NISTIR 7275

Specification for the Extensible

Configuration Checklist Description Format
(XCCDF)

Version 1.1

Neal Ziring, Author,
National Security Agency

Timothy Grance, NIST Editor

NIST

National Security Agency National Iqs?itutg of Standards and Technology
Technology Administration, U.S. Department of Commerce

NISTIR 7275

Specification for the Extensible
Configuration Checklist Description Format
(XCCDF)

Neal Ziring, NSA Author
Information Assurance Directorate
National Security Agency

Fort Meade, MD 20755-6704

Timothy Grance, NIST Editor

Computer Security Division

Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20988-8930

Version 1.1
January 2006

U.S. DEPARTMENT OF COMMERCE

Carlos M. Gutierrez, Secretary

TECHNOLOGY ADMINISTRATION

Michelle O’Neill, Acting Under Secretary of Commerce for Technology
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
William H. Jeffrey, Director

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analysis to advance the
development and productive use of information technology. ITL’s responsibilities include the
development of technical, physical, administrative, and management standards and guidelines for
the cost-effective security and privacy of sensitive unclassified information in Federal computer
systems. This Interagency Report discusses ITL’s research, guidance, and outreach efforts in
computer security, and its collaborative activities with industry, government, and academic
organizations.

National Institute of Standards and Technology Interagency Report
114 pages (January 2006)

Certain commercial entities, equipment, or materials may be identified in this document in order
to describe an experimental procedure or concept adequately. Such identification is not intended
to imply recommendation or endorsement by the National Institute of Standards and Technology,
nor is it intended to imply that the entities, materials, or equipment are necessarily the best
available for the purpose.

il

Abstract

This document specifies the data model and XML representation for the Extensible
Configuration Checklist Description Format (XCCDF). An XCCDF document is a structured
collection of security configuration rules for some set of target systems. The XCCDF
specification is designed to support information interchange, document generation,
organizational and situational tailoring, automated compliance testing, and compliance scoring.
The specification also defines a data model and format for storing results of benchmark
compliance testing. The intent of XCCDF is to provide a uniform foundation for expression of
security checklists, benchmarks, and other configuration guidance, and thereby foster more
widespread application of good security practices.

v

Purpose and Scope

The Cyber Security Research and Development Act of 2002 tasks the National Institute of
Standards and Technology (NIST) to “develop, and revise as necessary, a checklist setting forth
settings and option selections that minimize the security risks associated with each computer
hardware or software system that is, or is likely to become widely used within the Federal
Government.” Such checklists, when combined with well-developed guidance, leveraged with
high-quality security expertise, vendor product knowledge, operational experience, and
accompanied with tools, can markedly reduce the vulnerability exposure of an organization.

To promote the use, standardization, and sharing of effective security checklists, NIST and NSA
have collaborated with representatives of private industry to developed the XCCDF
specification. The specification is vendor-neutral, flexible, and suited for a wide variety of
checklist applications.

Audience

The primary audience of the XCCDF specification is government and industry security analysts,
and industry security management product developers. NIST and NSA welcome feedback from
these groups in improving the XCCDF specification.

AR SRR

Table of Contents

INEEOAUCTION ...ttt ettt et e bbbt e it e eabeesaaeebeeeee 1
L1, Back@round.......oooovioiiiiiiieie ettt ettt et e aae e ene 1
1.2, VISION fOT USE ...ttt ettt ettt ettt et et e st e e b e e 2
1.3. Summary of Changes Since Version 1.0cccoocieiiieriieniieniieiieeieeeeee e 3

REQUITEIMENTSviiiiiieciieecee ettt e et e e et eeetaeeessaeeessteeensaeesnsaeesnsaeesnseeennseens 4
2.1. Structure and Tailoring ReqUITEMENtSc.ceoueeriiiiieniieiieeieeiee e 5
2.2. Inheritance and Inclusion Requirements.ccccceeeeiieeiiieniieeciie et 6
2.3. Document and Report Formatting Requirementsccceeecveevieniieniienieeneeeieeeeene 7
2.4. Rule Checking REqUITEMENLESc.cceveuiieiiieiiiieeiiee et sve e e ve e e eae e e raeeevee s 7
2.5. Test Results REqUITEMENLS.cccueeruiiiiieiiieeieeiieeie ettt eiee et seae e e seaeeseeseaeesee e 8
2.6. Metadata and Security REqQUITEMENLSccccuiiiiiieeiiieiiiieciee et 8

Data MOAEL.....eouiiiiiiiiieee ettt ettt sttt st 9
3.1, Benchmark STrUCTUIEc.c.ooiiiiiiiiiiiiee ettt 10
3.2, Object Detailed CONENLScc.eeevieriieeiieeiieeiieeiie ettt et ete et e sre et e seteebeesaeeseesnaeans 11
3.3, ProcesSing MOAEIScuuieeuiiieiiieeieece ettt et et 27

XML REPIESENTALION.eetieeiiieiieeiientieeteeeiteeteestteeteestteeteesseeebeessteesseessseeseessseenseessseensees 37
4.1. XML Document General Considerationsccceeecueereeriieeniieniieenieneeesieeseeenieeseens 37
4.2, XML Element DICHONATYc.ceoouieriierieeiieniieeiiesiee et esiee et esieesveeaeeereesseesnseeseesnseens 38
4.3. Handling Text and String Content............ccceecvuieeiieeeiieeeiieeeee e 65

CONCIUSIONS ...ttt ettt st b et e b et e bt e s e bt et e e bt e sbe et e estenbeenbeeneenbeenee 68

Appendix A — XCCDF SChema........ccccuiiiiiiieiieeeiie ettt et saee e e 69

Appendix B — Sample Benchmark Filecccooiiiiiiiiiiiiiiieeeee e 98

Appendix C: Pre-defined URIS........cooiiiiiiiiieiiecie et 105

RETETEINCES ...ttt sttt sttt 107

vi

Acknowledgements

The editor would like to acknowledge the following individuals who contributed to the initial
definition of XCCDF and its initial development: David Proulx, Mike Michinikov, Andrew
Buttner, Todd Wittbold, Adam Compton, George Jones, Chris Calabrese, John Banghart,
Murugiah Souppaya, John Wack, Trent Pitsenbarger, and Robert Stafford. David Waltermire of
the Center for Internet Security was instrumental in supporting the development of XCCDF; he
contributed many important concepts and constructs, performed a great deal of proofreading on
this specification document, and provided critical input based on implementation experience.
Ryan Wilson of Georgia Institute of Technology also made substantial contributions. Thanks
also go to the DISA FSO VMS/Gold Disk team for extensive review and many suggestions.

Trademark Information

Cisco and IOS are registered trademarks of Cisco Systems, Inc. in the USA and other countries.
Windows is a registered trademark of Microsoft Corporation in the USA and other countries.
Solaris is a registered trademark of Sun Microsystems, Inc. OVAL is a trademark of The
MITRE Corporation.

Warnings

SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY
DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

vil

1. Introduction

The security of an IT system may be measured in a variety of ways, but one way that has
worked well in practice is conformance of the system configuration to a security
benchmark. A typical benchmark includes criteria and rules for hardening a system
against the most common forms of compromise and exploitation, and for reducing the
exposed ‘attack surface’ of a system. Many different companies, government agencies,
and community groups create and disseminate security benchmarks. While these various
organizations often cooperate on the definition of the rules embodied in these consensus
benchmarks, the underlying specification, test, and report formats used for these
endeavors have been specialized and unique.

Configuring a system into conformance with a benchmark or other security specification
is a highly technical task. To aid system administrators, commercial and community
developers have created automated tools that can score a system’s conformance and
recommend corrective measures. Many of these tools are data-driven: they accept a
benchmark specification in some program-readable form, and use it to perform the
checks and tests necessary to measure conformance and generate reports. However, with
rare exceptions, none of these tools employ the same data formats, thus requiring
duplication of effort and precluding interoperability.

This note describes a data model and processing discipline for supporting secure
configuration and assessment. The requirements and goals are explained in detail below,
but may be summarized briefly as document generation, expression of policy-aware
configuration rules, support for complex and compound rules, support for compliance
scoring, and support for customization and tailoring. The model and its XML
representation are intended to be platform-independent and portable, to foster broad
adoption and sharing of rules. The processing discipline of the format requires, for some
uses, a service layer that can collect and store system information and perform simple
policy-neutral tests against the system information. These conditions are described in
detail below. The XML representation is expressed as an XML Schema in Appendix A.

This document has been prepared for use by Federal agencies. It may be used by
nongovernmental organizations on a voluntary basis and is not subject to copyright,
though attribution is desired.

1.1. Background

Today, groups promoting good security practices and system owners wishing to adopt
them face an overload in the size and complexity of their tasks. As systems get larger,
automated tools become a necessity for uniform application of security rules and
visibility into system status. These conditions have created a need for mechanisms that:

e permit faster, more cooperative, and more automated definition of security rules,
procedures, guidance documents, alerts, advisories, and remediation measures,

e permit fast, uniform, manageable administration of security checks and audits,

e permit composition of security rules and tests from different community groups
and vendors,

NISTIR 7275: XCCDF Specification

e permit scoring, reporting, and tracking of security status and checklist
conformance, both over distributed systems and over the same systems across
their operational lifetimes, and

o foster development of interoperable community and commercial tools for creating
and employing security benchmarks.

Today, such mechanisms exist only in some isolated niche areas (e.g. MS Windows patch
validation) and they support only narrow slices of security benchmark compliance
functionality. This note proposes a data model and format specification for an extensible,
interoperable benchmark ‘language’.

1.2. Vision for Use

XCCDF is designed to enable easier, more uniform creation of security benchmarks, and
allow benchmarks to be used with a variety of commercial and open tools. The
motivation for this is improvement of security for IT systems, including the Internet, by
better application of known security practices and configuration settings.

The scenarios below illustrate some uses of security benchmarks and tools that XCCDF
will foster.

e Scenario | —
An academic group produces a benchmark for secure configuration of a particular
server operating system version. A government organization issues a set of rules
extending the academic benchmark to meet more stringent user authorization
criteria imposed by statute. A medical enterprise downloads both the academic
benchmark and the government extension, tailors the combination to fit their
internal security policy, and applies an enterprise-wide audit using a commercial
security audit tool. Reports output by the tool include remediative measures
which the medical enterprise IT staff can use to bring their systems into full
internal policy compliance.

e Scenario 2 —
A federally-funded lab issues a security advisory about a new Internet worm. In
addition to a prose description of the worm’s attack vector, they include a set of
short benchmarks in a standard format that assess vulnerability to the worm for
various operating system platforms. Organizations all over the world pick up the
advisory, and use installed tools that support the standard format to check their
status and fix vulnerable systems.

e Scenario 3 —
An industry consortium wants to produce a security checklist for a popular
commercial server. The core security settings are the same for all OS platforms
on which the server runs, but a few settings are OS-specific. The consortium can
craft one checklist in a standard format for the core settings, and then write
several OS-specific ones that incorporate the core settings by reference. Users
download the core checklist and the OS-specific checklists that apply to their
installations, and run a checking tool to score their compliance with the checklist.

NISTIR 7275: XCCDF Specification 2

1.3. Summary of Changes since Version 1.0

XCCDF 1.0 received some review and critique after its release in January 2005. Most of
the additions and changes in 1.1 come directly from suggestions by users and potential

Uusers.

The list below gives the major changes; other differences are noted in the text.

Persistent/standard identifiers - To foster standardization and re-use of XCCDF
rules, community members suggested that Rule objects bear long-term, globally
unique identifiers. Support for identifiers, along with the scheme or organizations
which assigns them, is now part of the Rule object.

Versioning - To foster re-use of XCCDF rules, and to allow more precise tracking
of benchmark results over time, Benchmarks, Rules, and Profiles all support a
version number. The version number now supports a timestamp, too.

Severity - Rules can not support a severity level: info, low, medium, and high.
Severity levels can be adjusted via Profiles.

Signatures - Each object that can be a standalone XCCDF documents can have an
XML digital signature: Benchmark, Group, Rule, Value, Profile, and TestResult.

Rule result enhancements - Added the override property for rule-result members
of the TestResult object. Clarified the use of different rule result status values in
scoring, and added several new rule result status values. Added better instance
details, for multiply-instantiated rules.

Enhancements for remediation - Added several minor enhancements to the Rule’s
properties for automated and interactive remediation (fix and fixtext elements).

Interactive Value tailoring - Added the ‘interactive’ property to Value objects; it
gives a benchmark checking tool a hint that it should solicit a new value prior to
each application of the benchmark. Added the ‘interfaceHint’ property to allow
the author to suggest a Ul model to the tool.

Scoring models - Added the notion of multiple scoring models and described two
new models. Added the model and param elements, expanded the score element.

Re-usable plain text blocks - Added named, re-usable text blocks for benchmarks.

Richer XHTML references - Defined mechanisms for using XHTML “object” and
“a” tags to reference other XCCDF objects within a generated document.

Target facts - Added the target facts list to the TestResult object, to allow an
XCCDF document to store arbitrary facts about target systems.

Complex checks — Added the ability to compose boolean expressions from
multiple individual checks in Rules.

Extension control — added the ‘override’ attribute to most property element
children that can appear more than once in a Rule, Group, Value, or Profile.

Added the ‘source’ property to the Value object, to allow a benchmark author to
indicate (as URIs) possible ways to obtain correct or candidate values.

Added a descriptive note facility for relating Rules and Profiles.

NISTIR 7275: XCCDF Specification 3

2. Requirements

The general objective for XCCDF is to allow security analysts and IT experts to create
effective and inter-operable benchmarks, and to support use of benchmarks with a wide

variety

Security
Experts
and
Domain
Experts

\o—>
XML

of tools. Figure 1 shows some purposes for which a benchmark might be used.

Formatting
information

XCCDF *
Document Publication
Generator ocuments

Web pages

XCCDF
benchmark format

Other
Tools
G Benchmark Reports

Benchmark results

Compliance
Benchmarking
Tool

Tailoring
Tools

'

Other
Reporting
Tools

] System

D Under
Test
—

Fix scripts or updates

System
Administrator
or
Auditor

D Security Status Non-compliance or
> Monitor or vulnerability
Vulnerability Tester alerts

Figure 1 — Use Cases for XCCDF Documents

The list below describes some requirements for each of the uses.

1.

Security and domain experts create a benchmark, which is an organized collection
of rules about a particular kind of system or platform. To support this use,
XCCDF must be an open, standardized format, amenable to generation and
editing with a variety of tools. It must be expressive enough to represent complex
conditions and relationships about the systems to be benchmarked, and it must
also be able to incorporate descriptive material and remediative measures.
(XCCDF benchmarks may include specification of the hardware and/or software
platforms to which they apply. The specification should be concrete and granular
enough for compliance checking tools to detect whether a rule is suited for a
target platform.)

NISTIR 7275: XCCDF Specification 4

2. Auditors and system administrators may employ tailoring tools to customize a
benchmark for their local environment or policies. An XCCDF document must
include the structure and interrogative text needed to guide the user in tailoring a
benchmark, and it must be able to hold or incorporate the user’s tailoring
responses.

3. In addition to supporting tailoring and security audits, an XCCDF document
should be structured to foster generation of hardcopy benchmark guides.

4. The structure of a XCCDF document should support transformation into HTML,
for posting the benchmark as a web page.

5. An XCCDF document should be transformable into (other) XML formats, to
promote portability and interoperability.

6. The primary use for an XCCDF benchmark is to drive automated security
benchmarking tools. Such tools should accept one or more XCCDF documents,
and supporting system test definitions, and check whether their rules are satisfied
by some particular target system. The XCCDF document should support
generation of a compliance report, including a weighted compliance score.

7. 1In addition to a benchmark report, some benchmarking tools may be capable of
generating scripts or procedures for helping to bring a system into compliance.
XCCDF must be able to hold or encapsulate the remediation scripts or texts,
including several alternatives.

8. XCCDF documents might also be used in vulnerability scanners, to test whether a
target system is vulnerable to a particular kind of attack. For this purpose, the
XCCDF document would play the role of a vulnerability alert, but with the ability
to both describe the problem and drive automated verification of its presence.

In addition to these use cases, an XCCDF document should be amenable to embedding
inside other documents, and to having data expressed in other formats embedded inside
of it. Also, as its name implies, XCCDF must be extensible — it must be possible for new
functionality and features to be added to XCCDF-capable tools and data for those new
features stored in XCCDF without breaking other tools.

2.1. Structure and Tailoring Requirements

To support tailoring by users, and generation of documents for users, XCCDF must allow
authors to impose organization on a benchmark. Benchmark authors will need to arrange
rules in order, and collect them into groups.

For benchmark structure, a benchmark author must be able to designate the order in
which rules or groups are to be processed. As the simplest case, processing order can be
simply the order in which the rules appear in the XCCDF document.

For tailoring, values, rules and groups will need descriptive and interrogative text to help
a user make tailoring decisions. Two basic kinds of tailoring will be needed:

o Selectability — a tailoring action might select or deselect a rule or group of rules
for inclusion or exclusion from the benchmark. For example, at a site where no
FTP service is used, an auditor might choose to deselect all rules about secure
configuration of the FTP server.

NISTIR 7275: XCCDF Specification 5

e Substitution — a tailoring action might substitute a locally-significant value for a
general value in a rule. For example, at a site where all logs are sent to a
designated logging host, the address of that log server might be substituted into a
rule about audit configuration.

Once benchmarks can be tailored, the possibility arises that some rules within the same
benchmark might conflict or be mutually exclusive. In other words, the author of a
benchmark must be able to identify particular tailoring choices as incompatible, so that
tailoring tools can take appropriate actions.

In addition to being able to specify rules, XCCDF must support structures that foster use
and re-use of rules. To this end, XCCDF must provide a means for related rules to be
grouped together, and for sets of rules and groups which should be applied in concert to
be designated, named, and applied easily. Two realizations of this notion are benchmark
levels, as provided in benchmarks distributed by the Center for Internet Security, and
checklist baselines, as described in the NIST security checklist program [11].

For benchmark processing, there are two basic processing modes: rule checking, and
document generation. It must be possible for a benchmark author to designate the modes
under which a rule may be processed.

2.2. Inheritance and Inclusion Requirements

To support building up benchmarks from parts, XCCDF must support mechanisms for
authors to extend (inherit from) existing rules and rule groups, in addition to expressing
rules and groups in their entirety. Also, it must be possible for one benchmark to include
all or part of another. There are several benchmarking use cases where inheritance and
inclusion will be needed.

e An organization might choose to define a foundational benchmark for a family of
platforms (e.g. Unix-like operating systems) and then extend them for specific
members of the family (e.g. Solaris) or for specific roles (e.g. mail server).

¢ An analyst might choose to make an extended version of a benchmark, by adding
some new rules and adjusting some others.

e Ifthe sets of rules that constitute a benchmark come from several sources, it will
be useful to be able to aggregate them using an inclusion mechanism.

e Within a benchmark, it might be desirable to share some of the descriptive
material among several rules. With extension, this can be accomplished by
creating a base rule, and then extending it with several different rule checks.

e For updating a benchmark, it will be convenient to be able to incorporate changes
or additions using extension.

e To allow broader site-specific or enterprise-specific customization, it should be
possible for a user to override or amend any portion of a benchmark rule.

The XCCDF specification does not include any mechanism for inclusion; instead,
implementations of XCCDF tools should support the XML Inclusion (XInclude) facility
standardized by the W3C [9].

NISTIR 7275: XCCDF Specification 6

2.3. Document and Report Formatting Requirements

Several of the main use cases for XCCDF benchmarks involve generation of reports or
other documents for users to read. Authors will need mechanisms for formatting text,
including images, and referencing other information resources. These mechanisms must
be separable from the text itself, so that they can be filtered out by applications that do
not support them. (XCCDF 1.1 currently satisfies these formatting requirements mainly
by allowing inclusion of XHTML markup tags [3].)

For document formatting, a benchmark must be able to include arbitrary document text
that does not contribute directly to the benchmarking process: introduction, rationale,
warnings, and references are just some of the uses for extra text. Further, the text must be
able to include intra-document and external references and links.

2.4. Rule Checking Requirements

The primary use for XCCDF will be performing security and operational checks on
systems. Therefore, XCCDF must have access to very fine-grained and expressive
mechanisms for checking the state of a system against rule criteria. The community
seems to have reached an informal consensus that the model for this is to treat the state or
configuration of a system as a collection of facts, and to treat expression of conditions
and criteria as an operation or combination of operations against the collection. The
operations used have varied with different existing applications; some rule checking
systems use a database query operation model, while others use a pattern-matching
model. At the least, any rule checking mechanism used for XCCDF must satisfy the
following criteria:

e It must be able to express both positive and negative criteria -
A positive criterion means that if certain conditions are met, then the system
satisfies the benchmark, while a negative criterion means if the conditions are met
the system fails the benchmark. Experience has shown that both kinds are
necessary when crafting security benchmarks.

e It must be able to express boolean combinations of criteria -
It is often impossible to express a high-level security property as a single
quantitative or qualitative statement about a system’s state. Therefore, the ability
to combine statements with ‘and’ and ‘or’ is critical.

e [t must be able to incorporate tailoring values set by the user -
As described above, substitution is important for benchmark tailoring. Any
XCCDF checking mechanism must support substitution of tailored values into its
criteria or statements as well as tailoring of the selected set of rules.

It is not clear that a single rule specification scheme can be defined that will satisfy all
uses of XCCDF. Therefore, the XCCDF definition must allow for use of different rule
checking systems, and a means for identifying the checking system used in each rule. It
is important that the rule checking system be defined separately from XCCDF itself, so
that they can evolve separately and be used independently when necessary. This further
implies the need to cleanly define the interface between XCCDF and the rule checking
system, in terms of information passed from each to the other.

NISTIR 7275: XCCDF Specification 7

2.5. Test Results Requirements

A primary goal for XCCDF is to drive automated security testing and benchmark
compliance checking tools. While an XCCDF benchmark document may comprise a
main input to such a tool, standardized output is also important. XCCDF must provide a
means for storing the results of compliance tests. Some of the information that would
need to be stored is listed below.

e The benchmark used, along with any tailoring applied.

e Information about the target system to which to test was applied, including
arbitrary identification and configuration information about the target system.

e The time interval of the test, and the time instant at which each individual rule
was evaluated.

e One or more compliance scores.

e References to lower-level details possibly stored in other output files.

2.6. Metadata and Security Requirements

Security benchmarks are fairly common, and some government and volunteer
organizations have disclosed plans to create repositories of benchmarks. To facilitate
discovery and retrieval of benchmarks in repositories and on the open Internet, XCCDF
must support inclusion of metadata about a benchmark. Some of the metadata that must
be supported includes: benchmark title, name of benchmark author(s), organization
providing the benchmark, version number, release date, update URL, and a description.

A number of metadata standards already exist, it is preferable that XCCDF simply
incorporate one of them rather than defining its own metadata model.

Application of a security benchmark is a very sensitive action in the management of an
IT system. Therefore, some users may need to verify the integrity and provenance of a
benchmark before using it. Also, if system vendors or government agencies define Rules
and Groups, they may want to ensure the integrity and authenticity of the information
they provide. Digital signatures are the natural mechanism to satisfy these integrity and
proof-of-origin requirements. Fortunately, mature standards for digital signatures already
exist that are suitable for asserting the authorship and protecting the integrity of
benchmarks. XCCDF must provide a means to hold such signatures, and a uniform
method for applying and validating them.

NISTIR 7275: XCCDF Specification 8

3. Data Model

The fundamental data model for XCCDF consists of four main object data types:

1. Benchmark —
An XCCDF document holds exactly one Benchmark object. A Benchmark holds
descriptive text, and acts as a container for items and other objects.

2. Item —
An Item is a named constituent of a Benchmark; it has properties for descriptive
text, and can be referenced by an id. There are several derived classes of Items.

e Group -
This kind of Item can hold other Items. If a Group is unselected, then all of
the items it contains are unselected. A Group may be selected or unselected.

e Rule -
This kind of Item holds a rule checking definition, a scoring weight, and may
also hold remediation text. A Rule may be selected or unselected.

e Value -
This kind of Item is a named data value that can be substituted into other
Item’s property values. It can also have an associated data type and operator
that expresses how the value should be used and how it can be tailored.

3. Profile -
A profile is a collection of attributed references to Rule, Group, and Value
objects. It supports the requirement to allow definition of named levels or
baselines in a benchmark (see Section 2.1).

4. TestResult -
A test result object holds the results of performing a compliance test against a
single target device or system.

Figure 2, below, shows the data model relationships as a UML diagram.

Benchmark K>

71

Item

TestResult Profile

* | % Rule Value Group * | % | x| %

Figure 2 - XCCDF High-Level Data Model

NISTIR 7275: XCCDF Specification

As shown in Figure 2, one Benchmark can hold many Items, but each Item belongs to
exactly one Benchmark. Similarly, a Group can hold many Items, but an Item may
belong to only one Group. Thus, the Items in a benchmark form a tree, where the root
node is the Benchmark, interior nodes are Groups, and the leaves are Values and Rules.

A Profile object references Rule, Value, and Group objects. A TestResult object
references Rule objects, and may also reference a Profile object.

The definition of a Value, Rule, or Group can extend another Value, Rule, or Group. The
extending item inherits property values from the extended item. This extension
mechanism is separate and independent of grouping.

Group and Rule items can be marked by a benchmark author as selected or unselected.
A Group or Rule that is not selected does not undergo processing. The author may also
stipulate, for a Group, Rule, or Value, whether the end user is permitted to tailor it.

Rule items may have a scoring weight associated with them, which can be used by a
benchmark checking tool to compute a target system’s overall compliance score. Rule
items may also hold remediation information.

Value items include information about current, default, and permissible values for the
Value. Each of these properties of a Value can have an associated selector id, which is
used when customizing the Value as part of a Profile. For example, a Value might be
used to hold a Benchmark’s lower limit for password length on some operating system.
In a Profile for that operating system to be used in a closed lab, the default value might be
5, but in a Profile for that operating system to be used on the Internet, the default value
might be 10.

3.1. Benchmark Structure

Typically, a Benchmark would hold one or more Groups, and each group would hold
some Rules, Values, and additional child Groups. Figure 3 illustrates this relationship,
and the order in which the contents of a Benchmark must appear.

Benchmark
[Proﬁle] [Proﬁle]

d
Group (d) Group (¢) Rule (h)
Rule ®) Elule (g) J [m

roup) Value (k) } [Rule (1) j [Rule (m)] }

Figure 3 — Typical Structure of a Benchmark

Groups allow a benchmark author to collect related rules and values into a common
structure and provide descriptive text and references about them. Further, groups allow
benchmark users to select and deselect related rules together, helping to ensure
commonality among users of the same benchmark. Lastly, groups affect benchmark

NISTIR 7275: XCCDF Specification 10

compliance scoring. As explained in Section 3.3, an XCCDF compliance score is
calculated for each group, based on the rules and sub-groups in it. The overall XCCDF
score for the benchmark is computed only from the scores on the immediate Group and
Rule children of the Benchmark object. In the tiny benchmark shown in Figure 3, the
benchmark score would be computed from the scores of Group (d) and Group (j). The
score for Group (j) would be computed from Rule (1) and Rule (m).

Inheritance

The possible inheritance relations between Item object instances are constrained by the
tree structure of the benchmark, but are otherwise independent of it. In other words, all
extension relationships must be resolved before the benchmark can be used for
compliance testing. An Item may only extend another Item of the same type that is
‘visible’ from its scope. An Item X is visible from another Item Y if and only if it meets
one of the following conditions: (1) X and Y are siblings, (2) X is a sibling of some
enclosing group of Y, or (3) X is visible to the scope of the direct children of any group
extended by any enclosing group of Y.

For example, in the tiny benchmark structure shown in Figure 3, it would be legal for
Rule (g) to extend Rule (f), and legal for Rule (f) to extend Rule (h). It would not be
legal for Rule (i) to extend Rule (m), because (m) is not visible from the scope of (i). It
would not be legal for Rule (1) to extend Group (g), because they are not of the same

type.
The ability for a Rule or Benchmark to be extended by another is a convenience for
benchmark authors.

3.2. Object Detailed Contents

The tables below show the properties that make up each data type in the XCCDF data
model. Note that the properties that comprise a Benchmark or Item are an ordered
sequence of property values, and the order in which they appear determines the order in
which they are processed.

Properties with a data type of “text” are string data that can include embedded formatting
directives and hypertext links. Properties of type “string” may not include formatting.

Benchmark
Property Type Count Description

id identifier 1 benchmark identifier, mandatory

title text 0-n title of the benchmark document

description text 0-n text that describes the benchmark

version string 1 version number of the benchmark

status string+date I-n status of the benchmark (see below) and date at
which it attained that status, mandatory.

resolved boolean 0-1 True if benchmark has already undergone the
resolution process (see Section 3.3)

NISTIR 7275: XCCDF Specification 11

Property Type Count Description

notice text 0-n legal notices or copyright statements about this
benchmark; each notice has a unique identifier
and text value.

front-matter text 0-n text for the front of the benchmark document

rear-matter text 0-n text for the back of the benchmark document

reference special 0-n A bibliographic reference for the benchmark
document: metadata or a simple string, plus an
optional URL.

platform-definitions | special 0-1 A list of component definitions and platform
definitions, each with an id.

platform id 0-n target platform(s) for this benchmark; this
property may appear multiple times. The id
refers to a platform definition.

plain-text string+id 0-n Reusable text blocks, each with a unique id.
These can be included into other text blocks in
the benchmark.

model URI 0-n Suggested scoring model or models to be used
when computing a compliance score for this
benchmark; optional.

profiles Profile 0-n Profiles that reference and customize sets of
items in the Benchmark; optional

values Value 0-n Tailoring values that support rules and
descriptions in the benchmark

groups Group 0-n Groups that comprise the benchmark, each
group may contain additional values, groups,
and rules.

rules Rule 0-n Rules that comprise the benchmark

test-results TestResult 0-n Benchmark test result records (one per test);
optional

metadata special 0-n Discovery metadata for the benchmark (e.g.
compliant with Dublin Core Metadata Initiative
XML guidelines)

signature special 0-1 Digital signatures asserting authorship and

allowing verification of the integrity of the
benchmark, optional

Conceptually, a Benchmark contains Group, Rule, and Value objects, and it may also
contain Profile and TestResult objects. For ease of reading and simplicity of scoping, all
Value objects must precede all Groups and Rules, which must precede all Profiles, which
must precede all TestResults. These objects may be directly embedded in the
Benchmark, or incorporated via W3C standard XML Inclusion [9].

The platform-definitions property consists of platform descriptions, each with a unique
id. Benchmark, Group, Rule, and Profile objects may have platform properties that

NISTIR 7275: XCCDF Specification

12

identify the hardware and/or software products to which they apply. The Benchmark
platform-definitions and platform properties are optional. Benchmark authors should use
them to identify the systems or products to which their benchmarks apply. For more
information about platform specification, consult [12].

Each status property consists of a status string and a date. Permissible string values are
“accepted”, “draft”, “interim”, “incomplete”, and “deprecated”. Benchmark authors
should mark their benchmarks with a status to indicate a level of maturity or consensus.
A Benchmark may contain one or more status property values, for different status values.

Benchmark metadata allows authorship, publisher, support, and other information to be
embedding a benchmark. Metadata should comply with existing commercial or
government metadata specifications, to allow benchmarks to be discovered and indexed.
The XCCDF data model allows multiple metadata properties for a Benchmark; each
property should provide metadata compliant with a different specification. The primary
metadata format, which should appear in all published benchmarks, is the simple Dublin
Core Elements specification, as documented in [13].

The plain-text properties, new in XCCDF 1.1, allow commonly used text to be defined
once and then re-used in multiple text blocks in the benchmark. Note that each plain-text
must have a unique id, and that the ids of other Items and plain-text properties must not
collide. [This restriction is imposed to permit easier implementation of document
generation and reporting tools.]

Note that a digital signature, if any, applies only to the Object in which it appears, but
after inclusion processing (note: it may be impractical to use inclusion and signatures
together). Any digital signature format employed for XCCDF benchmarks must be
capable of identifying the signer, storing all information needed to verify the signature
(usually, a certificate or certificate chain), and detecting any change to the content of the
benchmark. XCCDF tools that support signatures at all must support the W3C XML-
Signature standard enveloped signatures [8].

Legal notice text is handled specially, as discussed in Section 3.3.

Item (abstract)

Property Type Count Description

id identifier 1 unique object identifier, mandatory

title text 0-n title of the Item (for human readers)

description text 0-n text that describes the Item

warning text 0-n a cautionary note or caveat about the Item

status string+date | 0-n status of the item and date at which it attained
that status (optional)

version string+date | 0-1 version number of this item, and update URI
(optional)

question string 0-n interrogative text to present to the user during

tailoring (optional)

NISTIR 7275: XCCDF Specification 13

Property Type Count Description

cluster-id identifier 0-1 an identifier to be used from a Profile to refer
to multiple Groups and Rules, optional

hidden boolean 0-1 whether this Item should be excluded from any
generated documents (default: false)

prohibitChanges | boolean 0-1 whether tools should prohibit changes to this
item during tailoring (default: false)

abstract boolean 0-1 if true, then this Item is abstract and exists only
to be extended (default: false)

reference special 0-n a reference to a document or resource where
the user can learn more about the subject of this
Item: content is Dublin Core metadata or a
simple string, plus an optional URL

signature special 0-1 digital signature over this Item, optional

There are several Item properties that give the benchmark author control over how items
may be tailored and presented in documents. First, the hidden property simply prevents
an Item from appearing in generated documents. For example, an author might set the
hidden property on incomplete items in a draft benchmark. The prohibitChanges
property advises tailoring tools that the benchmark author does not wish to allow end
users to change anything about the Item. Lastly, a value of true for the abstract property

denotes an item intended only for other items to extend. In many all cases, abstract items
should also be hidden.

The cluster-id property is optional, but it provides a means to identify related Value,
Group and Rule items throughout the Benchmark. Cluster-id values do not need to be
unique: all the Items with the same cluster-id value belong to the same cluster. A selector
in a Profile can refer to a cluster, thus making it easier for authors to create and maintain
profiles in a complex benchmark. The cluster-id property is not inherited (see page 30).

Every Item may include one or more status properties. Each status property value
represents a status that the Item has reached and the date at which it reached that status.
Benchmark authors can use status elements to record the maturity or consensus level for
Rules, Groups, and Values in the Benchmark. If an Item does not have an explicit status
property value given, then its status is taken to be that of the Benchmark itself. The
status property is not inherited (see page 30).

Group :: Item
Property Type Count Description

requires identifier 0-n the id of another Group or Rule in the
benchmark that must be selected for this
Group to be applied and scored properly

conflicts identifier 0-n the id of another Group or Rule in the
benchmark that must be unselected for this
Group to be applied and scored properly

NISTIR 7275: XCCDF Specification 14

Property Type Count Description

selected boolean 1 whether this Group is currently selected for
processing, default is true. This property
may be overridden by a Profile.

rationale text 0-n descriptive text giving rationale or
motivations for abiding by this Group

platform identifier 0-n A platform to which this Group applies, a
reference to a platform-definition (see [12])

cluster-id identifier 0-1 an identifier to be used from benchmark
profiles to refer to multiple Groups and
Rules, optional

extends identifier 0-1 id of a Group on which to base this Group,
optional

weight float 0-1 the relative scoring weight of this Group, for
computing a compliance score

values Value 0-n Values that belong to this Group, optional

groups Group 0-n Sub-groups under this Group, optional

rules Rule 0-n Rules that belong to this Group, optional

A Group can be based on (extend) another Group. This means that the extending Group
includes all the Items of the extended Group, plus any defined inside the extending
Group. Other properties behave differently, depending on their allowed count. For any
property that is allowed to appear more than once, the extending Group gets the sequence
of property values from the extended group, plus any of its own values for that property.
For any property that is allowed to appear at most once, the extending Group gets its own
value for the property if one appears, otherwise it gets the extended Group’s value of that
property. Items that belong to an extended group are treated specially: the id property of
any Item copied as part of an extended group must be replaced with a new, uniquely
generated id. A Group for which the abstract property is true exists only to be extended
by other Groups, it should never appear in a generated document and none of the Rules
defined in it should be checked in a compliance test. Abstract Group objects are removed
during resolution, for more information see Section 3.3.

To give the benchmark author more control over inheritance for extending Groups (and
other XCCDF objects), all textual properties that may appear more than once can bear an
override attribute. For more information about inheritance overrides and extension, see
Section 3.3.

The platform property of a Group indicates that the Group contains platform-specific
items that apply to some set of (usually related) platforms. First, if a Group does not
possess any platform properties, then it applies to the same set of platforms as its
enclosing Group or the Benchmark. Second, for tools that perform compliance checking
on a platform, any Group whose set of platform property values do not include the
platform on which the compliance check is being performed should be treated as if their
selected property were set to false. Third, any platform property value that appears on a
Group should be a member of the set of platform property values of the enclosing

NISTIR 7275: XCCDF Specification 15

Benchmark. Last, if no platform properties appear anywhere on a Group or its enclosing
Group or Benchmark, then the Group applies to all platforms.

The weight property denotes the importance of a Group relative to its sibling in the same
Group or its siblings in the Benchmark (for a Rule that is a child of the Benchmark).
Scoring is computed independently for each collection of sibling Groups and Rules, then
normalized as part of the overall scoring process. For more information about scoring,

see Section 3.3.

The requires and conflicts properties provide a means for benchmark authors to express
dependencies among Rules and Groups. Their exact meaning depends on what sort of
processing the benchmark is undergoing, but in general the following approach should be
applied: if a Rule or Group is about to be processed, and any of the Rules or Groups
identified in a requires property have a selected property value of false or any of the
Items identified in a conflicts property have a selected property value of true, then
processing for the item should be skipped and its selected property should be set to false.

Rule :: Item
Property

Type

Count

Description

selected

boolean

If true, this Rule is selected to be checked as
part of the benchmark when the benchmark is
applied to a target system; an unselected rule
is not get checked and does not contribute to
scoring. Can be overridden by a Profile.

extends

id

0-1

The 1d of a Rule on which to base this Rule
(must match the id of another Rule)

multiple

boolean

0-1

Whether this rule should be multiple
instantiated. If false, then benchmark tools
should avoid multiply instantiating this Rule.

role

string

Rule’s role in scoring and reporting; one of
the following: “full”, “unscored”,
“unchecked”. Can be overridden by a Profile.

severity

string

0-1

Severity level code, to be used for metrics &
tracking. One of the following: “unknown”
(default), “info”, “low”, “medium”, “high”.
Can be overridden by a Profile.

weight

float

0-1

The relative scoring weight of this Rule, for
computing a compliance score. Can be
overridden by a Profile.

rationale

text

Some descriptive text giving rationale or
motivations for complying with this Rule.

platform

identifier

A platform to which this Rule applies, a
reference to a platform-definition (see [12]).

requires

identifier

The id of another Group or Rule in the
benchmark that should be selected for this
Rule to be applied and scored properly.

NISTIR 7275: XCCDF Specification

16

Property

Type

Description

conflicts

identifier

The id of another Group or Rule in the
benchmark that should be unselected for this
Rule to applied and scored properly.

ident

string+URI

A long-term, globally meaningful name for
this Rule. May be the name or identifier of a
security configuration issue or vulnerability
that the Rule remediates. Has an associated
URI that denotes the organization or naming
scheme which assigns the name.

profile-note

text + 1d

Descriptive text related to a particular
Profile. This property allows a benchmark
author to describe special aspects of the Rule
related to one or more Profiles. It has an id
that can be specified as part of a Profile.

fixtext

textt+attrs

Prose that describes how to fix the problem
of non-compliance with this rule. Each
fixtext property may be associated with one
or more fix property values.

fix

textt+attrs

A command string, script, or other system
modification statement that, if executed on
the target system, can bring it into full, or at
least better, compliance with this Rule.

check

special

The definition of, or a reference to, the target
system check needed to test compliance with
this Rule. A check consists of three parts:
the checking system specification on which it
is based, a list of Value objects to export, and
the content of the check itself. If a Rule has
several check properties, each must employ a
different checking system.

complex-check

special

0-1

A complex check is a boolean expression of
other checks. A most one complex-check
may appear in a Rule. (see below)

A Rule can be based on (extend) another Rule.

This means that the extending Rule

inherits all the properties of the extended or base Rule, some of which it might override
with new values. For any property that is allowed to appear more than once, the
extending Rule gets the sequence of property values from the extended group, plus any of
its own values for that property. For any property that is allowed to appear at most once,
the extending Rule gets its own value for the property if one appears, otherwise it gets the
extended Rule’s value of that property. A Rule for which the abstract property is true
should not be included in any generated document, nor should it be checked in any
compliance test. Abstract rules are removed during resolution (see Section 3.3).

The weight property denotes the importance of a rule relative to its sibling in the same
Group or its siblings in the Benchmark (for a Rule that is a child of the Benchmark). For
more information about scoring, see Section 3.3.

NISTIR 7275: XCCDF Specification

17

Each ident property represents a binding to a globally meaningful name in some security
domain; the string value of the property is the name, and a URI designates the scheme or
organization that assigned the name. By giving the ident value, the benchmark author
effectively declares that the Rule instantiates, implements, or remediates the issue for
which the name was assigned. For example, the ident value might be a CVE identifier;
the Rule would be a check that the target platform was not subject to the vulnerability
named by the CVE identifier, and the URI would be that of the CVE web site.

The role property gives the benchmark author additional control over Rule processing
during application of a benchmark. The default (“full”’) means that the Rule is checked,
contributes to scoring according to the scoring model, and appears in any output reports.
The “unscored” role means that the Rule is checked, and appears in any output reports,
but does not contribute to score computations. The “unchecked” role means that the Rule
does not get checked, its rule result status is set to unknown, and it does not contribute to
scoring, but it can appear in output reports.

The multiple property provides direction about multiple instantiation to a processing tool
applying the Rule. By setting multiple to true, the Rule’s author is directing that separate
components of the target to which the Rule can apply should be tested separately and the
results recorded separately. By setting multiple to true, the author is directing test results
of such components be combined. If the processing tool cannot perform multiple
instantiation, or if multiple instantiation of the Rule is not applicable for the target
system, then processing tools may ignore this property.

The platform properties of a Rule indicate the platforms to which the Rule applies. First,
if a Rule does not possess any platform properties, then it applies to the same set of
platforms as its enclosing Group or Benchmark. Second, for tools that perform
compliance checking on a platform, any Rule whose set of platform property values do
not include the platform on which the compliance check is being performed should be
treated as if their selected property were set to false. Third, any platform property value
that appears on a Rule should be a member of the set of platform property values of the
enclosing Benchmark. Last, if no platform properties appear anywhere on a Rule or its
enclosing Group or Benchmark, then the Rule applies to all platforms.

The check property consists of the following: a selector for use with Profiles, a URI that
designates the checking system or engine, a set of export declarations, and the check
content. The checking system URI tells a compliance checking tool what processing
engine it must use to interpret or execute the check. The nominal or expected checking
system is MITRE’s OVAL system (designated by http://oval.mitre.org/), but the
XCCDF data model allows for alternative or additional checking systems. XCCDF also
supports conveyance of tailoring values from the XCCDF processing environment down
to the checking system, which is the purpose of the export declarations. Each export
declaration maps an XCCDF Value object id to an external name or id for use by the
checking system. The check content is an expression or document in the language of the
checking system; it may appear inside the XCCDF document (an enveloped check) or it
may appear as a reference (a detached check).

In place of a check property, XCCDF 1.1 allows a complex-check property. A complex
check is a boolean expression whose individual terms are checks or complex-checks.
This allows benchmark authors to re-use checks in more flexible ways, and to mix checks

NISTIR 7275: XCCDF Specification 18

written with different checking systems. At most one complex check may appear in a
Rule; on inheritance, the extending Rule’s complex-check replaces the extended Rule’s
complex-check. If both check properties and a complex-check property appear in a Rule,
then the check properties must be ignored. The following operators are allowed for
combining the constituents of a complex-check:

e AND - only if all terms must evaluate to Pass (true) then the complex-check
evaluates to Pass.

e OR - ifany term evaluates to Pass then the complex-check evaluates to Pass.

Truth-tables for the operators appear under their detailed descriptions in the next section.
Note that each complex-check may also specify that the expression should be negated
(boolean not).

The properties fixtext and fix exist to allow a benchmark author to specify a way to
remediate non-compliance with a Rule. The fixtext property provides a prose description
of the fix that needs to be made; in some cases this may be all that is possible to do in the
benchmark (e.g. if the fix requires manipulation of a GUI, or installation of additional
software). The fix property provides a direct means of changing the system configuration
to accomplish the necessary change (e.g. a sequence of command-line commands, or a set
of lines in a system scripting language like Bourne shell, or in a system configuration
language like Windows INF format, or as a list of update or patch ID numbers).

The fix and fixtext properties are enhanced for XCCDF 1.1, to help tools support more
sophisticated facilities for automated and interactive remediation of benchmark findings.
The following attributes can be associated with a fix or fixtext property value:

e strategy — a keyword that denotes the method or approach for fixing the problem.
This applies to both fix and fixtext. Permitted values: unknown (default),
configure, combination, disable, enable, patch, policy, restrict, update.

e disruption — an estimate for how much disruption the application of this fix will
impose on the target. This applies to fix and fixtext. Permitted values: unknown,
low, medium, high.

e reboot — whether remediation will require a reboot or hard-reset of the target.
This applies to fix and fixtext. Permitted values: true (1) and false (0).

e system — a URI representing the scheme, language, engine, or process for which
the fix contents are written. XCCDF 1.1 will define several general-purpose
URN:Ss for this, but it is expected that t