation technique and look at its effectiveness in creating accurate
visualizations.

§1. Introduction

The National Institute of Standards and Technology (NIST), a U.S. gov-
ernment agency under the Department of Commerce, is in the midst of de-
veloping the NIST Digital Library of Mathematical Functions (DLMF), a
web-based collection of high level, or special, mathematical functions that
will replace the widely used, but outdated, National Bureau of Standards
Handbook of Mathematical Functions published in 1964 [1]. The website
will include formulas, methods of computation, references, and links to
software for over forty functions. It will feature interactive navigation, a
mathematical equation search, 2D graphics, and dynamic interactive 3D
visualizations.

This paper discusses our use of a mesh generation technique to facil-
itate the plotting of functions for the 3D visualizations. Often, the com-
plicated nature of a special function is clearly indicated by its domain,
which may be irregular, discontinuous, or multiply connected. By modify-
ing an algebraic tensor product spline mesh generation algorithm that we

Conference Title 1
Editors pp. 1–6.

Copyright Oc 2005 by Nashboro Press, Brentwood, TN.

ISBN 0-0-9728482-x-x

All rights of reproduction in any form reserved.

NISTIR 7402
June, 2007

2 B. Saunders and Q. Wang

originally designed for problems in aerodynamics and solidification theory,
we were able to create boundary/contour fitted computational grids that
allowed us to capture key function features such as zeros, poles, branch
cuts and other singularities.

Although commercial packages often have many built-in special func-
tions, their 3D plots are usually over a rectangular Cartesian mesh, lead-
ing to poor and misleading graphs. Also, when function values lie outside
the range of interest, many packages have trouble properly clipping the
function surface to produce an accurate graphical representation. Further-
more, even when the plot looks satisfactory inside a package, it may be
completely unacceptable when the data is transformed to a format more
suitable for display on the web.

We examine these problems and others that arise when trying to dis-
play dynamic 3D graphs of special functions on the web. We show how
our mesh generation algorithm eliminates or lessens the severity of many
problems, talk about progress in making the method more adaptive and
discuss other possibilities for improvements.

§2. Constructing 3D Graphics for a Digital Library

The NIST DLMF will consist of approximately forty chapters authored
by special function experts throughout the U. S. and abroad. The number
and location of graphics for each chapter is determined by consultation
with the authors and DLMF editors. The accuracy of the plotting data
is being verified by plotting the function with at least two different meth-
ods, using commercial packages, publicly available codes, or the author’s
personal codes. A key concern, however, is whether or not the displayed
plot accurately represents the graph of the function.

Commercial packages typically render 2D plots very well. Discontinu-
ities are handled automatically or fairly easily with special options. If a
user wants to restrict the vertical range of the function, the package prop-
erly cuts, or clips, the curve so that only points within the desired range
appear. This is often not the case in 3D. Figure 1 illustrates some of the
problems we have encountered when trying to use commercial packages.
The first figure shows a plot of 1/|Γ(z)|, where z = x + iy, rendered using
a popular commercial package. The user has requested that the function
only be plotted for values less than or equal to 6. The package produces
a flat area, or shelf, where values greater than 6 are set to 6. Although
the shelf-like area, which has nothing to do with the function, may not
concern many users, it might be confusing to students and others unfamil-
iar with the function. The user can request that the shelf not be shown,
but this produces a saw-tooth area which can be even more misleading.
Although seasoned users can use alternative commands to successfully clip
the function properly, we found that this was still not sufficient for our

B-Spline Mesh Generation for Effective Visualizations 3

-4

-2

0

2

4

-2

0

2

0

2

4

6

-4

-2

0

2

-4

-2

0

2

4

-2

0

2

0

2

4

6

-4

-2

0

2

Fig. 1. Potential problems such as bad clipping and poor resolution of poles.

requirements. The problem is that the computation of the function is still
over a rectangular Cartesian mesh. The figure looks fine when viewed
inside the package, but when we put the data into our web format, the
rectangular mesh cells produce a very irregular color map. For our web
visualizations, we use the Virtual Reality Modeling Language (VRML), a
standard 3D file format for creating interactive web-based visualizations
[6]. The second figure, rendered using the same package, shows the modu-
lus of the complex gamma function, |Γ(z)|, z = x+iy. Both figures can be
improved by using a much larger number of mesh points, but large data
files hamper the interactive features of the web-based VRML visualiza-
tions. The rendering problems can be eliminated or decreased in severity
by computing the function over a specially designed boundary/contour fit-
ted mesh. The next section discusses the tensor product B-spline mapping
we have used to produce such meshes.

§3. Grid Generation Mapping

For our application, the difficulty of the mesh generation problem depends
on the complexity of the computational domain for the special function.
The domains range from simple rectangles to complicated multiply con-
nected domains with branch cuts. Our primary mesh generation technique
is based on an algorithm developed by one of the authors for meshes to
be used in solving partial differential equations (pdes) related to aerody-
namics and solidfification theory [4], [5]. The algorithm uses an algebraic
grid generation system defined by a mapping T from the unit square I2

to a physical domain of arbitrary shape. Specifically, we let

T(ξ, η) =

(

x(ξ, η)
y(ξ, η)

)

=

(∑m

i=1

∑n

j=1
αijBij(ξ, η)

∑m

i=1

∑n

j=1
βijBij(ξ, η)

)

, (1)

4 B. Saunders and Q. Wang

where 0 ≤ ξ, η ≤ 1 and each Bij is the tensor product of cubic B-splines.
Hence, Bij(ξ, η) = Bi(ξ)Bj(η) where Bi and Bj are elements of cubic
B-spline sequences associated with finite nondecreasing knot sequences,
say, {si}

m+4

1 and {tj}
n+4

1 , respectively. For simple boundaries the coeffi-
cients αij and Bij can be chosen to produce a very good approximation
to a common algebraic generation technique, transfinite blending function
interpolation. In short, this means the coefficients are obtained by evalu-
ating T at average knot values as discussed in [2]. This shape preserving
approximation reproduces straight lines and preserves convexity [2] . For
more complicated or highly nonconvex boundaries we can turn the tech-
nique into a variational method with the coefficients chosen to minimize
the functional

F =

∫

I2

(

w1

{

(

∂J

∂ξ

)2

+

(

∂J

∂η

)2
}

+ w2

{

∂T

∂ξ
·
∂T

∂η

}2

+ w3Ju

)

dA (2)

where T denotes the grid generation mapping, J is the Jacobian of the
mapping, w1, w2 and w3 are weight constants, and u represents external
criteria for adapting the grid. Like the variational method of Brackbill
and Saltzman [3], the integral controls mesh smoothness, orthogonality,
and depending on the definition of u, the adaptive concentration of the
grid lines. Hence, when solving pdes, u might be the gradient of the
evolving solution or an approximation of truncation error. Ideally, for our
problem, we want u to be based on curvature and gradient information
related to the function surface. To avoid solving the Euler equations for
the variational problem, this functional is approximated in the computer
code by the sum

G =
∑

i,j

w1

[

(

Ji+1,j − Jij

△ξ

)2

+

(

Ji,j+1 − Jij

△η

)2
]

△ξ△η

(3)

+
∑

i,j

w2Dot2ij△ξ△η

+
∑

i,j

w3Jijuij△ξ△η,

where Jij is the Jacobian value, uij is the value of u, and Dotij is the dot
product of ∂T/∂ξ and ∂T/∂η at mesh point (ξi, ηj) on the unit square.
When w3 = 0, G is actually a fourth degree polynomial in each spline
coefficient so the minimum can be found by using a cyclic coordinate
descent technique which sequentially finds the minimum with respect to
each coefficient. This technique allows the minimization routine to take
advantage of the small support of B-splines when evaluating the sums that
comprise G.

B-Spline Mesh Generation for Effective Visualizations 5

2 4 6 8 10

-3

-2

-1

0

1

2

3

4

2 4 6 8 10

-3

-2

-1

0

1

2

3

4

Fig. 2. Initial and optimized puzzle grids.

An application of the grid generation algorithm is shown in Figure 2
for a puzzle shaped domain. The initial grid, constructed using linear
Lagrange polynomials for the blending functions, is shown on the left.
Note that the grid lines overlap the nonconvex boundary. The grid on the
right shows the mesh obtained after the spline coefficients are modified to
minimize G. The overlapping grid lines have been pulled into the interior.

§4. Results

We have used boundary/contour fitted grid generation to produce compu-
tational grids for over one hundred 3D visualizations for the NIST DLMF.
The plots in Figure 3 show the contour boundary and mesh for the func-
tion 1/|Γ(z)|. To obtain the boundary we found the contour curves for
1/|Γ(z)| = 6. We then connected the curves to parts of a rectangle to
form a closed boundary and generated the boundary/contour fitted grid
shown on the right. The picture on the left in Figure 4 shows the sur-
face obtained after computing 1/|Γ(z)| over a purely rectangular grid with
values outside the desired range set to 6. The picture on the right shows
the result when we compute over our boundary/contour fitted grid. In
both pictures we show a snapshot of the surface rendering obtained after
the data is translated into VRML format for viewing on the web. The
boundary/contour fitted grid properly clips the function and improves the
smoothness of the color map.

Figure 5 shows a grid and surface for the modulus of the complex
gamma function |Γ(z)|. The top and bottom halves were generated sep-
arately, with an exponential function used to concentrate the grid points
near y = 0. The surface shown on the right illustrates how precisely the
contour curves satisfying |Γ(z)| = 6 were computed. Once the coefficients
are defined, we have the option of creating a coarser, or finer, grid simply
be evaluating fewer, or more, points on the unit square. Also, notice that
the grid spacing does not appear to be smooth in some areas. To guaran-

6 B. Saunders and Q. Wang

-4 -2 0 2 4
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

3

Fig. 3. Contour and grid for 1/|Γ(z)| where z = x + iy.

Fig. 4. Virtual Reality Modeling Language (VRML) Views of 1/|Γ(z)|.

tee that key boundary or contour points, such as those at zeros or corners,
are maintained regardless of grid size, we identify “fixed points,” that is,
boundary points that must always be kept. Grid lines are always drawn
through these points. In most cases, the resulting discontinuities in cell
spacing do not appear to affect the quality of the 3D visualizations.

All the visualizations in the NIST DLMF represent either real-valued
or complex-valued functions of the form, w = f(x, y). For complex-valued
functions, the user has the option of using a height based color mapping
where height = |w|, or a mapping based on the phase, or argument, or w.
Figure 6 shows part of the computational grid and a plot of the Riemann
zeta function |ζ(z)| with contour curves defined by |ζ(z)| = 3 and a phase
based color mapping. In Figure 7 the plot has been scaled down in the
vertical direction to produce a phase density plot.

§5. Conclusions

We have successfully used boundary/contour fitted grid generation to cre-
ate over one hundred visualizations of complex mathematical functions for
the NIST Digital Library of Mathematical Functions Project. The grid

B-Spline Mesh Generation for Effective Visualizations 7

-3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

3

Fig. 5. Grid and Plot of Complex Gamma Function |Γ(z)|.

Fig. 6. Grid and Plot of Riemann Zeta Function.

generation technique has helped us address many of the problems such
as poor clipping, inaccurate plots, and poor color mapping that can come
with using standard commercial packages for 3D graphics. We continue to
improve the technique and have made significant progress toward imple-
menting the adaptive movement of grid lines based on external information
such as function curvature and gradient data.

In Figure 8 we attract grid points in an equally spaced square grid to a
circle. Currently, we are working on adaptive movement based on function
curvature, but several problems must be addressed. Functional minimiza-
tion routines, originally designed only for w3 = 0, are being updated to
accommodate a likely nonlinear dependence of u on the spline coefficients.
Also, the specialized nature of many of the functions means that accessing
and linking the codes needed to compute gradient and curvature data may
not be a trivial task.

8 B. Saunders and Q. Wang

Fig. 7. Phase Density Plot of Riemann Zeta Function.

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 8. Grid adapted to circular shape.

§6. Disclaimer

All references to commercial products are provided only for clarification of
the results presented. Their identitication does not imply recommendation
or endorsement by NIST.

References

1. Abramowitz, M. and I. A. Stegun (eds.), Handbook of Mathematical

Functions with Formulas, Graphs and Mathematical Tables, National

B-Spline Mesh Generation for Effective Visualizations 9

Bureau of Standards Applied Mathematics Series 55, U.S. Government
Printing Office, Washington, D.C., 1964.

2. de Boor, C., A Practical Guide to Splines, Revised Edition, Springer-
Verlag, New York, 2001.

3. Brackbill, J. U., and J. S. Saltzman, Adaptive zoning for singular prob-
lems in two dimensions, J. Comput. Phys. 46 (1982), 342–368.

4. Saunders, B. V., A boundary conforming grid generation system for
interface tracking, J. Computers Math Applic. 29 (1995), 1–17.

5. Saunders, B. V., and Q. Wang, From 2d to 3d: numerical grid gener-
ation and the visualization of complex surfaces, in Proceedings of the

7th International Conference on Numerical Grid Generation in Compu-

tational Field Simulations, B. K. Soni, et. al. (eds.), Whistler, British
Columbia, Canada, September 25-28, 2000.

6. VRML. The Virtual Reality Modeling Language, International Stan-
dard ISO/IEC 14772-1:1997.

Bonita V. Saunders, Qiming Wang
National Institute of Standards and Technology
Gaithersburg, Maryland, USA
bonita.saunders@nist.gov,qiming.wang@nist.gov

