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FOREWORD 
 

The Office of Law Enforcement Standards (OLES) of the National Institute of Standards and 
Technology (NIST) furnishes technical support to the National Institute of Justice (NIJ) program 
to strengthen law enforcement and criminal justice in the United States.  OLES’s function is to 
develop standards and conduct research that will assist law enforcement and criminal justice 
agencies in the selection and procurement of quality equipment. 
 
OLES is:  (1) Subjecting existing equipment to laboratory testing and evaluation, and (2)  
conducting research leading to the development of several series of documents, including  
national standards, user guides, and technical reports. 
 
This document covers research conducted by OLES under the sponsorship of the NIJ. 
Additional reports as well as other documents are being issued under the OLES program in the 
areas of protective clothing and equipment, communications systems, emergency equipment, in-
vestigative aids, security systems, vehicles, weapons, and analytical techniques and standard ref-
erence materials used by the forensic community. 
 
Technical comments and suggestions concerning this report are invited from all interested  
parties.  They may be addressed to the Office of Law Enforcement Standards, National Institute 
of Standards and Technology, 100 Bureau Drive, Stop 8102, Gaithersburg, MD 20899–8102. 
 
             Kathleen M. Higgins, Director 
             Office of Law Enforcement Standards 
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COMMONLY USED SYMBOLS AND ABBREVIATIONS 
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AM amplitude modulation i.d. inside diameter p. page 
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cm centimeter IR infrared Pe probable error 
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d day L Liter Qt quart 
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dc direct current lbf pound-force Rf radio frequency 
°C degree Celsius lbf in pound-force inch Rh relative humidity 
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h hour No. number   
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PREFIXES  COMMON CONVERSIONS (See ASTM E380) 

      
d deci (10-1) Da deka (10) 0.30480 m =1 ft 4.448222 N = 1 lbf 
c centi (10-2) H hecto (102) 25.4 mm = 1 in 1.355818 J = 1 ft lbf 
m milli (10-3) K kilo (103) 0.4535924 kg = 1 lb 0.1129848 N m = 1 lbf in 
µ micro (10-6) M mega (106) 0.06479891 g = 1 gr 14.59390 N/m = 1 lbf/ft 
n nano (10-9) G giga (109)  0.9463529 L = 1 qt 6894.757 Pa = 1 lbf/in2 
p pico (10-12) T tera (1012) 3600000 J = 1 kW hr 1.609344 km/h = 1 mph 
    psi = mm of Hg x (1.9339 x 10-2)  
    mm of Hg = psi x 51.71  

 Temperature: T °C =  (T °F –32)×5/9 
Temperature: T °F = (T °C ×9/5)+32 
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DROPLET SIZE DISTRIBUTIONS IN THE SPRAY FROM COMMERCIAL 
‘FOGGER’ TYPE PEPPER SPRAY PRODUCTS 

 
 

 
This report documents a preliminary investigation of the measurement of droplet sizes 
in the spray from four commercial ‘fogger’ type pepper spray products.  Droplet sizes 
were measured over the range of 2 µm to 120 µm by phase Doppler interferometry at 
a distance from the canisters similar to that expected when the spray is used as a  
defensive weapon. 
 
 

 
1.  INTRODUCTION 

 
Commercial pepper spray devices are available that deliver a coherent liquid stream or a fine 
aerosol from the nozzle.  These sprays contain, as the active ingredient, oleoresin capsicum 
(OC), a chemically complex extract from hot peppers, or a synthetic chemical, nonivamide, that 
is present as a minor component in OC.  They may also contain a variety of solvents, carriers, 
and surfactants.  During the use of pepper sprays to assist in subduing violent individuals, it is 
likely that some of the droplets are inhaled.  Therefore, it is potentially useful to determine the 
size of the droplets since smaller droplets penetrate deeper in to the lung and therefore may 
present a greater hazard [1]1.  For environmental monitoring purposes droplets are often classified 
in three size ranges:  Droplets larger than 10 µm which do not reach the lungs and are generally 
not health hazards; droplets with sizes equal to or less than 10 µm (PM10) that reach the upper 
airways of the lung; and droplets with sizes equal to or less than 2.5 µm (PM2.5) that reach the 
alveoli and are thought to be the most hazardous [2]. 

 
This preliminary study examined how the droplet size, the number of particles, and the velocity, 
changed as successive shots were fired from four commercial ‘fogger’ type pepper spray 
products. 

 
 

2.  EXPERIMENTAL 
 

Samples 
 

 
Four commercially available pepper sprays were tested as listed in Table 1. 

                                                 
1See References on page 7. 
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Table 1.  Pepper Spray Canister Properties 
 

Canister 
Group 

Company Model Solvent 
(Propellent) 

Solvent 
Refractive 
Index 

Expiration
Date 

B ZARC International, 
Inc. 

Cap-Stun2 
Standard Duty, 
Z-305, 1 oz

Isopropanol*
 

(Isobutane) 
1.378 12/2008 

C Defense Technolo-
gies/Federal Labora-
tories 

BodyGuard 
LE-10, Cone, 
3.17 oz 

Diethyleneglycol 
n-butylether**

 

(unknown) 

1.431 2008 

D Guardian Personal 
Security Products, 
LLC 

BodyGuard 
LE-10, Cone, 
1.5 oz 

Diethyleneglycol 
n-butylether**

 

(unknown) 

1.431 2006 

F Aerko International, 
Inc. 

PUNCH II M- 
4, 83 g 

Isopropanol*
 

(Isobutane/Propane) 
1.378 06/2007 

Note:  The same model names and numbers, but different company names, for C and D 
are correct. 

*  Information on Canister 
**Information from Material Safety Data Sheets 

 
 
Test Apparatus for Firing Canisters 
 

 
Canisters were mounted on a stand similar to that described in [3].  The apparatus allowed 
repeated firing for 1 s at 1 min intervals.  The canister nozzle was located 1.83 m (6.0 ft) from the 
point where measurements were made.  Since the unconfined canister sprays dispersed quickly, a 
cylinder of polyvinyl chloride (PVC) pipe, 76 mm (3 in) diameter and 1.52 m (5 ft) in length, served 
to confine the spray to a narrower cross section in order to obtain sufficient data for droplet diameter 
measurements.  The cylinder was centered between the mounted pepper spray canister and the probe 
volume of a phase Doppler interferometer (PDI), which was used to measure the spray characteris-
tics.  There was significant impingement of the spray on the inside cylinder surface, which resulted 
in liquid accumulation inside the cylinder.  It was assumed that there was no preferential biasing of 
the measurement (e.g., droplet coalescence) as a result of the confinement.  The stand and probe  
volume were inside a ventilated chamber.  The PDI was outside of the ventilated chamber.  The  
arrangement of the experimental apparatus is shown in figure 1. 
 
 
 
 

 

                                                 
2 Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately.  Such 
identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to 
imply that the materials or equipment identified are necessarily the best available for the purpose. 
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Phase Doppler Interferometry 
 

 
Phase Doppler interferometry [4] has been used to characterize sprays in a wide variety of areas 
including spray combustion, spray coatings, agricultural pesticides, fire suppression, and others. This 
measurement technique is an extension of laser Doppler velocimetry that measures droplet size as 
well as velocity [5-7].  Phase Doppler interferometry involves creating an interference pattern in the 
region where two laser beams intersect, which results in a region of alternating light and dark fringes 
called the probe volume.  Due to the interference pattern, a droplet passing through the probe volume 
scatters light that results in a modulated signal at the detectors (see Fig. 2).  This signal is characteris-
tic of the droplet size, refractive index, and velocity.  For a droplet with known refractive index, the 
size and velocity can be determined.  Bachalo [8] published a review of PDI and its application to the 
study of aerosolized flows. 
 
Measurements were done using a two-component phase Doppler interferometer with a 5 W argon 
ion laser as the illumination source.  To accommodate the horizontal orientation of the experimental 
apparatus, the transmitter and receiver were positioned in a vertical plane as shown in figure 1.  The 
optical arrangement remained unchanged (including the scattering angle of 30°) for all of the  
experiments.  Droplet size and velocity distributions were obtained at one point in the center of the 
spray.  The time interval over which the actual data were collected was 1 s, that is the duration of 
one canister shot, however, the PDI data acquisition was initiated before the canister valve was 
opened, and terminated after the pulse of spray was transported past the PDI laser beams. The  
measurements were corrected for the solvent refractive indices (see Table 1). 
 
 
 

3.  RESULTS AND DISCUSSION 
 
Measurements of the droplet mean diameter (i.e., Sauter mean diameter [9]), streamwise velocity, 
and cross-stream velocity were made on successive 1 s bursts separated by 1 min for 15 canisters 
representing four models (denoted as groups B, C, D, and F) from three manufacturers. Each canis-
ter test consisted of depressing the canister nozzle for a 1 s shot, recording the spray characteristics 
with the PDI system, and repeating the sequence at 1 min intervals until the canister was empty (i.e., 
no droplets were detected by the PDI).  Three canisters from each group were examined using the 
spray confinement cylinder since the unconfined spray did not reach the required 1.8 m (6.0 ft)  
distance in a sufficiently predictable direction to produce reliable detection of the droplets without it.  
One additional canister from each of groups B, C, and D was examined without the spray confine-
ment cylinder. 
 
Shot-to-Shot Variations 
 

 
Shot-to-shot variations are discussed for groups C and F.  The total number of shots per canister 
for each group is given in Table 2.  Results for the mean diameter and streamwise velocity with shot 
number are presented in figure 3 for the four canisters of group C.  When the spray was directed 
through the spray confinement cylinder, the number of droplets transported through the PDI probe 
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Table 2.  Total Number of Shots per Canister with Detected Droplets 
 

Canister 
Group 

Total Number of Shots 
(Confined Cases)

Total Number of Shots 
(Unconfined Cases) 

B 6 5 
 C 7 2
D 3 - 5 3
F 59 - 63 - 

 

 
 

volume was increased significantly.  The mean diameter was fairly constant per shot until when 
nearly all of the liquid contents were exhausted from the canister (see Fig. 3A).  The mean  
diameter was fairly constant per shot until nearly all of the canister contents were expelled. The 
value of the mean diameter for the unconfined case (closed symbols) was always lower than 
for the confined cases, which was attributed to deceleration and dispersion of the droplets with 
increasing streamwise distance.  As shown in figure 3B, the mean streamwise velocity is about  
14 m/s for the confined cases and decreases with increasing shot number.  For the unconfined 
case, the initial  mean  velocity  was  about  1  m/s,  having  little  momentum to  reach  the  target.   
Since measurements were carried out only at the center of the spray, it is unknown what the 
droplet radial spatial profiles may reveal regarding transport of the spray off-axis.  Determination 
of the droplet diameter and velocity distributions at several radial positions would require simulta-
neous off-axis measurements, which was beyond the scope of this study. 
 
Figure 4 presents the distributions for droplet diameter and streamwise velocity for the first shot 
of canister C002 (see Fig. 3), which represents a typical 1 s first shot.  Also shown in figure 4 is the 
last shot that gave measurable results.  The distributions initially (see Fig. 4A, shot number 1) included 
droplets ranging from about 100 µm down to a few micrometers (at the detection limit of the instru-
ment).  For the nearly depleted case (see Fig. 4A, shot number 7), all of the detected droplets are 
smaller than 40 µm.  One may speculate that for this shot either the remaining liquid in the canister is 
well atomized by the gas propellant, or any larger droplets are transported off-axis and were not  
detected since our measurements were near the center of the spray.  Such spray characteristics are 
typical of certain classes of atomizers [9], for which the smaller diameter droplets are transported es-
sentially along the spray axis, i.e., in the direction along which the canister is pointed, and larger  
droplets near the spray periphery (boundary).  The values of the streamwise velocity decrease, and the 
distribution becomes narrower, as the canister is emptied. 
 
Figure 5 presents the variation of the mean diameter and streamwise velocity with shot number 
for group F.  This group produced more shots with less liquid per shot (about half the number of 
droplets per shot) than the other groups.  The variation in the results for droplet mean diameter 
(see Fig. 5A) increases significantly as the shots progress.  Figure 5A also presents the droplet 
number count for each shot.  As the shots increase, the number count decreases.  When the number 
of detected droplets (counts) is below 200, the variation in the mean increases significantly,  
making it difficult to discern trends.  For example, examination of the size distributions indicates 
that for shot numbers 57 and 59 (indicated by the two solid arrows) the presence of outliers  
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increases the value of the mean diameter dramatically above what the value would be without the 
outliers.  Low values of the mean diameter are indicative of the lack of data for that shot (see shot 
numbers 58 and 60, indicated by the dashed arrow). 
 
Differences Between Canister Groups 
 

 
For each group, the variation of the droplet diameter and velocity from canister to canister was 
small when the spray was transported through the confinement cylinder. The amount of spray 
reaching the target from the specified distance was smaller for the unconfined canisters than for 
the confined canisters.  The number of droplets detected for the unconfined sprays of groups B, 
C, D was 4.4 % to 4.7 %, 1.4 % to 3.2 %, and 51 % to 70 % of that observed for the confined 
sprays.  On a weight basis, this corresponds to 0.0009 % to 0.001 %, 0.0001 % to 0.0025 %, and 
9  %  to  30  %. Although  the  number  of  detected  droplets  for  the  unconfined  canister  D004 
(relative to the confined canisters) is much larger than for groups B and C, the total number of  
detected droplets for confined cases of group D relative to groups B and C was much less, i.e., 47 % 
and 37 %, respectively.  Part of the reason why the number of detected droplets was higher for 
the unconfined canister D004 was because of the higher mean streamwise velocity of 4.4 m/s, as 
opposed to 1 m/s for canister C003.   The velocity distribution is also broader with a maximum 
value reaching 11 m/s, as opposed to 3 m/s for canister C003. 
 
A picture of the general spray characteristics for a canister group is presented by combining the 
results  for  the  three  confined  canisters of each group.   Figure 6 presents  distributions  for  the 
droplet  diameter  and  streamwise  velocity  for  the  confined  cases  of  each  group.  The largest 
droplet  diameters  detected  were  about  120  µm  and  for  some  groups  the  distributions  were 
bimodal.  The distributions for the individual confined canisters of a particular group are similar 
to each other, i.e., similar to its group distribution presented in figure 6A.   The bimodal nature of 
the  diameter  distributions  was  attributed  to  changes  in  the  distribution  between  the  initial  and 
final shots.  The variation in streamwise velocity between canister groups is presented in figure 6B, 
with  only  group  D  having  a  bimodal  distribution  to  correlate  with  the  bimodal  diameter 
distribution. 
 
The maximum particle count for group F (Fig. 6A) is much higher than for the other groups.  As 
mentioned above, the number of shots for group F (over 60 shots) was much larger than for the 
other groups (ranging from 3 shots to 7 shots) although the number of detected droplets per shot 
was less than half (see Fig. 5A).   The total number of droplets detected for group F was more 
than 10 000 droplets per canister, which was at least three times larger per canister than the other 
groups.   Comparing the number of droplets less than 10 µm (i.e., those droplets with a higher 
probability of inhalation) to the total particle count indicates that 28 % to 35 % of the droplets 
were  smaller  than  10  µm  on  a  number  basis  and  0.03  %  to  0.08  %  on  a  mass  basis  for  the 
confined group F.   For the other groups, the percentages were 9 % to 15 % on a number basis 
and 0.001 % to 0.004 % on a mass basis. 
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4.  CONCLUSIONS 
 
Droplet size and velocity measurements were carried out using phase Doppler interferometry in the 
center of sprays generated from commercial 'fogger' type pepper spray canisters.  Four different 

groups of canisters were fired for which the spray characteristics were obtained under both confined 
and unconfined conditions.  The results indicated that canister-to-canister variations of droplet  
diameter were small within a particular group.  The droplet diameter and velocity distributions were 
substantially different for each group.  The mass fraction of droplets with diameters less than  
10 µm, which is the droplet diameter that could carry potentially toxic material to the lungs, was  
0.001 % to 0.08 % for the four canister groups measured. 
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Figure 1.  a) Schematic and photograph of the overall experimental arrangement.  b) An 
expanded view of the pepper spray exiting the confinement cylinder and illuminated by 
the laser beams of the phase Doppler interferometry (PDI) system. 
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Figure 2.  Schematic of the principle of operation of the phase Doppler interferometry system. 
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B 
 
 

Figure 3.  Variation of (A) droplet mean diameter and (B) streamwise velocity (U) with shot 
number for the four canisters of group C.   The open symbols referred to confined cases 
and the closed symbols refer to the unconfined case. 
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Shot Number 1 Shot Number 7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B 

 
 

Figure 4.  Distributions for droplet A) size and B) streamwise velocity determined for shot 
numbers 1 (initial shot) and 7 (final shot) of canister C002. 
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Figure 5.  Variation  of  (A)  droplet  mean  diameter  and  particle  count  and  (B)  streamwise 
velocity with shot number for canister F005 (confined). 
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Figure 6A.  Size distributions determined for all confined canisters in each group. 
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Figure 6B.  Streamwise velocity distributions determined for all confined canisters in each group. 

 


