
APPROXIMATING PERIODIC SOLUTIONS OF AUTONOMOUS DELAY

DIFFERENTIAL EQUATIONS

DAVID E. GILSINN

Mathematical and Computational Sciences Division

National Institute of Standards and Technology

100 Bureau Drive, Stop 8910

Gaithersburg, MD 20899-8910 1

ABSTRACT. Machine tool chatter has been characterized as isolated periodic solutions or limit cycles of

delay differential equations. Determining the amplitude and frequency of the limit cycle is sometimes crucial

to understanding and controlling the stability of machining operations. In Gilsinn [9] a result was proven

that says that, given an approximate periodic solution and frequency of an autonomous delay differential

equation that satisfies a certain non-criticality condition, there is an exact periodic solution and frequency in

a computable neighborhood of the approximate solution and frequency. The proof required the estimation of

a number of parameters and the verification of three inequalities. In this paper the details of the algorithms

will be given for estimating the parameters required to verify the inequalities and to compute the final

approximation errors. An application will be given to a Van der Pol oscillator with delay in the nonlinear

terms. A MATLAB m-file implementing the algorithms discussed in the paper is given in the appendix.

AMS (MOS) Subject Classification. 34K11, 34K13, 34K28.

1. Introduction

Machine tool dynamics has been modeled using delay differential equations for a number
of years as is clear from the vast literature associated with it. For a detailed review of
machining dynamics see Tlusty [32]. For a discussion of dynamics in milling operations see
Balchandran [1] and Zhao and Balachandran [34]. For drilling operations see Stone and
Askari [29] and Stone and Campbell [30]. For an analysis of chatter occurring in turning
operations see Hanna and Tobias [16], Marsh et al. [21], and Nayfeh et al. [22]. Machine
tool chatter is undesirable self-exited periodic oscillations during machining operations. It
has been identified as a Hopf bifurcation of limit cycles from steady state solutions. For a
way of estimating the critical Hopf bifurcation parameters that lead to machine tool chatter
see Gilsinn [8].
In studying the effects of chatter it is sometimes desirable to compute the amplitude and

frequency of the limit cycle generating the chatter. This entails solving the delay differential
equations that model the machine tool dynamics. There is a large literature on numerically
solving delay differential equations. Some representative methods are described in Banks
and Kappel [2], Engelborghs et al. [5], Kemper [20], Paul [23], Shampine and Thompson
[25], and Willé and Baker [35]. Although these methods generate solution vectors that can
be studied by harmonic and power spectral methods to estimate the frequency of periodic
cycles, they do not directly generate a representative model of a limit cycle such as a Fourier
series representation.
It is also desirable to know whether a representation of an approximate limit cycle is

close to a true limit cycle. In other words we wish to answer the question as to whether the
approximate solution represents sufficiently well a true solution. This is answered with a set

1Contribution of the National Institute of Standards and Technology, a Federal agency, not subject to

copyright.

1

NISTIR 7375

2 DAVID E. GILSINN

of test criteria by Gilsinn [9], who showed that, given a representative approximate solution
and frequency for a periodic solution to the autonomous delay differential equation

(1) ẋ = X(x(t), x(t− h)),
where x,X ∈ Rn, h > 0, X sufficiently differentiable, there are conditions, depending on
a number of parameters, for which (1) has a unique exact periodic solution and frequency
in a computable neighborhood of the approximate solution and frequency. This result was
first established in a very general manner for functional differential equations by Stokes [28]
who extended an earlier result for ordinary differrential equations in Stokes [27]. A crucial
aspect in applying the result involves verify a certain ”non-criticality” condition. However,
no computable algorithms were given in the case of functional differential equations to
estimate the various parameters or verify the ”non-criticality” condition. Only recently
have algorithms been developed to computationally verify these conditions in the fixed
delay case. A preliminary announcement of algorithms for computing these parameters and
verifying the ”non-criticality” condition was given by Gilsinn [7]. In this paper we include a
more detailed discussion of the algorithms and apply them to a Van der Pol equation with
delay in its nonlinear terms.
The result of Stokes [28] for functional differential equations depends on verifying certain

conditions that require computing various parameters. In order to apply Stokes’ result
a proof in the case of equation (1) will be given here since certain inequalities that are
developed within the proof are necessary for proving the fixed point contraction mapping
conditions and rely on the specific form of (1).
The notation used in the paper is described in Section 2. The non-criticality condition is

defined in Section 3. In Section 4 we construct an exact frequency and 2π-periodic solution
of (1) as a perturbation problem. In Section 5 we define a map that is used to prove, by a
contraction argument, the existence of an exact frequency and 2π-periodic solution of (1).
The main contraction theorem is proven in Section 6. A Galerkin algorithm to compute a 2π-
periodic solution to a nonlinear autonomous delay differential equation is given in Section 7.
The Floquet Theory for delay differential equations is discussed in Section 8. An algorithm
for computing the characteristic multipliers of the variational equation of (1) with respect to
the approximate 2π-periodic solution, is outlined in Section 9. An algorithm to determe the
solution to the formal adjoint equation with respect to the variational equation of (1) with
respect to the approximate 2π-periodic solution, is outlined in Section 10. An algorithm for
estimating a critical parameter is given in Section 11. An application of these algorithms to
the Van der Pol equation with delay is given in Section 12. Conclusions are given in Section
13 and a disclaimer is given in Section 14. The derivation of the differentiation matrix (86)
is given in Appendix 1, Section 15. Certain bounds and Lipschitz conditions used in the
fixed point theorem are proven in Appendices 2 and 3 (Section 16 and Section 17). The
MATLAB code and associated support functions implementing the algorithms are given in
Appendix 4, Section 18.

2. Notation

Let Cω denote the space of continuous functions from [−ω, 0] to Cn with norm in Cω
given by |φ| = max |φ(s)| for −ω ≤ s ≤ 0, where

(2) |φ(s)| =
n

i=1

|φi(s)|2
1/2

.

Cω is a Banach space with respect to this norm. Let P be the space of continuous 2π-periodic
functions with sup norm, |·| on (−∞,∞). Let P1 ⊂ P be the subspace of continuously differ-
entiable 2π-periodic functions with the sup norm. Let X(x, y) be continuously differentiable
in some domain Ωn ⊂ Cn ×Cn with bounded derivatives where
(3) |Xi(x, y)| ≤ B,

STABILITY 3

for i = 1, 2, (x, y) ∈ Ωn. The subscripts of X indicate derivatives with respect to the first
and second variables of X respectively. We further assume that the first partial derivatives
satisfy Lipschitz conditions given by

(4) |Xi(x1, y1)−Xi(x2, y2)| ≤ K(|x1 − x2| + |y1 − y2|),
for (x1, y1), (x2, y2) ∈ Ωn.
In order to simplify the notation for (1) we will first normalize the delay h to unity by

setting s = t/h. Then, (1) becomes

(5)
dy

ds
(s) = h X(y(s), y(s− 1))

where y(s) = x(s h). Therefore we will assume h = 1 in (1). We will also make one further
transformation. Since the period T = 2π/ω of a periodic solution for (1) is unknown we can
normalize the period to [0, 2π] by introducing the substitution of t/ω for t and rewriting
(1), with h = 1, in the form

(6) ω ẋ = X(x(t), x(t− ω)).
For ψ1,ψ2 ∈ P we denote the total derivative of X(x, y) by

(7) dX(x, y;ψ1,ψ2) = X1(x, y)ψ1 +X2(x, y)ψ2.

Let A(t), B(t) be continuous 2π-periodic matrices. Then a characteristic multiplier is
defined as follows.

Definition 2.1. ρ is a characteristic multiplier of

(8) ẏ = A(t)y(t) +B(t)y(t− ω)
if there is a nontrivial solution y(t) of (8) such that y(t + 2π) = ρ y(t). Note that if ρ = 1
then y(t) is 2π-periodic.

To simplify some of the notation we will suppress the t and write, for example, x =
x(t), xω = x(t − ω), but in other cases we will maintain the t, especially when describing
computational steps. We will also at times use the notation

(9) |x|2 =
2π

0

|x(t)|2 dt
1/2

.

3. Non-criticality Condition

Galerkin and harmonic balance methods can be used to develop 2π-periodic approximate
solutions for (6). A fast discrete Fourier series algorithm for computing an approximate
series solution and frequency, (ω̂, x̂), has been given by Gilsinn [8]. See Section 7 below for
a brief discussion of a Galerkin method for approximating a solution. At this point, then,
we assume that we have developed a 2π-periodic approximate solution and frequency, (ω̂, x̂)
for (6), where x̂ is 2π-periodic and

(10) ω̂ ˙̂x = X(x̂, x̂ω̂) + k

where k(t) is a 2π-periodic residual bounded by

(11) |k| ≤ r.
The required size of the residual error, r, will become clear based upon estimates later in this
paper. These estimates will indicate in particular situations how accurately an approximate
solution and frequency would need to be computed.
The variational equation with respect to the approximate solution and frequency is given

by

(12) ω̂ż = dX (x̂, x̂ω̂; z, zω̂) .

Let Â = X1 (x̂, x̂ω̂), B̂ = X2 (x̂, x̂ω̂). The formal adjoint of (12) is given in row form by

(13) ω̂v̇ = −vÂ− v−ω̂B̂.

4 DAVID E. GILSINN

The next lemma, proven in Halanay [14], relates the number of independent 2π-periodic
solutions of (12) to those of (13).

Lemma 3.1. System (12) and (13) have the same finite number of independent 2π-periodic
solutions.

We will not give the proof of the next lemma, since it is also proven in Halanay [14]. The
result, however, will be critical to the main approximation theorem.

Lemma 3.2. The nonhomogeneous system

(14) ω̂ẋ = Âx+ B̂xω̂ + f

has a unique 2π-periodic solution if and only if

(15)
2π

0

vT0 fdt = 0

for all independent solutions v0 of period 2π of (13). Furthermore there exists an M > 0,
independent of f , such that

(16) |x| ≤M |f |.
We will give the proof of the next lemma. Although it is stated in Hale [15] and in Halanay

[14], the proof is not generally available. The result, however, motivates the definition of a
non-critical approximate solution.

Lemma 3.3. Let ρ = 1 be a simple (i.e. multiplicity one) characteristic multiplier of (12)
Let p be a non-trivial solution of (12) associated with ρ. Define

(17) J(p, ω̂) = p+ B̂pω̂,

then

(18)
2π

0

v0
TJ(p, ω̂)dt = 0

for all independent solutions v of the adjoint (13).

Proof. Let y(t) be any 2π-periodic solution of (12) and write

(19) z = y + tp

Then, substituting (19) into (12), write

ω̂ż = Âz + B̂zω̂ + ω̂ p+ B̂pω̂

= Âz + B̂zω̂ + ω̂J(p, ω̂)(20)

We will suppose

(21)
2π

0

vTJ(p, ω̂)dt = 0

and show a contradiction. Since ρ is a simple characteristic multiplier then p is the only
non-trivial 2π-periodic solution associated with ρ and so there is only one solution of (13)
associated with 1/ρ. Lemma 3.2 and (21) imply that there is a unique 2π-periodic solution
z of (20). With z and p both 2π-periodic let w = z − tp. w cannot be a multiple of p for
there would be a t0 such that t0p = z − tp or z = (t0 + t) p. Since z, p are 2π-periodic we
have z = (t0 + t+ 2π) p. But then we would have t0 = t0 + 2π or 2π = 0, a contradiction.
QED
Lemma 3.2 will imply, in the case of a non-critical 2π-periodic approximate solution of

(6), that there is only one v0 in (22).
We can now give the definition of a non-critical approximate solution of (6).

STABILITY 5

Definition 3.4. The pair (ω̂, x̂), where x̂ is at least twice continuously differentiable, is said
to be non-critical with respect to (6) if (1) the variational equation about the approximate
solution x̂, given by (12), has a simple characteristic multiplier ρ0 with all of the other
characteristic multipliers not equal to one. (2) If v0, |v0|2 = 1, is the solution of (13)
corresponding to ρo, i.e. with multiplier 1/ρ0, then

(22)
2π

0

v0
TJ(˙̂x, ω̂)dt = 0,

where

(23) J(˙̂x, ω̂) = ˙̂x+ B̂ ˙̂xω̂

4. A Perturbation Problem

In this paper we will look for an exact 2π-periodic solution, x, and an exact frequency,
ω, for (6) as a perturbation of the 2π-periodic approximate solution , x̂, and approximate
frequency, ω̂, of (6). In particular, let

ω = ω̂ + β

x = x̂+
ω̂

ω
z(24)

Then, substituting (24) into (6) and using (10), we can write the equation for z and β as

(25) ω̂ż = dX (x̂, x̂ω̂; z, zω̂) +R(z,β)− βJ ˙̂x, ω̂ − k
where

(26) R(z,β) = X x̂+
ω̂

ω
z, x̂ω +

ω̂

ω
zω −X (x̂, x̂ω̂) − dX (x̂, x̂ω̂; z, zω̂) + βB̂ ˙̂xω̂.

and J ˙̂x, ω̂ is given by (23).

In the next lemma we establish bounds and Lipschitz conditions for R(z, β).

Lemma 4.1. There exist functions R0(z,β) > 0, Ri(z, β, z̃, β̃) > 0, i = 1, 2, such that

R0 → 0 as (z,β)→ 0 and Ri → 0 as (z, β, z̃, β̃)→ 0 and

|R(z, β)| ≤ R0(z, β)(27)

R(z, β)−R(z̃, β̃) ≤ R1(z, β, z̃, β̃) |z − z̃|+R2(z, β, z̃, β̃) β − β̃
Proof: Appendix 2.
Since we will be considering |β| small, we will begin by restricting β, which could be

negative, so that

(28) ω̂ + β ≥ ω̂

2
.

We can select |β| ≤ ω̂/2.
As a first step to establishing the existence of a 2π-periodic solution of (25) we first study

the existence of a 2π-periodic solution of

(29) ω̂ż = dX (x̂, x̂ω̂; z, zω̂) + g − βJ ˙̂x, ω̂ − k
where g ∈ P. For this we have the following lemma
Lemma 4.2. If (ω̂, x̂) are non-critical with respect to (6), then (a) there exists a unique β
such that

(30) g − βJ ˙̂x, ω̂ − k ⊥ v0
where v0 is the solution of (13) corresponding to the characteristic multiplier ρ0 of (12), and
(b) there exists a unique 2π-periodic solution of (29) that satisfies

(31) |z| ≤M g − βJ ˙̂x, ω̂ − k

6 DAVID E. GILSINN

for some M > 0.

Proof: Take

(32) β = α
2π

0

v0
T (g − k) dt

where

(33) α =
2π

0

v0
TJ ˙̂x, ω̂ dt

−1

and apply Lemma 3.2.
We can now establish bounds on β, z and ż. For notation, designate the unique β and

z in Lemma 4.2 by β(g) and z(g) respectively, and ż by ż(g).

Lemma 4.3. There exist three constants, designated by λi, i = 0, 1, 2, such that

|β(g)| ≤ λ0(|g| + r)
|z(g)| ≤ λ1(|g| + r)(34)

|ż(g)| ≤ λ2(|g| + r)
Proof: From

|g|2 ≤
√
2π |g|

|k|2 ≤
√
2π |k|(35)

and the Cauchy-Schwarz inequality applied to (32)

(36) |β(g)| ≤ |α| v0T 2
|g − k|2 ≤

√
2π|α|(|g|+ r)

from the bound |k| ≤ r.
From (31)

|z(g)| ≤ M |g|+ |k| + |β(g)| J ˙̂x, ω̂ ,

≤ M 1 +
√
2π|α| J ˙̂x, ω̂ (|g|+ r)(37)

From (29)

|ω̂| |ż(g)| ≤ |dX (x̂, x̂ω̂; z(g), z(g)ω̂)| + g − βJ ˙̂x, ω̂ − k
≤ [B (|z(g)| + |z(g)ω̂|)](38)

≤ (2MB) 1 +
√
2π|α| J ˙̂x, ω̂ (|g|+ r)(39)

Therefore, from (36), (37), (38),

λ0 =
√
2π|α|,

λ1 = M 1 +
√
2π|α| J ˙̂x, ω̂(40)

λ2 =
λ1
|ω̂|M (1 + 2MB)

5. A Map and its Properties

In the main approximation theorem we will show that the solution of the perturbation
problem (25) is the fixed point of a particular contraction map. In this section we will define
the map and establish some properties.
We begin by defining a subset of P, designated by Nδ, as

(41) Nδ = {g ∈ P : |g| ≤ δ},

STABILITY 7

where δ > 0. Following Stokes [28] we will define a map S : Nδ → P in terms of two
mappings

L : Nδ → R× P1,
T : R× P1 → P.(42)

To define L, let g ∈ Nδ, then Lemma 4.2 assures us of the existence of a unique β(g)
satisfying (30) and a unique solution z(g) satisfying (29). Thus, define L : Nδ → R×P1 by
(43) L(g) = (β(g), z(g)).

Now define T : R × P1 → P by
(44) T (β, z) = R(z, β).

Finally, define S : Nδ → P by
(45) S(g) = T (L(g)) = R(z(g), β(g)).

Lemma 5.1. For g ∈ Nδ, g̃ ∈ Nδ there exist two functions E1(δ), E2(δ) and two positive
constants F1, F2 so that

|S(g)| ≤ E1(δ),(46)

|S(g)− S(g̃)| ≤ E2(δ) |g − g̃| ,
where

E1(δ) ≤ F1δ
2,(47)

E2(δ) ≤ F2δ.

Proof: From (45) and (27) we have

|S(g)| ≤ R0(z(g), β(g)),(48)

|S(g)− S (g̃)| ≤ R1 (z(g), β(g), z (g̃) ,β (g̃)) |z(g)− z (g̃)|
+R2 (z(g), β(g), z (g̃) , β (g̃)) |β(g)− β (g̃)| .

By Cauchy-Schwarz, the fact that v0
T
2
= 1, and (40)

|β(g)− β (g̃)| ≤ |α|
2π

0

v0
T (g − g̃) dt,

≤ |α|
2π

0

|g − g̃|2 dt
1/2

,(49)

≤ λ0 |g − g̃| .
From Lemma 4.2 and the definition of β(g), β (g̃) we have

2π

0

v0
T g − β(g)J ˙̂x, ω̂ − k dt = 0,

2π

0

v0
T g̃ − β(g̃)J ˙̂x, ω̂ − k dt = 0.(50)

Then, by subtracting,

(51)
2π

0

v0
T (g − g̃)− (β(g)− β (g̃))J ˙̂x, ω̂ dt = 0.

Lemma 4.2 also shows that there exists a unique z̄ such that there exists a z̄ such that

(52) ω̂ ˙̄z = dX (x̂, x̂ω̂; z̄, z̄ω̂) + (g − g̃)− (β(g)− β (g̃)) J ˙̂x, ω̂ .

But from (29), z(g)− z (g̃) also satisfies (52), so that z̄ = z(g)− z (g̃) and from (31)

|z(g)− z (g̃)| ≤ M (g − g̃)− (β(g)− β (g̃)) J ˙̂x, ω̂ ,

≤ λ1 |g − g̃| .(53)

8 DAVID E. GILSINN

Then (46) follows from (48) through (53). QED
The specific forms for E1(δ) and E2(δ) are given in Appendix A.2 as equations (201) and

(204), respectively, as well as the selection of F1 and F2 as (202) and (205) respectively.
As functions of the other parameters E1(δ) and E2(δ) depend linearly on K and B, but
non-linearly on λ0, λ1, and λ2 and thus non-linearly on M .

6. Main Approximation Theorem

In the main theorem the constants F1, F2 are those from Lemma 4.2.

Theorem 6.1. If (a) (ω̂, x̂) is non-critical with respect to (6) in the sense of Definition 3.4,
(b) δ is selected so that

(54) δ ≤ min{1/F1, 1/2F2, ω̂/4λ0}
and (c) r ≤ δ, then there exists and exact frequency, ω∗, and solution, x∗, of (6) such that

|x∗ − x̂| ≤ 4λ1δ,

|ω∗ − ω̂| ≤ 2λ0δ,(55)

where λ0,λ1 are defined in (40) and δ is defined in (41).

Proof: Let β and z be defined as in (24). By substituting (24) into (6) we have (25).
Associated with (25) we consider (29). We then define the set Nδ in (41) and consider the
map S : Nδ → P defined in (45). From (200), (201), and (202) we have |S(g)| ≤ F1δ

2

for g ∈ Nδ. Furthermore, from (203), (204), and (205) we have, for g, g̃ ∈ Nδ, that
|S(g)− S(g̃)| ≤ F2δ |g − g̃|. Now, if we select δ as in (54) then F1δ2 ≤ δ and F2δ ≤ 1/2, S
maps Nδ to itself and is a contraction. The last inequality that δ satisfies in (54) assures
that β(g) satisfies (28) by way of Lemma 4.3, provided r satisfies r ≤ δ. Therefore, S has
a fixed point g∗ ∈ Nδ. This implies that there exists a unique (β

∗, z∗), z∗ is 2π-periodic,
satisfying (25). Then, from (24), there exists a unique (ω∗, x∗), x∗ is 2π-periodic, satisfying
(6). From (24), with r ≤ δ,

|ω∗ − ω̂| ≤ |β∗| ≤ λ0 (|g∗|+ r) ≤ 2λ0δ,
|x∗ − x̂| ≤ ω̂

ω̂ + β∗
|z∗| ≤ 2λ1 (|g∗|+ r) ≤ 4λ1δ.(56)

QED
We need to introduce a note here on the relationship between r and δ. In practice the

process of determining them is iterative. We start by determining an approximate solution
and the residual r. We then compute all of the parameters that involve the approximate
solution and compute δ from (54). We then compare r against δ. If r ≤ δ we are finished,
otherwise we have to return and recompute another approximate solution with possibly
smaller residual r and iterate the process. The author is not familiar with any result that
guarantees that at some point r ≤ δ, although he suspects that this will eventually happen
in most practical problems.

7. Approximating a Solution and Frequency

An approximate solution and frequency for (6) can be developed by assuming a finite
trigonometric polynomial of the form

(57) x̂m = a2 cos t+
m

n=2

[a2n cosnt+ a2n−1 sinnt]

where the sin t term has been dropped so that we can estimate a1 = ω̂, the frequency.
Note that we have centered the approximate solution about the origin, since we assumed
X(0, 0) = 0. If we set ā = (a1, a2, · · · , a2m), and
(58) Em(t, ā) = a1 ˙̂xm(t)−X (x̂m(t), x̂m(t− a1))

STABILITY 9

then for a sufficiently fine mesh, specified by {ti : i = 1, 2, · · · , 2N}, in [0, 2π], where
(59) ti =

2i− 1
2N

π,

the determining equations for ā can be written as (see Urabe and Reiter [33])

F1(ā) =
1

N

2N

i=1

Em (ti, ā) sin ti = 0

F2(ā) =
1

N

2N

i=1

Em (ti, ā) cos ti = 0

F2n−1(ā) =
1

N

2N

i=1

Em (ti, ā) sinnti = 0(60)

F2n(ā) =
1

N

2N

i=1

Em (ti, ā) cosnti = 0

for n = 2, · · · , m.
These equations give 2m equations in 2m unknowns. Standard numerical solvers, using,

for example, Newton’s method, for nonlinear equations can be used to solve for ā. The
number of harmonics, m, and the quadrature index, N , can be selected independently.

8. Floquet Theory for DDEs

The analysis of the stability of an approximate periodic solution for (1) usually involves
the following considerations. If x(t), x ∈ Rn is an approximate periodic solution of (1) of
period 2π, and ω an approximate frequency, then the linear variational equation about x(t)
can be written

(61) ż(t) = A(t)z(t) + B(t)z(t− ω),
where A(t) and B(t) were defined previously and are periodic, with period 2π.
We now define the period map U : Cω → Cω with respect to (61) by

(62) (Uφ) (s) = z(s+ 2π)

where z(s) is a solution of (61) satisfying z(s) = φ(s) for s ∈ [−ω, 0]. In this paper we
assume ω < 2π. U is then a compact operator on Cω, whose spectrum is at most countable
with 0 as the only possible limit point (Halanay [14]).
A Floquet theory for (61) has been developed by Stokes [26] . In particular, if σ (U)

represents the spectrum of U , then for each λ ∈ σ (U), Uφ = λφ. That is, the spectrum
consists of eigenvalues. Furthermore, the space Cω can be decomposed as the direct sum of
two invariant subspaces

(63) Cω = E(λ)⊕K(λ)
E(λ) is finite dimensional and composed of the eigenvectors with respect to λ. Furthermore,
σ (U |K) = σ (U)− {λ}. If {ψi}, i = 1, · · · , d is a basis for E(λ) and we let Ψ be the matrix
with columns ψj for j = 1, · · · , d, then there is a matrix G(λ) such that
(64) UΨ = ΨG(λ)

Thus we can think of Cω as being a countable direct sum of the invariant subspaces E(λi)
plus a possible remainder subspace, R. That is

(65) Cω = E(λ1)⊕ E(λ2)⊕ · · · ⊕R
where R is a ”remainder” set in which any solution of (61) with initial condition in R decays
faster than any exponential.
For each of the E(λi) there is a basis set Ψi, and a matrix G(λi). If we define an at most

countable basis set {Ψi}, i = 1, 2, · · · , then we can think about U operating on ∞
i=1 E(λi)

as being represented by an infinite matrix G∞. This matrix is referred to as the monodromy

10 DAVID E. GILSINN

matrix. Its eigenvalues are called the Floquet or characteristic multipliers. The periodic
solution x(t) of (1) is stable if all of the eigenvalues of U are within the unit circle and
unstable if there is at least one with a positive real part. We note that if x(t) is an exact
periodic solution of (1) then one of the characteristic multipliers is exactly one.

9. Estimating Characteristic Multipliers

In this section we assume that the variational equation with respect to the approximate
solution, x̂(t), can be written in the form

(66) ż(t) = Â(t)z(t) + B̂(t)z(t− ω̂)
where Â(t) = Â(t + 2π), B̂(t) = B̂(t + 2π) and we have reintroduced t to make the oper-
ator definitions more transparent. Let Z(t, s) be the solution of (66) such that Z(s, s) =
In, Z(t, s) = 0 for t < s where In is the n

2 identity matrix on Cn. The solution Z(t, s)
is sometimes referred to as the “Fundamental Solution”. Using the variation of constants
formula for (66), Halanay [14] shows that the solution of (66) for the initial function φ ∈ Cω̂
is given by

(67) z(t) = Z(t, 0)φ(0) +
0

−ω̂
Z(t,α + ω̂)B̂(α + ω̂)φ(α) dα

Define the operator

(68) (Uφ)(s) = z(s+ 2π)

where φ ∈ Cω̂, s ∈ [−ω̂, 0]. If there is a non-trivial solution z(t) of (66) such that z(t+2π) =
ρz(t) then ρ is a characteristic multiplier of (66). If we combine (67) with (68) and note
that z(α) = φ for α ∈ [−ω̂, 0], then characteristic multipliers are the eigenvalues of

(69) (Uφ)(s) = Z(s+ 2π, 0)φ(0) +
0

−ω̂
Z(s+ 2π,α + ω̂)B̂(α + ω̂)φ(α) dα

where φ ∈ C0. Halanay [14] shows that we can restrict s ∈ [−ω̂, 0]. This operator is
sometimes referred to as the Monodromy Operator.

9.1. Approximating the Fundamental Solution by Spectral Collocation. In this
section we will use spectral methods to compute the fundamental solution of the linear
homogeneous delay differential equation (66). These methods are well known for collocating
solutions to partial differential equations and boundary value problems. See, for example,
Gottlieb [11] and Gottlieb and Turkel [12]. They are not as well known in delay differential
equations. In this section we use a spectral method suggested by Bueler [3] and Trefethen
[31]. The method has been reported earlier in Gilsinn and Potra [10].
The computation of the fundamental matrix used in the monodromy operator (69) re-

quires the computation of a solution z(t) of (66) on some interval [a, b]. This will be done in
a stepwise manner. We first find a positive integer q such that a + qω ≥ b. Then we solve,
at the first step, t ∈ [a, a+ ω],

(70) ż1(t) = A(t)z1(t) +B(t)z1(t− ω),
where z1(t−ω) = φ(s) for some function φ ∈ Cω(a) and s = t−ω. Thus the initial problem
becomes an ordinary differential equation. Then, on [a+ ω, a+ 2ω] we solve

(71) ż2(t) = A(t)z2(t) +B(t)z2(t− ω),
where z2(a+ω) = z1(a+ω), z2(t−ω) = z1(s) for s ∈ [a, a+ω], s = t−ω. Again we solve (5)
as an ordinary differential equation. The process is continued so that on [a+(i−1)ω, a+iω],
for i = 1, 2, · · · , q,
(72) żi(t) = A(t)zi(t) +B(t)zi(t− ω),
with zi(a+(i− 1)ω) = zi−1(a+(i− 1)ω). We then define z(t) on [a, b] as the concatenation
of zi(t) for t ∈ [a+ (i− 1)ω, a+ iω] and i = 1, 2, · · · , q.

STABILITY 11

Since we wish to use a Chebyshev collocation method, we will shift each interval [a+(i−
1)ω, a+ iω] to the interval [−1, 1]. For t ∈ [a+ (i− 1)ω, a+ iω], for i = 1, 2, · · · , q, we have
z ∈ [−1, 1] provided

(73) z =
2

ω
t− (2a+ (2i− 1)ω)

ω
.

For z ∈ [−1, 1] we have t ∈ [a+ (i− 1)ω, a+ iω] provided

(74) t =
ω

2
z +

(2a+ (2i− 1)ω)
2

.

We note that the point t ∈ [a+ (i− 1)ω, a+ iω] and t− ω ∈ [a+ (i− 2)ω, a+ (i− 1)ω] are
translated to the same z ∈ [−1, 1]. This is clear from

(75)
2

ω
(t− ω)− (2a+ (2i− 3)ω

ω
=
2

ω
t− (2a+ (2i− 1)ω

ω
Therefore we can shift the iterated delay problems

(76) żi(t) = A(t)zi(t) +B(t)zi(t− ω),
for t ∈ [a+ (i− 1)ω, a+ iω] and i = 1, 2, · · · , q, into iterated ordinary differential equations

(77) ui(z) =
ω

2
Ai(z)ui(z) +

ω

2
Bi(z)ui−1(z)

where, for t ∈ [a+ (i− 1)ω, a+ iω] and associated z ∈ [−1, 1],
ui(−1) = ui−1(1)
ui(z) = zi(t)

Ai(z) = A(t)(78)

Bi(z) = B(t)

ui−1(z) = zi(t− ω)
The initial function is

(79) u0(z) = z1(t− ω) = φ(t− ω)
for t− ω ∈ [a− ω, a].
We can now approximate the fundamental solution for (66) on [a, b] by first solving the

iterated differential equations (76) subject to

ui(−1) = ui−1(1)
u0(z) = 0, z ∈ [−1, 1](80)

u1(−1) = In

where In is the n × n identity matrix. We follow the spectral method given in Bueler
[3] in that the fundamental solution is solved for in n passes of the iteration process with
u1(−1) = ej , where ej = (0, · · · , 1, · · · , 0)T with 1 in the jth element, j = 1, 2, · · · , n.
To begin the solution process we take, for some positive integer N , the Chebyshev points

(81) ηk = cos
kπ

N

on [−1, 1], for k = 0, 1, · · · , N . The benefits of using these points has been discussed by
Salzer [24]. The Lagrange interpolation polynomials at these points are given by

(82) lj(z) =

N

k=0
k=j

z − ηk
ηj − ηk .

We have lj(ηk) = δjk. Then on [−1, 1] we set

(83) ui(z) =
N

j=0

ui (ηj) lj(z)

12 DAVID E. GILSINN

We also need to form

(84) ui(z) =
N

j=0

ui (ηj) lj(z)

At the Chebyshev points we will designate

(85) Dkj = lj(ηk)

The values for these derivatives are given in Gottlieb and Turkel [12] or Trefethen [31] but
we state the values for D here for completeness. The derivations are given in Section 15,
Appendix 1.

D00 =
2N2 + 1

6
DNN = −D00
Djj =

−ηj
2(1 − η2j)

, j = 1, 2, · · · , N − 1(86)

Dij =
ci(−1)i+j
cj(ηi − ηj)

for i = j, i, j = 0, · · · ,N where

(87) ci =
2, i = 0 or N ;

1, otherwise.

For notation, let

ui(z) = (ui1, · · · , uin)T ,
Ai(z) = A(i)pq (z)

p,q=1,··· ,n
(88)

Bi(z) = B(i)pq (z)
p,q=1,··· ,n

We then write the collocation polynomial of uir, r = 1, · · · , n, as

(89) uir(z) =
N

k=0

w
(i)
rk lk(z)

at the Chebyshev points (81) to get

uir (ηj) = w
(i)
rj

uir (ηj) =
N

k=0

w
(i)
rkDjk(90)

ui−1,r = w
(i−1)
rj

The initial conditions for the iterated differential equations are

(91) uir (ηN) = ui−1,r (η0) ,

or

(92) w
(i)
rN = w

(i−1)
r0

for r = 1, · · · , n.
The discretized differential equations are then given by

(93)
N

k=0

w
(i)
rkDjk

r=1,n

=
ω

2
A(i)rp (z)

r,p=1,n
w
(i)
rj

r=1,n
+
ω

2
B(i)rp (z)

r,p=1,n
w
(i−1)
rj

r=1,n

STABILITY 13

for j = 0, 1, · · · ,N − 1. These provide nN equations but n(N − 1) unknowns. The other n
equations come from the initial conditions. We define the following vectors

wi = w
(i)
10 · · ·w(i)1Nw(i)20 · · ·w(i)2N · · ·w(i)n0 · · ·w(i)nN

T

(94)

wi−1 = w
(i−1)
10 · · ·w(i−1)1N w

(i−1)
20 · · ·w(i−1)2N · · ·w(i−1)n0 · · ·w(i−1)nN

T

Then we can write the iterated differential equation as

(95) Dwi =
ω

2
Aiwi +

ω

2
Biwi−1

where D = D ⊗ In, the Kronecker product, and each D is given by

(96) D =

⎡⎢⎢⎢⎣
D00 · · · D0N
...

...
...

DN−1,0 · · · DN−1,N
0 · · · 1

⎤⎥⎥⎥⎦
The unit in the lower right introduces the initial condition, w

(i)
rN , r = 1, · · · , n, equation.

Thus D is formed by n blocks of D down the diagonal.

The matrix Ai is given by
(97)

Ai =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(i)
11 (η0) 0 · · · 0 · · · 0 · · · 0 A

(i)
1n(η0) 0 0 · · · 0

0
. . . 0 0 · · · 0 · · · 0 0

. . . 0 · · · 0

0 0 A
(i)
11 (ηN−1) 0 · · · 0 · · · 0 0 A

(i)
1n(ηN−1) 0 · · · 0

0 0 · · · 0 · · · 0 · · · 0 · · · 0 0 · · · 0

A
(i)
n1(η0) 0 · · · 0 · · · 0 · · · 0 A

(i)
nn(η0) 0 0 · · · 0

0
. . . 0 0 · · · 0 · · · 0 0

. . . 0 · · · 0

0 0 A
(i)
n1(ηN−1) 0 · · · 0 · · · 0 0 A

(i)
nn(ηN−1) 0 · · · 0

0 0 · · · 0 · · · 0 · · · 0 · · · 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bi is structured in a similar manner except every (N + 1)th row includes an element 2/ω
to take care of the initial condition. Thus
(98)

Bi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B
(i)
11 (η0) 0 · · · 0 · · · 0 · · · 0 B

(i)
1n(η0) 0 0 · · · 0

0
. . . 0 0 · · · 0 · · · 0 0

. . . 0 · · · 0

0 0 B
(i)
11 (ηN−1) 0 · · · 0 · · · 0 0 B

(i)
1n(ηN−1) 0 · · · 0

2
ω 0 · · · 0 · · · 0 · · · 0 · · · 0 0 · · · 0

B
(i)
n1(η0) 0 · · · 0 · · · 0 · · · 0 B

(i)
nn(η0) 0 0 · · · 0

0
. . . 0 0 · · · 0 · · · 0 0

. . . 0 · · · 0

0 0 B
(i)
n1(ηN−1) 0 · · · 0 · · · 0 0 B

(i)
nn(ηN−1) 0 · · · 0

0 0 · · · 0 · · · 0 · · · 0 2
ω 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The linear equation (95) can be solved for wi by setting

(99) Mi = D − ω

2
Ai

−1
ω

2
Bi

and

(100) wi =Miwi−1

for i = 2, 3, · · · , q .

14 DAVID E. GILSINN

To solve for w1 for the fundamental solution we need to solve

(101) u1(z) =
ω

2
A1(z)u1(z)

for z ∈ (−1, 1] and
(102) u1(−1) = In
That is, we solve n problems at each iteration, one for each of the initial conditions ei, where
ei is the standard basis vector with a unit in the ith element and zero elsewhere. For the
moment we set the initial vector as

(103) w0 = (0 · · · u010 · · · u020 · · · u0n)T

where u0r, r = 1, · · · , n, is placed in each of the (N + 1)th elements and zero elsewhere.

Then from the previous construction of D and A1 we have

(104) w1 = D − ω

2
A1

−1
w0

Given that we have computed

(105) uir(z) =
N

k=0

w
(i)
rk lk(z)

on [−1, 1] for r = 1, · · · , n we can compute the result for t ∈ [a+ (i− 1)h, a+ ih] by setting
(106) zir(t) = uir(z)

for r = 1, · · · , n, where

(107) z =
2

ω
t− (2a+ (2i− 1)ω)

ω
or

(108) zir(t) =

N

k=0

w
(i)
rk lk(

2

ω
t− (2a+ (2i− 1)ω)

ω
)

The initial condition is

(109) uir(ηN) = ui−1,r(η0).

But on [a + (i− 1)ω, a + iω], zN = −1 corresponding to t = a + (i − 1)ω and on [a+ (i −
2)ω, a+ (i− 1)ω], z0 = 1 corresponding to t = a+ (i− 1)ω, so that
(110) zir(a+ (i− 1)ω) = zi−1,r(a+ (i− 1)ω)
9.2. Estimating Monodromy Operator Eigenvalues. To approximate the monodromy
operator (69) we will require a quadrature rule that satisfies

(111)

P+1

k=1

vkf (sk)→
0

−ω̂
f(s) ds

as P →∞ for each continuous function f ∈ Cω̂. The rule is satisfied if

(112)

P+1

k=1

|vk| ≤ Q,

for some Q > 0 and P = 1, 2, · · · . This is satisfied by, for example, Trapezoidal or Simpson
rules.
Let −ω̂ = s1 < s2 < · · · < sP+1 = 0, and define

(113) (Uφ) (s) = Z(s+ 2π, 0)φ(0) +

P+1

k=1

vkZ (s+ 2π, sk + ω̂)B (sk + ω̂) φ (sk)

for φ ∈ Cω̂.

STABILITY 15

Then, for each si ∈ [−ω̂, 0],

(114) (Uφ) (si) = Z(si + 2π, 0)φ(0) +

P+1

j=1

wjZ(si + 2π, sj + ω̂)B(sj + ω̂)φ(sj)

Since sP+1 = 0, (114) can be rewritten as

(Uφ) (si) =
P

j=1

wjZ(si + 2π, sj + ω̂)B(sj + ω̂)φ(sj)

+ (Z(si + 2π, 0) + wP+1Z(si + 2π, ω̂)B(ω̂))φ(sP+1) ,(115)

where Z(s,α) is the fundamental matrix of (66). Equation (115) can be put in matrix form

(116)

⎛⎜⎜⎜⎜⎜⎜⎝

(Uφ)(s1)
...

(Uφ)(si)
...

(Uφ)(sP+1)

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎡⎢⎢⎢⎢⎢⎢⎣

U1,1 · · · U1,j · · · U1,P+1
... · · · ... · · · ...
Ui,1 · · · Ui,j · · · Ui,P+1
... · · · ... · · · ...

UP+1,1 · · · UP+1,j · · · UP+1,P+1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where the block elements for i = 1, · · · , P + 1, j = 1, · · · , P are Ui,j = wjZ(si + 2π, sj +
ω̂)B(sj + ω̂). The block elements in the last column of the matrix are given by Ui,P+1 =
Z(si+2π, 0)+wP+1Z(si+2π, ω̂)B(ω̂) for i = 1, · · · , P +1. The relevant eigenvalue problem
becomes

(117)

⎡⎢⎢⎢⎢⎢⎢⎣

U1,1 · · · U1,j · · · U1,P+1
... · · · ... · · · ...
Ui,1 · · · Ui,j · · · Ui,P+1
... · · · ... · · · ...

UP+1,1 · · · UP+1,j · · · UP+1,P+1

⎤⎥⎥⎥⎥⎥⎥⎦ = λ

⎛⎜⎜⎜⎜⎜⎜⎝

(φ)(s1)
...

(φ)(si)
...

(φ)(sP+1)

⎞⎟⎟⎟⎟⎟⎟⎠
10. Determining Solutions of the Adjoint Equation Associated with Multipliers

of the Variational Equation

In order to estimate α in (33), let t ∈ [0, 2π] and ψ be the initial function defined on
[2π, 2π + ω]. The formal adjoint equation from (13) is given by

(118) v̇0(t) = −v0(t)A(t)− v0(t+ ω)B(t+ ω),

where v0(t) is a row vector. Ordinarily solving the adjoint equation would require a ”back-
ward” integration. However, Halanay [14] showed that the solution of the formal adjoint
(118) on [0, 2π] is given in row vector form by

(119) v0(t) = ψ(2π)Z(2π, t) +
2π+ω

2π

ψ(α)B(α)Z(α− ω, t) dα.
The significance of this representation is that only a “forward” integration is required to

solve for the fundamental solution Z. Let φ(s) be a continuous row vector function defined
on [−ω, 0]. Halanay [14] then defined the operator

(120) Uφ (s) = φ(−ω)Z(2π, s+ ω) +
0

−ω
φ(α)B(α + ω)Z(2π + α, s+ ω) dα.

Note the relationship to the monodromy operator (??). He also gave an associated operator

V , defined on [2π, 2π + ω], as

(121) V ψ (s) = y(s−2π,ψ) = ψ(2π)Z(2π, s−2π)+
2π+ω

2π

ψ(α)B(α)Z(α−ω, s−2π) dα.

Again, note the relationship to (119). He further showed that an eigenvalue ρ0 of V is
associated with a 1/ρ0 multiplier of the formal adjoint equation (118), the eigenvalues of

16 DAVID E. GILSINN

U,U,V are all the same, and the eigenvectors of U, V are related by φ(s) = ψ(s+2π+ω), s ∈
[ω, 0]. Although V is the operator associated with (119), the fact that the eigenvalues and

eigenvectors of V and U are the same allows algorithms developed for the characteristic
multipliers in Section 9 to be easily modified to compute the eigenvalues and eigenvectors
for (120). In particular we again partition the interval [−ω, 0] into P equal intervals of
length ∆ = ω/P by

(122) −ω = s1 < s2 < · · · < sP+1 = 0

We use a Simpson integration method to write, with the same weights as previously,

Uφ (s) = φ (s1) Z(2π, s+ ω) + w1B (s1 + ω)Z (2π + s1, s+ ω)

+
P+1

j=2

φ (sj) wjB (sj + ω)Z (2π + sj , s+ ω)(123)

To solve the adjoint equation in row form on [0, 2π], we need only compute the eigenvector

of U associated with the characteristic multiplier of U . The eigenvector is then substituted
into equation (119). From the previous section there are likely to be two complex conjugate
eigenvalues, ρ0 and ρ0, associated with complex conjugate eigenvectors v0 and v0 of (119),
so by linearity of (118) the real part forms a discretized solution of (118) and thus a single

real independent solution. We will continue to call the real part of this eigenvector φ so that
for t ∈ [0, 2π]

v0(t) = φ (s1) Z(2π, t) + w1B (s1 + ω)Z (s1 + 2π, t)

+

P+1

j=2

φ (sj) wjB (sj + ω)Z (sj + 2π, t)(124)

The j-th block column of Uφ is given by
(125)

Ũ φ̃ (sj) = φ̃(s1), · · · , φ̃(si), · · · , φ̃(sP+1)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Z(2π, sj + ω) + w1B(s1 + ω)X(s1 + 2π, sj + ω)
...

wiB(si + ω)Z(si + 2π, sj + ω)
...

wP+1B(sN+1 + ω)Z(sN+1 + 2π, sj + ω)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The eigenvector φ̃ of the matrix on the right associated with the multiplier of the variational
equation is computed and substituted into equation (124) to give the value of v0(t) on [0, 2π].
To compute α we need to estimate (13). Again we use a Simpson rule. We partition

[0, 2π] by equidistant intervals 0 = t1 < t2 < · · · < tO+1 = 2π and set h = 2π/O, where O
is an even integer. Again the weights will be set as u1 = uO+1 = h/3, otherwise uk = 4h/3
if k is even, uk = 2h/3 if k is odd. We then set

(126) α =
O+1

k=1

ukv0 (tk)J ẋ,ω (tk)

−1

where v0 is a row vector and J is a column vector.

STABILITY 17

Using the same partition of [0, 2π] we can compute v0(t) at each tk as
(127)

v0(tk) = φ̃(s1), · · · , φ̃(si), · · · , φ̃(sP+1)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Z(2π, tk) + w1B(s1 + 2π + ω)Z(s1 + 2π, tk)
...

wiB(si + 2π + ω)Z(si + 2π, tk)
...

wP+1B(sP+1 + 2π + ω)Z(sP+1 + 2π, tk)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

We finally normalize v0 so that |v0|2 = 1.
11. Estimating the M Parameter

From Halanay [14] the variation of constants formula for

(128) ż(t) = Â(t)z(t) + B̂(t)z(t− ω̂) + f(t),
where t ∈ [0, 2π], is given by

(129) z(t) = Z(t, 0)φ(0) +
0

−ω̂
Z(t,α+ ω̂)B̂(α+ ω̂)z(α) dα +

t

0

Z(t,α)f(α) dα.

The 2π periodic initial function condition with s ∈ [−ω̂, 0] is
φ(s) = Z(s+ 2π, 0)φ(0)

+
0

−ω̂
Z(s+ 2π,α + ω̂)B̂(α + ω̂)φ(α) dα +

s+2π

0

Z(s+ 2π,α)f(α) dα.(130)

The first step in computing M involves relating φ to f . Let |φ| = sup−ω̂≤s≤0 |φ(s)| and
similarly for |f | on [0, 2π]. To eliminate φ(0) from (130), set s = 0 in (130) and solve for
φ(0) as

φ(0) =
0

−ω̂
(I − Z(2π, 0))−1Z(2π,α+ ω̂)B̂(α+ ω̂)φ(α) dα

+
2π

0

(I − Z(2π, 0))−1Z(2π,α)f(α) dα.(131)

Substitute (131) into (130) and combine terms as

φ(s) =
0

−ω̂
Z(s+ 2π, 0)(I − Z(2π, 0))−1Z(2π,α + ω̂)

+ Z(s+ 2π,α+ ω̂)] B̂(α+ ω̂)φ(α) dα(132)

+
2π

0

Z(s+ 2π, 0)(I − Z(2π, 0))−1Z(2π,α) + Z(s+ 2π,α) f(α) dα.

where s ∈ [−ω̂, 0].
Let −ω̂ = s1 < s2 < · · · < sP+1 = 0, ds = ω̂

P , and 0 = t1 < t2 < · · · < tO+1 = 2π, dt =
2π
O . We can discretize (132) by setting

(133) φ (si) =
P+1

j=1

H1(i, j)φ (sj) +
O+1

k=1

H2(i, j)f (tk) ,

where

H1(i, j) = vj Z (si + 2π, 0) (I − Z(2π, 0))−1Z (2π, sj + ω̂)

+Z (si + 2π, sj + ω̂) B̂ (sj + ω̂)(134)

H2(i, j) = uk Z (si + 2π, 0) (I − Z(2π, 0))−1Z (2π, tk)

+Z (si + 2π, tk)

18 DAVID E. GILSINN

In vector matrix form (133) can be written

(135)

⎛⎜⎝ φ(s1)
...

φ(sP+1)

⎞⎟⎠ = H1
⎛⎜⎝ φ(s1)

...
φ(sP+1)

⎞⎟⎠+H2
⎛⎜⎝ f(t1)

...
f (tO+1)

⎞⎟⎠
Using a generalized inverse we can solve for the φ vector with minimum norm by

(136)

⎛⎜⎝ φ(s1)
...

φ(sP+1)

⎞⎟⎠ = (I −H1)+H2
⎛⎜⎝ f(t1)

...
f(tO+1)

⎞⎟⎠
In the second step the value of φ(0), given by equation (131), is substituted into equation

(129) and terms combined to give

z(t) =
0

−ω̂
Z(t, 0)(I − Z(2π, 0))−1Z(2π,α+ ω̂)

+ Z(t,α + ω̂)] B̂(α+ ω̂)φ(α) dα(137)

+
2π

0

Z(t, 0)(I − Z(2π, 0))−1Z(2π,α) + Z(t,α) f (α) dα.

This can be discretized by setting

(138) z (tk) =

P+1

i=1

H3(k, i)φ (si) +

O+1

j=1

H4(k, j)f (tk) ,

where

H3(k, i) = vi Z (tk, 0) (I − Z(2π, 0))−1Z (2π, si + ω̂)

+Z (tk, si + ω̂) B̂ (si + ω̂)(139)

H4(k, j) = uj Z (tk, 0) (I − Z(2π, 0))−1Z (2π, tj)

+Z (tk, tj)

In vector matrix form (138) can be written

(140)

⎛⎜⎝ z(t1)
...

z(tO+1)

⎞⎟⎠ = H3
⎛⎜⎝ φ(s1)

...
φ(sP+1)

⎞⎟⎠+H4
⎛⎜⎝ f (t1)

...
f(tO+1)

⎞⎟⎠
By substituting (136) into (140) we have

(141)

⎛⎜⎝ z(t1)
...

z(tO+1)

⎞⎟⎠ = H3 (I −H1)+H2 +H4

⎛⎜⎝ f (t1)
...

f(tO+1)

⎞⎟⎠
Therefore

(142) |z| ≤M |f |,

where M = H3 (I −H1)+H2 +H4 ∞.

STABILITY 19

0 1 2 3 4 5 6 7
−4

−3

−2

−1

0

1

2

3

4
x 10

−15 Residual Error as a Function of Time over [0, 2π]

Time

R
es

id
ua

l E
rr

or

Figure 1. Residual Error of Approximate Solution for the Van der Pol Equation.

12. Application to a Van der Pol Equation with Delay

In this section we will apply the main theorem to approximate the limit cycle of the Van
der Pol equation with unit delay, given by

(143) ẍ+ λ x(t− 1)2 − 1 ẋ(t− 1) + x = 0.
Since the period of the limit cycle is unknown we introduce an unknown frequency by
substituting t/ω for t to obtain

(144) ω2ẍ+ ωλ x(t− ω)2 − 1 ẋ(t− ω) + x = 0,

for t ∈ [0, 2π]. To compare with an approximation result obtained for ordinary differential
equations in Stokes [27], we take λ = 0.1.
The first step was to estimate an approximate 2π-periodic solution, frequency and residual

to (144). By using Galerkin’s method described in Section 7 the following approximate
solution was obtained

x̂(t) = 2.0185 cos(t)

+ 2.5771× 10−3 sin(2t) + 2.5655 × 10−2 cos(2t)
+ 1.0667× 10−4 sin(3t)− 5.2531 × 10−4 cos(3t)(145)

− 7.1780× 10−6 sin(4t)− 2.2043 × 10−6 cos(4t),
ω̂ = 1.0012.

where we have displayed only the first few harmonics. This solution was estimated based on
11 harmonics, 40,000 sampled points over [0, 2π], and 100 Chebyshev extreme points (81).
The residual was estimated by substituting (ω̂, x̂) from equation (145) into equation (144)
and finding the maximum of the absolute values of the residuals obtained in the interval
[0, 2π]. The result was r = 3.1086 × 10−15. This residual is significantly better than the
one given in Stokes [27]. The distribution of the residuals for the current case is shown in
Figure 1. The phase plot of the approximate solution is shown in Figure 2. For t ∈ [0, 2π]
we can then immediately estimate |x̂| ≤ 2.0436, | ˙̂x| ≤ 2.0279, |¨̂x| ≤ 2.1165.
In the second step, the values of the constants B and K were obtained in a straightforward

manner from the variational equation about the approximate frequency and solution given

20 DAVID E. GILSINN

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Phase Plot of Approximate Solution

X

dX
/d

t

Figure 2. Phase Plot of Approximate Solution for the Van der Pol Equation.

by

(146) ż(t) = Â(t)z(t) + B̂(t)Z(t− ω̂),
where

z =
z1
z2

, Â(t) =
0 1

−1/ω̂2 0
,

B̂(t) =
0 0

−2(λ/ω̂)x̂1(t− ω̂)x̂2(t− ω̂) (λ/ω̂) 1 − x̂1(t− ω̂)2 .

We use the fact that the natural norm of a matrix, H , associated with a vector norm
|x| = max1≤i≤n |xi| is |H | = max1≤i≤n

n
j=1 |hij |. With this definition it is not hard to

show that

|dX(x̂;φ)| ≤
0 1

−1/ω̂2 − 2(λ/ω̂)x̂1(t− ω̂)x̂2(t− ω̂) (λ/ω̂) 1 − x̂1(t− ω̂)2 |φ|,
≤ 2.3776|φ|.(147)

Therefore, for λ = 0.1, B = 2.3776. Working conservatively within the domain D =
{x ∈ C[0, 2π] : |x− x̂| ≤ 1} it is not hard to show that

|dX(x̂ω̂ + ψ1;φω̂)− dX(x̂ω̂ + ψ2;φω̂)|
≤ (6λ/ω̂) (1 + |x̂|) |ψ1 − ψ2| |φ|.(148)

Then from (145) and (148) we can estimate K = 1.8157 and, from (23), we can estimate

J(˙̂x, ω̂) ≤ 2.7546.
Next, we can estimate the characteristic multipliers of the variational equation relative

to the function x̂(t). For the quadrature steps in Sections 9 and 10 P and O were taken
as 200 and 1200 respectively. These gave mesh widths of about 1/200 on both [−ω̂, 0] and
[0, 2π]. Using the method of Section 9 we computed two simple conjugate eigenvalues with
magnitude 1.0430. All of the other eigenvalues have magnitudes near zero. These are, of
course, the eigenvalues of the monodromy operator U . The fundamental matrix Z in (69)
is computed using the collocation method of Section 9.1 (See Figure 3). The monodromy
operator is formulated as in Section 9. The eigenvalues of the monodromy operator U are
plotted in Figure 4. Note that the significant complex conjugate eigenvalues are near the

STABILITY 21

0 2 4 6 8
−1

−0.5

0

0.5

1
Z(1,1)

tt
z1

1
0 2 4 6 8

−1

−0.5

0

0.5

1
Z(2,1)

tt

z2
1

0 2 4 6 8
−2

−1

0

1

2
Z(1,2)

tt

z1
2

0 2 4 6 8
−2

−1

0

1

2
Z(2,2)

tt

z2
2

Figure 3. Fundamental Matrix for the Variational Equational relative to
the Approximate Solution for the Van der Pol Equation.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Eigenvalues for U

Real Part of Eigenvalue

Im
ag

in
ar

y
P

ar
t o

f E
ig

en
va

lu
e

Figure 4. Eigenvalues for the Monodromy Operator

unit circle but are not exactly on it. This is due to the fact that (145) is only an approximate
solution. The eigenvalues are complex conjugates because the left hand matrix in (117) is
real and non-symmetric since the fundamental solution Z is non-symmetric (See Figure

3). We can confirm that the eigenvalues of the operator Ũ are the same as those of U .
Graphically this is shown in Figure 5.
In the next step we estimate the parameter α using the methods of Section 10. The

solution of the adjoint to the variational equation was computed using equation (127) and the
parameter α in (33) was estimated by simple quadrature, with ∆ = 2π/O for a sufficiently

22 DAVID E. GILSINN

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Eigenvalues of U−tilde

Real Part of Eigenvalue

Im
ag

in
ar

y
P

ar
t o

f E
ig

en
va

lu
e

Figure 5. Eigenvalues for Ũ

large mesh, 0 = t1 < t2 < · · · < tO+1 = 2π, as

(149) α = ∆

O+1

i=1

y(ti)J(˙̂x, ω̂)(ti)

−1

.

The absolute value of α is estimated as 3.3547.
If we now apply the methods of Section 11, using Â(t) and B̂(t) defined in equation (146),

we can estimate M = 2.7618 × 102. These results allow us to estimate λ0, λ1 and λ2 in
Lemma 4.3 as λ0 = 8.4091, λ1 = 6.6736× 103, and λ2 = 3.1720× 104. Note the magnitude
of the parameters.
With the estimates above we can compute F1 = 2.5941 × 109, F2 = 1.0798 × 1010 from

(202) and (205) respectively. Then we compute δ = 4.6305 × 10−11 from (54). Then
F1δ

2 = 5.5623 × 10−12 is less than δ and F2δ = 0.5. Furthermore r < δ. Therefore, the
conditions of the main theorem are satisfied and we can conclude from Theorem 6.1 that
there exists an exact solution x∗ and an exact frequency ω∗ of equation (144) such that
|x∗ − x̂| ≤ 1.2361× 10−6 and |ω∗ − ω̂| ≤ 7.7877 × 10−10.

13. Conclusions

Although there seem to be a large number of parameters to be computed and inequalities
to be tested in order to produce the final error estimates the process is feasible. All of the
steps can be completed within a single code. The current code in Appendix 3, Section 18, has
also been built around the example in Section 12 and would have to be generalized for other
applications, but the code provides a template on which to proceed. From the computational
point of view the longest compute times involve the construction of the block matrices
(116) and (125). Computing the approximate solution and the fundamental solution of the
variational equation is relatively fast compared to these matrix constructions. It behooves
anyone wishing to apply the methods of this paper to spend some effort vectorizing the
matrix construction algorithms in Sections 9.1 and 10 as much as possible.
The parameter M in the Fredholm Lemma 3.2 is a significant parameter. From the

example above, it is clear that it would be desirable to obtain as small a value for M as
possible, since its magnitude affects the λi, i = 1, 2 parameters and λ1 appears in the
final error estimates. In particular, in the example above, the effect of M causes a very
fine residual r for the approximate solution (145) to produce a pessimistic error estimate

STABILITY 23

between the approximate solution and the exact solution in the end. From (40) the critical
parameter λ1 is linearly dependent on M .

14. Disclaimer

Certain commercial software products are identified in this paper in order to adequately
specify the computational procedures. Such identification does not imply recommendation
or endorsement by the National Institute of Standards and Technology nor does it imply
that the software products identified are necessarily the best available for the purpose.

15. Appendix 1

In this appendix we present the derivation of the differentiation matrix (86). The deriva-
tion is based on a discussion of pseudospectral Chebyshev methods given in Gottlieb et al.
[13], although a full derivation of the differentiation matrix is not given.

Lemma 15.1. For some positive integer N let the Chebyshev points be given by

(150) ηk = cos
kπ

N

on [−1, 1], for k = 0, 1, · · · , N . The Lagrange interpolation polynomials at these points are
given by

(151) lj(z) =

N

k=0
k=j

z − ηk
ηj − ηk .

We have lj(ηk) = δjk. At the Chebyshev points designate

(152) Dkj = lj(ηk)

The values for these derivatives are then given as

D00 =
2N2 + 1

6
DNN = −D00
Djj =

−ηj
2(1 − η2j)

, j = 1, 2, · · · , N − 1(153)

Dij =
ci(−1)i+j
cj(ηi − ηj)

for i = j, i, j = 0, · · · , N where

(154) ci =
2, i = 0 or N ;

1, otherwise.

Proof: The Chebyshev polynomial of degree N is given by

(155) TN(z) = cos N cos
−1

for z ∈ [−1, 1].
Define the polynomial

(156) gj(z) =
1− z2 TN(z)(−1)j+1

cjN2 (z − zj)
for j = 0, · · · , N and c0 = cN = 2, cj = 1 for 1 ≤ j ≤ N − 1. Since TN (zj) will be shown
below to equal zero, TN(z)/ (z − zj) is a polynomial of degree N −2 so gj(z) is a polynomial
of degree N . Thus, if we can show that gj (zk) = δjk for k = 0, · · · ,N , then by uniqueness
gj(z) = lj(z).

24 DAVID E. GILSINN

We first need to compute the following derivatives.

TN(z) =
−N sin N cos−1 z√

1− z2

TN(z) =
−N2 1 − z2 1/2

cos N cos−1 z −Nz sin N cos−1 z

(1− z2)3/2

TN (z) = −N2 − sin N cos−1 z N 1− z2 −1/2 1− z2 −1

+cos N cos−1 z (−1) 1− z2 −2 (−2z)

−N sin N cos−1 z 1 − z2 −3/2

+z cos N cos−1 z N 1− z2 −1/2 1 − z2 −3/2

+z sin N cos−1 z
−3
2

1 − z2 −5/2 (−2z)(157)

gj(z) =
(−1)j+1
cjN2

(−2z)TN(z)
z − zj +

1− z2 TN(z)

z − zj

+
1− z2 TN(z)

(z − zj)2

=
(−1)j+1
cjN2

Nz sin N cos−1 z

(z − zj) (1 − z2)1/2
− N

2 cos N cos−1 z
(z − zj)

+
N 1− z2 1/2

sin N cos−1 z

(z − zj)2

We will first establish that gj(z) = lj(z). Clearly, since cos
−1 zk = kπ/N , TN (zk) = 0,

and therefore, for k = j, k = 0, N, j = 0, N, gj (zk) = 0. For k = j, j = 0, N , using TN(z)
and L’Hospital’s rule for

(158) lim
z→zj

sin N cos−1 z
z − zj =

N(−1)j
1 − z2j

1/2
,

we have gj (zj) = 1. For j = 0, z0 = 1 so that

(159) g0(z) =
(−1)j+2 1− z2 1/2

sin N cos−1 z
2N(z − 1) .

For z = zk, k = 0, g0 (xk) = 0. Again apply L’Hospital’s rule to show

(160) g0 (z0) =
(−1)2
2N

lim
z→1 N cos N cos−1 z − z sin N cos−1 z

(1− z2)1/2
= 1.

For j = N, zN = −1 and gN (zk) = 0 for k = 0, 1, · · · , N − 1. For k = 0, use L’Hospital’s
rule to show

(161) gN (zN) =
(−1)N+2
2N

lim
z→−1

−z sin N cos−1 z

(1 − z2)1/2
+N cos N cos−1 z = 1.

Therefore, gj(z) = lj(z).
We now construct the entries in the differentiation matrix (177). These are given by

Djk = gk (zj) for j, k = 0, 1, · · · , N . For k = j, k = 0, N , since sin(kπ) = 0 and
cos(kπ) = (−1)k,

(162) gj (zk) =
ck(−1)j+1
cj (zk − zj)

STABILITY 25

where ck = 1. For j = 0, N, k = 0, we have z0 = 1 and, by L’Hospital’s rule,

(163) gj (z0) =
(−1)j+1
cjN2

N

1− zj limz→1
sin N cos−1 z

(1 − z2)1/2
− N2

1− zj =
c0(−1)j
cj (1− zj) ,

where c0 = 2. For j = 0, N, k = N , we have zN = −1 and, by L’Hospital’s rule,

(164) gj (xN) =
(−1)j+1
cjN2

N

1 + zj
lim
z→−1

sin N cos−1 z

(1 − z2)1/2
+
N2(−1)N
1 + zj

=
cN (−1)j+N
cj (zN − zj)

where cN = 2. For j = 0, k = 0, N ,

(165) g0 (zk) =
−1
coN2

[(1 + zk)TN (zk)] =
ck(−1)k
c0 (zk − 1)

where ck = 1, c0 = 2. For j = 0, k = 0 we start with

(166) g0(z) =
1

2N2
[(1 + z)TN(z)]

so that

(167) g0(z) =
1

2N2
[TN(z) + (1 + z)TN (z)] .

Since g0 (z0) = limz→1 g0(z) we need to find TN(1) and TN(1). From the construction of
TN(z) and L’Hospital’s rule,

(168) TN (1) = −N lim
z→1

sin N cos−1 z

(1 − z2)1/2
= N2.

Also

TN(1) = −N lim
z→1

N 1− z2 1/2
cos N cos−1 z + z sin N cos−1 z

(1− z2)3/2

=
N 1−N2

3
lim
z→1

sin N cos−1 z

(1− z2)1/2
=
N4 −N2

3
.(169)

Therefore

(170) g0 (z0) = g0(1) =
2N2 + 1

6
.

For j = 0, N , we use

TN (zj) =
(−1)j+1N2

1 − z2j
,

TN (zj) =
3(−1)j+1N2zj

1 − z2j
2 ,(171)

cj = 1, and L’Hospital’s rule to show

gj (zj) =
(−1)j+1
N2

lim
z→zj

−2zTN(z)
(z − zj) +

1− z2 TN(z)

(z − zj) − 1− z2 TN(z)

(z − zj)2

=
(−1)j+1
2N2

−4zjTN (zj) + 1− z2j TN (zj) = −
zj

2 (1− zj)2
(172)

Finally, for j = N, k = N, cN = 2,

(173) gN (zN) =
(−1)N+1
2N2

lim
z→−1 [−TN(z) + (1 − z)TN(z)] .

26 DAVID E. GILSINN

By L’Hospital’s rule

TN (−1) = −N lim
z→−1

sin N cos−1 z

(1 − z2)1/2
= −N2(−1)N(174)

Also, by L’Hospital’s rule,

TN (−1) = lim
z→−1

−N2 1 − z2 1/2
cos N cos−1 z −Nz sin N cos−1 z

(1− z2)3/2

=
N3 −N
3

lim
z→−1

sin N cos−1 z

(1− z2)1/2

=
N4 −N2

3
(−1)N(175)

Therefore

(176) gN (zN) = −
2N2 + 1

6
= −g0 (z0) .

16. Appendix 2: Bounds and Lipschitz Condition for R(z, β)

In this section we give a proof of Lemma 4.1. A lengthy, but direct, calculation shows

R(z,β) =
1

0

X1 x̂+ s
ω̂

ω
z, x̂ω̂ + s (x̂ω − x̂ω̂) + s ω̂

ω
zω −X1 (x̂, x̂ω̂) ω̂

ω
zds

+
1

0

X2 x̂+ s
ω̂

ω
z, x̂ω̂ + s (x̂ω − x̂ω̂) + s ω̂

ω
zω −X2 (x̂, x̂ω̂) ω̂

ω
zωds

+
1

0

X2 x̂+ s
ω̂

ω
z, x̂ω̂ + s (x̂ω − x̂ω̂) + s ω̂

ω
zω −X2 (x̂, x̂ω̂) (x̂ω − x̂ω̂) ds(177)

+
ω̂

ω
− 1 X1 (x̂, x̂ω̂) z +

ω̂

ω
− 1 X2 (x̂, x̂ω̂) zω̂

+ X2 (x̂, x̂ω̂) (x̂ω − x̂ω̂) + βX2 (x̂, x̂ω̂) ˙̂xω̂

+
ω̂

ω
X2 (x̂, x̂ω̂) (zω − zω̂) .

From

(178) x̂ω − x̂ω̂ =
1

0

˙̂x (t− ω̂ − sβ) (−β)ds

we have

(179) |x̂ω − x̂ω̂| ≤ |β| ˙̂x .
Similarly

(180) |zω − zω̂| ≤ |β| |ż| .
Also, from

(x̂ω − x̂ω̂) + β ˙̂xω̂ = −β
1

0

˙̂xω̂ (t− ω̂ − sβ)− ˙̂xω̂ (t− ω̂) ds

= β2
1

0

1

0

¨̂x (t− ω̂ − usβ) s du ds(181)

we have

(182) (x̂ω − x̂ω̂) + β ˙̂xω̂ ≤ β2

2
¨̂x

STABILITY 27

Using (177) through (182), along with (3) and (4), we have

(183) |R(z, β)| ≤ R(z, β),

where

R(z, β) = 2K ω̂

ω

2

|z|2 + 2 |β||z||ω| (|ω̂| + |β|)

+
β2

2
K ˙̂x

2

+ B ¨̂x + B ω̂

ω
|β| |ż|(184)

To establish the Lipschitz condition we start with the inequality

|dX (x̂+ a11, x̂ω̂ + a12; b11, b12)− dX (x̂+ a21, x̂ω̂ + a22; b21, b22)|
≤ K (|b11|+ |b12|) (|a11 − a21| + |a12 − a22|)(185)

+K (|a12|+ |a22|) (|b11 − b21|+ |b12 − b22|)
+B (|b11 − b21| + |b12 − b22|)

We need to define some functions that will help simplify the relations somewhat. Let

γ = sβ + (1− s)β̃
q = sz + (1 − s)z̃(186)

q̇ = sż + (1 − s) ˙̃z

for 0 ≤ s ≤ 1, and define

ψ1(q, γ) = x̂+
ω̂

ω̂ + γ
q

ψ2(q, γ) = x̂ω̂+γ +
ω̂

ω̂ + γ
qω̂+γ

φ1(q, γ) = − ω̂

(ω̂ + γ)2
q(187)

φ2(q, γ) = − ˙̂xω̂+γ +
ω̂

ω̂ + γ
qω̂+γ − ω̂

(ω̂ + γ)
2 q̇ω̂+γ

Since we have earlier chosen β, β̃ so that

ω̂ + β ≥ ω̂

2

ω̂ + β̃ ≥ ω̂

2
(188)

it is easy to see that

(189)
ω̂

ω̂ + γ
≤ 2

28 DAVID E. GILSINN

From (186) we have the following integrals

1

0

|q|2ds ≤ 1

3
(|z|+ |z̃|)2

1

0

|γ|ds ≤ 1

2
|β| + β̃

1

0

|q|ds ≤ 1

2
(|z|+ |z̃|)

1

0

|γ||q|ds ≤ 1

3
|β| + β̃ (|z| + |z̃|)(190)

1

0

|q̇||q|ds ≤ 1

3
|ż| + ˙̃z (|z| + |z̃|)

1

0

|q̇||γ|ds ≤ 1

3
|ż| + ˙̃z |β|+ β̃

1

0

|q̇|ds ≤ 1

2
|ż| + ˙̃z

Define the function

(191) F (z, β) = X x̂+
ω̂

ω̂ + β
z, x̂ω̂+β +

ω̂

ω̂ + β
zω̂+β .

Taking partial derivatives of (191),

d1F (z, β; y) =
ω̂

ω̂ + β
dX x̂+

ω̂

ω̂ + β
z, x̂ω̂+β +

ω̂

ω̂ + β
zω̂+β ; y, yω̂+β

d2F (z, β; η) = ηdX x̂+
ω̂

ω̂ + β
z, x̂ω̂+β +

ω̂

ω̂ + β
zω̂+β;

− ω̂

(ω̂ + β)2
z,− ˙̂xω̂+β +

ω̂

ω̂ + β
żω̂+β − ω̂

(ω̂ + β)2
zω̂+β(192)

d1F (0, 0; y) = dX (x̂, x̂ω̂; y, yω̂)

d2F (0, 0; η) = ηdX x̂, x̂ω̂; 0,− ˙̂xω̂

From the definition of R(z, β) and (191) we have

(193) R(x, β)−R z̃, β̃ = F (z, β)− F z̃, β̃ − d2F 0, 0; β − β̃ − d1F (0, 0; z − z̃)

From the definition of γ and q in (186) we define the derivative with respect to s as

(194) dsF (q, γ; ds) = d1F (q, γ; z − z̃) + d2F q,γ;β − β̃ ds.

By the Fundamental Theorem of Calculus

(195)
1

0

dsF (q,γ;ds) = F (z, β)− F z̃, β̃

STABILITY 29

We can the write, using (187) and (192)

R(z, β)−R z̃, β̃

=
1

0

[d1F (q, γ; z − z̃)− d1F (0, 0; z − z̃)] ds

+
1

0

d2F q, γ; β − β̃ − d2F 0, 0; β − β̃ ds

=
1

0

[dX (ψ1(q, γ),ψ2(q, γ);ψ1(z, γ)− ψ1(z̃,γ),ψ2(z,γ)− ψ2(z̃, γ))(196)

−dX (ψ1(0, 0),ψ2(0, 0);ψ1(z, 0) − ψ1(z̃, 0),ψ2(z, 0)− ψ2(z̃, 0))]ds

+
1

0

dX ψ1(q, γ),ψ2(q, γ); β − β̃ φ1(q, γ), β − β̃ φ2(q, γ)

−dX ψ1(0, 0),ψ2(0, 0); β − β̃ φ1(0, 0), β − β̃ φ2(0, 0) ds

From (187) we note that ψ1(0, 0) = x̂ and ψ2(0, 0) = x̂ω̂.
Then, using (185) through (196) it is possible to show with some effort that

R1 z, β, z̃, β̃ = 8K (|z| + |z̃|) + 2K ˙̂x +
B
|ω̂| |β|+ β̃

R2 z, β, z̃, β̃ =
K
3

16

|ω̃| + 4 (|z| + |z̃|)2

+ 2K ˙̂x + B 1 +
2

|ω̂| (|z| + |z̃|)

+
2B
|ω̂| |ż|+

˙̃z(197)

+
16K
3 |ω̂| (|z| + |z̃|) |ż|+

˙̃z

+
B ¨̂x

2
|β| + β̃

17. Appendix A.3: Bounds and Lipschitz Conditions for S(g)

Let g ∈ N and let r = δ. Then from Lemma 5.1 and the selection of β so that ω̂+β(g) ≥
ω̂
2 , we have

(198)
ω̂

ω̂ + β(g)
≤ 2

and

|S(g)| = |R0(z(g), β(g))|

≤ 2K ω̂

ω̂ + β(g)

2

|z(g)|2

+2
|β(g)||z(g)|
|ω̂ + β(g)| (|ω̂| + |β(g)|)

+
β(g)2

2
K ˙̂x

2

+ B ¨̂x(199)

+B ω̂

ω̂ + β(g)
|β(g)||ż(g)|

30 DAVID E. GILSINN

If we combine (40), (198), and (199) we have

|S(g)| ≤ 32Kλ12 + 16λ0λ1|ω̂| (|ω̂| + 2λ0δ)

+2λ0
2 K ˙̂x

2

+ B ¨̂x + 8Bλ0λ2 δ2.(200)

Set

E1(δ) = 32Kλ12 + 16λ0λ1|ω̂| (|ω̂|+ 2λ0δ)

+2λ0
2 K ˙̂x

2

+ B ¨̂x + 8Bλ0λ2 δ2.(201)

and let F1 be a positive constant such that

F1 ≥ 32Kλ12 + 16λ0λ1|ω̂| (|ω̂|+ 2λ0δ)(202)

+2λ0
2 K ˙̂x

2

+ B ¨̂x + 8Bλ0λ2.

Now let g, g̃ ∈ N and again set r = δ. Then, from (40), (46), and (197) and ,choosing
|g| ≤ δ, we have, with some algebra,

|S(g)− S (g̃)| ≤ λ1 8K (|z(g)|+ |z (g̃)|)

+ 2K ˙̂x +
B
|ω̂| (|β(g)| + |β (g̃)|)

+λ0
K
3

16

|ω̂| + 4 (|z(g)| + |z (g̃)|)2

+ 2K ˙̂x + B 1 +
2

|ω̂| (|z(g)|+ |z (g̃)|)

+
2B
|ω̂| (|ż(g)|+ |ż (g̃)|)

+
16K
3 |ω̂| (|z(g)| + |z (g̃)|) (|ż(g)| + |ż (g̃)|)

+
B ¨̂x

2
(|β(g)| + |β (g̃)|) |g − g̃|

≤ λ1 32Kλ1 + 4λ0 2K ˙̂x +
B
|ω̂|(203)

+λ0
16λ0

2

3

16

|ω̂| + 4 δ + 4λ1 2K ˙̂x + B 1 +
2

|ω̂|

+
8Bλ2
|ω̂| +

256Kλ1λ2
3 |ω̂| δ

+2B ¨̂x λ0 δ |g − g̃|

STABILITY 31

Finally, we set

E2(δ) = λ1 32Kλ1 + 4λ0 2K ˙̂x +
B
|ω̂|

+λ0
16λ0

2

3

16

|ω̂| + 4 δ + 4λ1 2K ˙̂x + B 1 +
2

|ω̂|(204)

+
8Bλ2
|ω̂| +

256Kλ1λ2
3 |ω̂| δ

+2B ¨̂x λ0 δ

and let F2 be a positive constant such that

F2 ≥ λ1 32Kλ1 + 4λ0 2K ˙̂x +
B
|ω̂|

+λ0
16λ0

2

3

16

|ω̂| + 4 δ + 4λ1 2K ˙̂x + B 1 +
2

|ω̂|(205)

+
8Bλ2
|ω̂| +

256Kλ1λ2
3 |ω̂| δ

+2B ¨̂x λ0

18. Appendix 3: Main Matlab Script

This section includes the main script and supporting functions, except for “cheb.m”,
which is available in Trefethen [31]. These scripts are included as is. They are not necessarily
the most efficient and are specifically oriented towards the Van der Pol equation example in
Section 12. A user will have to modify the scripts for their particular problem.

global m N CS M0 M2 V0 V1 V2 T lambda DM

global a_bar

global startt endt

global D_hat

global A_hat

global NC

global zj

global m

global piinvN

%**\\

%User input\\

%**\\

cal_B = input(’Bound on derivatives for right hand side of DDE. cal_B = ’);

cal_K = input(’Lipschitz condition on right hand side derivatives of DDE. cal_K = ’);

lambda = input(’Van der Pol Equation parameter lambda. lambda = ’);

m = input(’Approximate Solution Harmonics. m = ’);

N = input(’1/2 number of integration points for init. cond. function. N = ’);

NC = input(’Enter NC for NC + 1 Chebyshev points for collocation. NC = ’);

P = input(’Enter number of points for Trapezoidal integration on [-omega,0]. P = ’);

O = input(’Enter number integration points on [0,2pi], P/O = 1/6, e.g. 250/1500. O = ’);

%**\\

%Computing the initial approximation function\\

%**\\

32 DAVID E. GILSINN

%initialize arrays

T = zeros(2*N,1);

i = zeros(2*N,1);

V0 = zeros(2*m-1,1);

V1 = zeros(2*m,1);

V2 = zeros(2*m,1);

M0 = zeros(2*N,2*m-1);

M2 = zeros(2*N,2*m-1);

A = zeros(2*m,1);

A0 = zeros(2*m,1);

DM = zeros(2*N,2*m);

CS = zeros(2*m,2*N);

%Open I/O file

fid = fopen(’Est_Periodic_Sol_err_Output.txt’,’w’);

%Projection integration steps

i = (1:2*N)’;

T = (pi/(2*N))*(2*i-1);

%Set up fixed arrays

for n = 1:m

CS(2*n-1,:) = cos((2*n-1)*T)’;

CS(2*n,:) = sin((2*n-1)*T)’;

end

M0(:,1) = cos(T);

M2(:,1) = -cos(T);

for n = 1:m-1

M0(:,2*n) = cos((2*n+1)*T);

M0(:,2*n+1) = sin((2*n+1)*T);

M2(:,2*n) = (-(2*n+1)\^2)*cos((2*n+1)*T);

M2(:,2*n+1) = (-(2*n+1)\^2)*sin((2*n+1)*T);

end

for n = 1:m

DM(:,2*n-1) = cos((2*n-1)*T);

DM(:,2*n) = sin((2*n-1)*T);

end

%Initialize A0

A(1) = 1.0;

A(2) = 2.0;

a_bar = fsolve(’Numerical_Galerkin’,A)

fprintf(fid,’Frequency and Approximate Solution Coefficients \n$’);

nabar = length(a_bar);

for io = 1:nabar

fprintf(fid,’%15.8e \n’,a_bar(io));

end

%calculate the residual

r = Van_der_Pol(a_bar);

norm_r = max(abs(r))

fprintf(fid,’\n\nResidual error r = %15.8e \n’,norm_r);

STABILITY 33

Lgt_T = length(T);

xt = zeros(Lgt_T,1);

xdt = zeros(2,Lgt_T);

xdt_temp = zeros(2,1);

for i = 1:2*N

xt(i,1) = Galerkin_series(T(i),a_bar,m);

xdt_temp = Derivative_series(T(i),a_bar,m);

xdt(1,i) = xdt_temp(1,1);

xdt(2,i) = xdt_temp(2,1);

end

norm_abs_xt = max(abs(xt(:,1)))

norm_abs_dxt = max(abs(xdt(1,:)))

norm_abs_ddxt = max(abs(xdt(2,:)))

fprintf(fid,’\n\nMax absolute value x(t) on [0,2pi] = %15.8e\n’,norm_abs_xt);

fprintf(fid,’\n\nMax absolute value dx/dt(t) on [0,2pi] = %15.8e\n’,norm_abs_dxt);

fprintf(fid,’\n\nMax absolute value d2xdt2(t) on [0,2pi] = %15.8e\n’,norm_abs_ddxt);

%***

%Plot residual error

%***

figure;

plot(T,r);

title(’Residual Error as a Function of Time over [0, 2\pi]’);

xlabel(’Time’);

ylabel(’Residual Error’);

disp(’press enter to continue’)

pause;

%***

%Phase plot

%***

nt = 10000;

t = zeros(19999,1);

ii = (1:nt)’;

t = (ii-1)*2*pi/nt;

x_hat = Phase_series(t,a_bar,m);

figure;

plot(x_hat(:,1),x_hat(:,2));

title(’Phase Plot of Approximate Solution’);

xlabel(’X’);

ylabel(’dX/dt’);

axis equal;

disp(’press enter to continue’)

pause;

%***

% End of appoximation section

%

% Output from this section a_bar, norm_r

%***

%***

% Begin collocation section

%***

%***

% Get NC Chebyshev points, zj, and Create Chebyshev differentiation

% matrix, D. See Trefethen book.

34 DAVID E. GILSINN

%***

[D,zj]=cheb(NC);

%***

% Reset last row of D to account for initial condition row

%***

D(NC+1,1:NC) = 0.0;

D(NC+1,NC+1) = 1.0;

D_hat = zeros(2*(NC+1),2*(NC+1));

D_hat(1:NC+1,1:NC+1) = D(1:NC+1,1:NC+1);

D_hat(NC+2:2*(NC+1),NC+2:2*(NC+1)) = D(1:NC+1,1:NC+1);

%***

% Set up fixed arrays for the Van der Pol problem

% Create the A_hat matrix in the Van der Pol case. It’s constant.

% Initialize the B array and a temporary array

%***

A_hat = zeros(2*(NC+1),2*(NC+1));

A = [0 1; -1/(a_bar(1,1)^2) 0];

for i = 1:NC

A_hat(i,i) = A(1,1);

A_hat(i,NC+1+i) = A(1,2);

A_hat(NC+1+i,i) = A(2,1);

A_hat(NC+1+i,NC+1+i) = A(2,2);

end

B = zeros(2,2); % coefficients of linear delay term for Van der Pol

Temp = zeros(2,2);

%Compute the fundamental matrix at several points from 0 to 2pi

%for plotting only

%get Lagrange weights from 0 to 2*pi for Fundamental Solution

%***

disp(’Plotting Fundamental matrix from 0 to 2pi’);

%Weights = colloc(0,2*pi);

a = 0;

b = 2*pi;

%debug **

Q = fix((b-a)/a_bar(1,1))+1;

B = zeros(2,2); tj = zeros(NC+1,1); g = zeros(2,1);

W0 = zeros(2*(NC+1),1); Weights = zeros(2*(NC+1),2,Q);

B_hat = zeros(2*(NC+1),2*(NC+1),Q);

%solve for weights on first step interval

omega = a_bar(1,1);

M = ((D_hat - (omega/2)*A_hat)^(-1));

W0(NC+1,1) = 1; W0(2*(NC+1),1) = 0;

Weights(:,1,1) = M*W0;

W0(NC+1,1) = 0; W0(2*(NC+1),1) = 1;

Weights(:,2,1) = M*W0;

%other intervals

for i = 2:Q

B_hat(NC+1,1,i) = 2/omega; B_hat(2*(NC+1),NC+2,i) = 2/omega;

tj = (omega/2)*zj + (1/2)*(2*a + (2*i-1)*omega);

for k = 1:length(tj)-1

g(1,1,1) = a_bar(2,1,1)*cos(tj(k));

STABILITY 35

g(2,1,1) = -a_bar(2,1,1)*sin(tj(k));

for n = 2:m

g(1,1,1) = g(1,1,1) + a_bar(n*2,1)*cos(n*tj(k)) + a_bar(n*2-1,1)*sin(n*tj(k));

g(2,1,1) = g(2,1,1) - n*a_bar(n*2,1)*sin(n*tj(k)) + n*a_bar(n*2-1,1)*cos(n*tj(k));

end

B(2,1,1) = (-2*lambda/a_bar(1,1,1))*g(1,1,1).*g(2,1,1);

B(2,2,1) = (lambda/a_bar(1,1))*(1-g(1,1,1).^2);

%fill up the B_hat_i matrix

B_hat(k,k,i) = B(1,1,1);

B_hat(k,(NC+1)+k,i) = B(1,2,1);

B_hat((NC+1)+k,k,i) = B(2,1,1);

B_hat((NC+1)+k,(NC+1)+k,i) = B(2,2,1);

end

Weights(:,1,i) = M*(omega/2)*B_hat(1:2*(NC+1),1:2*(NC+1),i)*Weights(:,1,i-1);

Weights(:,2,i) = M*(omega/2)*B_hat(1:2*(NC+1),1:2*(NC+1),i)*Weights(:,2,i-1);

end

%end debug **

[max_row, max_col, max_plane] = size(Weights);

%interpolate the fundamental solution

pp = 1000;

tt = zeros(pp+1,1);

zz = zeros(pp+1,1);

yy = zeros(NC+1,1,1);

del = 2*pi/pp;

for ii = 1:pp+1

%get a time value betwee 0 and 2*pi

tt(ii) = (ii-1)*del;

Z = vdp_interp(0,tt(ii),Weights);

yz11(ii,1) = Z(1,1);

yz21(ii,1) = Z(2,1);

yz12(ii,1) = Z(1,2);

yz22(ii,1) = Z(2,2);

end

figure;

subplot(2,2,1);

plot(tt(1:pp+1),yz11(1:pp+1,1));

title(’Z(1,1)’);

xlabel(’tt’);

ylabel(’z11’);

subplot(2,2,2);

plot(tt(1:pp+1),yz21(1:pp+1,1));

title(’Z(2,1)’);

xlabel(’tt’);

ylabel(’z21’);

subplot(2,2,3);

plot(tt(1:pp+1),yz12(1:pp+1,1));

title(’Z(1,2)’);

xlabel(’tt’);

ylabel(’z12’);

subplot(2,2,4);

plot(tt(1:pp+1),yz22(1:pp+1,1));

title(’Z(2,2)’);

xlabel(’tt’);

ylabel(’z22’);

36 DAVID E. GILSINN

disp(’press enter to continue’)

pause;

% clear out the arrays not needed

clear pp tt yy zz Z Weights

%**

% Computing the monodromy matrix. This is a 2*(P+1) x 2*(P+1) matrix

% Eigenvalues by Collocation. Integration by Trapezoidal rule.

%**

omega = a_bar(1,1);

delta = omega/P; % P is user selected number of Trapezoidal points

iii = 1:P+1;

s = -omega + (iii-1)*delta; %integration from -omega to 0 for monodromy matrix

U = zeros(2*(P+1),2*(P+1)); % the 2 is for the 2 x 2 blocks for VdP equat.

Z = zeros(2,2); %redefine Z again

endt = 2*pi;

B(1,1) = 0.0;

B(1,2) = 0.0;

delta1 = delta;

% Load by column

for jj = 1:P+1

disp(sprintf(’Creating Block column %d for U\n’,jj))

startt = s(jj) + omega;

%get the weights for the number of step intervals between

%startt = s(jj)+omega and endt = 2*pi

Weights_eig = colloc(startt,endt);

% Set up B matrix for integration step using trapezoidal rule

x_hat = Vdp_series(s(jj),a_bar,m);

B(2,1) = (-2*lambda/omega)*x_hat(1)*x_hat(2);

B(2,2) = (lambda/omega)*(1.0 - x_hat(1)^2);

% form row blocks for column j

for ii = 1:P+1

tt(ii) = s(ii) + 2*pi;

Z = vdp_interp(startt,tt(ii),Weights_eig);

if ((ii == 1)|(ii == P+1))

delta1 = delta/2;

end

Temp = delta1*Z*B;

% Fill in the i row block of the current column

U(2*ii-1,2*jj-1) = Temp(1,1);

U(2*ii-1,2*jj) = Temp(1,2);

U(2*ii,2*jj-1) = Temp(2,1);

U(2*ii,2*jj) = Temp(2,2);

end

clear weights_eig %need to clear since startt changes

end

%add the initial condition blocks to the last column

disp(’Adding the initial condition blocks to the last column’)

jj = P+1;

startt = 0;

Weights_eig = colloc(startt,2*pi);

for ii = 1:P+1

tt(ii) = s(ii) + 2*pi;

STABILITY 37

Z = vdp_interp(startt,tt(ii),Weights_eig);

U(2*ii-1,2*(P+1)-1) = U(2*ii-1,2*(P+1)-1) + Z(1,1);

U(2*ii,2*(P+1)-1) = U(2*ii,2*(P+1)-1) + Z(2,1);

U(2*ii-1,2*(P+1)) = U(2*ii-1,2*(P+1)) + Z(1,2);

U(2*ii,2*(P+1)) = U(2*ii,2*(P+1)) + Z(2,2);

end

eig(U)

disp(’Operator matrix U is filled, now computing eigenvalues’)

[V,Diag] = eig(U);

[row,col] = size(Diag);

abs_diag = zeros(row,1);

disp(’Eigenvalues of U by colloc and max absolute value’)

fprintf(fid,’\n\nEigenvalues of U\n’);

for i = 1:row

eigen(i,1) = Diag(i,i);

re = real(eigen(i,1));

im = imag(eigen(i,1));

fprintf(fid,’%15.8e + i %15.8e\n’,re,im);

end

for i = 1:row

abs_diag(i,1) = abs(Diag(i,i));

end

max_abs_diag = max(abs_diag)

fprintf(fid,’\n\nMaximum Absolute Value of Eigenvalue for U\n’)

fprintf(fid,’%15.8e\n’,max_abs_diag);

%plot the first 20 eigenvalues of U

figure

hold on;

ang = 0:pi/100:2*pi;

plot(sin(ang),cos(ang),’b-’)

plot(eigen,’rx’)

hold off;

title(’Eigenvalues for U’);

xlabel(’Real Part of Eigenvalue’);

ylabel(’Imaginary Part of Eigenvalue’);

axis equal;

%disp(’press enter to continue’)

%pause;

%***

%Computing solution of the adjoint associated with characteristic

%multiplier near the unit circle

%***

%First fill the matrix U_tilde. According to Halanay this should have

%the same eigenvalues as U. Trapezoidal integration from -omega to 0.

%***

U_tilde = zeros(2*(P+1),2*(P+1));

delta = omega/P;

iii = 1:P+1;

s = -omega + (iii-1)*delta;

delta1 = delta;

B(1,1) = 0.0;

B(1,2) = 0.0;

%load by columns

38 DAVID E. GILSINN

for jj = 1:P+1

disp(sprintf(’Creating Block column %d for U_tilde\n’,jj))

startt = s(jj) + omega;

Weights_adj_eig = colloc(startt, 2*pi);

%Load row blocks for colum jj

for ii = 1:P+1

%B Matrix for Van der Pol

x_hat = Vdp_series(s(ii),a_bar,m);

B(2,1) = (-2*lambda/omega)*x_hat(1)*x_hat(2);

B(2,2) = (lambda/omega)*(1.0-x_hat(1)^2);

%Interpolate at row ii Z(s(ii)+2pi,s(jj)+omega)

Z = vdp_interp(startt,s(ii)+2*pi,Weights_adj_eig);

if ((ii == 1)|(ii == P+1))

delta1 = delta/2;

end

Temp = delta1*B*Z;

%Fill in the row blocks ii of the current column jj

U_tilde(2*ii-1,2*jj-1) = Temp(1,1);

U_tilde(2*ii-1,2*jj) = Temp(1,2);

U_tilde(2*ii,2*jj-1) = Temp(2,1);

U_tilde(2*ii,2*jj) = Temp(2,2);

end

clear Weights_adj_eig

end

%add initial condition block to first row

disp(’Adding the initial condition blocks to the first row’)

endt = 2*pi;

for jj = 1:P+1

startt = s(jj) + omega;

Weights_adj_eig = colloc(startt,endt);

%Interpolate Z(2pi,s(jj)+omega)

Z = vdp_interp(startt,endt,Weights_adj_eig);

U_tilde(1,2*jj-1) = U_tilde(1,2*jj-1) + Z(1,1);

U_tilde(2,2*jj-1) = U_tilde(2,2*jj-1) + Z(2,1);

U_tilde(1,2*jj) = U_tilde(1,2*jj) + Z(1,2);

U_tilde(2,2*jj) = U_tilde(2,2*jj) + Z(2,2);

clear Weights_adj_eig

end

eig(U_tilde)

disp(’Operator matrix U_tilde is now filled,’);

disp(’computing eigenvalues and eigenvectors of transpose’);

disp(’Transposing U_tilde is necessary in order for Matlab’);

disp(’to get column eigenvectors’);

[PhiT,Dadj] = eig(U_tilde’);

[row,col] = size(Dadj);

abs_diag = zeros(row,1);

disp(’Eigenvalues by Colloc of U-tilde transpose and max abs val.’);

fprintf(fid,’\n\nEigenvalues of U-tilde\n’);

for i = 1:row

eadj(i,1) = Dadj(i,i);

re = real(eadj(i,1));

im = imag(eadj(i,1));

fprintf(fid,’%15.8e + i %15.8e\n’,re,im);

end

STABILITY 39

for i = 1:row

abs_diag(i,1) = abs(Dadj(i,i));

end

max_abs_diag = max(abs_diag);

fprintf(fid,’\n\nMaximum Absolute Value of Eigenvalue for U-tilde\n’)

fprintf(fid,’%15.8e\n’,max_abs_diag);

I_max_eig = find(abs_diag == max_abs_diag)

figure;

hold on;

ang = 0:pi/100:2*pi;

plot(sin(ang),cos(ang),’b-’);

plot(eadj,’rx’);

title(’Eigenvalues of U-tilde’);

xlabel(’Real Part of Eigenvalue’);

ylabel(’Imaginary Part of Eigenvalue’);

axis equal;

%disp(’press enter to continue’)

%pause;

%***

%The first eigenvector in PhiT is associated with the first eigenvector of

%largest magnitude. Transpose it to make it a row vector.

%***

pp(:,1) = PhiT(:,I_max_eig(1));

lgth = length(pp);

phi = zeros(1,lgth);

phi(1,1:lgth) = pp(:,1)’;

U_adj = zeros(2*(P+1),2*(O+1));

%N+1 blocks

iii = 1:P+1;

s = -omega + (iii-1)*delta;

sp2pi = s + 2*pi;

endt = 2*pi;

kk = 1:O+1;

t = (kk-1)*2*pi/O;

for k = 1:O+1

%Compute adjoint solution at the t(k)

%This will be the k-th column

disp(sprintf(’Computing adjoint at y(t(%d))\n’,k));

%Load up the column k

startt = t(k);

if (k == 1)

startt = 0.0;

end

%Get weights for Z(2pi,t(k))

Weights_adj = colloc(startt,endt);

dela1 = delta;

B(1,1) = 0.0;

B(1,2) = 0.0;

% Load row block for column

for ii = 1:P+1

%disp(sprintf(’Creating Block column %d for adjoint\n’,ii))

x_hat = Vdp_series(s(ii),a_bar,m);

B(2,1) = (-2*lambda/omega)*x_hat(1)*x_hat(2);

B(2,2) = (lambda/omega)*(1.0-x_hat(1)^2);

40 DAVID E. GILSINN

%Check relation between start and end time of fundamental solution

if (startt > sp2pi(ii))

Z = zeros(2,2);

elseif (startt == sp2pi(ii))

Z = eye(2);

else

%Interpolate Z(s(ii)+2pi,t(k))

Z = vdp_interp(startt,sp2pi(ii),Weights_adj);

end

if ((ii == 1) | (ii == P+1))

delta1 = delta/2; %Trapezoidal rule end weights

end

Temp = delta1*B*Z;

% Fill in the row blocks of the current column

U_adj(2*ii-1,2*k-1) = Temp(1,1);

U_adj(2*ii-1,2*k) = Temp(1,2);

U_adj(2*ii,2*k-1) = Temp(2,1);

U_adj(2*ii,2*k) = Temp(2,2);

end

clear Weights_adj

end

endt = 2*pi;

%add initial condition block to first block row of column k

for k = 1:O+1

startt = t(k);

%Interpolate Z(2pi,t(k))

if (k == 1)

startt = 0.0;

end

Weights_adj = colloc(startt,endt);

Z = vdp_interp(startt,endt,Weights_adj);

U_adj(1,2*k-1) = U_adj(1,2*k-1) + Z(1,1);

U_adj(2,2*k-1) = U_adj(2,2*k-1) + Z(2,1);

U_adj(1,2*k) = U_adj(1,2*k) + Z(1,2);

U_adj(2,2*k) = U_adj(2,2*k) + Z(2,2);

clear Weights_adj

end

%Apply row eigenvector to U_adj

%v_0 is 1 row by 2*(O+1) columns since phi is 1 row by 2*(P+1) columns

%and U_adj is P+1 rows by O+1 columns

%v_0 might be complex

v_0 = phi*U_adj;

%normalizing v_0

norm_v_0 = norm(v_0,2);

v_0 = v_0/norm_v_0;

%***

%Computing the alpha parameter

%***

% Now compute the alpha parameter in Stokes theorem

disp(’Computing alpha’);

% First compute the J(omega,x_dot) function at the mesh points in [0,2*pi].

% compute alpha. First comput J(i)

B(1,1) = 0.0;

STABILITY 41

B(1,2) = 0.0;

alpha = 0.0;

J1 = zeros(2,O+1);

J1_temp = zeros(2,1);

w_trap = zeros(O+1,1);

for k = 1:O+1

w_trap(k,1) = 2*pi/O;

if ((k==1)|(k==O+1))

w_trap(k,1) = pi/O;

end

%first set up B(t(k))

x_hat = Vdp_series(t(k)-omega,a_bar,m);

B(2,1) = (-2*lambda/omega)*x_hat(1)*x_hat(2);

B(2,2) = (lambda/omega)*(1.0-x_hat(1)^2);

%Multiply by the derivative at t(k) - omega

x_hat_dot_delay = Derivative_series(t(k)-omega,a_bar,m);

%add derivative at t(k)

x_hat_dot_t = Derivative_series(t(k),a_bar,m);

%compute J as 2 rows, 1 column

J = x_hat_dot_t + B*x_hat_dot_delay;

J_n(k,1) = norm(J,2);

v0(1,1) = v_0(1,2*k-1);

v0(1,2) = v_0(1,2*k);

%form alpha

alpha = alpha + w_trap(k,1)*v0*J;

end

alpha = 1/alpha

norm_J = max(J_n)

fprintf(fid,’\n\nPrinting estimate of norm of J on [0,2pi] = %15.8e\n’,norm_J);

fprintf(fid,’\n\nPrinting alpha\n’);

re = real(alpha);

im = imag(alpha);

fprintf(fid,’%15.8e + i %15.8e\n’,re,im);

%This alpha might be complex but we really only use abs(alpha)

disp(’Absolute value of alpha’);

abs_alpha = abs(alpha)

fprintf(fid,’\n\nAbsolute Value of alpha\n’);

fprintf(fid,’%15.8e\n’,abs_alpha);

%disp(’Press Enter to Continue’);

%pause;

%***

%Now compute the M bound

%***

% get integral discretization steps

ds = omega/P;

dt = 2*pi/O;

% Identify points

iP = 1:P+1;

sP = -omega + (iP -1)*ds;

iO = 1:O+1;

42 DAVID E. GILSINN

tO = (iO -1)*dt;

%Trapezoidal weights for integration

w = zeros(P+1);

u = zeros(O+1);

w(1:P+1) = ds;

u(1:O+1) = dt;

w(1) = ds/2;

w(P+1) = ds/2;

u(1) = dt/2;

u(O+1) = dt/2;

% Set up some fixed matrices

% Get collocation weights between 0 and 2pi

Weights1 = colloc(0,2*pi);

% Interpolate to form fundamental solution at 2pi, i.e. Z(2*pi,0)

Z = vdp_interp(0,2*pi,Weights1);

% Form (i - Z(2*pi,0))^(-1)

I2 = eye(2);

ImZ_inv = (I2 - Z)^(-1);

% Form (i - Z(2*pi,0))^(-1)*Z(2*pi,0)

ImZ_inv_Z = ImZ_inv * Z;

% Set up some cell arrays

disp(’Setting up cell arrays’);

B(1,1) = 0;

B(1,2) = 0;

for iPP = 1:P+1

Z = vdp_interp(0,sP(iPP)+2*pi,Weights1);

Z_cell(iPP,1) = {Z*ImZ_inv};

x_hat = Vdp_series(sP(iPP),a_bar,m);

B(2,1) = (-2*lambda/omega)*x_hat(1)*x_hat(2);

B(2,2) = (lambda/omega)*(1.0 - x_hat(1)^2);

B_cell(iPP,1) = {B};

end

clear Weights1;

% Initialize the H arrays

IP = eye(2*(P+1));

H1 = zeros(2*(P+1), 2*(P+1));

H2 = zeros(2*(P+1), 2*(O+1));

H3 = zeros(2*(O+1), 2*(P+1));

H4 = zeros(2*(O+1), 2*(O+1));

H5 = zeros(2*(O+1), 2*(O+1));

% Compute H1

disp(’Computing H1’);

STABILITY 43

for j1 = 1:P+1

disp(sprintf(’Column block %d of %d columns of H1\n’,j1,P+1));

Weights2 = colloc(sP(j1)+omega,2*pi);

Z1 = vdp_interp(sP(j1)+omega,2*pi,Weights2);

for i1 = 1:P+1

Temp1 = Z_cell{i1,1}*Z1;

Z2 = vdp_interp(sP(j1)+omega, sP(i1)+2*pi, Weights2);

Temp2 = (Temp1 +Z2)*B_cell{j1,1};

Temp2 = w(j1)*Temp2; %Trapezoidal rule weights

H1(2*i1-1,2*j1-1) = Temp2(1,1);

H1(2*i1-1,2*j1) = Temp2(1,2);

H1(2*i1,2*j1-1) = Temp2(2,1);

H1(2*i1,2*j1) = Temp2(2,2);

end

clear Weights2;

end

% Compute H2

disp(’Computing H2’);

for k2 = 1:O+1

disp(sprintf(’Column block %d of %d columns of H2\n’,k2,O+1));

Weights3 = colloc(tO(k2), 2*pi);

Z1 = vdp_interp(tO(k2),2*pi,Weights3);

for i2 = 1:P+1

if (tO(k2) > sP(i2)+2*pi)

Z2 = zeros(2,2);

elseif (tO(k2) == sP(i2)+2*pi)

Z2 = eye(2);

else

Z2 = vdp_interp(tO(k2),sP(i2)+2*pi,Weights3);

end

Temp3 = Z_cell{i2,1}*Z1 + Z2;

Temp3 = u(k2)*Temp3;

H2(2*i2-1,2*k2-1) = Temp3(1,1);

H2(2*i2-1,2*k2) = Temp3(1,2);

H2(2*i2,2*k2-1) = Temp3(2,1);

H2(2*i2,2*k2) = Temp3(2,2);

end

clear Weights3;

end

Weights1 = colloc(0,2*pi);

% Compute H3

disp(’Computing H3’);

for k3 = 1:O+1

disp(sprintf(’Row block %d of %d rows of H3\n’,k3,O+1));

Temp1 = vdp_interp(0,tO(k3),Weights1);

for j3 = 1:P+1

Weights2 = colloc(sP(j3)+omega,2*pi);

if (j3 == 1)

Temp4 = (Temp1*ImZ_inv_Z + Temp1)*B_cell{1,1};

Temp4 = w(1)*Temp4;

H3(2*k3-1,1) = Temp4(1,1);

H3(2*k3-1,2) = Temp4(1,2);

H3(2*k3,1) = Temp4(2,1);

44 DAVID E. GILSINN

H3(2*k3,2) = Temp4(2,2);

else

if (tO(k3) < sP(j3) + omega)

Temp2 = zeros(2,2);

elseif (tO(k3) == sP(j3) + omega)

Temp2 = eye(2);

else

Temp2 = vdp_interp(sP(j3)+omega,tO(k3),Weights2);

Temp3 = vdp_interp(sP(j3)+omega,2*pi,Weights2);

Temp4 = (Temp1*ImZ_inv*Temp3 + Temp2)*B_cell{j3,1};

Temp4 = w(j3)*Temp4;

H3(2*k3-1,2*j3-1) = Temp4(1,1);

H3(2*k3-1,2*j3) = Temp4(1,2);

H3(2*k3,2*j3-1) = Temp4(2,1);

H3(2*k3,2*j3) = Temp4(2,2);

end

end

clear Weights2;

end

end

%Computing H4

disp(’Computing H4’);

for l4 = 1:O+1

disp(sprintf(’Row block %d of %d rows of H4\n’,l4,O+1));

Weights3 = colloc(tO(l4),2*pi);

if (l4 == 1)

Temp1 = vdp_interp(0,2*pi,Weights1);

for k4 = 1:O+1

Temp2 = vdp_interp(0,tO(k4),Weights1);

Temp3 = Temp2*ImZ_inv*Temp1 + Temp2;

Temp3 = u(1)*Temp3;

H4(2*k4-1,1) = Temp3(1,1);

H3(2*k4-1,2) = Temp3(1,2);

H3(2*k4,1) = Temp3(2,1);

H3(2*k4,2) = Temp3(2,2);

end

else

Temp1 = vdp_interp(tO(l4),2*pi,Weights3);

for k4 = 1:O+1

if (tO(l4) > tO(k4))

Temp2 = zeros(2,2);

elseif (tO(l4) == tO(k4))

Temp2 = eye(2);

else

Temp2 = vdp_interp(tO(l4),tO(k4),Weights3);

Temp3 = vdp_interp(tO(l4),2*pi,Weights3);

Temp4 = vdp_interp(0,tO(k4),Weights1);

Temp5 = Temp4*ImZ_inv*Temp3 + Temp2;

Temp5 = u(l4)*Temp5;

H4(2*k4-1,2*l4-1) = Temp5(1,1);

H4(2*k4-1,2*l4) = Temp5(1,2);

H4(2*k4,2*l4-1) = Temp5(2,1);

H4(2*k4,2*l4) = Temp5(2,2);

STABILITY 45

end

end

end

clear Weights3;

end

%Computing final bound

H5 = H3*pinv(IP - H1)*H2 + H4;

M = norm(H5,inf);

fprintf(fid,’\n\nPrinting M bound\n’);

fprintf(fid,’%15.8e\n’,M);

disp(’Final M bound’)

M

%disp(’Press Enter to Continue’);

%pause;

%**

%Final error estimates

%**

abs_omega = abs(a_bar(1));

disp(’lambda_0’);

lambda_0 = sqrt(2*pi)*abs_alpha

fprintf(fid,’\n\n lambda_0 = ’);

fprintf(fid,’%15.8e\n’,lambda_0);

disp(’om_min_4L0r must be >= 0’);

om_min_4L0r = omega-4*lambda_0*norm_r

fprintf(fid,’\n\n om_min_4L0r = ’);

fprintf(fid,’%15.8e\n’,om_min_4L0r);

lambda_1 = M*(1+sqrt(2*pi)*abs_alpha*norm_J)

fprintf(fid,’\n\n lambda_1 = ’);

fprintf(fid,’%15.8e\n’,lambda_1);

lambda_2 = (lambda_1/(abs_omega*M))*(1+2*M*cal_B)

fprintf(fid,’\n\n lambda_2 = ’);

fprintf(fid,’%15.8e\n’,lambda_2);

E11 = 32*cal_K*lambda_1^2;

E12 = (16*lambda_0*lambda_1/abs_omega)*(abs_omega+2*lambda_0*norm_r);

E13 = 2*lambda_0^2 *(cal_K*norm_abs_dxt^2 + cal_B*norm_abs_ddxt);

E14 = 8*cal_B*lambda_0*lambda_2;

disp(’E1 must be <= 1’)

E1 = (E11 + E12 + E13 + E14)*norm_r

fprintf(fid,’\n\n E1 = ’);

fprintf(fid,’%15.8e\n’,E1);

E21 = 32*cal_K*lambda_1^2;

E22 = 4*lambda_0*lambda_1*(2*cal_K*norm_abs_dxt + cal_B/abs_omega);

E23 = (16*lambda_1^2*lambda_0/3)*((16/abs_omega)+4)*norm_r;

E24 = 4*lambda_1*lambda_0*(2*cal_K*norm_abs_dxt + cal_B*(1 +2/abs_omega));

E25 = 8*cal_B*lambda_2*lambda_0/abs_omega;

E26 = 256*cal_K*lambda_1*lambda_2*lambda_0*norm_r/(3*abs_omega);

E27 = 2*cal_B*norm_abs_ddxt*lambda_0^2;

disp(’E2 must be strictly < 1’)

E2 = (E21 + E22 + E23 + E24 + E25 + E26 + E27)*norm_r

fprintf(fid,’\n\n E2 = ’);

fprintf(fid,’%15.8e\n’,E2);

disp(’Final errors’)

Final_error_x_star = 4*lambda_1*norm_r

Final_error_omega_star = 2*lambda_0*norm_r

46 DAVID E. GILSINN

fprintf(fid,’\n\n Final_error_x_star = ’);

fprintf(fid,’%15.8e\n’,Final_error_x_star);

fprintf(fid,’\n\n Final_error_omega_star = ’);

fprintf(fid,’%15.8e\n’,Final_error_omega_star);

%**

fclose(fid);

18.1. colloc.m.

function Weights = colloc(a,b)

global D_hat

global A_hat

global a_bar

global NC

global zj

global lambda

global m

Q = fix((b-a)/a_bar(1,1))+1;

B = zeros(2,2,1); tj = zeros(NC+1,1); g = zeros(2,1);

W0 = zeros(2*(NC+1),1); Weights = zeros(2*(NC+1),2,Q);

B_hat = zeros(2*(NC+1),2*(NC+1),Q);

%solve for weights on first step interval

omega = a_bar(1,1);

M = ((D_hat - (omega/2)*A_hat)^(-1));

W0(NC+1,1) = 1; W0(2*(NC+1),1) = 0;

Weights(:,1,1) = M*W0;

W0(NC+1,1) = 0; W0(2*(NC+1),1) = 1;

Weights(:,2,1) = M*W0;

%other intervals

for i = 2:Q

B_hat(NC+1,1,i) = 2/omega; B_hat(2*(NC+1),NC+2,i) = 2/omega;

tj = (omega/2)*zj + (1/2)*(2*a + (2*i-1)*omega);

for k = 1:length(tj)-1

g(1,1,1) = a_bar(2,1,1)*cos(tj(k));

g(2,1,1) = -a_bar(2,1,1)*sin(tj(k));

for n = 2:m

g(1,1,1) = g(1,1,1) + a_bar(n*2,1)*cos(n*tj(k)) + a_bar(n*2-1,1)*sin(n*tj(k));

g(2,1,1) = g(2,1,1) - n*a_bar(n*2,1)*sin(n*tj(k)) + n*a_bar(n*2-1,1)*cos(n*tj(k));

end

B(2,1,1) = (-2*lambda/a_bar(1,1,1))*g(1,1,1).*g(2,1,1);

B(2,2,1) = (lambda/a_bar(1,1))*(1-g(1,1,1).^2);

%fill up the B_hat_i matrix

B_hat(k,k,i) = B(1,1,1);

B_hat(k,(NC+1)+k,i) = B(1,2,1);

B_hat((NC+1)+k,k,i) = B(2,1,1);

B_hat((NC+1)+k,(NC+1)+k,i) = B(2,2,1);

end

Weights(:,1,i) = M*(omega/2)*B_hat(1:2*(NC+1),1:2*(NC+1),i)*Weights(:,1,i-1);

Weights(:,2,i) = M*(omega/2)*B_hat(1:2*(NC+1),1:2*(NC+1),i)*Weights(:,2,i-1);

end

18.2. Derivative series.m.

STABILITY 47

function g=Derivative_series(t,a_bar,m)

g(1,:) = -a_bar(2,1)*sin(t);

g(2,:) = -a_bar(2,1)*cos(t);

for n = 2:m

g(1,:) = g(1,:) - n*a_bar(n*2,1)*sin(n*t) + n*a_bar(n*2-1,1)*cos(n*t);

g(2,:) = g(2,:) - (n^2)*a_bar(n*2,1)*cos(n*t) - (n^2)*a_bar(n*2-1,1)*sin(n*t);

end

18.3. Galerkin series.m.

function g=Galerkin_series(t,a_bar,m)

g = a_bar(2,1)*cos(t);

for n = 2:m

g = g + (a_bar(n*2,1)*cos(n*t) + a_bar(n*2-1,1)*sin(n*t));

end

18.4. lagrint.m.

function yi = lagrint(x,y,xi)

% lagrint Interpolation with Lagrange polynomials of arbitrary degree

%

% Synopsis: yi = lagrint(x,y,xi)

%

% Input: x,y = tabulated data

% xi = point where interpolation is to be evaluated

%

% Output: yi = value of y at x = xi obtained via interpolation with

% polynomial of degree n-1, where length(y) = length(x) = n

dxi = xi - x; % vector of xi - x(1), xi - x(2), ... values

n = length(x); % degree of polynomial is n-1

L = zeros(size(y)); % preallocate L for speed

% Refer to section 10.2.2 in text for explanation of vectorized code

% used to compute Lagrange basis functions, L(j)

L(1) = prod(dxi(2:n))/prod(x(1)-x(2:n)); % j = 1

L(n) = prod(dxi(1:n-1))/prod(x(n)-x(1:n-1)); % j = n

for j=2:n-1

num = prod(dxi(1:j-1))*prod(dxi(j+1:n));

den = prod(x(j)-x(1:j-1))*prod(x(j)-x(j+1:n));

L(j) = num/den;

end

yi = sum(y.*L); % Evaluate Polynomial: sum of y(j)*L(j), j=1..n

18.5. Phase series.m.

function x_hat=Phase_series(t,a_bar,m)

x_hat(:,1)=a_bar(2,1)*cos(t);

x_hat(:,2)=-a_bar(2,1)*sin(t);

for n = 2:m

x_hat(:,1) = x_hat(:,1) + a_bar(n*2,1)*cos(n*t) + a_bar(n*2-1,1)*sin(n*t);

x_hat(:,2) = x_hat(:,2) - n*a_bar(n*2,1)*sin(n*t) + n*a_bar(n*2-1,1)*cos(n*t);

end

48 DAVID E. GILSINN

18.6. Van der Pol.m.

function vdp = Van_der_Pol(A)

global m N CS M0 M2 V0 V1 V2 T lambda DM

vdp = (A(1)^2)*xdd(A) + A(1)*lambda*(delay_x(A).^2 - 1).*delay_xd(A) + x(A);

18.7. vdp interp.m.

function Z = vdp_interp(startt,eval_pt,Weights)

%VDP_INTERP Lagrange interpolation using Chebyshev Points to generate a 2 x

%2 matrix Z of the fundamental solution for Van der Pol equation. Frequency in a_bar(1).

global a_bar

global NC

global zj

omega = a_bar(1,1);

kk = fix((eval_pt - startt)/omega)+1;

zz = (2/omega)*eval_pt - (2*startt + (2*kk-1)*omega)/omega ;

yy(1:NC+1,1,1) = Weights(1:NC+1,1,kk);

Z(1,1) = lagrint(zj,yy,zz);

yy(1:NC+1,1,1) = Weights(NC+2:2*(NC+1),1,kk);

Z(2,1) = lagrint(zj,yy,zz);

yy(1:NC+1,1,1) = Weights(1:NC+1,2,kk);

Z(1,2) = lagrint(zj,yy,zz);

yy(1:NC+1,1,1) = Weights(NC+2:2*(NC+1),2,kk);

Z(2,2) = lagrint(zj,yy,zz);

18.8. Vdp series.m.

function x_hat=Vdp_series(t,a_bar,m)

%set up for dde23

x_hat(1,:)=a_bar(2,1)*cos(t);

x_hat(2,:)=-a_bar(2,1)*sin(t);

for n = 2:m

x_hat(1,:) = x_hat(1,:) + a_bar(n*2,1)*cos(n*t) + a_bar(n*2-1,1)*sin(n*t);

x_hat(2,:) = x_hat(2,:) - n*a_bar(n*2,1)*sin(n*t) + n*a_bar(n*2-1,1)*cos(n*t);

end

References

[1] B. Balachandran, Nonlinear dynamics of milling processes’, Philosophical Transactions of the Royal

Society of London, Series A, 359 (2001) 793-819.

[2] H. T. Banks and F. Kappel, Spline Approximations for Functional Differential Equations, Journal of

Differential Equations, 34 (1979) 496—522.

[3] E. Bueler, Chebyshev Collocation for Linear, Periodic Ordinary and Delay Differential Equations: A

Posteriori Estimates, http://arxiv.org/abs/math.NA/0409464

[4] E. A. Butcher, H. Ma, E. Bueler, V. Averina, and Z. Szabo, Stability of linear time-periodic delay-

differential equations via Chebyshev polynomials, Int. J. Numer. Meth. Engng, 59 (2004), 895—922.

[5] K. Engelborghs, T. Luzyanina, K. J. In ’T Hout, and D. Roose, Collocation Methods for the Computation

of Periodic Solutions of Delay Differential Equations, SIAM J. Sci. Comp., 22 (2000) 1593—1609.

[6] D. E. Gilsinn, Discrete Fourier Series Approximation to Periodic Solutions of Autonomous Delay Dif-

ferential Equations, DETC 2005-84038, Proceedings of IDETC/CIE 2005: ASME 2005 International

Design Engineering Technical Conferences & Computers and Information in Engineering Conference,

September 24-28, Long Beach, CA.

[7] D. E. Gilsinn, Approximating Limit Cycles of a Van der Pol Equation with Delay, Proceedings of Dynamic

Systems and Applications 4, Ed. G. S. Ladde, N. G. Medhin, M. Sambandham, Dynamic Publishers,

Inc., 2004, 270-276

[8] D. E. Gilsinn, Estimating Critical Hopf Bifurcation Parameters for a Second-Oder Delay Differential

Equation with Application to Machine Tool Chatter, Nonlinear Dynamics 30 (2002) 103-154.

STABILITY 49

[9] D. E. Gilsinn, Computable Error Bounds for Approximate Periodic Solutions of Autonomous Delay

Differential Equations, Nonlinear Dynamics, accepted for publication

[10] D. E. Gilsinn and F. A. Potra, Integral Operators and Delay Differential Equations, Journal of Integral

Equations and Applications, 18, 3 (2006) 297—336.

[11] D. Gottlieb, The Stability of Pseudospectral-Chebyshev Methods, Math. Comp., 36 (1981) 107—118.

[12] D. Gottlieb and E. Turkel, Topics in Spectral Methods, Lecture Notes in Mathematics: 1127 A. Dold

and B. Eckmann (Ed.), Springer-Verlag, Berlin, 1985.

[13] D. Gottlieb, M. Y. Hussaini, and S. A. Orszag, Theory and Applications of Spectral Methods, in

Spectral Methods for Partial Differential Equations, R. G. Voigt, D. Gottlieb, and M. Y. Hussaini (Ed.),

SIAM, Philadelphia, (1984) 1—54.

[14] S. Halanay, Differential Equations: Stability, Oscillations, Time Lags, Academic Press, New York,

1966.

[15] J. Hale, Functional Differential Equations, Springer-Verlag, New York, 1971.

[16] N. H. Hanna and S. A. Tobias, A theory of nonlinear regenerative chatter, ASME Journal of Engineering

for Industry, 96 (1974) 247—255.

[17] T. Insperger and G. Stépán, Stability of the Damped Mathieu Equation with Time Delay, Journal of

Dynamic Systems, Measurement, and Control, 125 (2003) 166—171.

[18] T. Luzyanina and K. Engelborghs, Computing Floquet Multipliers for Functional Differential Equations,

International Journal of Bifurcation and Chaos, 22 (2002 2977—2989.

[19] T. Luzyanina and D. Roose, Numerical stability analysis and computation of Hopf bifurcation points

for delay differential equations, Journal of Computational and Applied Mathematics 72 (1996) 379—392.

[20] G. A. Kemper, Spline Function Approximation for Solutions of Functional Differential Equations, SIAM

J. Num. Anal. 12 (1975) 73—88.

[21] E. R. Marsh, D. S. Yantek, M. A. Davies, and D. E. Gilsinn, Simulation and measurement of chatter

in diamond turning, Journal of Manufacturing Science and Engineering, 120 (1995) 230—235.

[22] A. H. Nayfeh, C. Chin,and J. Pratt, Perturbation Methods in Nonlinear Dynamics - Applications to

Machining Dynamics, Journal of Manufacturing Science and Engineering, 119 (1997) 485—493.

[23] C. A. H. Paul, Developing a delay differential equation solver, Applied Numerical Mathematics, 9 (1992)

403—414.

[24] H. E. Salzer, Lagrangian interpolation at the Chebyshev points xn,ν ≡ cos (νπ/n) , ν =)(1)n; some

unnoted advantages, The Computer Journal, 15 (1972) 156-159.

[25] L.F. Shampine and S. Thompson, Solving DDE’s in MATLAB, Applied Numerical Mathematics, 37

(2001) 441—458.

[26] A. Stokes, A Floquet Theory for Functional Differential Equations, Proc. Nat. Acad, Sci., 48 (1962)

1330—1334.

[27] A. Stokes, On the Approximation of Nonlinear Oscillations, Journal of Differential Equations, 12 (1972)

535—558.

[28] A.P. Stokes, On the Existence of Periodic Solutions of Functional Differential Equations, Journal of

Mathematical Analysis and Applications, 54 (1976) 634—652.

[29] E. Stone and A. Askari, Nonlinear models of chatter in drilling processes. Dynamical Systems 17 No. 1

(2002) 65—85.

[30] E. Stone and Sue Ann Campbell, Stability and bifurcation analysis of a nonlinear DDE model of drilling,

Journal of Nonlinear Science 14 No. 1 (2004) 27—57.

[31] L. N. Trefethen, Spectral Methods in Matlab, Society for Industrial and Applied Mathematics, 2000.

[32] J. Tlusty, Machine dynamics, in Handbook of High-speed Machine Technology, Robert I. King (ed.),

Chapman and Hall, New York, (1985) 49—153.

[33] M. Urabe and A. Reiter, Numerical Computation of Nonlinear Forced Oscillations by Galerkin’s Pro-

cedure, Journal of Mathematical Analysis and Applications, 14 (1966) 107—140.

[34] M. X. Zhao and B. Balachandran, Dynamics and stability of milling process, International Journal of

Solids and Structure, 38 (2001) 2233—2248.

[35] D. R. Willé and C. T. H. Baker, DELSOL - a numerical code for the solution of systems of delay-

differential equations, Applied Numerical Mathematics, 9 (1992) 223—234.

