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Interprocess communication concerns how processes affect which entities are involved in 
other processes.  This paper provides dimensions for characterizing interprocess 
communication, and places common process language capabilities within them.  It 
formalizes loosely and tightly coupled processes as extensions of the Process 
Specification Language (PSL), to reduce ambiguity and increase expressiveness as 
compared to commonly used process languages.  The paper also shows how to 
incrementally translate common process language elements to PSL.  This generates small 
expressions even for large process models. 

1 Introduction 
 
Common process languages provide ways to specify which entities are involved in a 
process (participation), and to indicate that processes determine the entities involved in 
others (interprocess communication).  These capabilities are available in graphical form, 
such as the Unified Modeling Language (UML) [1], and textual, such as programming 
and web service interchange languages [2][3][4].  For example, a language for 
manufacturing might include a way to specify that a process for drilling involves a piece 
of metal, a machine, and an operator, as well as a way to specify that a factory process 
determines the particular piece of metal, machine, and operator involved.  Even a process 
as simple as addition involves two or more numbers, and languages supporting it provide 
ways for other processes, such as accounting, to specify which two particular numbers 
are involved. 
 
From the point of view of a particular process, communication happens in two directions: 
entities come from other processes (“inbound”) and go to other processes (“outbound”).  
Process specifications control communication along at least two dimensions: 
 

1. Identifying other processes to communicate with.  This dimension ranges from 
more to less restriction on the other processes (degree of coupling, “tight” to 
“loose”).  For  each communicated entity, a process might: 

 
a. specify exactly which other process to communicate with. 
b. specify only what must be achieved by the other process before it 

gives an inbound entity, or after it receives an outbound  entity (the 
effect). 

c. not specify anything about the other processes. 
 
For example, a factory process might specify exactly how to drill a piece of 
metal (1.a, outbound), or it might only specify that the metal be drilled, but 
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not exactly how (1.b, outbound).  It also might provide the drilled piece metal 
to whatever other process needs it outside the factory (1.c, outbound).  A 
drilling process might specify exactly which process gives it metal (1.a, 
inbound), or might only specify that the metal must be lubricated by the 
process that gives it (1.b, inbound), or it might not place any restriction on 
which process gives it (1.c, inbound).1

 
Within options b and c above a process might: 
 

b/c.i.  specify another process (the delegate) to decide which other process 
gives or receives the communicated entity. 

b/c.ii.  not specify a delegate. 
 
For example, a factory process might specify that an operator decides how to 
drill a piece of metal (1.b.i, outbound), or it might not restrict how it is drilled 
(1.b.ii, outbound).  It might provide the drilled piece metal to a distributor to 
determine which process receives it (1.c.i, outbound), or it might not restrict 
which process receives it at all (1.c.ii, outbound).  A drilling process might 
specify that the operator determine the process by which the metal is 
lubricated before taking the metal as input (1.b.i, inbound), or it might only 
require it to be lubricated somehow (1.b.ii, inbound).  A drilling process might 
specify that the operator determine the process giving the piece of metal (1.c.i, 
inbound), or might not restrict which process gives it at all (1.c.ii, inbound). 

 
2. Determining when communication happens.  A process might: 

 
a. give entities only when it finishes, and receive entities only when it starts. 
b. give and receive entities anytime during the process (“ongoing” 

communication). 
 

This applies to processes at both ends of a communication.  For example, a 
drilling process might receive a piece of metal only when it starts, and give the 
metal back only when it is done (2.a).  A factory process, on the other hand, might 
give and receive pieces of metal as it goes, in communication with drilling and 
other processes outside the factory (2.b). 

 
This paper uses the above dimensions to categorize communication elements of common 
process languages and guide their formalization in the Process Specification Language 
(PSL).2  The paper significantly extends support for participation in PSL, which currently 
addresses sequences of occurrences primarily.  It updates earlier PSL translations of flow 
                                                 
1 Other possibilities exist between the categories above.  For example, a process might specify that an 
inbound entity comes from a process that takes particular steps, but not restrict it from taking other steps in 
addition.  Very few process languages have such a high level of expressiveness, the Process Specification 
Language (PSL) being an exception, see Section 3. 
2 This paper does not categorize how a process chooses which entities are communicated to other 
processes.  Any entity can be communicated, see the third generalization in Section 8, except for 
restrictions in PSL, see footnote 22. 
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models, inputs, outputs, and messaging [5][6][8].  Section 2 categorizes some common 
software process communication terminology under the framework above.  Section 3 
gives a brief introduction to PSL.  Section 4 discusses ways of extending languages and 
identifies the ones used in this paper.  Section 5 gives some generically useful extensions 
to PSL applied in the paper.  Section 6 gives translations of common process language 
sequencing elements needed as a basis for later sections.  It includes a translation 
algorithm that scales to large process models.  Section 7 gives PSL extensions 
formalizing the loose coupling end of the spectrum above (1.c).  Section 8 gives 
extensions formalizing the medium coupling part of the spectrum (1.b).  The tightest 
coupling end of the spectrum (1.a) is directly representable in PSL, see usage examples 
for functions in [8].  Section 9 shows how to use the tight coupling extensions of Section 
8 to represent loose coupling, and briefly describes the corresponding techniques in 
software engineering.  Section 10 covers future work. 

2 Participation terminology 
 
The categories of Section 1 appear in many ways and under many names in common 
process languages.  Table 1 shows process communication terminology from software 
engineering for each category.3  The table takes the viewpoint of a particular process 
communicating with other processes, as in Section 1.  Entities come from other processes 
(inbound) and go to other processes (outbound).  The rows cover the first dimension from 
tightest to loosest coupling.  The columns show the second dimension, which applies to 
the process at the center of the viewpoint (inbound) or to other processes (outbound), as 
indicated in each cell of the table.  Invoking a function or procedure specifies exactly 
which other process will receive the outbound entities (1.a).  Invoking operations on 
objects and components delegates determination of the receiving process to an entity, 
only specifying a name for the effect to be achieved with the outbound entities (1.b.i).6  
Invoking a function or operation starts a new execution of another process and provides 
entities to it at the same time.4  When entities are provided anytime while the function or 
operation is ongoing, it has streaming parameters in UML.  Ongoing forms in category 
1.b.i are messages to agents or active objects,5 for outbound entities, and subscription for 
inbound entities.8, 9  Invoking operations on abstract datatypes does not delegate 
determination of the other process, but the invoking process does not specify it either 
(1.b.ii).4, 10  Preconditions restrict which other processes can provide inbound entities to 
those that achieve the specified effect (1.b.ii).11  Signals are often received from other 
processes for the same purpose.5, 12  An ongoing form of this category is port messages, 
where a process sends messages to its own ports, rather than identifying a delegate.  The 
delegate is determined by the context in which the sending process is used, see Section 
9.2.  Publication and sending signals5, 12 are ways to provide entities to other processes 
through a delegate without requiring an effect (1.c.i / 2.b).9, 13  Parameters of functions, 
operations, messages, and signals specify the types and numbers of entities input, with no 
restriction on which processes give or provide them (1.c.ii).14  The ongoing form of these 
are streaming parameters in UML [1][9]. 
 

                                                 
3 This section assumes familiarity with process communication techniques in software engineering. 
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Determination of 
external process 

(2.a) Entities accepted only at start of 
process or provided only at finish 

(2.b) Entities accepted or provided 
anytime during process 

 (1.a) Exact process 4 Function / procedure invocation 
(outbound)  

Function / procedure invocation with 
streaming parameters (outbound) 5  

Object / component operation 
invocation (outbound) 

Operation invocation with streaming 
parameters (outbound) , 5, 7

Sending agent / active object 5 
messages (outbound) , 8

Subscription (inbound) 9

(1.b.i) Effect,6 with 
delegate 4

(1.b.ii) Effect,6
            no delegate 

Abstract datatype operation invocation 
(outbound) , 4, 10

Preconditions (inbound) 11

Port messages (inbound, outbound) ,
Receiving signals (inbound) 5, 12

(1.c.i)  Entities only, 
with delegate (No common name) Publication (outbound) , 9, 13

Sending signals (outbound) 5, 12

(1.c.ii) Entities only, 
no delegate 14 Streaming parameters (inbound) 5, 15Parameters (inbound) 

Table 1: Participation Terminology in Software Engineering 
                                                 
4 The invoked function or operation can return entities back to the invoking process (inbound to the 
invoking process, see footnote 14).  These are always communicated to the invoking process (1.a). 
5 This is UML terminology [1].  
6 Most software languages specify the effect of processes by giving the effect a name (the operation in 
UML, or informally the “method”), rather than specifying the effect directly.  The language user is 
expected to infer the effect from the name.  For example, the effect of an operation called “balance 
account” is that the account will be balanced.  More reliable techniques, such as preconditions and 
postconditions [1][10], give information about the effect that does not rely on interpreting the name.  Since 
operations are only identified by their names, they might even be intended to imply something about how a 
process is carried out, see footnote 1. 
7 After a delegate has started a particular process for the operation invocation, communication through 
streaming parameters is between the invoking process and the one chosen by the delegate (1.a). 
8 An agent or active object is the delegate that determines the receiving process based on effect of those 
processes on the entities.  Usually the receiving process is “inside” the agent, for example, business process 
in an organization. 
9 Subscription and publication usually identify a “clearing house” (the delegate) that determines the other 
processes with which communication happens.  If not, subscription can be classified as 1.b.ii/2.b (inbound), 
and publication as 1.c.ii/2.b (outbound). 
10 Abstract datatypes have a single process per operation (no delegation), but that process is not specified 
by the invoker (1.a).  Abstract datatypes do not support subclassing, and were overtaken by objects and 
components.  See examples in [8]. 
11 This considers as a single process all the processes feeding into those providing inbound entities, 
transitively, because preconditions on the inbound entities can be achieved by any of them. 
12 Signals can be used for asynchronous operation invocation (1.b.i/2.a with no return values, see footnote 
4), as notifications of achieved effects (subscription, 1.b.i/2.b, publication, 1.c.i/2.b), or as simple provision 
of an object (1.c.i/2.b).  The table only shows them as notification of achieved effects. 
13 Processes accepting published entities are typically those requiring notification of an achieved effect 
(subscription, 1.b.i).  Process providing them do not require this, however, so publication falls under 1.c.i. 
14 Return parameters are a special kind of parameter for entities returned a process when it is finished, see 
footnote 4.  The term “argument” is often used for entities outbound from the invoking process to the 
invoked one.  Parameters might be considered a restriction on the processes giving or receiving entities 
because the processes must give or receive entities of a certain type and in a certain quantity. 
15 Also see flow port messages in the Systems Modeling Language (SysML) [11]. 
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This paper clarifies the meaning of the participation patterns above with a formalization 
based on process execution, rather than on the terminology in which a process happens to 
be specified, see Section 3.  This facilitates communication between subject matter 
experts and software practitioners, who use different terminology for specification 
elements that have the same process execution.  Subject matter experts use the categories 
above, but often implicitly, or with names that vary significantly.  For example, experts in 
manufacturing use “input” and “output” to refer to parameters of any kind (1.c.ii / 2.a-b), 
while some business modelers will use the term “message” for that, as well as for agent 
and port messages (1.b.i-ii / 2.b). 
 
Terminology differences between the software practitioners and subject matter experts 
cause major inefficiencies and failures in system construction.  For example, the term 
“message” among software practitioners often refers to object or component messages 
(1.b.i / 2.a), but a business expert might be referring to port messages (1.b.ii / 2.b).  The 
software practitioner not realizing this might hear “message” from a business expert and 
rule out a centralized workflow system, because centralized systems usually do not result 
in object or component messages between the participants, even though such a system 
using port messages would have satisfied the business expert requirements.  The inverse 
problem occurs in the Business Process Modeling Notation (BPMN) [12], which does not 
allow messages within certain boundaries.  The software practitioner might assume this 
means a centralized workflow system must be used within the boundary, even though a 
distributed system would have satisfied the business process requirements just as well.16   
 
Another common miscommunication between software practitioners and subject matter 
experts is that software practitioners draw a very strong distinction between categories 
2.a and 2.b, while subject experts usually do not.  Software programming languages 
notate elements from the two categories differently, with communication in category 2.a 
notated in the public declaration of process specifications, and communication in 2.b 
embedded in the detailed internals of the specification.  Subject matter experts, on the 
other hand, treat these as part of a spectrum of possible process interactions [13].  For 
them, the public declaration can include which functions are invoked, and messages sent, 
if necessary.17

3 PSL 
 
Capturing the meaning of participation requires a language that refers directly to 
processes as they actually occur.  For example, in a process that drills a piece of metal, 
then mills the same piece, it is expected that the piece of metal will stop participating in 
the drilling process before it begins participating in milling.  Since the processes will 

                                                 
16 This miscommunication appears particularly around the terms “orchestration” and “choreography.”  
Software practitioners often take these as referring to centrally controlled and distributed processes, 
respectively.  The business process designer, on the other hand, usually intends an “orchestration” diagram 
to specify only sequencing of steps, possibly with nonstreaming parameters (1.c.ii / 2.a), and a 
“choreography” to include port messages (1.b.ii, 1.c.ii / 2.b).  This leads to the misinterpretations above 
about central and distributed system control described above. 
17 This is supported in UML’s Object Constraint Language [14]. 
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happen repeatedly with different pieces of metal, this constraint must refer to actual 
occurrences of drilling and milling that happen at specific times, rather than those 
processes generally.  Common flow modeling languages express this constraint, but not 
in a machine-verifiable way, because the occurrence-level meaning of the languages is 
usually specified only in natural language. 
 
This paper uses PSL to express participant constraints, and assumes familiarity with PSL 
fundamentals [5].18  PSL has language elements for referring to the separate executions 
of the same process (occurrence of an activity in PSL), for example to refer to the 
multiple milling operations that happen in a factory at different times.  It defines a simple 
structure that covers all possible ways these occurrences can follow each other in time, 
called the occurrence tree.  The process designer uses these concepts to write constraints 
on which sequences of occurrences are allowed for a particular process, for example to 
specify what must happen, may happen, or must not happen during milling. 
 
The PSL approach supports incremental processes specification over a wide range of the 
process design lifecycle.  Process constraints can be declared generally or specifically, as 
needed by the stage of design.  For example, early stages usually define loose constraints, 
because the domain expert is just sketching out broad requirements.  Constraints are 
tightened as design moves forward, until the process is completely specified.  For 
example, a software program is a kind of process description that places many constraints 
on allowable executions. 
 
PSL is standard 18629 at the International Organization for Standardization (ISO) [16].  
It is the result of a long period of research stemming from the situation calculus and 
enterprise modeling.  It has been applied in scheduling, process modeling, process 
planning, production planning, simulation, project management, workflow, and business 
process reengineering.  The standard is divided into core theories and extensions.  The 
core axiomatizes a set of intuitive semantic primitives describing fundamental concepts 
of manufacturing processes.  The core concepts include discrete states for relating 
processes to states of the world, as well as subactivities, atomic activities, and complex 
activities for composition of processes.  Extensions introduce new terminology to 
supplement the core concepts.  They define additional relations for activities, time and 
state, activity ordering, duration, and resources.  All axioms are first-order sentences, 
written in the Common Logic Interchange Format [17], using the question mark 
convention for variables. 

4 Extending Languages 
 
Extending a language begins with identifying patterns of using the language without 
extensions (“methodology”).  These patterns document how to use it to achieve the 
desired functionality.  Methodologies use a language as it is, rather than spending time 
and effort to extend it.  They have the disadvantages that the patterns can be complicated 
to write in the existing language, do not provide guidance to readers of the language as to 

                                                 
18 This paper uses PSL Core and Outer Core [15]. 
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which pattern is being used, cannot be the subject of constraints and reasoning, and do 
not ensure the pattern is applied in the same way wherever it is used.  Language 
extensions address these problems, but require additional effort to define and integrate 
them into the existing language. 
 
Language extensions follow usage patterns chronologically in a general cycle of moving 
methodological techniques into language concepts.  Users apply the same techniques 
repeatedly, then tooling eventually adapts to support them.  If the techniques are popular 
enough, languages evolve or are created to incorporate them as first-class concepts.  For 
example, in arithmetic, multiplication is taught as a shorthand for repeated addition of the 
same number, and exponentiation is similarly a shorthand for repeated multiplication.  In 
programming languages patterns of using the goto statement evolved into structured 
programming constructs, and code conditionalized on object type and function pointers 
became part of object orientation, and abstract classes evolved into interfaces.  In 
software modeling, techniques for composable architectures were incorporated into 
modeling and middleware languages [1][18][19][20][21].  In ontologies, computationally 
efficient patterns of using first order logic underlie most of the language constructs in the 
Ontology Web Language [22]. 
 
There are various ways to extend a language, including mapping techniques, formal 
metalanguages, additional language constructs, and predefined reusable elements.  
Mapping techniques are for specifying translation from one language to another.19  
Formal metalanguages can be applied when the structure of sentences in the existing 
language are regularized enough to express the extension as “statements about 
statements” [25].  For example, the horn clause pattern in first order logic restricts 
statements that are disjunctions of literals to have at most one positive literal.  Additional 
language constructs can be added to a language to stand in for a usage pattern.  For 
example, typical iteration constructs in programming languages, such as the WHILE loop 
arose from common usage patterns of the goto construct [26].  Predefined reusable 
elements can be developed in the existing language, and applied repeatedly in place of a 
usage pattern.  For example, typical programming languages have libraries of functions to 
perform common tasks, such as string manipulation, rather than specifying them each 
time they are needed [2]. 
 
This paper primarily adopts the reusable elements approach when extending PSL, by 
providing predefined instances of PSL concepts.  This has the advantage of embedding 
into the existing language, unlike formal metalanguages, and does not require translation 
as mapping techniques do.  In addition, when applied in the context of PSL, this approach 
enables constraints to be defined on combining the reusable elements with existing PSL 
relations and with each other.20  These constraints give necessary conditions for use of 

                                                 
19 One of simplest kinds are “fill in the blanks” templates, which are usually written in the syntax of the 
language being extended, as C++ macros [2] or PSL grammars [23], with additional syntax for specifying 
where the blanks are, and what should fill them.  More powerful techniques include generalized mapping 
languages, which support machine-manipulable specification of arbitrarily complex translations [24]. 
20 One of the advantages of PSL over typical process languages is that it enables formally defining the 
relation between new and existing language elements. 
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the new elements.  The process designer gives sufficient conditions when using the 
elements.  These determine whether an object is categorized by the concepts formalized 
in this paper, for example, whether it is an input, output, or message.  Necessary 
conditions alone cannot specify this, only the process designer can, see Section 7.1 and 
Section 6 of [6].  It is an advantage of PSL that consistency of necessary and sufficient 
conditions can be tested automatically.21

5 Generic PSL Extensions 
 
Additional relations are defined in this section for convenience, entirely in terms of 
existing ones in PSL.  Expression 1 defines two additional participation relations based 
on the PSL PARTICIPATES_IN relation, which link objects with the time at which they 
participate in occurrences.22  The first subexpression defines the PARTICIPANT relation as 
indicating that an object participates in an occurrence at some time during it.  The second 
subexpression requires that any participant in an occurrence is also a participant in 
complex occurrences containing it (the PSL relation SUBACTIVITY_OCCURRENCE gives 
the containing complex occurrences).  The third subexpression defines the ACTIVITY-
PARTICIPANT relation as a generalization of PARTICIPANT for all occurrences of an 
activity.  This includes participation in occurrences of concurrent aggregations of 
activities (subactivities of atomic activities in PSL), see OCCURRENCE-OFA in Expression 
2. 
 
(forall (?x ?s) 
   (iff (participant ?x ?s) 
        (exists (?t) 
           (participates_in ?x ?s ?t)))) 
 
(forall (?x ?s ?occSuper) 
   (if (and (participant ?x ?s) 
            (subactivity_occurrence ?s ?occSuper)) 
       (participant ?x ?occSuper))) 
 
(forall (?x ?a) 
   (iff (activity-participant ?x ?a) 
        (forall (?occ) 
           (if (occurrence-ofA ?occ ?a) 
               (participant ?x ?occ))))) 
 

Expression 1: Participation Relations 
 
Expression 2 defines a variant of the PSL OCCURRENCE_OF relation that accounts for 
concurrent activities.  A concurrent activity in PSL is an aggregation of multiple activities 
into a single atomic one, so an occurrence of the activity can appear on the occurrence 

                                                 
21 Necessary conditions can be used to check that the process designer uses the reusable elements properly.  
Detecting contradictions requires the designer to write closure expressions to eliminate unspecified usages 
of the elements.  Otherwise their existence might be inferred by the necessary conditions. 
22 PSL does not restrict the participants of a process, except they cannot be processes or points in time. 
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tree (complex activities are groupings of atomic activities, but their occurrences are 
grouping of atomic occurrences on the occurrence tree, so are not on the occurrence tree 
directly).  The OCCURRENCE-OF-CONC relation indicates which activities are happening in 
an atomic occurrence, including occurrences of concurrent aggregations.  The last 
subexpression defines the OCCURRENCE-OFA relation to apply to both atomic and 
complex occurrences, using OCCURRENCE-OF-CONC for atomics. 
 
(forall (?s ?a ?aConc) 
   (if (occurrence-of-conc ?s ?a) 
       (and (activity_occurrence ?s) 
            (activity ?a) 
            (atomic ?a)))) 
 
(forall (?s ?a ?aConc) 
   (if (and (occurrence-of-conc ?s ?a) 
            (occurrence_of ?s ?aConc)) 
       (atomic ?aConc))) 
 
(forall (?s ?a ?a1 ?a2) 
   (if (and (occurrence_of ?s ?a) 
            (atomic ?a) 
            (subactivity ?a1 ?a)) 
       (occurrence-of-conc ?s ?a1))) 
 
(forall (?s ?a ?aConc) 
   (if (and (occurrence-of-conc ?s ?a) 
            (occurrence_of ?s ?aConc)) 
       (exists (?aConc) 
          (subactivity ?a ?aConc)))) 
 
(forall (?s ?occ ?a) 
   (iff (occurrence-ofA ?s ?a) 
        (or (occurrence_of ?s ?a) 
            (occurrence-of-conc ?s ?a)))) 
 

Expression 2: OCCURRENCE-OF-CONC and OCCURRENCE-OFA Relations 
 
Expression 3 defines convenience relations for subactivity occurrences.  The 
SUBACTIVITY-OCCURRENCE-NEQ relation identifies subactivity occurrences that are not 
the same as the superoccurrence.  The SUBACTIVITY-OCCURRENCE-OF relation identifies 
subactivity occurrences of a particular activity, including under concurrent aggregation. 
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(forall (?s ?occ ?a) 
   (iff (subactivity-occurrence-neq ?s ?occ ?a) 
        (and (subactivity_occurrence ?s ?occ) 
             (not (= ?s ?occSuper))))) 
 
(forall (?s ?occ ?a) 
   (iff (subactivity-occurrence-of ?s ?occ ?a) 
        (and (occurrence-ofA ?s ?a) 
             (subactivity_occurrence ?s ?occ)))) 
 

Expression 3: SUBACTIVITY-OCCURRENCE-OF  Relation 
 
Expression 4 defines relations for identifying all parts of the occurrence tree for single 
“execution” of a complex activity.  An execution of a complex activity may have many 
possible variations in the steps that happen under it, especially if there are few constraints 
placed by the process designer.  In PSL terms, a complex occurrence is a branch in a 
subtree of the occurrence tree (the activity tree, see Section 5.1 of [5]).  Since even the 
first step may not be completely determined, the full execution is represented as sets of 
activity trees that “start” at the same time (a grove of activity trees).  All the trees in the 
grove have roots that occur immediately after the same occurrence (the grove root).23  A 
grove is identified by the grove root and the complex activity.  The OCC-GROVE-ROOT 
relation is between a grove root and the complex occurrences in the activity trees of the 
grove.  The OCC-IN-GROVE relation is similar, but requires the grove to be of a particular 
complex activity.  The GROVE relation identifies groves by their grove root and complex 
activity.  The SUBOCC-IN-GROVE relation is for all suboccurrences in a grove.  Finally, 
SAME-GROVE relates occurrences in the same grove.24

 
(forall (?sGroveRoot ?occ ?aOccRootAct) 
    (iff (and (occ-grove-root ?sGroveRoot ?occ) 
              (occurrence_of (root_occ ?occ) ?aOccRootAct)) 
         (= (root_occ ?occ) 
            (successor ?sGroveRoot ?aOccRootAct)))) 
 
(forall (?occ ?sGroveRoot ?aGroveAct) 
   (iff (occ-in-grove ?occ ?sGroveRoot ?aGroveAct) 
        (and (occurrence_of ?occ ?aGroveAct) 
             (occ-grove-root ?sGroveRoot ?occ)))) 
 
(forall (?sGroveRoot ?aGroveAct) 
   (iff (grove ?sGroveRoot ?aGroveAct) 
        (exists (?occ) 
          (occ-in-grove ?occ ?sGroveRoot ?aGroveAct)))) 
 

                                                 
23 This assumes complex occurrences do not have the initial occurrence as root.  The initial occurrence has 
no predecessor.  It would simplify representation of executions to assume a “dummy” root occurrence that 
has no effect and takes no time to occur.  Then groves would always have a single activity tree.  It would 
also address other issues in representing workflow engines, see Section 6.3. 
24 It is equivalent to PSL’s SAME_GROVE. 
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(forall (?s ?sGroveRoot ?aGroveAct) 
   (iff (subocc-in-grove ?s ?sGroveRoot ?aGroveAct) 
        (exists (?occ) 
           (and (occ-in-grove ?occ ?sGroveRoot ?aGroveAct) 
                (subactivity-occurrence-neq ?s ?occ))))) 
 
(forall (?s ?aOcc1Act ?aOcc2Act) 
   (iff (same-grove ?occ1 ?occ2) 
        (exists (?sGroveRoot ?aGroveAct) 
           (and (occ-in-grove ?occ1 ?sGroveRoot ?aGroveAct) 
                (occ-in-grove ?occ2 ?sGroveRoot ?aGroveAct))))) 
 

Expression 4: Grove Relations 
 
Expression 5 defines the SAME-OCC-BRANCH and SAME-ACT-BRANCH relations, which are 
useful in connection with groves to tell whether two occurrences are separate occurrences 
on the same branch of the occurrence tree or activity tree, respectively. 
 
(forall (?s1 ?s2 ?a) 
   (if (same-occ-branch ?s1 ?s2) 
       (or (= ?s1 ?s2) 
           (earlier ?s1 ?s2) 
           (earlier ?s2 ?s1)))) 
 
(forall (?s1 ?s2 ?a) 
   (if (same-act-branch ?s1 ?s2 ?a) 
       (or (= ?s1 ?s2) 
           (min_precedes ?s1 ?s2 ?a) 
           (min_precedes ?s2 ?s1 ?a)))) 
 

Expression 5: SAME-OCC-BRANCH and SAME-ACT-BRANCH Relations 
 
Expression 6 defines relations that generalize PSL relations on atomic occurrences to 
both atomic and complex occurrences. 
 
(forall (?s) 
  (iff (legalA ?s) 
       (legal (root_occ ?s)))) 
 
(forall (?s1 ?s2) 
   (iff (earlierA ?s1 ?s2) 
        (exists (?s1Leaf) 
          (and (leaf_occ ?s1Leaf ?s1) 
               (earlier ?s1Leaf (root_occ ?s2)))))) 
 
(forall (?s ?occ) 
   (iff (root-occA ?s ?occ) 
        (and (= (root_occ ?s) (root_occ ?occ)) 
             (subactivity_occurrence ?s ?occ))))  
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(forall (?s ?occ) 
   (iff (leaf-occA ?s ?occ) 
        (exists (?sLeaf) 
          (and (leaf_occ ?sLeaf ?s) 
               (leaf_occ ?sLeaf ?occ) 
               (subactivity_occurrence ?s ?occ))))) 
 
(forall (?s1 ?s2) 
   (iff (min-precedesA ?s1 ?s2) 
        (exists (?s1Leaf) 
           (and (leaf_occ ?s1Leaf ?s1) 
                (min_precedes ?s1Leaf (root_occ ?s2)))))) 
 
(forall (?s1 ?s2) 
   (iff (same-occ-branchA ?s1 ?s2) 
        (exists (?s1Leaf ?s2Leaf) 
           (and (leaf_occ ?s1Leaf ?s1) 
                (leaf_occ ?s2Leaf ?s2) 
                (same-occ-branch ?s1Leaf ?s2Leaf))))) 
 
(forall (?s1 ?s2) 
   (iff (same-act-branchA ?s1 ?s2) 
        (and (same-act-branch (root_occ ?s1) root_occ ?s2))  
             (exists (?s1Leaf ?s2Leaf) 
                (and (leaf_occ ?s1Leaf ?s1) 
                     (leaf_occ ?s2Leaf ?s2) 
                     (same-act-branch ?s1Leaf ?s2Leaf)))))) 
(forall (?f ?s) 
   (iff (priorA ?f ?s) 
        (prior ?f (root_occ ?s)))) 
 
(forall (?f ?s ?sLeaf) 
   (iff (holdsA ?f ?s) 
        (exists (?s1Leaf) 
           (and (leaf_occ ?sLeaf ?s) 
                (holds ?f ?sLeaf))))) 
 
(forall (?f ?occ) 
   (iff (achievedA ?f ?occ) 
        (exists (?sSub) 
           (and (subactivity_occurrence ?sSub ?occ) 
                (achieved  ?f ?sSub))))) 
 
(forall (?f ?occ) 
   (iff (falsifiedA ?f ?occ) 
        (exists (?sSub) 
           (and (subactivity_occurrence ?sSub ?occ) 
                (falsified  ?f ?sSub))))) 
 

Expression 6: Complexity-agnostic Relations 
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Expression 7 defines a template for an exclusive disjunction boolean operator.  Given a 
list of boolean subexpressions, it expands to an expression that is true if exactly one of 
the subexpressions is true.  It is a recursive template expansion with a base case for no 
subexpressions, assuming OR and XOR of no subexpressions is false. 
 
<xor ?p1 ?p2 ?p3 ... > expands to 
  (or (and ?p1 (not (or ?p2 ?p3 ...))) 
      (and (not ?p1) (xor ?p2 ?p3 ...))) 
 
<xor> expands to false 
 

Expression 7: XOR Relation 
 

6 Context for participation constraints 
 
Participation constraints usually are defined in the context of a larger process.  For 
example, a production process on a factory floor will at least partly determine which 
piece of metal, machine, and operator are involved in drilling.25  In PSL, this larger 
factory process is a complex activity with constraints on the occurrence of drilling under 
each complex occurrence of the factory.  A typical complex activity will also have 
constraints other than participation, for example time sequencing of the occurrences of 
subactivities under it, and reaction to changes caused by other processes.  All these 
constraints apply to occurrences of the complex activity and their suboccurrences. 
 
This section shows how to define the complex activity context for participation 
constraints.  Section 6.1 covers subactivities and relations between complex occurrences 
and suboccurrences.  Section 6.2 gives a translation for typical sequencing elements in 
common process languages, including an incremental algorithm that scales to large 
process models. 

6.1 Subactivities and their usages 
 
Subactivities in PSL indicate which activities can happen under a complex one.  For 
example, a drilling activity might have subactivities for stabilizing the piece to be drilled, 
tapping, drilling, reaming, and deburring.  Expression 8 shows the ACTIVITY and 
SUBACTIVITY relations in PSL for this example.26 The SUBACTIVITY relation does not 
require that the specified subactivities are all used in all occurrences of drilling.  For 
example, some occurrences of drilling might not have the reaming step.  It also does not 
prevent inferring additional subactivities, unless additional expressions disallow these.  
For example, other expressions may support inferring that preinspection of the piece is a 
subactivity of drilling, unless the process designer adds an expression that preinspection 

                                                 
25 Even in agent-based processes, there are larger processes under which the agents assume they can 
interact with each other, for example, a production process based on bidding for resources. 
26 The activity expressions can be omitted, because they are deducible from the subactivity expressions, but 
the specification is more robust if they are included, because the subactivity expressions may change. 
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is not allowed as a subactivity.  Finally, the subactivity relation does not imply ordering 
among the steps.  For example, the subactivities of drilling could occur in any order, even 
though they are given an order when writing them out in Expression 8.27

 
(activity drilling) 
(activity stabilizing) 
(activity tapping) 
(activity drilling2) 
(activity reaming) 
(activity deburring) 
 
(subactivity stabilizing drilling) 
(subactivity tapping drilling) 
(subactivity drilling2 drilling) 
(subactivity reaming drilling) 
(subactivity deburring drilling) 
 

Expression 8: Subactivity Examples 
 
It significantly simplifies translation from common process languages to PSL to identify 
the occurrences of subactivities within a complex occurrence corresponding to elements 
in the process language.  For example, a flow chart for the drilling process may have a 
node labelled “stabilizing” with an arrow pointing to another node labelled “tapping,” to 
indicate the order of their occurrences under drilling.28  The correspondence between 
occurrences of stabilizing and the nodes in the flow chart are formalized as usage 
relations between the complex occurrence and its suboccurrences.  This enables 
translation of each step in the process description separately to its own expression, as 
shown in Sections 6.2 and 6.3, because multiple expressions can refer to the same 
suboccurrence through a usage relation.  The resulting translations have much smaller 
expressions, which read more easily and potentially support faster automated inference.  
It also enables separate identification of suboccurrences when the same activities appear 
multiple times in the same process description.  Finally, usage relations enable the same 
suboccurrence to be under multiple processes that are not under each other, giving further 
support for incremental process specification, see Expression 42. 
 
The definitions of usage relations are generated as part of the translation to PSL, as 
shown by the example in Expression 9, for a portion of the drilling example above.  They 
are specializations of the OCCURRENCE-USAGE relation defined in Expression 10.  The 
first subexpression requires the “used” occurrence to be a suboccurrence of the complex 
occurrence “using” it, but not the same as the complex occurrence (occurrences are their 

                                                 
27 All common process models require occurrences of complex processes to be “strongly nested,” but PSL 
and the axioms and translations in this paper do not.  In PSL terms, strong nesting means occurrences are 
required to be direct suboccurrences of no more than one complex occurrence (the PSL 
subactivity_occurrence relation forms a tree, rather than a directed acyclic graph).  Applications needing 
this can define an additional PSL relation for direct suboccurrences (see Expressions 39 and 40 in [6]), and 
a constraint that limits direct superoccurrences to no more than one. 
28 Programming languages notate this textually with one line appearing under another, or separated by a 
statement delimiter. 
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own subactivity occurrences in PSL).  The second subexpression requires that a 
suboccurrence be used only by complex occurrences in the same activity tree (by the 
same “execution” of the complex activity).29  The second subexpression does not affect 
the minimum or maximum number of suboccurrences that will be related to a complex 
occurrence.  This is addressed by the sequencing expressions in Section 6.2. 
 
(forall (?occ ?s) 
   (if (stabilizing-usage ?s ?occ) 
       (occurrence-usage ?s ?occ stabilizing drilling))) 
 
(forall (?occ ?s) 
   (if (tapping-usage ?s ?occ) 
       (occurrence-usage ?s ?occ tapping drilling))) 
 

Expression 9: Usage Relation Examples 
 
(forall (?s ?occ ?asAct ?aOccAct) 
   (if (occurrence-usage ?s ?occ ?asAct ?aOccAct) 
       (and (subactivity-occurrence-of ?s ?occ ?asAct) 
            (not (= ?s ?occ)) 
            (occurrence_of ?occ ?aOccAct)))) 
 
(forall (?s ?occ1 ?asAct ?aOccAct ?occ2) 
   (if (and (occurrence-usage ?s ?occ1 ?asAct ?aOccAct) 
            (occurrence-usage ?s ?occ2 ?asAct ?aOccAct) 
       (= (root_occ ?occ1) (root_occ ?occ2))))) 
 

Expression 10: General Usage Relation 
 
When the same process description has multiple steps for the same subactivity, then 
usually an additional constraint should be added to prevent the usage relations from 
linking the same complex occurrence to the same suboccurrence (if there is only one step 
for each activity, this can be inferred because an occurrence is of exactly one activity in 
PSL).  The constraints must be stated for each process description separately to remain 
first-order.  A usage relation might link multiple complex occurrences to the same 
suboccurrence, however, because each execution of a process has multiple complex 
occurrences, see description of Expression 4.  Different usage relations in separate 
process descriptions might link multiple complex occurrences to the same suboccurrence, 
because the constraints of both process descriptions might be satisfied by the same 
suboccurrences, see footnote 27 and Expression 42. 

6.2 Sequencing 
 
Most common processes languages have elements to indicate that one process starts after 
another finishes (sometimes called “control flow”).  These translate to PSL as constraints 

                                                 
29 The same complex occurrence cannot appear in separate activity trees, so it is not necessary to require 
that the complex occurrences be in the same grove.  This is implied by having the same root. 
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on the order of occurrences on the occurrence tree.  Some languages have elements that 
indicate multiple sequences can happen in parallel (sometimes called “forks” or “and 
splits”), as well to specify alternative sequences, based on some decision about which to 
do (sometimes called “decisions” or “or splits”).  These are usually accompanied by 
elements indicating that multiple sequences are to complete before starting another 
(sometimes called “joins” or “and joins”), as well as elements indicating multiple 
sequences share a common later sequence (sometimes called “merge” or “or joins”). 
 
This section gives example translations of sequencing elements to PSL, and a translation 
algorithm that scales to large process models.  The translation starts with the sequencing 
elements of typical process languages, employing the usage relations of Section 6.1 to 
identify the suboccurrences being sequenced.  Usage relations enable each path of 
sequencing elements from one suboccurrence to another to be translated separately from 
other paths, making the expressions smaller than if the entire process were translated at 
once.  This is facilitated by assuming the sequencing elements are intended to allow other 
steps to be inserted later, rather than be a complete description.  Separate closure 
expressions can be defined to indicate the description is complete. 
 
To simplify the translation, a number of “preprocessing” changes to a typical process 
description are made before applying the PSL translations: 
 

 If a step has no incoming control flows, a special “initial node” and control flow 
from it to the step are introduced.  This assumes that steps with no incoming 
control flow can start when the containing process does. 

 
 If a step has no outgoing control flows, a special “final node” and a control flow 

from the step to it are introduced.  This assumes that a process is finished when all 
its steps with control flow to final nodes are finished. 

 
 If a step has multiple control flows coming in, then a join or merge is inserted 

before the step to gather the flows together, depending on the semantics of the 
process description. 

 
 If a step has multiple control flows going out, then a fork or decision is inserted 

after the step to split the flows apart, depending on the semantics of the process 
description.  The effect of this change and ones above is that each step has exactly 
one control flow coming in and one going out. 

 
 If a decision in the process has an “else” option, this is changed to be the negation 

of the other options on the decision.  If the decision has its own activity for 
deciding, this is broken out into another step. 

 
A step in a process language can correspond to multiple suboccurrences, for example, 
when the step is in a loop, or is after a merge of parallel flows.  The usage relation for 
such a step will link a single complex occurrence to multiple suboccurrences.  The 
translation to PSL must identify which suboccurrences for one usage occur after which 
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suboccurrences for another usage due to the control flow between the corresponding 
steps.  This is more specialized than the PSL MIN_PRECEDES relation, because the process 
may have other steps going on in parallel that overlap any particular control flow.  
Expression 11 defines a relation that implies MIN_PRECEDES, but not the inverse.  Since 
the suboccurrences identified by a usage may be complex, MIN-PRECEDESA is applied 
instead of MIN_PRECEDES (see Expression 4).  The suboccurrences related by FOLLOWS 
must be identified by usage relations, but this requirement must be stated for each process 
description separately to remain first-order, see examples below.  The minimum and 
maximum number of suboccurrences that can follow another depends on the particular 
process description being translated, see below. 
 
(forall (?s1 ?s2 ?a) 
   (if (follows ?s1 ?s2 ?a) 
       (min-precedesA ?s1 ?s2 ?a))) 
 

Expression 11: FOLLOWS Relation 
 
The definition of FOLLOWS above allows other suboccurrences between the two that it 
orders.  For example, a process description for drilling may say that tapping follows 
stabilizing a piece of metal.  This does not prevent other steps from happening in between 
tapping and stabilizing, but does not require them either.  The translations below assume 
that intervening steps are allowed.  A version of FOLLOWS can be defined using the PSL 
NEXT_SUBOCC relation, which does not allow intervening steps. 
 
Expression 12 is a typical constraint on follows that requires occurrences following later 
ones to be later themselves.  For example, if drilling occurred repeatedly, it would require 
an occurrence of tapping that follows an occurrence of stabilizing to be before another 
occurrence of tapping that follows a later occurrence of stabilizing.30  Additional 
constraints are added on each usage to prevent its occurrences from overlapping in time.  
Combined with Expression 12 this gives the execution semantics for queueing systems, 
where “tokens” are consumed in first-in, first-out buffers [1][7].31

 
(forall (?s1 ?s2 ?s11 ?s22 ?a) 
   (if (and (follows ?s1 ?s2 ?a) 
            (follows ?s11 ?s22 ?a)) 
       (if (min-precedesA ?s1 ?s11 ?a) 
           (min-precedesA ?s2 ?s22 ?a)))) 
 

Expression 12: Ordered Follows 
 

                                                 
30 This situation arises in flow models whenever execution proceeds multiple times to same sequence of 
steps faster than the steps can complete.  For example, changes might be detected faster than they can be 
processed by a sequence of steps, or a loop might have a fork to a separate sequence of steps, and the loop 
iterates faster than the sequence of steps can complete. 
31 For systems with buffers other than first-in, first-out, Expression 12 is modified for the order in which 
tokens are drawn from the buffers.  If the order varies with a single flow model, variations of Expression 12 
and FOLLOWS are defined for each kind of buffering order. 
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Expression 13 is an example of translating a control flow between an initial node and a 
step, based on the example of Section 6.1.  The first subexpression requires stabilizing a 
piece of metal to occur if drilling occurs, and that stabilizing does not follow any other 
suboccurrence due to a control flow.  The subexpression does not rule out occurrences of 
stabilizing being after other suboccurrences of drilling, just being after any others due to 
control flow, which is the purpose of the FOLLOWS relation.  For example, drilling may 
have multiple initial nodes, with no specification of which is to happen first.  Other 
constraints can require stabilizing to be the PSL root of drilling if needed.  This way the 
translator does not need to traverse more of the process description to generate 
Expression 13. 
 
The second subexpression is needed if the initial step is inside a larger loop or after a 
merge of parallel flows (there is a merge intervening in the control flow between the 
initial node and the first step).  In these cases, the STABILIZING-USAGE relation will link a 
single complex occurrence to multiple suboccurrences.  The second subexpression 
requires that at most one of these occurrences follow no other occurrence.  Combined 
with the existential in first subexpression, exactly one stabilizing occurrence will follow 
no other occurrence.  All the other occurrences identified by STABILIZING-USAGE will 
follow some other occurrence. 
 
(forall (?occ) 
   (if (occurrence_of ?occ drilling) 
       (exists (?sStabilizing) 
          (and (stabilizing-usage ?sStabilizing ?occ) 
               (not (exists (?sFollowed) 
                       (follows ?sFollowed ?sStabilizing  
                                drilling))))))) 
 
(forall (?occ ?s1 ?s2) 
   (if (and (occurrence_of ?occ drilling) 
            (stabilizing-usage ?sStabilizing1 ?occ) 
            (stabilizing-usage ?sStabilizing2 ?occ) 
            (not (exists (?sFollowed) 
                    (follows ?sFollowed ?sStabilizing1  
                             drilling))) 
            (not (exists (?sFollowed) 
                    (follows ?sFollowed ?sStabilizing2  
                             drilling)))) 
       (= ?sStabilizing1 ?sStabilizing2))) 
 

Expression 13: Translation of Initial Control Flow Example 
 
Expression 14 shows an example of translating control flow between steps when there are 
no intervening elements between them, or only intervening forks.  The first subexpression 
requires tapping to occur after stabilizing when stabilizing occurs.  The subexpression 
does not require stabilizing itself to occur, Expression 13 does that. 
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The second subexpression is needed when the control flow is inside a larger loop or after 
a merge of parallel flows.  In these cases, the stabilizing and tapping usages will link a 
single complex occurrence to multiple suboccurrences for each usage.  The FOLLOWS 
relation identifies which pairs of stabilizing and tapping occurrences happen due to a 
single control flow.  The subexpression allows no more than one occurrence of tapping 
following each occurrence of stabilizing, and at most one occurrence of stabilizing to be 
followed by each occurrence of tapping.  Without the second constraint, the first 
subexpression could be satisfied by an occurrence of tapping that follows all the 
occurrences of stabilizing.  The second subexpression does not require stabilizing or 
tapping to exist, or that they follow each other, this is done by the first subexpression.  
The two subexpressions combined require exactly one tapping occurrence to follow each 
stabilizing occurrence, and exactly one stabilizing occurrence to be followed by each 
tapping occurrence.  Control flows to other steps after a fork are translated in the same 
way as Expression 14. 
 
(forall (?occ ?sStabilizing) 
   (if (and (occurrence_of ?occ drilling) 
            (stabilizing-usage ?sStabilizing ?occ)) 
       (exists (?sTapping) 
          (and (tapping-usage ?sTapping ?occ) 
               (follows ?sStabilizing ?sTapping drilling))))) 
 
(forall (?occ ?sStabilizing1 ?sTapping1 
              ?sStabilizing2 ?sTapping2) 
   (if (and (occurrence_of ?occ drilling) 
            (stabilizing-usage ?sStabilizing1 ?occ) 
            (tapping-usage ?sTapping1 ?occ) 
            (stabilizing-usage ?sStabilizing2 ?occ) 
            (tapping-usage ?sTapping2 ?occ) 
            (follows ?sStabilizing1 ?sTapping1 drilling) 
            (follows ?sStabilizing2 ?sTapping2 drilling)) 
       (iff (= ?sStabilizing1 ?sStabilizing2) 
            (= ?sTapping1 ?s1Tapping2)))) 
 

Expression 14: Translation of Control Flow between Subactivities Example 
 
To simplify the presentation below, Expression 15 defines a template for generating the 
second subexpression in Expression 14 for other usage relations and complex activities.  
Given two usage relations and a complex activity, the template expands to an expression 
constraining each two suboccurrences identified by the usage relations to be paired by 
FOLLOWS as described for the second subexpression of Expression 14.   This is true for 
usages in many process descriptions.  See exceptions in the algorithm for chained 
sequence elements below. 
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<follows-at-most-one ?usage1 ?usage2 ?aProcess> expands to 
  (forall (?occ ?s1 ?s1Follow ?s2 ?s2Follow) 
     (if (and (occurrence_of ?occ ?aProcess) 
              (?usage1 ?s1 ?occ) 
              (?usage2 ?s1Follow ?occ) 
              (?usage1 ?s2 ?occ) 
              (?usage2 ?s2Follow ?occ) 
              (follows ?s1 ?s1Follow ?aProcess) 
              (follows ?s2 ?s2Follow ?aProcess)) 
         (iff (= ?s1 ?s2) 
              (= ?s1Follow ?s2Follow)))) 
 

Expression 15: FOLLOWS-AT-MOST-ONE Relation 
 
Expression 16 shows an example of translating control flow between steps when there is 
an intervening join element.  The first subexpression requires inspection to occur after 
lubricating and deburring.  It does not require lubricating and deburring to occur, other 
expressions for control flow into those steps do that.  It also assumes the additional 
subactivities, usages, and other control flow expressions are defined for deburring and 
inspection.  The second and third subexpressions are needed in the same situations as the 
second subexpression of Expression 14.  After template expansion, and in combination 
with the existential of the first subexpression, they require exactly one occurrence of 
inspection to follow exactly one pair of lubricating and deburring occurrences. 
 
(forall (?occ ?sLubricating ?sDeburring) 
   (if (and (occurrence_of ?occ drilling) 
            (lubricating-usage ?sLubricating ?occ) 
            (deburring-usage ?sDeburring ?occ)) 
       (exists (?sInspection) 
          (and (inspection-usage ?sInspection ?occ) 
               (follows ?sLubricating ?sInspection drilling) 
               (follows ?sDeburring ?sInspection drilling))))) 
 
(follows-at-most-one lubricating-usage inspection-usage drilling) 
 
(follows-at-most-one deburring-usage inspection-usage drilling) 
 

Expression 16: Translation of Join in Control Flow Example 
 
Expression 17 shows an example of translating control flow between steps when there is 
an intervening decision element.  The first subexpression defines the condition tested by 
the decision, using the PSL STATE predicate and the HOLDSA relation, which relates 
occurrences to conditions that are present immediately after the occurrence completes 
(see Section 6.3).  The second subexpression requires reaming to occur if the result of 
drilling2 is not within tolerance.  The third subexpression requires deburring to occur if 
the result of drilling2 is within tolerance.  These two subexpressions do not require 
drilling2 to occur, other expressions for control flow into the drilling2 step do that.  This 
assumes the additional subactivities, usages, and other control flow expressions are 
defined for drilling2 and reaming. 
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The third and fourth subexpressions are needed in the same situations as the second 
subexpression of Expression 14.  After template expansion, and in combination with the 
existentials of the first two subexpressions, they require exactly one occurrence of 
reaming or inspection, but not both, to follow exactly one occurrence of drilling2.  The 
last subexpression is needed when the decision conditions are not provided in the process 
description, or to ensure they are exclusive and complete.  It requires that drilling2 be 
followed by either deburring or reaming, but not both. 
 
(state withinTolerance) 
 
(forall (?occ ?sDrilling2) 
   (if (and (occurrence_of ?occ drilling) 
            (drilling2-usage ?sDrilling2 ?occ) 
            (not (holdsA withinTolerance ?s1))) 
       (exists (?sReaming) 
          (and (reaming-usage ?sReaming ?occ) 
               (follows ?sDrilling2 ?sReaming drilling))))) 
 
(forall (?occ ?sDrilling2) 
   (if (and (occurrence_of ?occ drilling) 
            (drilling2-usage ?sDrilling2 ?occ) 
            (holdsA withinTolerance ?s1)) 
       (exists (?sDeburring) 
          (and (deburring-usage ?sDeburring ?occ) 
               (follows ?sDrilling2 ?sDeburring drilling))))) 
 
(follows-at-most-one drilling2-usage reaming-usage drilling) 
 
(follows-at-most-one drilling2-usage deburring-usage drilling) 
 
(forall (?occ ?sDrilling2) 
   (if (and (occurrence_of ?occ drilling) 
            (drilling2-usage ?sDrilling2 ?occ)) 
       (xor (exists (?sReaming) 
               (and (reaming-usage ?sReaming ?occ) 
                    (follows ?sDrilling2 ?sReaming drilling))) 
            (exists (?sDeburring) 
               (and (deburring-usage ?sDeburring ?occ) 
                    (follows ?sDrilling2 ?sDeburring  
                             drilling)))))) 
 

Expression 17: Translation of Decision in Control Flow Example 
 
Expression 18 shows an example of translating control flow between steps when there is 
an intervening merge element.  The first subexpression requires inspection to occur if 
drilling2 or reaming occur.  It does not require drilling2 or reaming to occur, other 
expressions for control flow into those steps do that.  This assumes the additional 
subactivities, usages, and other control flow expressions are defined for drilling2 and 
reaming.  The second subexpression requires that an occurrence of inspection not follow 
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both drilling2 and reaming.  Combined with the first expression, there will be at least two 
occurrences of inspection if drilling2 and reaming both occur. 
 
The last two subexpressions are needed in the same situations as the second 
subexpression of Expression 14.  After template expansion, and in combination with the 
existentials of the first two subexpressions, they require exactly one occurrence of 
inspection to follow exactly one occurrence of drilling2, and the similarly for inspection 
and reaming.  Combined with the third expression, this means there will be exactly two 
occurrences of inspection if drilling2 and reaming both occur. 
 
(forall (?occ ?sDorR ?sReaming) 
   (if (and (occurrence_of ?occ drilling) 
            (or (drilling2-usage ?sDorR ?occ) 
                (reaming-usage ?sDorR ?occ))) 
       (exists (?sInspection) 
          (and (inspection ?occ ?sInspection) 
               (follows ?sDorR ?sInspection drilling))))) 
 
(forall (?occ ?sDrilling2 ?sReaming ?sInspection) 
   (if (and (occurrence_of ?occ drilling) 
            (drilling2-usage ?sDrilling2 ?occ) 
            (reaming-usage ?sReaming ?occ) 
            (inspection-usage ?sInspection ?occ)) 
       (not (and (follows ?sDrilling2 ?sInspection drilling) 
                 (follows ?sReaming ?sInspection drilling))))) 
 
(follows-at-most-one drilling2-usage inspection-usage drilling) 
 
(follows-at-most-one reaming-usage inspection-usage drilling) 
 

Expression 18: Translation of Merge in Control Flow Example 
 
Expression 19 is an example of translating a control flow between a step and a final node.  
The first subexpression requires inspection to have no following occurrences due to a 
control flow.  It does not rule out other occurrences being after inspection, just being after 
inspection due to control flow, which is the purpose of the FOLLOWS relation.  For 
example, drilling may have multiple final nodes, with no specification of which is to 
happen last.  Other constraints can require stabilizing to be the PSL leaf of drilling if 
needed.  This way the translator does not need to traverse more of the process description 
to generate Expression 19. 
 
The second subexpression is needed if the final step is inside a larger loop or after a 
merge of parallel flows (there is a decision intervening in the control flow between the 
last step and the final node).  In these cases, the INSPECTION-USAGE relation will link a 
single complex occurrence to multiple suboccurrences.  The second subexpression 
requires that at most one of these occurrences have no follower.  Combined with the 
existential in first subexpression, exactly one inspection occurrence will have no 
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follower.  All the other occurrences identified by INSPECTION-USAGE will be followed by 
some other occurrence. 
 
(forall (?occ ?sInspection) 
   (if (and (occurrence_of ?occ drilling) 
            (inspection-usage ?sInspection ?occ)) 
       (not (exists (?sFollows) 
               (follows ?sInspection ?sFollows drilling))))) 
 
(forall (?occ ?sInspection1 ?sInspection2) 
   (if (and (occurrence_of ?occ drilling) 
            (inspection-usage ?sInspection1 ?occ) 
            (inspection-usage ?sInspection2 ?occ) 
            (not (exists (?sFollows) 
                    (follows ?sInspection1 ?sFollows drilling))) 
            (not (exists (?sFollows) 
                    (follows ?sInspection2 ?sFollows drilling)))) 
       (= ?sInspection1 ?sInspection2))) 
 

Expression 19: Translation of Final Control Flow Example 
 
A translation based on the patterns described above can be applied to the incoming flow 
of each step separately (there is exactly one after preprocessing).  Usage relations 
identifying the suboccurrences to be constrained are independently applicable in each 
constraint (compare to using logical variables, which requires combining the smaller 
expressions to share the variables).  The translation is applicable to a process description 
that has only control flow between steps, and at most one other sequencing element 
between each two steps, such as fork or decision. 
 
If there are multiple sequencing elements chained together between steps, the translation 
for each step potentially will be multiple expressions filling the templates shown in 
Expression 20, plus other expressions as described in the algorithm below.  It traces back 
from the step being translated (the target step) along the incoming control flow, until 
reaching either an initial node or another step (the source step).  The result will be a 
disjunction of conjunctions (disjunctive normal form) of usage relations of the sources.  
The result also includes the conditions on any decision elements.  Each conjunction is 
inserted into a separate copy of the template in Expression 20, in the left side of the 
implication.  The FOLLOWS subexpressions are generated for each template from the 
usage relations in the conjunction. 
 
(forall (?occ < ?sSource<n> variables > ) 
   (if (and (occurrence_of ?occ <complex activity>) 
            <result from recursion below>) 
       (exists (?sTarget) 
          (and (<target step usage relation> ?sTarget ?occ) 
               < follows subexpressions for source usage 
                 relations in recursion result and ?sTarget >))) 
 

Expression 20: Template for Chain of Sequencing Elements 
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The algorithm below assumes that: 
 

 flows between sequence elements do not loop between any two steps. 
 decisions have conditions on all outgoing control flows. 
 only merges intervene in a control flow between an initial node  and a step. 
 there is no intervening sequence element in a control flow between a step and a 

final node. 
 
The algorithm also assumes that merges and joins do not appear on the same path 
between any two steps in combinations that cause the same occurrence in the target usage 
to follow multiple occurrences in a source usage, or multiple occurrences in the target to 
follow the same occurrence in a source.  The FOLLOWS-AT-MOST-ONE expressions 
contradict these situations.  Well-nested decisions and merges, and joins and forks, 
satisfy this assumption, for example in typical structured programming languages. 
 
The algorithm is: 
 

1. Before traversing backward from the target step, if the target step has a control 
flow to a final node, then generate a separate expression per Expression 19. 

 
2. When traversing backward from the target step, on reaching an initial node, 

generate a separate expression for the target step per Expression 13.  This is one 
of the base cases of the recursion. 

 
3. On reaching another step, generate a separate expression with the FOLLOWS-AT-

MOST-ONE template, using the usage relation of this step, the usage relation of the 
target step, and the name of the complex activity being translated.  Return a usage 
relation subexpression for the step with variables ?sSource<n> and ?occ, where 
the source variable name is constructed by replacing “<n>” with the name of the 
usage relation of the source step.  This is one of the base cases of the recursion. 

 
4. On reaching a sequencing element, proceed as follows, depending on the kind of 

element: 
 

a. For forks, return the result of recurring on the incoming edge. 
 

b. For joins, return the conjunction of the results from recurring on incoming 
edges. 

 
c. For decisions, return a conjunction of the decision condition and the result 

of recurring on the incoming edge. 
 

d. For merges, return the disjunction of the results of recurring on the 
incoming edges.  
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5. When the recursion is complete, transform the result into a disjunction of 
conjunctions (disjunctive normal form) by repeatedly distributing conjunctions 
over disjunctions.  This replaces subexpressions of the form (and p1 (or p2 
p3)) with (or (and p1 p2) (and p1 p3)). 

 
6. For each conjunction in the disjunction in step 5, generate an expression by filling 

in the template in Expression 20, inserting the subexpressions into the conjunction 
on the left side of the implication.  Insert source variables in the universal 
quantification that are used in the inserted subexpressions. 

 
7. For each expression resulting from step 6, and for each usage relation 

subexpression on the left side of the implication, insert a FOLLOWS statement into 
the right side as shown in Expression 20, using the source variable name 
corresponding to the usage relation, the ?sTarget variable, and the name of the 
complex activity being translated. 

 
8. For each expression resulting from step 7, insert the usage relation for the target 

step into the right side of the implication, as shown in Expression 20. 
 

9. If there are multiple expressions resulting from step 8, for each pair (unordered) 
generate an expression by filling in the template in Expression 21.  Insert the 
usage relation subexpression for the target step into the left side of the 
implication.  Insert all the source usage relation subexpressions in the pair of 
expressions into the left side also.  Insert source variables in the universal 
quantification that are used in the inserted subexpressions.  For each usage 
relation subexpression except for the target, insert a FOLLOWS subexpression on 
the right side as shown in Expression 21, with the source variable from the usage 
relation subexpression, the ?sTarget variable, and the complex activity being 
translated. 

 
10. If any of the steps involved above are for the same subactivity, generate a separate 

expression for each (unordered) pair of usage relations corresponding to the steps 
requiring the relations to be disjoint.  This prevents them from linking the same 
complex occurrence to the same suboccurrence. 

 
(forall (?occ < ?sSource<n> variables > ?sTarget) 
   (if (and (occurrence_of ?occ <complex activity>) 
            (<target step usage relation> ?sTarget ?occ) 
            <usage relation expressions>) 
       (not (and <follows expressions>)))) 
 

Expression 21: Template for FOLLOWS for Merges in Sequence Element Chain 
 
Inference using the translations above requires closure expressions to prevent deduction 
of unwanted occurrences.  For example, Expression 14 does not prevent tapping from 
from happening before stabilizing.  The first subexpression only requires tapping to occur 
when stabilizing does, and the second only requires the occurrences to be matched one-
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to-one when tapping follows stabilizing.  They allow tapping to occur even if stabilizing 
does not.  In general, the translations only infer the existence of desired occurrences, not 
the lack of  undesired ones.  Expression 22 shows closure expressions for Expression 14.  
The first subexpression requires every occurrence of tapping to follow an occurrence of 
stabilizing.  The second requires tapping to follow only stabilizing, not other steps in the 
process.  Combined with Expression 14, this requires one occurrence of tapping for each 
occurrence of stabilizing and no other occurrences of tapping are allowed. 
 
(forall (?occ ?sTapping) 
   (if (and (occurrence_of ?occ drilling) 
            (tapping-usage ?sTapping ?occ)) 
       (exists (?sStabilizing) 
          (and (stabilizing-usage ?sStabilizing ?occ) 
               (follows ?sStabilizing ?sTapping drilling))))) 
 
(forall (?occ ?sTapping ?s) 
   (if (and (occurrence_of ?occ drilling) 
            (tapping-usage ?sTapping ?occ) 
            (follows ?s ?sTapping drilling)) 
        (stabilizing-usage ?s ?occ))) 
 

Expression 22: Closure for Expression 14
 

6.3 Reacting to Changes 
 
Many process languages have elements for reacting to changes in circumstances 
(sometimes called “events” or “triggers”).32  These elements do not restrict which other 
processes bring about the changes, which may even be the process detecting the change.  
Change detection is useful when a process should be specified independently of its 
environment, but still react to changes in it.  This section gives translations of change 
detection patterns to PSL.  It is based on the PSL STATE relation, which identifies entities 
representing conditions of the “world” in which a process operates.  Specific states are 
true immediately before and after each occurrence in the occurrence tree, as defined with 
the PSL PRIOR and HOLDS relations (Expression 6 in Section 5 defines the extensions 
PRIORA and HOLDSA for complex occurrences).  This section only addresses change 
detection in the context of sequencing constraints (Section 6.2).  See Section 7.3 for 
change detection with participation constraints. 
 
Expression 23 shows an example translation for starting a process whenever a certain 
kind of change happens.  In this example a drilling process starts whenever a piece of 
metal becomes available.  The first subexpression defines the kind of state to be detected.  
It defines a class of states instead of specific one, so the translation can be used when any 
piece of metal becomes available, rather than a particular one.  The second subexpression 
defines a relation between occurrences and groves of drilling that start after the 
                                                 
32 In software terminology, “event” usually means the receipt of notification that a change has occurred.  
The formalization in this paper represents changes separately from receiving notifications of them. 
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occurrence.  The third and fourth subexpressions in Expression 23 require the BEFORE-
DRILLING relation to link at most one occurrence making a piece of metal available to at 
most one grove of drilling on the same branch of the occurrence tree (there may be 
multiple groves of drilling in the activity tree as a whole).  This will ensure each piece of 
metal is drilled at most once, assuming each METAL-AVAILABLE state is true for exactly 
one piece of metal. 
 
The last subexpression requires that BEFORE-DRILLING link at least one drilling grove to 
each occurrence that makes a piece of metal available, and that the grove begins after the 
metal becomes available.  It uses the PSL ACHIEVED relation to identify changes brought 
about by occurrences, which requires the state to be false immediately before an 
occurrence and true immediately after.  Combined with the previous two subexpressions, 
BEFORE-DRILLING will link each occurrence of making a piece of metal available to 
exactly one grove of drilling.  Expression 23 does not require the drilling grove to only 
occur when metal is available.  This would be a constraint similar to the last 
subexpression, with the two sides of the implication switched to require every grove of 
drilling to be linked by BEFORE-DRILLING to a occurrence making a piece of metal 
available. 
 
(forall (?f) 
    (if (metal-available ?f) 
        (state ?f))) 
 
(forall (?s ?groveRoot) 
   (if (before-drilling ?s ?groveRoot) 
       (and (legal ?s) 
            (grove ?groveRoot drilling)))) 
 
(forall (?s1 ?s2 ?groveRoot) 
   (if (and (before-drilling ?s1 ?groveRoot) 
            (before-drilling ?s2 ?groveRoot)) 
       (= ?s1 ?s2))) 
 
(forall (?s ?groveRoot1 ?groveRoot2) 
   (if (and (before-drilling ?s ?groveRoot1) 
            (before-drilling ?s ?groveRoot2)) 
       (not (or (earlierA ?groveRoot1 ?groveRoot2)) 
                (earlierA ?groveRoot2 ?groveRoot1)))) 
 
(forall (?s) 
   (if (and (legal ?s) 
            (achieved ?f ?s) 
            (metal-available ?f)) 
       (exists (?groveRoot) 
          (and (before-drilling ?s ?groveRoot) 
               (earlier ?s ?groveRoot))))) 
 

Expression 23: Starting a Process after a Change 
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Expression 23 can be tightened to require drilling to start within a certain amount of time 
after metal becomes available.  This is an additional clause in the existential of the last 
subexpression above, constraining the ending and beginning timepoints of ?s and 
?groveRoot, respectively.  An additional expression can be defined to require drilling 
begin on the pieces of metal as the become available, rather than drilling a later piece of 
metal first.  This is a constraint on BEFORE-DRILLING that requires later occurrences of 
metal becoming available to be linked to later occurrences of drilling. 
 
Processes might not always react when a change happens.  For example, a process may 
reach a point where it waits for a change to happen, and continues when it does, but does 
not react to the change before the process begins waiting or after it continues.  Expression 
24 adapts the previous translation example to react to a piece of metal becoming available 
only after preparation is done and before drilling starts.  Any other metal becoming 
available is ignored.  It uses the state defined in the first subexpression of Expression 23.  
The first two subexpressions of Expression 24 define a relation to identify the first 
achievement of metal becoming available in a factory process after preparing is done.33  
The last subexpression is a translation of sequencing, as in Section 6.2, assuming the 
usage relation is defined for preparing.  It ensures that drilling occurs if a piece of metal 
becomes available after preparing is done.  It will infer only one occurrence of drilling, 
for the first time metal becomes available.34

 
(forall (?s ?occ ?sPreparing) 
   (iff (provide-metal-all ?s ?sPreparing ?occ) 
        (and (occurrence_of ?occ FactoryProcess) 
             (preparation-usage ?sPreparing ?occ) 
             (legal ?s) 
             (exists (?f) 
                (and (achieved ?f ?s) 
                     (metal-available ?f))) 
             (earlierA ?sPreparing ?s)))) 
 
(forall (?s ?occ ?sFirst) 
   (iff (provide-metal-first ?sFirst ?sPreparing ?occ) 
        (and (provide-metal-all ?sFirst ?occ) 
             (not (exists (?s) 
                     (and (provide-metal-all ?s ?occ ?sPreparing) 
                          (earlier ?s ?sFirst))))))) 
 
 
 
 
 
 
 

                                                 
33 See footnote 45 on page 35. 
34 Negated existentials are only inferable with closure expressions that rule out the existence of unknown 
occurrences.  In the example above, the process designer would need to enumerate all the possible ways 
metal can become available, so it one of them can be proved to be the earliest after preparing. 
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(forall (?occFactory ?sPreparing ?s ?f) 
   (if (and (occurrence_of ?occ FactoryProcess) 
            (preparation-usage ?sPreparing ?occ) 
            (provide-metal-first ?s ?occ ?sPreparing)) 
       (exists (?sDrilling) 
          (and (drilling-usage ?sDrilling ?occ) 
               (earlierA ?s ?sDrilling) 
               (follows ?sPreparing ?sDrilling  
                        FactoryProcess))))) 
 

Expression 24: Waiting for a Change 
 
Additional constraints can be added to Expression 24 requiring drilling to start within a 
certain amount of time after metal becomes available.  This is an additional clause in the 
existential of the last subexpression above, constraining the ending and beginning 
timepoints of ?s and ?sdrilling, respectively. 
 
Combining the above examples would be a process that waits for a change to continue, as 
in Expression 24, but waits at the very beginning, before any other steps in the process 
have occurred, as in Expression 23.  Workflow engines support this capability by 
distinguishing processes that are “open” from those that are “running” [27][28].  This 
requires extending PSL, because a complex occurrence does not begin until its first 
suboccurrence does (the root occurrence).35  It cannot be “waiting” for a change before 
the first suboccurrence.36  A PSL extension could introduce activities that open complex 
occurrences before the root of those occurrences starts, and support other aspects of 
representing the process of “executing” a process, such as states of a process. 

7 Loosely Coupled Communication 
 
Loose coupling refers to processes that place fewer restrictions on which other processes 
give entities to them or receive entities from them.  The loosest kind of coupling does not 
even specify a delegate to choose the other processes (see category 1.c.ii in Sections 1 
and 2).  The rest of this paper refers to this as input and output.37  A process using only 
inputs and outputs will accept and provide entities regardless of which other processes it 
communicates with,38 what those processes do with the entities, and exactly how the 
entities are given and received (see discussion of pre/postconditions in Section 7.1).  A 
process that identifies specific other processes from which to accept entities and to which 
to provide entities is using function invocation (1.a).  A process that identifies a delegate 

                                                 
35 See footnote 23 on page 10. 
36 The occurrence bringing about the change cannot be a root, because it might never happen.  It also 
cannot be the leaf of a “waiting” suboccurrence for the same reason.  See footnote 45 on page 35. 
37 Common flow modeling and process languages, whether in graphical form like the UML [1], or textual 
form as in programming languages, usually define inputs and outputs colloquially as entities “passed in” or 
“passed out” of a process.  The intuition is that the process has a “boundary” across which entities “flow” 
(sometimes called “data flow” or “object flow”).  This definition is not sufficient to distinguish inputs and 
outputs from the other categories in Section 1. 
38 Except see footnote 14 on page 4. 
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to make that determination is using messages (1.b/c.i, and Section 8), but also see Section 
9 on loosely coupled messaging. 
 
Another important aspect of input and output is they are dependent on the view taken of 
the process.  For example, a milling process might involve a piece of metal, oil, 
electricity, heat, metal shavings, and some instructions on how the metal is to be milled.  
Which are inputs and which are outputs, and which are neither?  Consider these 
alternative views: 
 

 From an operator's view, the piece of metal and instructions are input, and the 
piece of metal is output, whereas oil and electricity are “infrastructural” and not of 
concern as inputs and outputs, while shavings and heat are just bi-products. 

 
 From an infrastructural view, the oil and electricity are inputs, and oil is an 

output, since it becomes dirty and needs to be cleaned or recycled. 
 

 Another view might assume metal shavings are output because they must be 
removed from the machine periodically, or are useful as scrap. 

 
 Perhaps special arrangements are made to absorb sound, so it is an output, but 

heat and vibration are not, since nothing is done with these. 
 

 The machine might be controlled under an agent architecture, which determines 
the shape to be made through a brokering interaction with other agents needing 
the milling service.  In this case, the instructions are not an input because the 
machine chooses them for itself. 

 
This simple example of view-dependent input and output presents a challenge for both 
conventional process languages models and PSL.  Conventional languages, including 
textual programming languages, provide for only one set of inputs and outputs.  And 
within that single view, they provide no guidance on what to choose as an input or output.  
They enforce the temporal ordering constraints that require inputs of one process to be 
filled by outputs of another occurring earlier, but these must be specified under a single 
larger process containing the communicating processes.  PSL supports multiple views of 
a single process, because any element of a process can be contained under multiple other 
processes, each of which can establish its own constraints on the elements.  However, 
PSL currently lacks support for representing input and output, in particular, 
distinguishing inputs from outputs from other entities participating in a process, as 
discussed in Section 7.1.  It also lacks temporal ordering constraints between inputs and 
outputs. 
 
This section defines an extension of PSL for inputs and outputs.  Section 7.1 shows 
inputs and outputs to be early design stage notions that are not equivalent to existing PSL 
concepts, preconditions and postconditions in particular.  Section 7.2 defines activities for 
input and output that include support for multiple views, along with constraints on their 
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usage.  Section 7.3 gives translations for typical input and output elements in common 
process languages.  Section 6.3 gives translations for reacting to changes. 

7.1 Inputs and Outputs in Current PSL Relations 
 
Before extending PSL for inputs and outputs, it is important to show they are require an 
extension to define accurately.  Here are some ways one might attempt in current PSL to 
distinguish which objects involved in an activity occurrence are inputs, which are 
outputs, and which are neither: 
 

 Perhaps an input is any object participating in an occurrence of the process that 
also participates in some other occurrence earlier in time, and the reverse for 
output, using PSL's support for participation.  However, such an object is not 
always an input or an output.  For example, processes for repairing and painting 
beams in a factory might happen to choose to operate on the same beam at 
different times, but not because one process outputs beams to the other.  The 
beam is a participant in both, but would not be considered an output of one 
process to the other, even if this accidentally happened all the time. 

 
 Another approach is to use preconditions and postconditions, which PSL supports 

on process occurrences.  For example, the precondition on the piece of metal 
input to a milling machine might be it is in a certain location where the operator 
or machine notices it.  However, sometimes inputs are received by a process after 
it starts, and provided by a process before it finishes.  For example, a milling 
process might receive oil after it starts, and produce shavings before it finishes.  
This means conditions for input and output do not necessarily apply at the start 
and finish of a process, as required by preconditions and postconditions. 

 
Even for inputs received at the beginning of a process and outputs provided at the 
end, some preconditions and postconditions are not about inputs or outputs.  For 
example, perhaps a milling machine must be inspected before the milling process 
starts, but this does not imply the inspector is an input to milling.  Finally, the 
preconditions and postconditions for input and output are too specific in most 
cases.  For example, the specification of a milling process with a piece of metal as 
input probably does not include how or where to detect the presence of the metal.  
The exact location for input might be different for various kinds of milling 
processes or may even change for the same one to other factors. 

 
 A representation for resources is being developed for PSL that defines input and 

output based on effects that the activity has on the input or output.  In this 
extension, input material is defined as any object consumed or modified by the 
process, and output material refers to the participants that are created or modified.  
This would mean instructions to a milling are not inputs because they are not 
modified, and similarly for processes that use catalysts.  Another aspect of the 
resource extension is contention, which is not a requirement for inputs and 
outputs.  An object can be input to two processes that operate on it at once 
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without contention, for example, two machining operations on different parts of 
the same piece. 

 
 First-order logic provides for parameterized functions that can be easily mistaken 

for a representation of inputs and outputs.  For example, we might define the 
milling process as a function that represents a PSL activity, as the milling term 
does in Expression 25.  However, parameterized terms do not differentiate inputs 
from outputs, or objects that are neither.39 

 
(forall (?a ?m ?i ?o) 
   (if (= ?a milling(?m ?i ?o)) 
       (and (activity ?a) 
            (metal ?m) 
            (instructions ?i) 
            (oil ?o)))) 
 

Expression 25: Parameterized Term for Activities 
 
These examples suggest the notions of input and output are not equivalent to existing 
PSL concepts, such as participation, preconditions, postconditions, or resources.  They 
also suggest it is not possible to define generally sufficient conditions to identify an 
object as an input and output.  The PSL extension in this paper defines only necessary 
conditions on input and object objects, leaving sufficient conditions to be defined by the 
designer of each process (see discussion at the end of Section 4). 

7.2 Axioms for Input and Output 
 
This section extends PSL for inputs and outputs rather than apply usage patterns, for the 
reasons given in Section 4.  In particular, extensions enable the process designer to define 
inputs and outputs of separate processes independently of each other.  For example, a 
drilling process providing a piece of metal to a milling process is only concerned with 
providing the output, and the milling process only with taking the input.  This is more 
modular than writing one constraint for both as would be required when applying usage 
patterns.40

 
The extension consists of activities for accepting inputs and posting outputs (giving and 
receiving entities), plus some functions for identifying entities that are the subject of 
these activities.  Occurrences of accepting and posting activities enable inputs and 
outputs to be received and given at any time during a process.  They are also the basis for 
defining the relations that identify entities given and received at particular times, for 
example, at the start and finish of a process.41

                                                 
39 Parameterized functions support multiple views by mapping different functions to the same activity. 
40 See Section 5 of [8] for example usage patterns for input and output. 
41 An earlier paper relied mainly on defining new PSL relations for input and output [6], which has the 
advantage of not requiring anything to actually occur when inputting or outputting an object.  However, 
new relations cannot represent exactly when inputs and outputs are communicated during a process without 
specifying states as well, which require activities to bring them about.  The predefined activities in this 
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Expression 26 defines activity functions for accepting and posting entities to and from a 
process.  These are relations between an activity, an object that is accepted or posted, and 
a grove to or from which the object is accepted or posted (see Expression 4 for 
description of groves).  They are defined as functions because they identify exactly one 
activity for each pair of object and grove.42  The grove argument is needed because 
groves are not necessarily strongly nested, as in typical process languages (see footnote 
27 and Expression 42).  The grove argument identifies the “boundary” between the 
process and other processes giving or receiving the inputs and outputs.43  
 
Expression 26 allows the same object to be accepted or posted multiple times under the 
same superoccurrence, to support multiple inputs or outputs of the same type of thing, see 
Expression 45.  It does not prevent the same activity from accepting or posting multiple 
objects for multiple superoccurrences, or multiple objects for the same 
superoccurrence.44  An accept or post activity can also have user-defined capabilities, for 
example a post activity for a piece of metal can also move it.  Accept and post activities 
are not required to be atomic in the extension, but the process designer can constrain 
theirs to be atomic as needed. 
 
(forall (?a ?x ?sGroveRoot ?aGroveAct) 
   (if (or (= ?a (accept-input ?x ?sGroveRoot ?aGroveAct)) 
           (= ?a (post-output ?x ?sGroveRoot ?aGroveAct))) 
           (and (activity ?a) 
                (activity-participant ?x ?a) 
                (grove ?sGroveRoot ?aGroveAct) 
                (subactivity ?a ?aGroveAct)))) 
 
(forall (?a ?x ?sGroveRoot ?aGroveAct ?s) 
   (if (and (or (= ?a (accept-input ?x ?sGroveRoot ?aGroveAct)) 
                (= ?a (post-output ?x ?sGroveRoot ?aGroveAct))) 
            (occurrence-ofA ?s ?a)) 
       (subocc-in-grove ?s ?sGroveRoot ?aGroveAct))) 
 

Expression 26: Accepting Inputs and Posting Outputs 
 
Expression 27 defines relations that facilitate application of the activity functions above.  
They relate inputs and outputs to occurrences in which they are accepted or posted.  A 
particular accept or post will usually not be in all the occurrences of the grove to which 

                                                                                                                                                 
paper abstract from the state-oriented approach of [6] for more expressiveness and simplicity, while 
preserving the transition to states (see discussion of preconditions and postconditions in Section 7.1, and 
Expression 47 and Expression 48).  The suggestion to use activities appeared in [8]. 
42 A function is a relation with one of the arguments identified as always the same for a particular 
combination of the other arguments. 
43 This replaces the “relative” input and output relations in [6].  
44 The same function can be applied to different arguments and still map to the same individual.  The 
“combined” activities defined this way cannot be uncombined.  For example, if an activity accepting or 
posting multiple objects occurs multiple times, all the objects are accepted or posted multiple times, once at 
each occurrence. 
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they refer.  Even for a process that always accepts the same input or posts the same 
outout, the occurrences of the accept and post activities will usually not be the same.  
They are spread across branches of the activity trees due to occurrences external to the 
process. 
 
(forall (?x ?occ ?sAccept) 
   (iff (accept-input-in-occ ?x ?occ ?sAccept) 
        (exists (?sGroveRoot ?aGroveAct) 
           (and (occ-grove-root ?sGroveRoot ?occ) 
                (occurrence_of ?occ ?aGroveAct) 
                (occurrence-ofA ?sAccept 
                   (accept-input ?x ?sGroveRoot ?sGroveAct)) 
                (subactivity_occurrence-neq ?sAccept ?occ))))) 
 
(forall (?x ?occ ?sPost) 
   (iff (post-output-in-occ ?x ?occ ?sPost) 
        (exists (?sGroveRoot ?aGroveAct) 
           (and (occ-grove-root ?sGroveRoot ?occ) 
                (occurrence_of ?occ ?aGroveAct) 
                (occurrence-ofA ?sPost 
                   (post-output ?x ?sGroveRoot ?sGroveAct)) 
                (subactivity_occurrence-neq ?sPost ?occ))))) 
 

Expression 27: Inputs and Outputs in Occurrences 
 
Inputs can be taken from changes brought about by other processes, without requiring 
them to be provided as outputs.  For example, a process for driving will take traffic light 
changes as input, but might be specified without requiring the process for changing traffic 
lights to provide colors as output.  This enables the specification of driving to be 
independent of the specification for traffic light changes.  Changes in PSL are represented 
using states, which represent any condition of the world (see Section 6.3).  PSL does not 
refine state any further, in particular, it does not give a relation to link a state to the 
objects involved in the conditions represented by a state. 
 
Expression 28 defines a relation linking states to the objects they are about.  For example, 
the state of a traffic light being green will be about a particular traffic light and the color 
green.  The first subexpression defines the types of things being related, states and 
objects.  The second requires occurrences changing states to have the objects the states 
are about as participants.  It uses the ACHIEVEDA and FALSIFIEDA relations, which link 
occurrences to states that become true and false during the occurrences, respectively. 
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(forall (?x ?f) 
   (if (about ?x ?f) 
       (and (state ?f) 
            (object ?x)))) 
 
(forall (?x ?f ?s) 
   (if (and (about ?x ?f) 
            (or (achievedA ?f ?s) 
                (falsifiedA ?f ?s))) 
       (participant ?x ?s))) 
 

Expression 28: The ABOUT Relation 
 
Expression 29, Expression 30, and Expression 31 constrain when accepting and posting 
activities can occur.  Expression 29 is the most general constraint on occurrences of 
accepting and posting activities.  It requires every legal occurrence of accepting to be 
after a posting of the same object, or after achievement of a state about that object.45  
This follows the common intuition that receipt of an object must happen after it is 
becomes available.  It uses the EARLIERA relation, which only requires the occurrences be 
somewhere on the occurrence tree, rather than within an activity tree.  It does not require 
posted objects to be accepted. 
 
(forall (?sAcceptInput ?x ?sGroveRoot1 ?aGroveAct1) 
   (if (and (occurrence-ofA ?sAcceptInput 
               (accept-input ?x ?sGroveRoot1 ?aGroveAct1)) 
            (legalA ?sAcceptInput)) 
       (or (exists (?sPostOutput ?sGroveRoot2 ?aGroveAct2) 
              (and (occurrence-ofA ?sPostOutput 
                      (post-output ?x ?sGroveRoot2 ?aGroveAct2)) 
               (earlierA ?sPostOutput ?sAcceptInput))) 
           (exists (?sAchieves ?f) 
              (and (achieved ?f ?sAchieves) 
                   (about ?f ?x) 
                   (earlierA ?sAchieves ?sAcceptInput)))))) 
 

Expression 29: Ordering Constraint on Accept and Post 
 

                                                 
45 Many process languages represent change detection as a step in a process (“listening”).  This has the 
advantage of representing the changed object as output of a step, with the same semantics as output from 
any other step.  In particular, the PSL axioms for input and output are simpler.  It also enables 
representation of change detection in a similar way to messaging (Section 8.1), as the final stage of a 
process that begins with the occurrence bringing the change about, and ends with the change being noticed 
by the listener.  Representing change detection as a step has the disadvantage that it might be unintuitive to 
consider “listening” as something which occurs.  For example, a listening occurrence would have no 
suboccurrences (other than itself) if the change to be detected never happens.  In particular, listening 
activities require an extension to PSL for representing processes that are started but not doing anything, one 
of the problems listening activities are intended to avoid, see discussion of workflow engines in Section 
6.3.  Listening activities also require an extension for aborting processes, needed to prevent them from 
waiting forever for a change that never occurs. 
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Expression 30 and Expression 31 are stronger constraints following the common style of 
process languages where all “flows” of inputs and outputs are either within a “boundary” 
of a process, through inputs and outputs of the process itself, or from detecting the 
achievement of a state about the input object sometime during the process.  In Expression 
30 the accept (?sAcceptInput) is for suboccurrences in complex occurrences 
(?occSuper) under which flow happens.  The premise of the implication identifies the 
complex occurrences in the accepting grove in which the accept actually occurs, using 
ACCEPT-INPUT-IN-OCC.  The accepted object must come from either a preceding post for a 
suboccurrence in the same complex occurrence (first disjunct in consequent), from a 
preceding accept for the same complex occurrence (second disjunct), or from an earlier 
achievement of a state about that object during the same complex occurrence (third 
disjunct).46  There is no similar constraint on posting, because outputs are not required to 
be input to other processes. 
 
(forall (?x ?occWithAccept ?sAcceptInput) 
   (if (accept-input-in-occ ?x ?occWithAccept ?sAcceptInput) 
       (exists (?occSuper) 
          (and (subactivity-occurrence-neq  ?occWithAccept  
                                            ?occSuper) 
               (or (exists (?occEarlier ?sPostOutput) 
                      (and (post-output-in-occ ?x ?occEarlier  
                                                  ?sPostOutput) 
                           (subactivity-occurrence-neq  
                              ?occEarlier ?occSuper) 
                           (occurrence_of ?occSuper ?aSuperAct) 
                           (min-precedesA ?sPostOutput  
                                          ?sAcceptInput  
                                          ?aSuperAct))) 
                   (exists (?aSuperAct ?sAcceptForSuper) 
                      (and (accept-input-in-occ ?x ?occSuper  
                                                ?sAcceptForSuper) 
                           (occurrence_of ?occSuper ?aSuperAct) 
                           (min-precedesA ?sAcceptForSuper 
                                          ?sAcceptInput  
                                          ?aSuperAct))) 
                   (exists (?f ?sEarlier) 
                      (and (achieved ?f ?sEarlier) 
                           (about ?f ?x) 
                           (or (= (root_occ ?occSuper) ?sEarlier) 
                               (earlier (root_occ ?occSuper)  
                                        ?sEarlier)) 
                           (earlierA ?sEarlier  
                                     ?sAcceptInput)))))))) 

Expression 30: Ordering Constraint on Accept by Suboccurrence 
                                                 
46 All common process models require occurrences of complex processes to be “strongly nested” (see 
footnote 27 and Expression 42), though PSL and the axioms and translations in this paper do not.  In 
particular, Expression 30 and Expression 31 could be tightened to require accepting an input only from a 
direct superoccurrence, and posting an output only to a direct superoccurrence (see Expressions 39 and 40 
in [6] for direct suboccurrence axioms). 
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Expression 31 applies to the posting of outputs to a complex occurrence.  The posted 
object must come from either a preceding post under a suboccurrence of the same 
complex occurrence (first disjunct), from an accept for the same complex occurrence 
(second disjunct), or from an earlier achievement of a state about that object during the 
same complex occurrence (third disjunct).  It does not require posted objects to be 
accepted.  Accepting objects in complex occurrences is constrained by Expression 30. 
 
(forall (?x ?occSuper ?sPostOutputForSuper) 
   (if (post-output-in-occ ?x ?occSuper ?sPostOutputForSuper) 
       (or (exists (?occEarlier ?sPostOutputEarlier) 
              (and (post-output-in-occ ?x ?occEarlier  
                                          ?sPostOutputEarlier) 
                   (subactivity-occurrence-neq ?occEarlier  
                                               ?occSuper) 
                   (occurrence_of ?occSuper ?aSuperAct) 
                   (min-precedesA ?sPostOutputEarlier 
                                  ?sPostOutputForSuper  
                                  ?aSuperAct))) 
           (exists (?sAcceptForSuper) 
              (and (accept-input-in-occ ?x ?occSuper  
                                           ?sAcceptForSuper) 
                   (occurrence_of ?occSuper ?aSuperAct) 
                   (min-precedesA ?sAcceptInputForSuper  
                                  ?sPostOutputForSuper 
                                  ?aSuperAct))) 
           (exists (?f ?occEarlier) 
              (and (achieved ?f ?occEarlier) 
                   (about ?f ?x) 
                   (or (= (root_occ ?occSuper) ?occEarlier) 
                       (earlier (root_occ ?occSuper)  
                                ?occEarlier)) 
                   (earlierA ?occEarlier  
                             ?sPostOutputForSuper)))))) 
 

Expression 31: Ordering Constraint on Post by Suboccurrence 
 
Applications involving physical objects might want to require that inputs taken by a 
subprocess are output again before being input to a later subprocess, and before being 
output from a containing process.  For example, a piece of metal accepted into a drilling 
process might be required to be posted out again before being accepted by a later milling 
process, or before being posted out of an overall factory process.  Expression 30 and 
Expression 31 can be tightened to require this. 
 
Expression 32 and Expression 33 define kinds of input and output based on whether they 
are accepted and posted only at the beginning and end of a process, or possibly anytime 
during it (see category 2 in Sections 1 and 2).  The relations OCCURRENCE-INPUT-BEGIN 
and OCCURRENCE-OUTPUT-END require occurrences of ACCEPT-INPUT and POST-OUTPUT at 
the beginning and end (root and leaf) respectively, whereas the relations OCCURRENCE-
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INPUT and OCCURRENCE-OUTPUT do not have that restriction.47  The “begin” and “end” 
relations imply the others, but not the inverse.48  The “begin” and “end” relations refer to 
specific objects, rather than object identified by relations to the superoccurrence (see 
Expression 45).  In some applications, the same object is identified by multiple relations 
to the superoccurrence, and is input or output only at the beginning or end for some of 
those relations, and input or output anytime for others.  In this case, variations of 
Expression 33 can be defined that use a one-direction implication instead of the inner 
bidirectional one.  This would require the object to be accepted or posted at the beginning 
or end while still allowing it to be accepted or posted during the superoccurence.  The 
process designer applies these to objects identified by relations to the superoccurrence. 
 
(forall (?x ?occ ?sAccept) 
   (iff (occurrence-input-begin ?x ?occ) 
        (iff (accept-input-in-occ ?x ?occ ?sAccept) 
             (root-occA ?sAccept ?occ)))) 
 
(forall (?x ?occ ?sPost ?sPostLeaf) 
   (iff (occurrence-output-end ?x ?occ) 
        (iff (post-output-in-occ ?x ?occ ?sPost) 
             (leaf-occA ?sPost ?occ)))) 
 

Expression 32: Inputs and Outputs at Beginning and End of Complex Occurrence 
 
(forall (?x ?occ) 
   (iff (occurrence-input ?x ?occ) 
        (exists (?sAccept) 
           (accept-input-in-occ ?x ?occ ?sAccept)))) 
 
(forall (?x ?occ) 
   (iff (occurrence-output ?x ?occ) 
        (exists (?sPost) 
           (post-output-in-occ ?x ?occ ?sPost)))) 
 

Expression 33: Inputs and Outputs in Complex Occurrence 
 

7.3 Translations of Input and Output 
 
This section gives example translations of input and output “flow” to PSL (“data 
flow”),49 using the predefined activities and new relations defined in Section 7.2 for 
inputs and outputs.  The translation follows the definition of input and output in the 
introduction to Section 7, in particular, interpreting data flow as constraints on 

                                                 
47 These relations apply to occurrences, but similar ones can apply to groves, constraining all the 
occurrences in a grove, or to activities, constraining all occurrences of an activity.  
48 Many process languages support both kinds of input and output, but they appear as separate language 
elements.  For example, programming language parameters would be formalized with OCCURRENCE-INPUT-
BEGIN and OCCURRENCE-OUTPUT-END, but these same programs might operate in “publish” and 
“subscribe” systems, which have the semantics of OCCURRENCE-INPUT and OCCURRENCE-OUTPUT. 
49 See footnote 37 on page 29. 
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interprocess participation that are independent of the processes being coordinated.  The 
translation covers data flow in typical process languages, and employs the usage relations 
of Section 6.1 to identify the suboccurrences between which entities are flowing.  This 
enables each data flow to be translated separately from others, and separately from 
sequencing (“control flow,” see Section 6.2), making the expressions smaller than if the 
entire process were translated at once.  This is also facilitated by assuming data flow is 
intended to allow other steps to be inserted later, rather than be a complete description.  
Separate closure expressions can be defined to indicate the description is complete. 
 
Expression 34 through Expression 39 assume data flow is independent of control flow (as 
translated in Section 6.2).50  This simplifies translation of some kinds of processes that 
use both, and supports process languages that do not assume an implicit control flow with 
every data flow [12][29].  If a language has implied control flow with data flow [1][9], 
then control flow can be added to the process description for every data flow before 
translation.  This approach is not suitable for processes where data flow starts a 
subprocess without the completion of earlier subprocesses (category 1.c.ii/2.a in Sections 
1 and 2), for example, if a milling process starts when metal is input, even if the 
subprocess providing metal is not complete.  In these applications, data flow must be 
folded into expressions similar to control flow, to require the existence of the subprocess 
accepting input.51

 
Expression 34 gives the translation of a data flow from a factory process to a drilling 
process occurring under it.  It requires drilling to accept input only accepted by the 
factory, and that the factory process must accept the input before drilling accepts it.  This 
ensures conformance to the second disjunct in Expression 30, one of the alternative 
requirements for legal occurrences of ACCEPT-INPUT.  Expression 34 does not require that 
the factory process to accept input before drilling starts.  Expression 34 makes the 
simplifying assumption that everything input to factory is input to drilling.  See 
Expression 44 and Expression 45 for how to refine this for more realistic processes, by 
identifying inputs by their type or relation to the superoccurrence, enabling different 
constraints to apply to each.  It also assumes additional activities, subactivities, and 
usages are defined for the factory process and drilling. 
 
(forall (?occ ?sDrill ?x ?sAcceptD) 
   (if (and (occurrence_of ?occ factoryProcess) 
            (drilling-usage ?sDrill ?occ) 
            (accept-input-in-occ ?x ?sAcceptD ?sDrill)) 
       (exists (?sAcceptFP) 
          (and (accept-input-in-occ ?x ?occ ?sAcceptFP) 
               (min-precedesA ?sAcceptFP ?sAcceptD  
                              factoryProcess))))) 

Expression 34: Translation of Data Flow from Superoccurence to Suboccurrence 
                                                 
50 The expressions do not require the existence of the output, they only require input is taken when output is 
provided. 
51 The translations distinguish intentional participant sharing from accidental sharing (see Section 7.1) by 
having the complex occurrence in the left side of the implication (necessary conditions), rather than the 
right side (sufficient conditions).  This satisfies the motivation of the first bullet in Section 7.1. 
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Expression 35 gives the translation of data flow from an external change during a factory 
process to a drilling process occurring under it.  The first subexpression defines the state 
for an operator arriving, which is the change brought about by an unidentified process.  
The second two subexpressions of Expression 35 define a relation to identify the first 
achievement of the state in a factory process.  The last subexpression requires drilling to 
accept the same operator the change is about.  It also requires the change to happen 
before drilling accepts the operator.  This ensures conformance to the third disjunct in 
Expression 30.  Expression 35 will infer only one accept, for the first time an operator 
arrives during the factory process.52  It does not require that the change occur before 
drilling starts. 
 
(forall (?f ?x) 
  (if (operator-arrived ?f ?x) 
      (and (state ?f) 
           (operator ?x) 
           (about ?x ?f)))) 
 
(forall (?s ?occ ?operator ?sLeaf) 
   (if (and (occurrence_of ?occ FactoryProcess) 
            (legal ?s) 
            (exists (?f) 
               (and (achieved ?f ?s) 
                    (operator-arrived ?f ?operator))) 
            (earlier (root_occ ?occ) ?s) 
            (leaf_occ ?sLeaf ?occ) 
            (earlier ?s ?sLeaf)) 
       (provide-operator-all ?s ?occ ?operator))) 
 
(forall (?sFirst ?occ ?operator) 
   (if (and (provide-operator-all ?sFirst ?occ ?operator) 
            (not (exists (?s) 
                    (and (provide-operator-all ?s ?occ ?operator) 
                         (earlier ?s ?sFirst))))) 
       (provide-operator-first ?sFirst ?occ ?operator))) 
 
(forall (?occ ?sDrill) 
   (if (and (occurrence_of ?occ factoryProcess) 
            (drilling-usage ?sDrill ?occ)) 
       (exists (?s ?operator ?sAccept) 
          (and (provide-operator-first ?s ?occ ?operator) 
               (accept-input-in-occ ?operator ?sDrill ?sAccept) 
               (earlierA ?s ?sAccept))))) 
 

Expression 35: Translation of Data Flow from Change to Suboccurrence Example 
 
Expression 36 gives the translation of a data flow from drilling to milling under a factory 
process.  It requires milling to accept input only from drilling, and that drilling must post 
                                                 
52 See footnote 34 on page 28. 
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the output before milling accepts it as input.  This ensures conformance to the first 
disjunct in Expression 30.  Expression 36 does not require that drilling finish before 
milling starts.  Expression 36 makes the simplifying assumption that everything input by 
milling is output from drilling.  See Expression 44 and Expression 45 for how to refine 
this for more realistic processes, by identifying inputs by their type or relation to the 
superoccurrence.  It also assumes additional activities, subactivities, and usages are 
defined for the factory process, drilling, and milling. 
 
(forall (?occ ?sMill ?x ?sAccept) 
   (if (and (occurrence_of ?occ factoryProcess) 
            (milling-usage ?sMill ?occ) 
            (accept-input-in-occ ?x ?sMill ?sAccept)) 
       (exists (?sDrill ?sPost) 
          (and (drilling-usage ?sDrill ?occ) 
               (post-output-in-occ ?x ?sDrill ?sPost) 
               (min-precedesA ?sPost ?sAccept factoryProcess))))) 
 

Expression 36: Translation of Data Flow between Suboccurrences Example 
 
Expression 37 gives the translation of a data flow from milling to a factory process under 
which it occurs.  It requires the factory process to post the outputs that milling does, and 
to post them after milling does.  This ensures conformance to the first disjunct in 
Expression 31, one of the alternative requirements for legal occurrences of POST-OUTPUT.  
Expression 37 does not require that milling finish before the factory posts its output.  
Expression 37 makes the simplifying assumption that everything output from milling is 
output from the factory.  See Expression 44 and Expression 45  for how to refine this for 
more realistic processes, by identifying inputs by their type or relation to the 
superoccurrence. 
 
(forall (?occ ?sMill ?x ?sPostM) 
   (if (and (occurrence_of ?occ factoryProcess) 
            (milling-usage ?sMill ?occ) 
            (post-output-in-occ ?x ?sMill ?sPostM)) 
       (exists (?sPostFP) 
          (and (post-output-in-occ ?x ?occ ?sPostFP) 
               (min-precedesA ?sPostM ?sPostFP  
                              factoryProcess))))) 
 

Expression 37: Translation of Data Flow from Suboccurrence to Superoccurence 
Example 

 
Expression 38 gives the translation of data flow from an input to output of the same 
factory process.  It restricts the process to post only objects it also accepts, and that the 
posts must be after the corresponding accepts.  This ensures conformance to the second 
disjunct in Expression 31.  Expression 38 does not require the factory process to finish 
when it posts an output.  It makes the simplifying assumption that everything output from 
the factory is also input.  See Expression 44 and Expression 45  for how to refine this for 
more realistic processes. 
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(forall (?occ ?x ?sPost) 
   (if (and (occurrence_of ?occ factoryProcess) 
            (post-output-in-occ ?x ?occ ?sPost)) 
       (exists (?sAccept) 
          (and (accept-input-in-occ ?x ?occ ?sAccept) 
               (min-precedesA ?sAccept ?sPost factoryProcess))))) 
 
Expression 38: Translation of Data Flow from Superoccurrence to Superoccurence 

Example 
 
Expression 39 gives the translation of data flow from an external change during a factory 
process to output of the factory process.  The changes is the same as in Expression 
Expression 35, an operator arriving, brought about by an unidentified process.  
Expression 39 requires any operator posted by the factory process to be the same one the 
change is about, and that the change happens before the post.  This ensures conformance 
to the third disjunct in Expression 31.  Expression 39 allows at most one posted operator, 
which must be the first operator to arrive during the factory process (see definition of 
PROVIDE-OPERATOR-FIRST in Expression 35).  It does not require the factory process to 
finish when it posts an output. 
 
(forall (?occ ?output ?sPost) 
   (if (and (occurrence_of ?occ factoryProcess) 
            (post-output-in-occ ?output ?occ ?sPost) 
            (operator ?output)) 
       (exists (?s) 
          (and (provide-operator-first ?s ?occ ?output) 
               (earlierA ?s ?sPost))))) 
 
Expression 39: Translation of Data Flow from Change to Superoccurence Example 

 
Occurrences in PSL can be contained directly under multiple complex ones, providing a 
representation for multiple views of the same occurrences, including views of their inputs 
and outputs.53  For example, drilling might partially overlap other processes, such as 
lubricating, supplying power, and so on, with each process specifying its own inputs and 
outputs for drilling.  These views can be specified separately, even by separate authors, 
and tested for consistency.  This makes the construction of the process description 
incremental and flexible.  In a typical flow model, the only way to bring these partially 
overlapping processes together is in one large specification containing all of them, 
because the models require occurrences of complex processes to be strongly nested. 
 
Expression 40, Expression 41, and Expression 42 show an example of suboccurrences 
under more than one superoccurrence, with each superoccurrence specifying different 
inputs and outputs for each suboccurrence.  A factory process is broken into two 
subprocesses, one shown in Expression 40 for passing of metal from drilling to milling, 
and another shown in Expression 41 for provision of lubricant to drilling and milling 

                                                 
53 Compare to “strong nesting,” see footnote 27 on page 14. 
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(these assume the usage relations in shaping and lubricating can apply to occurrences of 
both drilling and milling).  Different inputs and outputs to drilling and milling are 
specified under each subprocess.  Expression 42 combines the two subprocesses, with the 
constraint that the same occurrences of milling and drilling happen under both.  This 
ensures the input and output constraints of both subprocesses apply to the occurrences of 
milling and drilling.  The two subprocesses do not need to be used together, even though 
they are in Expression 42.  Alternative lubrication processes can be combined with 
shaping, or vice versa. 
 
(forall (?occDrillAndMill) 
   (if (occurrence_of ?occDrillAndMill drillingAndMilling) 
       (exists (?m ?sAcceptDM ?sDrill ?sAcceptD ?sPostD 
                ?sMill ?sAcceptM ?sPostM ?sPostDM) 
          (and (accept-input-in-occ ?m ?occDrillAndMill  
                                    ?sAcceptDM) 
               (drilling-usage ?sDrill ?occDrillAndMill) 
               (accept-input-in-occ ?m ?sDrill ?sAcceptD) 
               (min-precedesA ?sAcceptDM ?sAcceptD) 
               (post-output-in-occ ?m ?sDrill ?sPostD) 
 
               (milling-usage ?sMill ?occDrillAndMill) 
               (accept-input-in-occ ?m ?sMill ?sAcceptM) 
               (min-precedesA ?sPostD ?sAcceptM) 
               (post-output-in-occ ?m ?sMill ?sPostM) 
 
               (post-output-in-occ ?m ?occDrillAndMill ?sPostDM) 
               (min-precedesA ?sPostM ?sPostDM 
                              drillingAndMilling))))) 
 

Expression 40: Drilling and Milling Occurrence Example 
 
(forall (?occLubricating) 
   (if (occurrence_of ?occLubricating lubricating) 
       (exists (?sPumping ?o ?sPostP ?sShaping ?sAcceptS) 
          (and (pumping-usage ?sPumping ?occLubricating) 
               (post-output-in-occ ?o ?sPumping ?sPostP) 
               (shaping-usage ?sShaping ?occLubricating) 
               (accept-input-in-occ ?o ?sAcceptS ?sShaping) 
               (min-precedesA ?sPostP ?sAcceptS lubricating))))) 
 

Expression 41: Lubricating  Occurrence Example 
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(forall (?occFactoryProcess) 
   (if (occurrence_of ?occFactoryProcess FactoryProcess) 
      (exists (?occDrillAndMill ?occDrillLubricating 
               ?occMillLubricating ?sDrill ?sMill) 
         (and (subactivity-occurrence-of ?occDrillAndMill 
                 ?occFactoryProcess drillingAndMilling) 
              (subactivity-occurrence-of ?occDrillLubricating 
                 ?occFactoryProcess lubricating) 
              (subactivity-occurrence-of ?occMillLubricating 
                 ?occFactoryProcess lubricating) 
              (drilling-usage ?sDrill ?occDrillAndMill) 
              (milling-usage ?sMill ?occDrillAndMill) 
              (shaping-usage ?sDrill ?occDrillLubricating) 
              (shaping-usage ?sMill ?occMillLubricating))))) 
 

Expression 42: Suboccurrence with More Than One Superoccurrence Example 
 
Expression 43, Expression 44, and Expression 45 show how to extend the example 
translations above to specify the kind of input, and to distinguish multiple inputs of the 
same kind.  The corresponding expressions for output are similar, as are the expressions 
for input and output at the beginning and end of an occurrence, using the relations in 
Expression 32.  Expression 43 is for input of a single object of a certain kind to a drilling 
activity.  The first subexpression requires the input to be metal, the second requires at 
least one input, and the third limits the input to at most one object.  The combination of 
these subexpressions means drilling takes exactly one input and that it must be a piece of 
metal.  Expression 44 is for multiple inputs of different kinds of things.  The first 
subexpression requires metal and operators to be different kinds of things.  The second 
two require at least one object of each kind to be input.  The last two limit the inputs to at 
most one of each kind.  The combination of these subexpressions means drilling takes at 
least two inputs, that one must be a piece of metal and the other an operator, and none of 
the other inputs are metal or operators.  Another subexpression, not shown, can prevent 
any other inputs by requiring that all inputs must be either metal or operators. 
 
(forall (?occ ?x) 
   (if (and (occurrence_of ?occ drilling) 
            (occurrence-input ?x ?occ)) 
       (metal ?x))) 
 
(forall (?occ ?x) 
   (if (occurrence_of ?occ drilling) 
       (exists (?x) 
          (occurrence-input ?x ?occ)))) 
 
(forall (?occ ?x1 ?x2) 
   (if (and (occurrence_of ?occ drilling) 
            (occurrence-input ?x1 ?occ) 
            (occurrence-input ?x2 ?occ)) 
       (= ?x1 ?x2))) 
 

Expression 43: Translation of One Input Example 
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(forall (?x) 
   (not (and (metal ?x) (operator ?x)))) 
 
(forall (?occ ?x) 
   (if (occurrence_of ?occ drilling) 
       (exists (?x) 
          (and (occurrence-input ?x ?occ) 
               (metal ?x))))) 
 
(forall (?occ ?x) 
   (if (occurrence_of ?occ drilling) 
       (exists (?x) 
          (and (occurrence-input ?x ?occ) 
               (operator ?x))))) 
 
(forall (?occ ?x1 ?x2) 
   (if (and (occurrence_of ?occ drilling) 
            (occurrence-input ?x1 ?occ) 
            (occurrence-input ?x2 ?occ) 
            (metal ?x1) 
            (metal ?x2)) 
       (= ?x1 ?x2))) 
 
(forall (?occ ?x1 ?x2) 
   (if (and (occurrence_of ?occ drilling) 
            (occurrence-input ?x1 ?occ) 
            (occurrence-input ?x2 ?occ) 
            (operator ?x1) 
            (operator ?x2)) 
       (= ?x1 ?x2))) 
 

Expression 44: Translation of Multiple Inputs of Separate Kinds Example 
 
Expression 45 is for multiple inputs where the inputs cannot be distinguished by the kind 
of thing they are.  It defines relations between process occurrences and the participants to 
identify which input is which (commonly called “parameters” in programming 
languages).  The stamping process has two distinct operators involved, which are linked 
to occurrences of stamping by the OP1 and OP2 relations respectively.  The first 
subexpression requires these relations to identify operators that are inputs to stamping.  
The second requires at least one operator for each relation per stamping occurrence, and 
that they are different ones.  The last two limit the relations to one operator each per 
occurrence.  The combination of subexpressions means each stamping occurrence takes 
at least two inputs, and these must be two different operators.  Another subexpression, 
not shown, can prevent any other inputs by requiring that all inputs must be related to the 
stamping occurrence by either OP1 or OP2.  Relations from occurrence to input and output 
entities can also be used in Expression 43 and Expression 44.  This make the expressions 
more robust, because additional inputs and outputs will not change existing expressions. 
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(forall (?x ?occ) 
   (if (or (op1 ?x ?occ) 
           (op2 ?x ?occ)) 
       (and (operator ?x) 
            (occurrence_of ?occ stamping) 
            (occurrence-input ?x ?occ)))) 
 
(forall (?occ) 
   (if (occurrence_of ?occ stamping) 
       (exists (?x1 ?x2) 
          (and (op1 ?x1 ?occ) 
               (op2 ?x2 ?occ) 
               (not (= ?x1 ?x2)))))) 
  
(forall (?occ ?x1 ?x2) 
   (if (and (op1 ?x1 ?occ) 
            (op1 ?x2 ?occ)) 
       (= ?x1 ?x2))) 
 
(forall (?occ ?x1 ?x2) 
   (if (and (op2 ?x1 ?occ) 
            (op2 ?x2 ?occ)) 
       (= ?x1 ?x2))) 
 

Expression 45: Translation of Multiple Compatible Inputs Example 
 
Processes can have a variable number of inputs or outputs of the same kind and in the 
same relation to occurrences.  These constraints are cumbersome to write in first-order 
logic, because it does not have constructs for referring to the number of elements in a set, 
even when the members of the set are those satisfying a first-order constraint.54  For 
example, Expression 46 shows a process (AT-LEAST-THREE-INPUT-PROCESS) with at least 
three distinct inputs of the same kind and in the same relation to each occurrence (OP-AT-
LEAST-THREE).  There are as many negated equality conjuncts in the second 
subexpression as there are pairs (unordered) of input objects.  Another conjunct, not 
shown, can place a maximum bound on the number of inputs by requiring all other input 
objects to be one of the others identified by the existential variables. 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
54 See extensions to first order notation in [30] that simplify these expressions. 
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(forall (?occ ?x) 
   (if (op-at-least-three ?x ?occ) 
       (and (operator ?x) 
            (occurrence_of ?occ at-least-three-input-process) 
            (occurrence-input ?x ?occ))))  
 
(forall (?occ) 
   (if (occurrence_of ?occ at-least-three-input-process) 
       (exists (?x ?y ?z) 
          (and (op-at-least-three ?x ?occ) 
               (op-at-least-three ?y ?occ) 
               (op-at-least-three ?z ?occ) 
               (not (= ?x ?y)) 
               (not (= ?x ?z)) 
               (not (= ?y ?z)))))) 
 

Expression 46: Translation of Variable Number of Compatible Inputs Example 
 
Processes can have optional inputs or outputs, which might be present or not and the 
process still functions as intended (the inputs of Expression 43, Expression 44, 
Expression 45, and Expression 46 are all mandatory).55  Optional inputs and outputs are 
not directly expressible in PSL because they are about how a process designer writes 
constraints on process occurrences, rather than about occurrences themselves.56  In PSL, 
a process has optional inputs and outputs if its specification is consistent with 
occurrences that accept an input or post an output, and with occurrences that do not.  
However, it may so happen that all legal occurrences of the process accept an input or 
post an output, due to other factors in the overall system design, making the input or 
output appear mandatory when it might not be.  This means no constraint on legal 
occurrences can express that some inputs and outputs are optional.57  As a workaround, a 
process specification can be tested separately from the rest of the system specification to 
check if it is consistent with an expression that declares the existence of an occurrence 
not accepting the input or providing the output.  If it is, then the input or output is 
optional, otherwise it is mandatory. 
 
A more concrete specification of inputs and outputs requires tying them to changes in the 
world.  In the example in Section 7.1, a piece of metal is detected as input to a milling 
machine by being put in a certain location where the operator or machine notices it.  
Expression 47 shows an example of this, which relates occurrences to conditions that are 
present immediately after the occurrence completes, using the PSL STATE predicate and 
the PRIORA relation, which relates occurrences to conditions that are present immediately 
before the occurrence completes (see Section 6.3 and Expression Expression 6).  
Expression 47 requires the piece of metal input to milling to be accepted only when it is 

                                                 
55 A process specification can allow alternative steps when an input is not available, and allow alternative 
steps to posting output.  In PSL, process constraints can require alternative legal suboccurrences whenever 
an accept or post is not legal. 
56 They are statements about PSL statements (“metatheoretic”) capturing the specifications described in 
footnote 55.  In general these might involve quantification over relations (second-order logic). 
57 Only constraints on legal occurrences are allowed in PSL, not all occurrences. 
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in a certain location.  The states should not be shared across inputs.58  Expression 47 can 
be combined with the techniques of Expression 44 and Expression 45 to specify different 
states for multiple inputs.  An example of the corresponding expressions for outputs is 
shown in Expression 48.  It uses the HOLDSA relation, which relates occurrences to 
conditions that are present immediately after the occurrence completes. 
 
(forall (?f ?x) 
  (if (= ?f (milling-input-location ?x)) 
      (and (state ?f) 
           (metal ?x)))) 
 
(forall (?occ ?x ?sAcceptInput) 
   (if (and (occurrence_of ?occ milling) 
            (accept-input-in-occ ?x ?occ ?sAcceptInput) 
            (metal ?x)) 
       (priorA (milling-input-location ?x) ?sAcceptInput))) 
 

Expression 47: Input State Example 
 
(forall (?f ?x) 
  (if (= ?f (milling-output-location ?x)) 
      (and (state ?f) 
           (metal ?x)))) 
 
(forall (?occ ?x ?sPostOutput) 
   (if (and (occurrence_of ?occ milling) 
            (post-output-in-occ ?x ?occ ?sPostOutput) 
            (metal ?x)) 
       (holdsA (milling-output-location ?x) ?sPostOutput))) 
 

Expression 48: Output State Example 
 

8 Tightly Coupled Communication 
 
Tight coupling refers to processes that restrict which others give entities to them or 
receive entities from them.  The tightest kind of coupling specifies exactly which 
processes give and receive the communicated entities (see 1.a in Sections 1 and 2).  This 
is directly expressible in unextended PSL, see usage examples for functions in [8].  The 
medium tight categories assign a delegate to choose the other processes (1.b/c.i).  Within 
these, some require the other processes to give and receive entities only when they start 
and finish (2.a).  This is representable in unextended PSL, see usage examples for object 
orientation in [8].59  Other processes in this category have ongoing communications 
during their execution (1.b.i / 2.b).  The rest of this paper refers to these as messages.  A 
                                                 
58 An earlier paper defined relations to link states, occurrences, and input objects [6], but makes the severe 
assumption that each object is only input once per occurrence. 
59 Applying these examples to effectless communication with delegates (1.c.i) requires a convention for 
operations that require no particular effect. 
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process that does not restrict which other process will give or receive entities is using 
input and output (1.c) rather than messages, see Section 7.  However, some ways of using 
the extensions in this section, and some modern software techniques, are nearly 
equivalent to input and output, see Section 9. 
 
Common process languages usually define messages colloquially as things “sent” from 
one entity to another.  The thing sent may be, for example, a command to perform a 
certain task, a notification of an event having occurred, or an uninterpreted piece of 
information.  Another important aspect is that the receiver  has some freedom in reacting 
to the message (as a delegate).  Even for a command to perform a task, the receiver 
determines how the task is carried out. 
 
This paper generalizes the above intuitions in three ways, to simplify and broaden the 
applicability of the formalization: 
 

1. Entities that send and receive messages are processes.  Sending and receiving are 
specific kinds of subprocesses under the control of these entities. 

 
2. The thing sent is a participant in the sending and receiving processes (see Section 

1).  Sending a message is a way for the sending process to affect which objects 
are involved in the receiving process. 

 
3. Any kind of thing can be sent, including physical objects, data, and 

communications.  The process designer can interpret these as physical transport or 
knowledge transmission, requests, commands or other modalities 
(“performatives” in [31]).  Useful core formalizations can be defined 
independently of the kind of thing sent. 

 
The first generalization reflects the active nature of sending and receiving entities [1][32].  
They have potentially complex processes for determining when to send what to whom, 
and how to react to receipt.  Focusing too much on these entities as objects, or as sources 
and targets of messages, obscures the critical dynamics around sending and receiving.  
Treating senders and receivers as communicating processes that might hold state unifies 
these viewpoints and leads to a more complete semantics. 
 
The second generalization takes messages as a way processes affect each other by 
determining the objects involved in them.  For example, when a customer sends an order 
document to a vendor, the document becomes part of the fulfillment process in the seller, 
guiding that process as the customer desires.  The notion of participant refers to an entity 
involved in a process in any way.  For example, in a fabrication process, the machines 
used to operate on a piece of metal are participants, as are the human operators, the oil 
that lubricates the machines, the electricity that powers them, and the instructions that 
guide them. 
 
The third generalization treats information and physical things uniformly as objects, and 
like all objects, as potential participants in processes.  For example, the coded instructions 
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directing an automated milling machine are participants in the milling process, as are oil 
and metal.  The transport of oil from a pump to the milling machine transfers participants 
between processes, as does the electronic communication of instructions.  The sender 
affects participation in the milling process by determining which instructions or oil 
participates in the receiver.  Whether information is interpreted as knowledge, belief, 
request, command, and so on, is up to the receiver, just as its use of a physical object is.  
This abstraction significantly simplifies the core theory, widens its applicability 
(including category 1.c.i in Sections 1 and 2), and serves as a base for extension with 
specifically epistemic or physical theories [33].60

 
Taken together, these generalizations enable messages to be formalized as constraints on 
participation.  For example, an order sent from a customer to a vendor is constrained to 
participate in the vendor process only after it participates in the customer process, in 
particular, after the customer sends it.  Section 8.1 gives a formalization of messaging in 
PSL in terms of predefined activities, and constraints on how they are used.  Section 8.2 
applies them to some examples. 

8.1 Axioms for Messaging 
 
This paper extends PSL for messaging rather than applying usage patterns, for the 
reasons given in Section 4.  In particular, extensions enable the process designer to define 
messages between processes in a way that processes can be defined independently.  For 
example, a customer process sending an order to a vendor is only concerned with sending 
messages, and the vendor process only with reacting appropriately when receiving them.  
This is more modular than writing one constraint for both as would be required when 
applying usage patterns.61

 
This section gives some predefined activities and some new relations for messaging, the 
same approach as for inputs and outputs.  It defines an activity for sending any object to 
any process, as well as activities for transmitting and receiving messages.  Constraints on 
these are divided into core axioms that apply to all messaging applications and other 
axioms that are useful, but not universal. 
 
An accurate formalization of messages must separate the thing sent from the sending of 
that thing, a distinction obscured by the informal term “message.”  The distinction is 
necessary because not all participants are messages, just the ones that are sent.  And the 
same participant can be sent multiple times, by different occurrences of sending.  The 
distinction corresponds to the typical separation in implementations between the 
“payload,” the thing being sent, and “headers,” which contain information about the 
sending itself, such as when it happened and who was responsible.  Following this 
approach, activities defined for transmission and receipt of the message identify the 

                                                 
60 PSL has some restrictions on participants, see footnote 22. 
61  See Section 5 of [8] for example usage patterns for messaging. 
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message by the occurrence of the sending activity, and the sending occurrence identifies 
the object sent.62

 
Expression 49 defines activities for sending, transmitting, and receiving messages 
between processes.  Sending activities are identified in relation to an object that is sent, a 
grove that sends it, and a grove that receives it (see Expression 4 for description of groves 
as process executions).  Messages are sent between groves to relieve the sender of 
specifying exactly which of the receiver’s complex occurrences are “happening” when 
the message is sent.  The relations are defined as functions because they identify exactly 
one activity for each set of object, sender grove, and receiver grove.  The activities are 
not required to be atomic in the extension, but the process designer can constrain theirs to 
be atomic as needed.  The transmitting and receiving activities are functions of the object 
sent and the sending occurrence, in case the sending occurrence sends multiple 
objects.63,64

 
(forall (?a ?x ?sReceiverGroveRoot ?aReceiverGroveAct  

    ?sSenderGroveRoot ?aSenderGroveAct) 
   (if (= ?a (send-message ?x 
                ?sReceiverGroveRoot ?aReceiverGroveAct 
                ?sSenderGroveRoot ?aSenderGroveAct)) 
       (and (activity ?a) 
            (activity-participant ?x ?a) 
            (grove ?sReceiverGroveRoot ?aReceiverGroveAct) 
            (grove ?sSenderGroveRoot ?aSenderGroveAct)))) 
 
(forall (?a ?x ?sSend) 
   (if (= ?a (transmit-message ?x ?sSend)) 
       (and (activity ?a) 
            (activity-participant ?x ?a) 
            (exists (?sReceiverGroveRoot ?aReceiverGroveAct 
                     ?sSenderGroveRoot ?aSenderGroveAct) 
               (occurrence_ofA ?sSend  
                  (send_message ?x 
                    ?sReceiverGroveRoot ?aReceiverGroveAct 
                    ?sSenderGroveRoot ?aSenderGroveAct)))))) 
 
 
 

                                                 
62 An alternative approach is to require the thing sent to be unique per occurrence of message sending, 
where the same participant could be sent multiple times by using different “wrappers.”  However, wrapping 
is more cumbersome, since a different wrapper is needed to send the same thing multiple times.  It also 
does not capture the most basic aspect of messaging, the act of sending.  Identifying messages by the 
sending occurrences also enables techniques for controlling unwanted concurrency, see logical time stamps 
for message sends in [32]. 
63 Expression 49 does not require messaging activities to be different when the parameters of the activity 
functions are, see footnote 44 on page 33.  This means an occurrence of a messaging activity could send 
multiple messages, or send and receive messages at the same time. 
64 Parameterizing RECEIVE-MESSAGE by the sending occurrence does not affect support for anonymous 
messaging, which are constraints against queries to the particular messaging implementation about the 
sender of a message. 
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(forall (?a ?x ?sSend) 
   (if (= ?a (receive-message ?x ?sSend)) 
       (and (activity ?a) 
            (activity-participant ?x ?a) 
            (exists (?sSenderGroveRoot ?aSenderGroveAct 
                     ?sReceiverGroveRoot ?aReceiverGroveAct) 
               (occurrence_ofA ?sSend 
                  (send_message ?x 
                    ?sReceiverGroveRoot ? aReceiverGroveAct 
                    ?sSenderGroveRoot ?aSenderGroveAct)))))) 
 

Expression 49: Sending, Transmitting, and Receiving Messages 
 
Expression 50, Expression 51, and Expression 52 give core constraints on the messaging 
activities above.  Expression 50 requires sending occurrences to be in the groves they 
specify.  Expression 51 requires transmission to start with sending.  It uses PSL's support 
for complex occurrences that have some suboccurrences in common and not others.65  
This enables the sending occurrence to be in its grove as well as in the transmission 
process.  Expression 52 requires at least one transmission per receipt, with the receipt at 
the end of the transmission.  The combination of Expression 51 and Expression 52 
require every receipt to be after a matching send under some transmission.66

 
(forall (?sSend ?x ?sReceiverGroveRoot ?aReceiverGroveAct 
                   ?sSenderGroveRoot ?aSenderGroveAct) 
   (if (occurrence-ofA ?sSend 
          (send_message ?x ?sReceiverGroveRoot ?aReceiverGroveAct 
                           ?sSenderGroveRoot ?aSenderGroveAct)) 
       (subocc-in-grove ?sSend  

  ?sSenderGroveRoot ?aSenderGroveAct))) 
 

Expression 50: Send in Sending Grove 
 
(forall (?sTransmit ?x ?sSend) 
   (if (occurrence-ofA ?sTransmit (transmit-message ?x ?sSend)) 
       (root-occA ?sSend ?sTransmit))) 
 

Expression 51: Transmission Starts with Sending 
 
 
 
 
 
 
 

                                                 
65 Most process languages require complex occurrences to have either none of their suboccurrences under 
another complex occurrence, unless it is a superoccurrence (strong nesting, see footnote 27 and Expression 
42). 
66 The expressions allow receipt to overlap send under the transmission, and be the same as its send if the 
result of the send and receive functions is the same activity, see footnote 63. 
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(forall (?sReceive ?x ?sSend) 
   (if (occurrence_ofA ?sReceive (receive-message ?x ?sSend)) 
       (exists (?sTransmit) 
          (and (occurrence_ofA ?sTransmit 
                  (transmit-message ?x ?sSend))) 
               (leaf-occA ?sReceive ?sTransmit)))) 
 

Expression 52: Receipt Always Due to Transmission 
 
The core axioms above are very loose about the effectiveness of sending a message.  For 
example, they do not require a message to be transmitted when sent, or received when 
transmitted.  They allow a message to be delivered more than once, and to incorrect 
recipients.  These conditions are true in many applications, due to accidents and 
unforseen circumstances.  However, even in these applications it is useful to assume that 
messaging occurs as desired, to enable proof of properties about communicating 
processes. 
 
Expression 53, Expression 55, and Expression 56 give constraints to represent reliable 
messaging.  Expression 53 requires the receipt of a message be in the grove to which it 
was sent.  Expression 54 requires transmission to end with receipt.  Expression 55 
requires a transmission for every send.  Expression 56 requires that messages are 
transmitted and received at most once.  In PSL, this means once per branch of the 
occurrence tree, that is, no more than one transmission for same send ending on the same 
branch (see SAME-OCC-BRANCHA in Expression 6).  The combination of Expression 54, 
Expression 55, and Expression 56 require every send to have exactly one transmission 
and receipt. 
 
(forall (?sTransmit ?x ?sSend) 
   (if (occurrence-ofA ?sTransmit (transmit-message ?x ?sSend)) 
       (root-occA ?sSend ?sTransmit))) 
 

Expression 53: Receipt in Recipient Grove 
 
(forall (?sTransmit ?x ?sSend) 
   (if (occurrence-ofA ?sTransmit (transmit-message ?x ?sSend)) 
       (exists (?sReceive) 
          (and (occurrence-ofA ?sReceive 
                               (receive-message ?x ?sSend)) 
               (leaf-occA ?sReceive ?sTransmit))))) 
 

Expression 54: Transmission Ends with Receipt 
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(forall (?sSend ?x ?sReceiverGroveRoot ?aReceiverGroveAct 
                   ?sSenderGroveRoot ?aSenderGroveAct) 
   (if (occurrence_ofA ?sSend 
          (send_message ?x ?sReceiverGroveRoot ?aReceiverGroveAct 
                           ?sSenderGroveRoot ?aSenderGroveAct)) 
       (exists (?sTransmit) 
          (occurrence-ofA ?sTransmit 
             (transmit-message ?x ?sSend))))) 
 

Expression 55: Sending Always Results in Transmission 
 
(forall (?s1 ?s2 ?x ?sSend) 
  (if (and (occurrence-ofA ?s1 (transmit-message ?x ?sSend)) 
           (occurrence-ofA ?s2 (transmit-message ?x ?sSend)) 
           (not (= ?s1 ?s2))) 
      (not (same-occ-branchA ?s1 ?s2)))) 
 
(forall (?s1 ?s2 ?x ?sSend) 
  (if (and (occurrence-ofA ?s1 (receive-message ?x ?sSend)) 
           (occurrence-ofA ?s2 (receive-message ?x ?sSend)) 
           (not (= ?s1 ?s2))) 
      (not (same-occ-branchA ?s1Leaf ?s2Leaf)))) 
 

Expression 56: No More Than One Transmission and Receipt for the Same Send 
 
Other optional constraints can be defined on messaging that are useful in some 
applications.  For example, “quality of service” constraints can require that transmission 
results in a receipt within a certain time, or that transmission notify the sender if it fails to 
complete.  A less common but useful constraint is that messages are received in the same 
order in which they are sent.  This can only be ensured in centralized messaging systems, 
but facilitates interactions based on strict protocols. 
 

8.2 Applying Messaging Extensions 
 
This section applies the messaging extensions of 8.1 to translate some common process 
modeling techniques to PSL.  Expression 57 shows an example of a customer process 
sending an order to a vendor process (delegation to a subprocess of the vendor is omitted 
for brevity).  The first subexpression requires the customer to create an order before 
sending it, and to send account information for billing.  The second subexpression 
requires the vendor to fill the order after both the order and the account have arrived.  For 
brevity, the expression omits other relations, such as activity and subactivity relations, 
usages, and correlation in the receiver to link orders and accounts. 
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(forall (?occCustomer ?sCustomerGroveRoot ?order ?sSendOrder  
         ?sVendorGroveRoot) 
   (if (and (occurrence_of ?occCustomer customer) 
            (occ-grove-root ?sCustomerGroveRoot ?occCustomer) 
            (order ?order) 
            (subactivity-occurrence-of ?sSendOrder ?occCustomer  
               (send-message ?order ?sVendorGroveRoot vendor 
                             ?sCustomerGroveRoot customer))) 
       (exists (?sCreateOrder ?account ?sSendAccount) 
          (and (subactivity-occurrence-of ?sCreateOrder  
                  ?occCustomer (createOrder ?order)) 
               (min-precedesA ?sCreateOrder ?sSendOrder customer) 
 
               (account ?account) 
               (subactivity-occurrence-of ?sSendAccount 
                  ?occCustomer 
                  (send-message ?account 
                     ?sVendorGroveRoot vendor 
                     ?sCustomerGroveRoot customer)))))) 
 
(forall (?occVendor ?sVendorGroveRoot ?order ?sReceiveOrder 
         ?sSendOrder ?account ?sReceiveAccount ?sSendAccount) 
   (if (and (occurrence_of ?occVendor vendor) 
            (occ-grove-root ?sVendorGroveRoot ?occVendor) 
            (order ?order) 
            (subactivity-occurrence-of ?sReceiveOrder 
               ?occVendor (receive-message ?order ?sSendOrder)) 
            (account ?account) 
            (subactivity-occurrence-of ?sReceiveAccount 
               ?occVendor (receive-message ?account  
                                           ?sSendAccount))) 
       (exists (?sFillOrder) 
          (and (subactivity-occurrence-of ?sFillOrder ?occVendor  
                                          (fillOrder ?order)) 
               (min-precedesA ?sReceiveOrder ?sFillOrder 
                              vendor) 
               (min-precedesA ?sReceiveAccount ?sFillOrder 
                              vendor))))) 
 

Expression 57: Communicating Process Message Example 
 
Expression 58 is an example of agents communicating “knowledge” that constrains their 
processes.  It uses PSL states, which are objects representing conditions of the world (see 
Section 6.3).  Since states are objects, they can be participants, and participation of a state 
in a process is interpreted in this example as the process “knowing” or “believing” the 
state actually holds in the world.67  Expression 58 shows a process for a bank guard that 
can open a safe only after receiving a message giving the combination of the safe 
(delegation to a subprocess of the guard is omitted for brevity).  The fact that a particular 

                                                 
67 Participation of states can be specialized for various modalities. 
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safe has a certain combination is a state of the world.  The last subexpression requires 
that the guard receive the proper state before opening the safe. 
 
(forall (?a ?x ?y) 
   (if (= ?a (openSafe ?x ?y)) 
       (and (activity ?a) 
            (safe ?x) 
            (combination ?y)))) 
 
(forall (?f ?x ?y) 
   (if (= ?f (safe-has-combination ?x ?y)) 
       (and (state ?f) 
            (safe ?x) 
            (combination ?y)))) 
 
(forall (?occGuard ?sOpen ?safe ?combination) 
   (if (and (occurrence_of ?occGuard guard) 
            (subactivity-occurrence-of ?sOpen ?occGuard  
               (openSafe ?safe ?combination))) 
       (exists (?sReceiveCombination ?safeHasCombination ?sSend) 
          (and (subactivity-occurrence-of ?sReceiveCombination  
                  ?occGuard (receive-message ?safeHasCombination 
                                             ?sSend)) 
               (= ?safeHasCombination 
                  (safe-has-combination ?safe ?combination)) 
               (min-precedesA ?sReceiveCombination ?sOpen  
                              guard)))))  
 

Expression 58: Agent Message Example 
 

9 Unifying Loosely and Tightly Coupled Communication 
 
Input, output, and messaging as defined in Sections 7.2 and 8.1 are ways of specifying 
how one process determines the entities involved in another (participation, see Section 1).  
They are distinguished by the degree of restriction that can be placed on the other 
processes giving inbound entities and receiving outbound entities (coupling): 
 

 A process specified with the accept and post activities of Section 7.2 (inputs and 
outputs) cannot express restrictions on which other processes receive and give the 
posted and accepted objects, and for posted objects cannot even require that any 
other process will accept them (loose coupling).  For example, Expression 34 
cannot restrict where the piece of metal comes from in the first accept, and 
Expression 37 cannot restrict where the piece of metal goes after the second post, 
or even require that the metal goes anywhere at all. 

 
 A process specified with the send and receive activities of Section 8.1 (messages) 

can place more or less restriction on the sender and receiver, but requires a 
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receiver to exist, unlike outputs (nearly loose to tight coupling).  For example, the 
first subexpression of Expression 57 requires messages to be received by a vendor 
process, but does not specify exactly which execution of a vendor process (which 
particular vendor, that is, which grove root).  It could have placed no restriction 
on the receiver except existence, see Section 9.1.  The second subexpression does 
not restrict the processes sending messages to the vendor at all. 

 
The flexibility of messaging is both a strength and a weakness.  Its capacity to provide 
any form of coupling from nearly the loosest to the tightest has led to its dominance of 
interprocess communication in modern software engineering.  Only the very lowest level 
processes use only input and output anymore, mostly datatype manipulation, as for 
strings and numbers.  The other processes in a typical modern software application all 
communicate through messages.  However, their capacity to place strong restrictions on 
message senders and receivers allows applications to impose significant limitations on 
composability of process specifications.  For example, Expression 57 requires a customer 
to identify a particular kind of process (vendor) to receive an order, when it may be more 
effective for a broker or other entity to determine the kind of receiver.68  Messaging has 
more than enough flexibility left over from building good applications to build poor ones 
also. 
 
The prevalence of messaging in modern software and the desirability of loose coupling 
suggest it is important to understand how to use messaging in a loosely coupled way.  
Section 9.1 describes a technique for constraining messaging between loosely coupled 
applications.  It also shows how to constrain an input/output application to loosely 
coupled messaging.  Section 9.2 summarizes new techniques in software messaging that 
achieve loose coupling. 

9.1 Protocols 
 
Protocols are a kind of process specification governing communication between other 
processes.  When used with messages, they preserve composability by placing constraints 
on senders and receivers in processes without modifying the specifications of those 
processes.  For example, Expression 59 defines a protocol by generalizing the 
communication between vendor and customer in Expression 57 to be applicable to any 
two groves, and to constrain only the communication between them, rather than 
“internal” suboccurrences (it also adds a message back to the customer with the ordered 
product).  The first subexpression defines an activity for communication between two 
groves (PURCHASING).  The second requires that the suboccurrences of these activities 

                                                 
68 Messaging is also more cumbersome for specifying loosely coupled interprocess communication than 
inputs and outputs.  For example, processes often share participants with subprocesses.  Using messages, 
the superprocess sends the participant to the subprocess.  Using inputs and outputs, the subprocess can 
accept any participant accepted by the superprocess without additional posts, as in Expression 34.  The 
subprocess can also accept objects posted by other subprocesses, as in Expression 36, or even from a 
change, as in Expression 35.  Using messages for these examples requires additional sends and receives to 
have the same effect, and detecting changes requires an external process to send notification of the change. 
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include a series of message tranmissions between the two groves.69, 70  It uses the SAME-
OCC-BRANCH and EARLIERA relations to ensure the same occurrences in each grove are 
communicating under each occurrence of the protocol.71  The separate specifications for 
each grove must be loose enough to allow the protcol to constrain the message sends and 
receives as needed.  The specification for the initiating grove must establish the existence 
of an occurrence of the protocol, which identifies the other groves involved in the 
protocol.72  Theorem provers can check the consistency of grove specifications with the 
protocol.  This assumes closure expressions to rule out other transmissions in the 
protocol, and the full set of messaging axioms in 8.1. 
 
(forall (?a ?order ?sCustomerGroveRoot ?aCustomerGroveAct 
         ?sVendorGroveRoot ?aVendorGroveAct) 
   (if (= ?a (purchasing ?order ?sCustomerGroveRoot ?aCustomerAct 
                         ?sVendorGroveRoot ?sVendorAct) 
       (and (activity ?a) 
            (order ?order) 
            (grove ?sCustomerGroveRoot ?aCustomerAct) 
            (grove ?sVendorGroveRoot ?sVendorAct))))) 
 
(forall (?aProtocol ?order ?sCustomerGroveRoot ?aCustomerGroveAct 
         ?sVendorGroveRoot ?aVendorGroveAct ?occProtocol) 
   (if (and (= ?aProtocol (purchasing ?order 
                             ?sCustomerGroveRoot ?aCustomerAct  
                             ?sVendorGroveRoot ?sVendorAct)) 
            (occurrence_of ?occProtocol ?aProtocol)) 
       (exists (?sSendOrder ?sTransmitOrder 
                ?account ?sSendAccount ?sTransmitAccount 
                ?product ?sSendProduct ?sTransmitProduct 
                ?sReceiveProduct) 
          (and (occurrence_of ?sSendOrder 
                  (send-message ?order 
                     ?sVendorGroveRoot ?sVendorAct  
                     ?sCustomerGroveRoot ?aCustomerAct)) 
               (subactivity-occurrence-of 
                  ?sTransmitOrder ?occProtocol 
                  (transmit-message ?order ?sSendOrder)) 
 
 

                                                 
69 This uses PSL's support for complex occurrences that have some suboccurrences in common and not 
others, see discussion of transmission in description of Expression 51. 
70 Usage relations linking occurrences of protocols to transmissions are omitted for brevity (see Expression 
9 and Expression 10), but are needed to prevent the same transmissions from appearing in more than one 
protocol. 
71 This has an analogous effect to the convenience relations for input and output (Expression 27) used in the 
translation examples in Section 7.3.  In Expression 59 and Expression 60, the EARLIERA subexpression for 
the groves is partially redundant with the protocol because it constrains occurrence ordering the same way.  
SAME-OCC-BRANCH could be used instead for clarity, but it has more paths to search during proof. 
72 Identifying the groves involved in a protocol might require negotiations to reach agreement to follow the 
protocol.  These negotiations are also protocols, which bottom out with protocols that do not require 
responses, such as contract nets [35]. 
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               (account ?account) 
               (occurrence_of ?sSendAccount 
                  (send-message ?account 
                     ?sVendorGroveRoot ?aVendorGroveAct 
                     ?sCustomerGroveRoot ?aCustomerAct)) 
               (subactivity-occurrence-of 
                  ?sTransmitAccount ?occProtocol 
                  (transmit-message ?account ?sSendAccount)) 
 
               (same-occ-branchA ?sSendOrder ?sSendAccount) 
 
               (product-matching-order ?product ?order) 
               (occurrence_of ?sSendProduct 
                  (send-message ?product 
                     ?sCustomerGroveRoot ?aCustomerGroveAct 
                     ?sVendorGroveRoot ?aVendorGroveAct)) 
               (subactivity-occurrence-of 
                  ?sTransmitProduct ?occProtocol 
                  (transmit-message ?product ?sSendProduct)) 
               (leaf_occ ?sReceiveProduct ?sTransmitProduct) 
               (earlierA ?sSendOrder ?sReceiveProduct) 
 
               (min-precedesA ?sTransmitOrder ?sTransmitProduct 
                              ?aProtocol) 
               (min-precedesA ?sTransmitAccount ?sTransmitProduct 
                              ?aProtocol))))) 
 

Expression 59: Protocol Example 
 
Protocols can have subactivities, like any other activity, and these can also be protocols.  
Expression 60 shows a protocol that uses the one above, adapted from [34].  The 
customer sends a catalog request to the vendor, who replies with the catalog.  Then the 
purchasing protocol in Expression 59 occurs.  Expression 60 happens to have the product 
vendor as the catalog provider, but it could be written to enable a third party to provide 
the catalog, assuming a relation between catalog providers and product vendors is 
defined.  It uses the EARLIERA relation in the same way as Expression 59. 
 
(forall (?a ?sCustomerGroveRoot ?aCustomerGroveAct 
         ?sVendorGroveRoot ?aVendorGroveAct) 
   (if (= ?a (purchasing-from-catalog 
                ?sCustomerGroveRoot ?aCustomerAct 
                ?sVendorGroveRoot ?sVendorAct) 
       (and (activity ?a) 
            (grove ?sCustomerGroveRoot ?aCustomerAct) 
            (grove ?sVendorGroveRoot ?sVendorAct))))) 
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(forall (?aProtocol ?sCustomerGroveRoot ?aCustomerGroveAct 
         ?sVendorGroveRoot ?aVendorGroveAct ?occProtocol) 
   (if (and (= ?aProtocol (purchasing-from-catalog 
                             ?sCustomerGroveRoot ?aCustomerAct 
                             sVendorGroveRoot ?sVendorAct)) 
            (occurrence_of ?occProtocol ?aProtocol)) 
       (exists (?catalog-request ?sSendRequest ?sTransmitRequest 
                ?catalog ?sSendCatalog ?sTransmitCatalog 
                ?sReceiveCatalog ?order ?sPurchasing) 
          (and (catalog-request ?catalog-request) 
               (occurrence_of ?sSendRequest 
                  (send-message ?catalog-request 
                     ?sVendorGroveRoot ?sVendorAct 
                     ?sCustomerGroveRoot ?aCustomerAct)) 
               (subactivity-occurrence-of 
                  ?sTransmitRequest ?occProtocol 
                  (transmit-message ?catalog-request 
                                    ?sSendRequest)) 
               (catalog ?catalog) 
               (occurrence_of ?sSendCatalog 
                  (send-message ?catalog 
                     ?sCustomerGroveRoot ?aCustomerAct 
                     ?sVendorGroveRoot ?sVendorAct)) 
               (subactivity-occurrence-of 
                  ?sTransmitCatalog ?occProtocol 
                  (transmit-message ?catalog ?sSendCatalog)) 
               (leaf_occ ?sReceiveCatalog ?sTransmitCatalog) 
               (earlierA ?sSendRequest ?sReceiveCatalog) 
 
               (min-precedesA ?sTransmitRequest ?sTransmitCatalog 
                              ?aProtocol) 
 
               (order-from-catalog ?order ?catalog) 
               (subactivity-occurrence-of 
                  ?sPurchasing ?occProtocol 
                  (purchasing ?order 
                     ?sCustomerGroveRoot ?aCustomerAct 
                     ?sVendorGroveRoot ?sVendorAct)) 
              (earlierA ?sTransmitCatalog ?sPurchasing) 
 
              (min-precedesA ?sTransmitCatalog ?sPurchasing  
                             ?aProtocol))))) 
 

Expression 60: Subprotocol Example 
 
Protocols can also apply to input and output, by constraining occurrences of accepting 
and posting in multiple groves.  The expressions are similar to above, except with accepts 
and posts in each grove as suboccurrences, instead of sends and receives.  The 
expressions require inputs accepted by one grove to be the same as outputs provided by 
another, similar to what Expression 40 does for drilling and milling in Section 7.3.  
Protocols have the same effect on participants in each grove regardless of whether the 
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groves use input/output or messaging.  In both cases, an object participates in one grove, 
is output or sent, then participates in another after input or receipt.  For messaging 
activities, the protocol determines the sender and receiver, assuming the separate grove 
specifications are loose enough to allow it.  For accept/post activities, the protocol 
ensures outputs are the same as the inputs of specific other groves, not just any other 
grove as allowed by post and accept.   
 
Applications using input and output can be constrained to use messages when posts and 
accepts are complex occurrences that place no constraints on their suboccurrence, and 
can be matched one to one, as in Expression 36.  Expression 61 defines relations 
requiring posts and accepts to have sends and receives as suboccurrences, respectively.  
Each message sent or received must be for the same participant as the post or accept 
under which it is a suboccurrence.  Each send must originate from the same grove as the 
one to which the participant is posted.  Each receive must be for a  send to the same grove 
as the one from which the participant is accepted.  Additional constraints can require that 
suboccurrences of the posts and accepts are the same as suboccurrences of the sends and 
receives. 
 
(forall (?sPost ?sSend) 
   (iff (post-refinement ?sPost ?sSend) 
        (exists (?x ?sSourceGroveRoot ?aSourceGroveAct 
                 ?sReceiverGroveRoot ?aReceiverGroveAct) 
           (and (occurrence-of ?sPost 
                   (post-output ?x ?sSourceGroveRoot  
                                   ?aSourceGroveAct)) 
                (occurrence-of ?sSend 
                   (send-message ?x 
                      ?sReceiverGroveRoot ?aReceiverGroveAct 
                      ?sSourceGroveRoot ?aSourceGroveAct)) 
                (subactivity-occurrence ?sSend ?sPost))))) 
 
(forall (?sAccept ?sReceive) 
  (iff (accept-refinement ?sAccept ?sReceive) 
       (exists (?x ?sTargetGroveRoot ?aTargetGroveAct 
                ?sSend ?sSenderGroveRoot ?aSenderGroveAct) 
          (and (occurrence-of ?sAccept 
                  (accept-input ?x ?sTargetGroveRoot  
                                   ?aTargetGroveAct)) 
               (occurrence-of ?sReceive 
                              (receive-message ?x ?sSend)) 
               (occurrence-of ?sSend 
                  (send-message ?x 
                     ?sTargetGroveRoot ?aTargetGroveAct 
                     ?sSenderGroveRoot ?aSenderGroveAct))) 
               (subactivity-occurrence ?sReceive ?sAccept)))) 
 

Expression 61: Constraining Input and Output to Messaging 
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9.2 Ports 
 
Modern software messaging achieves loose coupling by enabling them to be sent to ports 
on the sender, leaving the determination of the final receiver to the context in which the 
sender is operating [1][3][4] [18][19][20][21].  This significantly improves composability 
of processes, compared to sending messages directly to a specific process.  For example, 
the determination of receivers can be: 
 

 Channels between ports on the sender and ports on the receiver. 
 Publish and subscribe mechanisms where other processes sign up for receiving 

messages. 
 Arbitrarily complex processes for determining the receivers. 

 
The above techniques give messaging the capability of input and output, including not 
requiring existence of the receiver.  They can completely disconnect process 
specifications from others with which they can share participants (see Section 7).  There 
are at least two kinds of ports [18]: 
 

 “Lightweight” ports cannot receive messages directly.  Message are “sent” to the 
sending process itself, with the port as additional information provided for 
determining the receiver.  

 “Heavyweight” ports can receive messages directly.  They are entities in 
(subprocesses of) the sender. 

 
Sending messages to lightweight ports has the loose coupling of input and output as 
defined in Section 7 (1.c.ii), although it often restricts the effect of the receiving process 
(1.b.ii).  This is the dominant interpretation in some application areas, for example in web 
services [3].  The formalization of lightweight ports is the same as input and output 
(accept and post activities defined in Section 7.1), except using the input or output object 
to indicate effect when needed, and applied to strongly nested processes as in typical 
software languages.73  The “receiver” is determined by other constraints on the equality 
of outputs and inputs, defining how ports on the sender are “wired” to ports on the 
receiver.  These constraints can range from fixed channels to arbitrarily complex 
determinations, such as filtering out some inputs, modifying them, or routing them 
dynamically. 
 
Sending messages to heavyweight ports is a messaging application that has the effect of 
lightweight ports, but has intermediate stages of message delivery.  The transmitted 
object is sent first to a port on the sending process, then from there to a port on an 
external process, which can forward it again to an internal subprocess as the final 
receiver.  Formalizing heavyweight ports uses the sending, transmitting, and receiving 
activities of Section 8.1.  See Section 7.1 of [8] for additional PSL extensions for 
heavyweight ports and channels. 

                                                 
73 See footnote 27 and Expression 42. 
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10 Future Work 
 
Other features of common process languages include aborting and suspending processes.  
Aborting refers to halting processes permanently before they complete.  Suspending 
refers to halting processes temporarily and resuming them later.  These require extensions 
to identify areas of the occurrence tree where a process is “open,” but may not conform to 
the process specification, as discussed in Section 6.2.  An aborted process is a portion of 
the tree that conforms to a process specification only up to some intermediate point.74  A 
suspended process is a portion that conforms to a process specification except during 
some intermediate period.  These are aspects of representing processes that manage the 
execution of other processes. 
 
Constraints on participation are useful in formalizing other process languages.  For 
example, industrial applications of state machines interpret them as specifying how an 
entity will react to incoming messages, in particular, what messages it will send out in 
response [1][36].  The entity accepting messages changes state according to the messages 
it receives, sending out other messages as it does.  Another example is applications of 
Petri nets, which often interpret places as subprocesses, and tokens as participants in 
those processes [37].  Under this interpretation, transitions, arcs, and many Petri net 
properties can be formalized as constraints on participation.  For example, a safe Petri net 
cannot have more than one token in each place at one time (suboccurrences identified by 
each usage relation must happen at different times).  A place is reachable if it can have at 
least one token (its usage relation is required to identify at least one suboccurrence).  
Conflict refers to whether there is nondeterminism in transition firing (activity tree 
branches have different processes executing).  A PSL representation of Petri nets can 
express fully concurrent transition firing, in addition to synchronous firing as represented 
in matrix formalizations. 
 

11 Conclusion 
 
This paper identifies dimensions of interprocess communication characterizing how 
processes effect the entities involved in other processes.  The primary dimensions are 
identification of other processes to communicate with (varying by the degree of 
restriction on those processes, loose to tight), and specification of when communication 
happens (either anytime during a processes or only at the beginning and end).  Common 
process language features are placed along these dimensions, such as functions, object-
oriented and agent messages, publication, subscription, and parameters.  The paper 
extends PSL with predefined activities for loosely and tightly coupled processes, along 
with axioms expressing constraints on their usage.  These are applied to translating 
common process language patterns to PSL, including data flow and protocols.  A 
technique is also presented for incrementally translating common process sequence 
elements to separate PSL expressions, improving readability and facilitating automated 
inference. 
                                                 
74 See application of aborting to change detection, footnote 45 on page 35. 
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