Low Temperature Calorimetry Studies of Hydrating Portland Cement Pastes

Dale P. Bentz
Low Temperature Calorimetry Studies of Hydrating Portland Cement Pastes

Dale P. Bentz
Materials and Construction Research Division
Building and Fire Research Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8615

October 2005
Abstract

This report presents nearly 200 low temperature calorimetry (LTC) scans performed on hydrating portland cement pastes between 2002 and 2005. Because the LTC scans provide valuable information on the percolation of various size pore networks within the hydrating cement pastes as well as the quantity of freezable water as a function of temperature, it was decided to present a compilation of the plots of all of the LTC results obtained over the course of several research projects. Variables include water-cement mass ratio (w/c), curing time, curing temperature, saturation, and limestone and alkali additions. Each plot is characterized by the portland cement used, the mixing solution used, the w/c, the curing temperature, the measured degree of hydration (when available), the curing conditions with respect to saturation, the specimen age when tested, the specimen mass, the filename of the raw LTC data, and the testing date of the LTC run. The experimental procedures used to prepare and evaluate the samples are briefly presented, along with a set of observations obtained from interpretation of the numerous individual data sets.

Keywords: Building technology; curing; freezing; hydration; low temperature calorimetry; percolation.
Table of Contents

Abstract.. iii
List of Figures... vi
List of Tables... xvii
Introduction... 1
Experimental Procedure.. 2
Processed Data (Graphs).. 5
 Control Materials.. 5
 CCRL Cement 152... 6
 CCRL Cement 140.. 83
Observations .. 104
Conclusions and Future Research... 105
References... 106
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Typical LTC scans for a hydrating portland cement paste.</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>LTC scan for CCRL Cement 140 (dry) powder.</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>LTC scan for Gaithersburg tap water at two different scan rates.</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured for 1 d under saturated conditions at 20 °C...</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured for 1 d under sealed conditions at 20 °C. ...</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured for 2 d under saturated conditions at 20 °C...</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured for 2 d under sealed conditions at 20 °C. ...</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured at 20 °C for 1 d under sealed conditions, then resaturated for 1 d.</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured for 3 d under saturated conditions at 20 °C...</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured for 3 d under sealed conditions at 20 °C. ...</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured at 20 °C for 2 d under sealed conditions, then resaturated for 1 d.</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured at 20 °C for 3 d under sealed conditions, then resaturated for 1 d.</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured for 7 d under saturated conditions at 20 °C.</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured for 7 d under sealed conditions at 20 °C.</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured at 20 °C for 7 d under sealed conditions, then resaturated for 1 d.</td>
<td>11</td>
</tr>
<tr>
<td>16</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured for 15 d under saturated conditions at 20 °C.</td>
<td>12</td>
</tr>
<tr>
<td>17</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured for 15 d under sealed conditions at 20 °C.</td>
<td>12</td>
</tr>
<tr>
<td>18</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured at 20 °C for 15 d under sealed conditions, then resaturated for 1 d.</td>
<td>13</td>
</tr>
<tr>
<td>19</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured for 21 d under saturated conditions at 20 °C.</td>
<td>13</td>
</tr>
<tr>
<td>20</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured for 21 d under sealed conditions at 20 °C.</td>
<td>14</td>
</tr>
<tr>
<td>21</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured at 20 °C for 21 d under sealed conditions, then resaturated for 1 d.</td>
<td>14</td>
</tr>
<tr>
<td>22</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured for 36 d under saturated conditions at 20 °C.</td>
<td>15</td>
</tr>
<tr>
<td>23</td>
<td>LTC scan for CCRL Cement 152, (w/c=0.25), cured for 37 d under sealed conditions at 20 °C.</td>
<td>15</td>
</tr>
</tbody>
</table>
Figure 24 LTC scan for CCRL Cement 152, \(w/c = 0.25 \), cured at 20 °C for 37 d under sealed conditions, then resaturated for 1 d.

Figure 25 LTC scan for CCRL Cement 152, \(w/c = 0.25 \), cured for 56 d under saturated conditions at 20 °C.

Figure 26 LTC scan for CCRL Cement 152, \(w/c = 0.25 \), cured for 56 d under sealed conditions at 20 °C.

Figure 27 LTC scan for CCRL Cement 152, \(w/c = 0.25 \), cured at 20 °C for 56 d under sealed conditions, then resaturated for 1 d.

Figure 28 LTC scan for CCRL Cement 152, \(w/c = 0.25 \), cured for 91 d under saturated conditions at 20 °C.

Figure 29 LTC scan for CCRL Cement 152, \(w/c = 0.25 \), cured for 91 d under sealed conditions at 20 °C.

Figure 30 LTC scan for CCRL Cement 152, \(w/c = 0.25 \), cured at 20 °C for 91 d under sealed conditions, then resaturated for 1 d.

Figure 31 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured for 1 d under saturated conditions at 20 °C.

Figure 32 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured for 1 d under sealed conditions at 20 °C.

Figure 33 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured for 2 d under saturated conditions at 20 °C.

Figure 34 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured for 2 d under sealed conditions at 20 °C.

Figure 35 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured for 2 d under saturated conditions at 20 °C (replicate mixture).

Figure 36 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured for 2 d under sealed conditions at 20 °C (replicate mixture).

Figure 37 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured for 3 d under saturated conditions at 20 °C.

Figure 38 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured for 3 d under sealed conditions at 20 °C.

Figure 39 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured at 20 °C for 2 d under sealed conditions, then resaturated for 1 d.

Figure 40 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured for 4 d under saturated conditions at 20 °C.

Figure 41 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured for 4 d under sealed conditions at 20 °C.

Figure 42 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured at 20 °C for 3 d under sealed conditions, then resaturated for 1 d.

Figure 43 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured at 20 °C for 4 d under sealed conditions, then resaturated for 1 d.
Figure 44 LTC scan for CCRL Cement 152, w/c=0.35, cured for 5 d under saturated conditions at 20 °C.

Figure 45 LTC scan for CCRL Cement 152, w/c=0.35, cured for 5 d under sealed conditions at 20 °C.

Figure 46 LTC scan for CCRL Cement 152, w/c=0.35, cured for 7 d under saturated conditions at 20 °C.

Figure 47 LTC scan for CCRL Cement 152, w/c=0.35, cured for 7 d under sealed conditions at 20 °C.

Figure 48 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 5 d under sealed conditions, then resaturated for 2 d.

Figure 49 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 7 d under sealed conditions, then resaturated for 2 d.

Figure 50 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 7 d under sealed conditions, frozen during an LTC scan (Figure 17), then resaturated for 1 d.

Figure 51 LTC scan for CCRL Cement 152, w/c=0.35, cured for 9 d under saturated conditions at 20 °C.

Figure 52 LTC scan for CCRL Cement 152, w/c=0.35, cured for 9 d under sealed conditions at 20 °C.

Figure 53 LTC scan for CCRL Cement 152, w/c=0.35, cured for 14 d under saturated conditions at 20 °C.

Figure 54 LTC scan for CCRL Cement 152, w/c=0.35, cured for 14 d under sealed conditions at 20 °C.

Figure 55 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 14 d under sealed conditions, then resaturated for 1 d.

Figure 56 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 14 d under sealed conditions, then resaturated for 4 d.

Figure 57 LTC scan for CCRL Cement 152, w/c=0.35, cured for 18 d under saturated conditions at 20 °C.

Figure 58 LTC scan for CCRL Cement 152, w/c=0.35, cured for 18 d under sealed conditions at 20 °C.

Figure 59 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 17 d under sealed conditions, then resaturated for 1 d.

Figure 60 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 14 d under sealed conditions, then resaturated for 7 d.

Figure 61 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 14 d under sealed conditions, then resaturated for 15 d.

Figure 62 LTC scan for CCRL Cement 152, w/c=0.35, cured for 30 d under saturated conditions at 20 °C.

Figure 63 LTC scan for CCRL Cement 152, w/c=0.35, cured for 30 d under sealed conditions at 20 °C.
Figure 64 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 30 d under sealed conditions, then resaturated for 2 d.........................38
Figure 65 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 30 d under sealed conditions, then resaturated for 5 d.........................38
Figure 66 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 30 d under sealed conditions, then resaturated for 12 d.........................39
Figure 67 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 30 d under sealed conditions, then resaturated for 19 d.........................39
Figure 68 LTC scan for CCRL Cement 152, w/c=0.35, cured for 50 d under saturated conditions at 20 °C...40
Figure 69 LTC scan for CCRL Cement 152, w/c=0.35, cured for 50 d under sealed conditions at 20 °C. 40
Figure 70 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 50 d under sealed conditions, then resaturated for 1 d.........................41
Figure 71 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 50 d under sealed conditions, then resaturated for 2 d.........................41
Figure 72 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 50 d under sealed conditions, then resaturated for 13 d.........................42
Figure 73 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 88 d under sealed conditions, then resaturated for 3 d.........................42
Figure 74 LTC scan for CCRL Cement 152, w/c=0.35, cured for 90 d under saturated conditions at 20 °C. ...43
Figure 75 LTC scan for CCRL Cement 152, w/c=0.35, cured for 90 d under sealed conditions at 20 °C. 43
Figure 76 LTC scan for CCRL Cement 152, w/c=0.35, cured for 182 d at 20 °C under saturated conditions ...44
Figure 77 LTC scan for CCRL Cement 152, w/c=0.35, cured for 182 d at 20 °C under sealed conditions. ...44
Figure 78 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 7 d under sealed conditions, then resaturated for 175 d..............................45
Figure 79 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 182 d under sealed conditions, then resaturated for 1 d..............................45
Figure 80 LTC scan for CCRL Cement 152, w/c=0.35, cured for 204 d at 20 °C under sealed conditions. ...46
Figure 81 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 203 d under sealed conditions, then resaturated for 1 d..............................46
Figure 82 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured at 20 °C for 203 d under sealed conditions, then resaturated for 4 d...47

Figure 83 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured at 20 °C for 203 d under sealed conditions, then resaturated for 21 d..47

Figure 84 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured at 20 °C for 203 d under sealed conditions, then resaturated for 35 d..48

Figure 85 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured for 228 d at 20 °C under saturated conditions...49

Figure 86 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured for 7 d at 20 °C under sealed conditions, then resaturated for 221 d...49

Figure 87 LTC scan for CCRL Cement 152, \(w/c = 0.435 \), cured for 214 d at 20 °C under saturated conditions...50

Figure 88 LTC scan for CCRL Cement 152, \(w/c = 0.435 \), cured for 214 d at 20 °C under sealed conditions...50

Figure 89 LTC scan for CCRL Cement 152, \(w/c = 0.435 \), cured for 7 d at 20 °C under sealed conditions, then resaturated for 207 d...51

Figure 90 LTC scan for CCRL Cement 152, \(w/c = 0.435 \), cured for 214 d at 20 °C under sealed conditions, then resaturated for 4 d...51

Figure 91 LTC scan for CCRL Cement 152, \(w/c = 0.435 \), cured for 214 d at 20 °C under sealed conditions, then resaturated for 41 d...52

Figure 92 LTC scan for CCRL Cement 152, \(w/c = 0.435 \), cured for 204 d at 20 °C under sealed conditions, then resaturated for 34 d...52

Figure 93 LTC scan for CCRL Cement 152, \(w/c = 0.435 \), cured for 256 d at 20 °C under sealed conditions...53

Figure 94 LTC scan for CCRL Cement 152, \(w/c = 0.435 \), cured for 276 d at 20 °C under saturated conditions...53

Figure 95 LTC scan for CCRL Cement 152 with 20 % limestone filler substitution, \(w/s = 0.35 \), cured for 91 d at 20 °C under saturated conditions...54

Figure 96 LTC scan for CCRL Cement 152 with 20 % limestone filler substitution, \(w/s = 0.35 \), cured for 91 d at 20 °C under sealed conditions...54

Figure 97 LTC scan for CCRL Cement 152 with 20 % limestone filler substitution, \(w/s = 0.35 \), cured under sealed conditions for 91 d at 20 °C, then resaturated for 1 d...55

Figure 98 LTC scan for CCRL Cement 152 with 20 % limestone filler substitution, \(w/s = 0.35 \), cured under sealed conditions for 91 d at 20 °C, then resaturated for 92 d...55
Figure 99 LTC scan for CCRL Cement 152 with 20% limestone filler substitution, \(w/s=0.35\), cured for 183 d at 20 °C under saturated conditions.

Figure 100 LTC scan for CCRL Cement 152 with 20% limestone filler substitution, \(w/s=0.35\), cured for 183 d at 20 °C under sealed conditions.

Figure 101 LTC scan for CCRL Cement 152 with 20% limestone filler substitution, \(w/s=0.35\), cured under sealed conditions for 183 d at 20 °C, then resaturated for 1 d.

Figure 102 LTC scan for CCRL Cement 152 with 20% limestone filler substitution, \(w/s=0.435\), cured for 213 d at 20 °C under saturated conditions.

Figure 103 LTC scan for CCRL Cement 152 with 20% limestone filler substitution, \(w/s=0.435\), cured for 219 d at 20 °C under sealed conditions.

Figure 104 LTC scan for CCRL Cement 152 with 20% limestone filler substitution, \(w/s=0.435\), cured under sealed conditions for 218 d at 20 °C, then resaturated for 1 d.

Figure 105 LTC scan for CCRL Cement 152, \(w/c=0.25\), cured for 8 h under saturated conditions at 40 °C.

Figure 106 LTC scan for CCRL Cement 152, \(w/c=0.25\), cured for 1 d under saturated conditions at 40 °C.

Figure 107 LTC scan for CCRL Cement 152, \(w/c=0.25\), cured for 1 d under sealed conditions at 40 °C.

Figure 108 LTC scan for CCRL Cement 152, \(w/c=0.25\), cured for 2 d under saturated conditions at 40 °C.

Figure 109 LTC scan for CCRL Cement 152, \(w/c=0.25\), cured for 2 d under sealed conditions at 40 °C.

Figure 110 LTC scan for CCRL Cement 152, \(w/c=0.25\), cured for 1 d at 40 °C under sealed conditions, then resaturated for 1 d.

Figure 111 LTC scan for CCRL Cement 152, \(w/c=0.25\), cured for 3 d under saturated conditions at 40 °C.

Figure 112 LTC scan for CCRL Cement 152, \(w/c=0.25\), cured for 3 d under sealed conditions at 40 °C.

Figure 113 LTC scan for CCRL Cement 152, \(w/c=0.25\), cured for 2 d at 40 °C under sealed conditions, then resaturated for 1 d.

Figure 114 LTC scan for CCRL Cement 152, \(w/c=0.25\), cured for 3 d at 40 °C under sealed conditions, then resaturated for 1 d.

Figure 115 LTC scan for CCRL Cement 152, \(w/c=0.25\), cured for 14 d under saturated conditions at 40 °C.

Figure 116 LTC scan for CCRL Cement 152, \(w/c=0.25\), cured for 14 d under sealed conditions at 40 °C.
Figure 117 LTC scan for CCRL Cement 152, w/c = 0.25, cured for 14 d at 40 °C under sealed conditions, then resaturated for 1 d... 65

Figure 118 LTC scan for CCRL Cement 152, w/c = 0.25, cured for 28 d under saturated conditions at 40 °C. ... 66

Figure 119 LTC scan for CCRL Cement 152, w/c = 0.25, cured for 28 d under sealed conditions at 40 °C. ... 67

Figure 120 LTC scan for CCRL Cement 152, w/c = 0.25, cured for 28 d at 40 °C under sealed conditions, then resaturated for 1 d... 67

Figure 121 LTC scan for CCRL Cement 152, w/c = 0.35, cured for 1 d under saturated conditions at 40 °C. ... 68

Figure 122 LTC scan for CCRL Cement 152, w/c = 0.35, cured for 1 d under sealed conditions at 40 °C. 68

Figure 123 LTC scan for CCRL Cement 152, w/c = 0.35, cured for 1 d at 40 °C under sealed conditions, then resaturated for 1 d... 68

Figure 124 LTC scan for CCRL Cement 152, w/c = 0.35, cured for 1 d at 40 °C under sealed conditions, then resaturated for 2 d... 69

Figure 125 LTC scan for CCRL Cement 152, w/c = 0.35, cured for 2 d under saturated conditions at 40 °C. ... 69

Figure 126 LTC scan for CCRL Cement 152, w/c = 0.35, cured for 2 d under sealed conditions at 40 °C. 69

Figure 127 LTC scan for CCRL Cement 152, w/c = 0.35, cured for 7 d under saturated conditions at 40 °C. ... 70

Figure 128 LTC scan for CCRL Cement 152, w/c = 0.35, cured for 7 d under sealed conditions at 40 °C. 70

Figure 129 LTC scan for CCRL Cement 152, w/c = 0.35, cured for 2 d under sealed conditions at 40 °C, then resaturated for 5 d... 70

Figure 130 LTC scan for CCRL Cement 152, w/c = 0.35, cured for 7 d under sealed conditions at 40 °C, then resaturated for 6 d... 71

Figure 131 LTC scan for CCRL Cement 152, w/c = 0.35 cured for 14 d under saturated conditions at 40 °C. ... 71

Figure 132 LTC scan for CCRL Cement 152, w/c = 0.35, cured for 14 d under sealed conditions at 40 °C. ... 72

Figure 133 LTC scan for CCRL Cement 152, w/c = 0.35 cured for 28 d under saturated conditions at 40 °C. ... 72

Figure 134 LTC scan for CCRL Cement 152, w/c = 0.35, cured for 28 d under sealed conditions at 40 °C. ... 73

... 73
Figure 135 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured for 14 d under sealed conditions at 40 °C, then resaturated for 15 d... 74
Figure 136 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured for 28 d under sealed conditions at 40 °C, then resaturated for 1 d... 74
Figure 137 LTC scan for CCRL Cement 152, \(w/c = 0.35 \) cured for 58 d under saturated conditions at 40 °C... 75
Figure 138 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured for 58 d under sealed conditions at 40 °C... 75
Figure 139 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured for 57 d under saturated conditions at 40 °C, then resaturated for 1 d... 76
Figure 140 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured for 57 d under sealed conditions at 40 °C, then resaturated for 6 d... 76
Figure 141 LTC scan for CCRL Cement 152, \(w/c = 0.45 \), cured for 3 d under saturated conditions at 40 °C... 77
Figure 142 LTC scan for CCRL Cement 152, \(w/c = 0.45 \), cured for 3 d under sealed conditions at 40 °C. 77
Figure 143 LTC scan for CCRL Cement 152, \(w/c = 0.45 \), cured for 8 d under saturated conditions at 40 °C... 78
Figure 144 LTC scan for CCRL Cement 152, \(w/c = 0.45 \), cured for 8 d under sealed conditions at 40 °C. 78
Figure 145 LTC scan for CCRL Cement 152, \(w/c = 0.45 \), cured for 3 d under saturated conditions at 40 °C, then resaturated for 5 d... 79
Figure 146 LTC scan for CCRL Cement 152, \(w/c = 0.45 \) cured for 14 d under saturated conditions at 40 °C... 80
Figure 147 LTC scan for CCRL Cement 152, \(w/c = 0.45 \), cured for 14 d under sealed conditions at 40 °C... 80
Figure 148 LTC scan for CCRL Cement 152, \(w/c = 0.45 \), cured for 3 d under saturated conditions at 40 °C, then resaturated for 11 d... 81
Figure 149 LTC scan for CCRL Cement 152, \(w/c = 0.45 \), cured for 8 d under saturated conditions at 40 °C, then resaturated for 6 d... 81
Figure 150 LTC scan for CCRL Cement 152, \(w/c = 0.45 \), cured for 29 d at 40 °C under saturated conditions... 82
Figure 151 LTC scan for CCRL Cement 152, \(w/c = 0.45 \), cured for 29 d at 40 °C under sealed conditions... 82
Figure 152 LTC scan for CCRL Cement 152, \(w/c = 0.45 \), cured for 28 d under saturated conditions at 40 °C, then resaturated for 1 d... 83
Figure 153 LTC scan for CCRL Cement 140, w/c=0.40, prepared with distilled water and cured for 2 d at 20 °C under saturated conditions. .. 83

Figure 154 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali sulfates and cured for 2 d at 20 °C under saturated conditions. .. 84

Figure 155 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali hydroxides and cured for 2 d at 20 °C under saturated conditions. .. 84

Figure 156 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a LiOH solution and cured for 2 d at 20 °C under saturated conditions. .. 85

Figure 157 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a LiNO₃ solution and cured for 2 d at 20 °C under saturated conditions. .. 85

Figure 158 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a LiOH solution and cured for 4 d at 20 °C under saturated conditions. .. 86

Figure 159 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a LiNO₃ solution and cured for 4 d at 20 °C under saturated conditions. .. 86

Figure 160 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a LiOH solution and cured for 7 d at 20 °C under saturated conditions. .. 87

Figure 161 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a LiNO₃ solution and cured for 7 d at 20 °C under saturated conditions. .. 87

Figure 162 LTC scan for CCRL Cement 140, w/c=0.40, prepared with distilled water and cured for 8 d at 20 °C under saturated conditions. .. 88

Figure 163 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali sulfates and cured for 8 d at 20 °C under saturated conditions. .. 88

Figure 164 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali hydroxides and cured for 8 d at 20 °C under saturated conditions. .. 89

Figure 165 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of LiOH and cured for 8 d at 20 °C under saturated conditions. .. 89

Figure 166 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of LiNO₃ and cured for 8 d at 20 °C under saturated conditions. .. 90

Figure 167 LTC scan for CCRL Cement 140, w/c=0.40, prepared with distilled water and cured for 14 d at 20 °C under saturated conditions. .. 90

Figure 168 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali sulfates and cured for 14 d at 20 °C under saturated conditions. .. 91

Figure 169 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali hydroxides and cured for 14 d at 20 °C under saturated conditions. .. 91
Figure 170 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of LiOH and cured for 14 d at 20 °C under saturated conditions. .. 92
Figure 171 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of LiNO₃ and cured for 14 d at 20 °C under saturated conditions. .. 92
Figure 172 LTC scan for CCRL Cement 140, w/c=0.40, prepared with distilled water and cured for 30 d at 20 °C under saturated conditions. .. 93
Figure 173 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali sulfates and cured for 30 d at 20 °C under saturated conditions. .. 93
Figure 174 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali hydroxides and cured for 30 d at 20 °C under saturated conditions. .. 94
Figure 175 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of LiOH and cured for 30 d at 20 °C under saturated conditions. .. 94
Figure 176 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of LiNO₃ and cured for 30 d at 20 °C under saturated conditions. .. 95
Figure 177 LTC scan for CCRL Cement 140, w/c=0.40, prepared with distilled water and cured for 63 d at 20 °C under saturated conditions. .. 95
Figure 178 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali sulfates and cured for 63 d at 20 °C under saturated conditions. .. 95
Figure 179 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali hydroxides and cured for 63 d at 20 °C under saturated conditions. .. 96
Figure 180 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of LiOH and cured for 63 d at 20 °C under saturated conditions. .. 96
Figure 181 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of LiNO₃ and cured for 63 d at 20 °C under saturated conditions. .. 97
Figure 182 LTC scan for CCRL Cement 140, w/c=0.40, prepared with distilled water and cured for 90 d at 20 °C under saturated conditions. .. 98
Figure 183 LTC scan for CCRL Cement 140, w/c=0.40, prepared with distilled water and cured for 91 d at 20 °C under saturated conditions. .. 98
Figure 184 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali sulfates and cured for 90 d at 20 °C under saturated conditions. .. 99
Figure 185 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali sulfates and cured for 91 d at 20 °C under saturated conditions. .. 99
Figure 186 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali hydroxides and cured for 90 d at 20 °C under saturated conditions. .. 100
Figure 187 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of LiOH and cured for 90 d at 20 °C under saturated conditions... 100

Figure 188 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of LiNO₃ and cured for 90 d at 20 °C under saturated conditions... 101

Figure 189 LTC scan for CCRL Cement 140, w/c=0.40, prepared with distilled water and cured for 101 d at 20 °C under saturated conditions.. 101

Figure 190 LTC scan for CCRL Cement 140, w/c=0.40, prepared with distilled water and cured for 105 d at 20 °C under saturated conditions.. 102

Figure 191 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali sulfates and cured for 101 d at 20 °C under saturated conditions. ... 102

Figure 192 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali sulfates and cured for 110 d at 20 °C under saturated conditions. ... 103

Figure 193 Four particle model for hydrating cement paste microstructure, indicating hydration under saturated and sealed curing conditions. Dark grey is unhydrated cement grains, textured material and light grey are hydration products, white is water-filled porosity, and black is empty porosity, from reference [2].. 105
List of Tables

Table 1: Mixture proportions of the CCRL proficiency cement sample 140 paste mixtures prepared with various alkali additions. ... 2
Table 2: Plots corresponding to different sets of cement paste mixtures. 4
Introduction

Low temperature calorimetry (LTC) can be conveniently used to examine the percolation of various size pore networks in hydrating cement pastes [1]. During a freezing scan, as the temperature is lowered, water will freeze in progressively smaller pores. For hydrating cement pastes, as shown on the cover of this report and duplicated in Figure 1 below, up to three peaks may be observed in a typical freezing scan, corresponding to percolated networks of capillary pores, open gel pores, and dense gel pores, respectively, adopting the naming convention introduced in [1]. This experimental technique has been utilized extensively in several recent studies to provide valuable information on the influence of curing conditions and alkali additions on the depercolation (and sometimes the repercolation) of the capillary porosity in hydrating portland cement pastes [2-5]. During the course of these studies, nearly 200 individual LTC scans were conducted on a wide variety of hydrated cement paste specimens. Because most of these data could not be included in references [2-5], in this report, all of the plots generated for these scans are presented individually. It is envisioned that this graphical database will be of use for comparison purposes to other researchers utilizing this technique on cement-based materials and may suggest further avenues of research employing LTC.

Figure 1 Typical LTC scans for a hydrating portland cement paste.
Experimental Procedure

Cement pastes were prepared by mixing Cement and Concrete Reference Laboratory (CCRL) proficiency cement samples (either CCRL cement 140 or CCRL cement 152) with either distilled water or a solution of alkali compounds dissolved in distilled water, using a temperature-controlled high speed blender at either 20 °C or 40 °C. Details on the particle size distributions and phase compositions of the two cements can be found in an online database available at http://ciks.cbt.nist.gov/bentz/phpct/database/images. CCRL cement 152 was used for the studies where curing conditions (temperature and saturation) and water-cement mass ratio (w/c=0.35 or w/c=0.45) were the major variables [2,5], while CCRL cement 140 was used in a study (w/c=0.40) where the alkali type and content of the cement paste were varied [3, 4]. The alkali solutions were prepared by adding the appropriate compounds (see Table 1) to distilled water and stirring with a glass rod until complete dissolution. Cement 140 is a low-alkali cement, containing only 0.093 % Na₂O and 0.186 % K₂O per unit mass of cement. The additional alkalis prepared for each mixture are listed in Table 1; their masses were selected to provide the same number of moles of additional cations (K⁺, Na⁺, and Li⁺) in each mixture. After mixing, cast cylindrical wafers (≈5 g) of the pastes were placed in sealed plastic vials. A small quantity of water was added to the tops of some of the wafers to maintain saturated curing conditions. The capped vials were placed either in a walk-in environmental chamber maintained at 20 °C or in a water bath maintained at 40 °C.

Table 1: Mixture proportions of the CCRL proficiency cement sample 140 paste mixtures prepared with various alkali additions.

<table>
<thead>
<tr>
<th>Material</th>
<th>Mixture 1</th>
<th>Mixture 2</th>
<th>Mixture 3</th>
<th>Mixture 4</th>
<th>Mixture 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>300 g</td>
<td>300 g</td>
<td>300 g</td>
<td>300 g</td>
<td>300 g</td>
</tr>
<tr>
<td>Water</td>
<td>120 g</td>
<td>120 g</td>
<td>120 g</td>
<td>120 g</td>
<td>120 g</td>
</tr>
<tr>
<td>K₂SO₄</td>
<td></td>
<td>2.79 g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td></td>
<td>2.28 g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOH</td>
<td></td>
<td></td>
<td>2.02 g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaOH</td>
<td></td>
<td></td>
<td>1.30 g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LiOH</td>
<td></td>
<td></td>
<td></td>
<td>2.7 g</td>
<td></td>
</tr>
<tr>
<td>LiNO₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.42 g</td>
</tr>
</tbody>
</table>

*89 % purity as supplied by chemical company.

For the CCRL cement 152 specimens with w/c=0.45 cured at 20 °C, the vials were opened after 4 h of curing and any accumulated bleed water was removed using a small pipette. This resulted in a nominal achieved w/c=0.435 for these pastes. Three curing conditions were employed for the CCRL cement 152 studies. In saturated curing, a small amount of distilled water was placed on top of the paste wafers (after removing the bleed water). (All of the CCRL cement 140 paste specimens were also cured under saturated conditions). In sealed curing, the wafers were simply sealed in their plastic vials after removal of the bleed water. In sealed/saturated curing, the wafers were cured under sealed conditions for 7 d, then the plastic vials were opened and a small amount of distilled water was added on top of the wafers. At various ages, specimens of the pastes were removed from the vials for further analysis. For some of the LTC studies to be detailed below, many of the specimens cured under sealed conditions
were crushed to smaller pieces and resaturated for a few days in an attempt to refill any pores that had been emptied during self-desiccation.

For many of the specimens, degree of hydration was estimated based on measurement of their non-evaporable water content. The non-evaporable water content \(w_n \) of a sample was determined as the mass loss between 105 °C and 1000 °C divided by the mass of the ignited sample, corrected for the loss-on-ignition (LOI) of the unhydrated cement powder, determined in a separate LOI measurement. Previously, the expanded uncertainty in the calculated \(w_n \) has been estimated to be 0.001 g/g cement, assuming a coverage factor of 2 [6]. The values of \(w_n \) were converted to estimated degrees of hydration based on the phase compositions of the cements and published coefficients for the non-evaporable water contents of the various cement clinker phases [7]. Based on a propagation of error analysis, the estimated uncertainty in the calculated degree of hydration is 0.004.

Small pieces of the hydrated cement pastes were used in the LTC experiments. Sample mass was typically between 30 mg and 90 mg. For each LTC experiment, one small piece of the relevant cement paste was surface dried and placed in a small open stainless steel pan. The pan with the sample, along with an empty reference pan of similar mass to the empty sample pan, was placed in the calorimeter cell. Using a protocol developed previously [1], a freezing scan was conducted between 5 °C and -55 °C at a scan rate of -0.5 °C/min. For temperatures between -100 °C and 500 °C, the equipment manufacturer has specified a constant calorimetric sensitivity of ± 2.5 % and a root-mean-square baseline noise of 1.5 \(\mu \)W. The peaks observed in a plot of heat flow (normalized to the mass of the sample) versus temperature correspond to water freezing in pores with various size entryways (pore necks). The smaller the pore entryway, the more the freezing peak is depressed. Thus, the presence of, absence of, or change in peaks can be used to infer information concerning the characteristic sizes of the “percolated” (connected) water-filled pores in the microstructure of the hydrating cement pastes.

One advantage of LTC over mercury intrusion porosimetry, and other techniques for assessing pore size and connectivity, is that specimens are evaluated without any external drying that might damage their pore structure. Of course, the LTC technique can only assess the size and connectivity of water-filled pores. For non-saturated curing conditions, it is assumed that the “empty” pores formed due to self-desiccation will not contain any freezable water and thus will not show up on the LTC scans. A further complication for LTC studies with variable alkali contents is the change in freezing point depression due to the variable ionic concentration of the (freezing) pore solution. For the experiments presented here, the initial dosages of added alkalis in the cement paste mixtures would be expected to depress the freezing point of bulk water between about 1 °C and 2 °C [8].

Table 2 on the following page is provided to give some guidance as to the mixtures and curing conditions corresponding to the various sets of graphs.
Table 2: Plots corresponding to different sets of cement paste mixtures.

<table>
<thead>
<tr>
<th>Cement</th>
<th>w/c or w/s</th>
<th>Curing Temperature (°C)</th>
<th>Starting Figure</th>
<th>Ending Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>152</td>
<td>0.25</td>
<td>20</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>152</td>
<td>0.35</td>
<td>20</td>
<td>31</td>
<td>86</td>
</tr>
<tr>
<td>152</td>
<td>0.435</td>
<td>20</td>
<td>87</td>
<td>94</td>
</tr>
<tr>
<td>152 + 20 % limestone</td>
<td>0.35</td>
<td>20</td>
<td>95</td>
<td>104</td>
</tr>
<tr>
<td>152</td>
<td>0.25</td>
<td>40</td>
<td>105</td>
<td>120</td>
</tr>
<tr>
<td>152</td>
<td>0.35</td>
<td>40</td>
<td>121</td>
<td>140</td>
</tr>
<tr>
<td>152</td>
<td>0.45</td>
<td>40</td>
<td>141</td>
<td>152</td>
</tr>
<tr>
<td>140</td>
<td>0.40</td>
<td>20</td>
<td>153</td>
<td>192</td>
</tr>
</tbody>
</table>
Processed Data (Graphs)

Control Materials

Cement: CCRL Cement 140
Solution: None
w/c: N/A
Temperature: N/A
Sample mass: 45.1 mg
Date tested: April 18, 2005

Figure 2 LTC scan for CCRL Cement 140 (dry) powder.

Cement: N/A
Solution: Tap water
w/c: N/A
Temperature: N/A
Sample mass: 25.2 mg
Date tested: April 28, 2005

Figure 3 LTC scan for Gaithersburg tap water at two different scan rates.
CCRL Cement 152

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.25
Temperature: 20 °C
Degree of hydration: 0.284
Date tested: May 17, 2005

Curing: Saturated
Age when tested: 1 d
Sample mass: 75.0 mg
Filename: c152w025T20Csat1d

Figure 4 LTC scan for CCRL Cement 152, w/c=0.25, cured for 1 d under saturated conditions at 20 °C.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.25
Temperature: 20 °C
Degree of hydration: 0.285
Date tested: May 17, 2005

Curing: Sealed
Age when tested: 1 d
Sample mass: 57.3 mg
Filename: c152w025T20Cseal1d

Figure 5 LTC scan for CCRL Cement 152, w/c=0.25, cured for 1 d under sealed conditions at 20 °C.
Figure 6 LTC scan for CCRL Cement 152, w/c=0.25, cured for 2 d under saturated conditions at 20 °C.

Figure 7 LTC scan for CCRL Cement 152, w/c=0.25, cured for 2 d under sealed conditions at 20 °C.
<table>
<thead>
<tr>
<th>Cement</th>
<th>CCRL Cement 152</th>
<th>Curing: Sealed 1 d/resaturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution</td>
<td>Distilled water</td>
<td>Age when tested: 2 d</td>
</tr>
<tr>
<td>w/c</td>
<td>0.25</td>
<td>Sample mass: 78.4 mg</td>
</tr>
<tr>
<td>Temperature</td>
<td>20 °C</td>
<td>Filename: c152w025T20Csealresat1t2d</td>
</tr>
<tr>
<td>Degree of hydration</td>
<td>N/A</td>
<td>Date tested: May 18, 2005</td>
</tr>
</tbody>
</table>

Figure 8 LTC scan for CCRL Cement 152, w/c=0.25, cured at 20 °C for 1 d under sealed conditions, then resaturated for 1 d.

<table>
<thead>
<tr>
<th>Cement</th>
<th>CCRL Cement 152</th>
<th>Curing: Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution</td>
<td>Distilled water</td>
<td>Age when tested: 3 d</td>
</tr>
<tr>
<td>w/c</td>
<td>0.25</td>
<td>Sample mass: 58.6 mg</td>
</tr>
<tr>
<td>Temperature</td>
<td>20 °C</td>
<td>Filename: c152w025T20Csat3d</td>
</tr>
<tr>
<td>Degree of hydration</td>
<td>0.456</td>
<td>Date tested: May 19, 2005</td>
</tr>
</tbody>
</table>

Figure 9 LTC scan for CCRL Cement 152, w/c=0.25, cured for 3 d under saturated conditions at 20 °C.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.25
Temperature: 20 °C
Degree of hydration: 0.412

Curing: Sealed
Age when tested: 3 d
Sample mass: 40.1 mg
Filename: c152w025T20Cseal3d
Date tested: May 19, 2005

Figure 10 LTC scan for CCRL Cement 152, w/c=0.25, cured for 3 d under sealed conditions at 20 °C.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.25
Temperature: 20 °C
Degree of hydration: N/A

Curing: Sealed 2 d/resaturated
Age when tested: 3 d
Sample mass: 68.1 mg
Filename: c152w025T20Csealresat2t3d
Date tested: May 19, 2005

Figure 11 LTC scan for CCRL Cement 152, w/c=0.25, cured at 20 °C for 2 d under sealed conditions, then resaturated for 1 d.
Cement: CCRL Cement 152
Curing: Sealed 3 d/resaturated
Solution: Distilled water
Age when tested: 4 d
w/c: 0.25
Sample mass: 59.1 mg
Temperature: 20 °C
Filename: c152w025T20Csealresat3t4d
Degree of hydration: N/A
Date tested: May 20, 2005

Figure 12 LTC scan for CCRL Cement 152, w/c=0.25, cured at 20 °C for 3 d under sealed conditions, then resaturated for 1 d.

Cement: CCRL Cement 152
Curing: Saturated
Solution: Distilled water
Age when tested: 7 d
w/c: 0.25
Sample mass: 25.7 mg
Temperature: 20 °C
Filename: c152w025T20Csat7d
Degree of hydration: 0.615
Date tested: May 23, 2005

Figure 13 LTC scan for CCRL Cement 152, w/c=0.25, cured for 7 d under saturated conditions at 20 °C.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.25
Temperature: 20 °C
Degree of hydration: 0.458
Age when tested: 7 d
Sample mass: 45.3 mg
Filename: c152w025T20Cseal7d
Date tested: May 23, 2005

Figure 14 LTC scan for CCRL Cement 152, w/c=0.25, cured for 7 d under sealed conditions at 20 °C.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.25
Temperature: 20 °C
Degree of hydration: N/A
Age when tested: 8 d
Sample mass: 59.2 mg
Filename: c152w025T20Csealresat7t8d
Date tested: May 24, 2005

Figure 15 LTC scan for CCRL Cement 152, w/c=0.25, cured at 20 °C for 7 d under sealed conditions, then resaturated for 1 d.
Figure 16 LTC scan for CCRL Cement 152, w/c=0.25, cured for 15 d under saturated conditions at 20 °C.

Figure 17 LTC scan for CCRL Cement 152, w/c=0.25, cured for 15 d under sealed conditions at 20 °C.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.25
Temperature: 20 °C
Degree of hydration: N/A
Age when tested: 16 d
Sample mass: 59.2 mg
Filename: c152w025T20Csealresat15t16d
Date tested: June 1, 2005

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.25
Temperature: 20 °C
Degree of hydration: 0.679
Age when tested: 21 d
Sample mass: 63.3 mg
Filename: c152w025T20Csat21d
Date tested: June 6, 2005

Figure 18 LTC scan for CCRL Cement 152, w/c=0.25, cured at 20 °C for 15 d under sealed conditions, then resaturated for 1 d.

Figure 19 LTC scan for CCRL Cement 152, w/c=0.25, cured for 21 d under saturated conditions at 20 °C.
Cement: CCRL Cement 152 Curing: Sealed
Solution: Distilled water Age when tested: 21 d
w/c: 0.25 Sample mass: 65.8 mg
Temperature: 20 °C Filename: c152w025T20Cseal21d
Degree of hydration: 0.474 Date tested: June 6, 2005

Figure 20 LTC scan for CCRL Cement 152, w/c=0.25, cured for 21 d under sealed conditions at 20 °C.

Cement: CCRL Cement 152 Curing: Sealed 21 d/resaturated
Solution: Distilled water Age when tested: 22 d
w/c: 0.25 Sample mass: 71.6 mg
Temperature: 20 °C Filename: c152w025T20Csealresat21t22d
Degree of hydration: N/A Date tested: June 7, 2005

Figure 21 LTC scan for CCRL Cement 152, w/c=0.25, cured at 20 °C for 21 d under sealed conditions, then resaturated for 1 d.
Cement: CCRL Cement 152 Curing: Saturated
Solution: Distilled water Age when tested: 36 d
\(w/c: 0.25 \) Sample mass: 72.0 mg
Temperature: 20 °C Filename: c152w025T20Csat36d
Degree of hydration: 0.702 Date tested: June 21, 2005

Figure 22 LTC scan for CCRL Cement 152, \(w/c=0.25 \), cured for 36 d under saturated conditions at 20 °C.

Cement: CCRL Cement 152 Curing: Sealed
Solution: Distilled water Age when tested: 37 d
\(w/c: 0.25 \) Sample mass: 59.3 mg
Temperature: 20 °C Filename: c152w025T20Cseal37d
Degree of hydration: 0.500 Date tested: June 22, 2005

Figure 23 LTC scan for CCRL Cement 152, \(w/c=0.25 \), cured for 37 d under sealed conditions at 20 °C.
Cement: CCRL Cement 152
Solution: Distilled water
\(w/c: 0.25 \)
Temperature: 20 °C
Degree of hydration: N/A
\(\text{Sample mass: 92.1 mg} \)
\(\text{Filename: c152w025T20Csealresat37t38d} \)
\(\text{Date tested: June 23, 2005} \)

Figure 24 LTC scan for CCRL Cement 152, \(w/c=0.25 \), cured at 20 °C for 37 d under sealed conditions, then resaturated for 1 d.

Cement: CCRL Cement 152
Solution: Distilled water
\(w/c: 0.25 \)
Temperature: 20 °C
Degree of hydration: 0.708
\(\text{Sample mass: 84.3 mg} \)
\(\text{Filename: c152w025T20Csat56d} \)
\(\text{Date tested: July 11, 2005} \)

Figure 25 LTC scan for CCRL Cement 152, \(w/c=0.25 \), cured for 56 d under saturated conditions at 20 °C.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.25
Temperature: 20 °C
Degree of hydration: 0.500

Curing: Sealed
Age when tested: 56 d
Sample mass: 79.8 mg
Filename: c152w025T20Cseal56d
Date tested: July 11, 2005

Figure 26 LTC scan for CCRL Cement 152, w/c=0.25, cured for 56 d under sealed conditions at 20 °C.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.25
Temperature: 20 °C
Degree of hydration: N/A

Curing: Sealed 56 d/resaturated
Age when tested: 57 d
Sample mass: 69.3 mg
Filename: c152w025T20Csealresat56t57d
Date tested: July 12, 2005

Figure 27 LTC scan for CCRL Cement 152, w/c=0.25, cured at 20 °C for 56 d under sealed conditions, then resaturated for 1 d.
Cement: CCRL Cement 152 Curing: Saturated
Solution: Distilled water Age when tested: 91 d
w/c: 0.25 Sample mass: 64.5 mg
Temperature: 20 °C Filename: c152w025T20Csat91d
Degree of hydration: 0.703 Date tested: August 15, 2005

Figure 28 LTC scan for CCRL Cement 152, w/c=0.25, cured for 91 d under saturated conditions at 20 °C.

Cement: CCRL Cement 152 Curing: Sealed
Solution: Distilled water Age when tested: 91 d
w/c: 0.25 Sample mass: 60.9 mg
Temperature: 20 °C Filename: c152w025T20Cseal91d
Degree of hydration: 0.500 Date tested: August 15, 2005

Figure 29 LTC scan for CCRL Cement 152, w/c=0.25, cured for 91 d under sealed conditions at 20 °C.
Cement: CCRL Cement 152 Curing: Sealed 91 d/resaturated
Solution: Distilled water Age when tested: 92 d
w/c: 0.25 Sample mass: 84.6 mg
Temperature: 20 °C Filename: c152w025T20Csealresat91t92d
Degree of hydration: N/A Date tested: August 16, 2005

Figure 30 LTC scan for CCRL Cement 152, w/c=0.25, cured at 20 °C for 91 d under sealed conditions, then resaturated for 1 d.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: 0.316
Age when tested: 1 d
Sample mass: 52.2 mg
Filename: cem152w35sat1d
Date tested: Nov. 2, 2004

Figure 31 LTC scan for CCRL Cement 152, w/c=0.35, cured for 1 d under saturated conditions at 20 °C.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: 0.328
Age when tested: 1 d
Sample mass: 38.5 mg
Filename: cem152w35seal1d
Date tested: Nov. 2, 2004

Figure 32 LTC scan for CCRL Cement 152, w/c=0.35, cured for 1 d under sealed conditions at 20 °C.
Figure 33 LTC scan for CCRL Cement 152, w/c=0.35, cured for 2 d under saturated conditions at 20 °C.

Figure 34 LTC scan for CCRL Cement 152, w/c=0.35, cured for 2 d under sealed conditions at 20 °C.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Age when tested: 2 d
Sample mass: 53.7 mg
Filename: cem152w35sat2d1221
Date tested: Dec. 22, 2004

Figure 35 LTC scan for CCRL Cement 152, w/c=0.35, cured for 2 d under saturated conditions at 20 °C (replicate mixture).

Temperature (°C)

<table>
<thead>
<tr>
<th>-50</th>
<th>-45</th>
<th>-40</th>
<th>-35</th>
<th>-30</th>
<th>-25</th>
<th>-20</th>
<th>-15</th>
<th>-10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heat flow (W/g)

<table>
<thead>
<tr>
<th>0.00</th>
<th>0.02</th>
<th>0.04</th>
<th>0.06</th>
<th>0.08</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Age when tested: 2 d
Sample mass: 64.2 mg
Filename: cem152w35seal2d1221
Date tested: Dec. 22, 2004

Figure 36 LTC scan for CCRL Cement 152, w/c=0.35, cured for 2 d under sealed conditions at 20 °C (replicate mixture).
Cement: CCRL Cement 152
Curing: Saturated
Solution: Distilled water
Age when tested: 3 d
w/c: 0.35
Sample mass: 51.1 mg
Temperature: 20 °C
Filename: cem152w35sat3d
Degree of hydration: 0.502
Date tested: Nov. 4, 2004

![LTC scan for CCRL Cement 152, w/c=0.35, cured for 3 d under saturated conditions at 20 °C.](image)

Cement: CCRL Cement 152
Curing: Sealed
Solution: Distilled water
Age when tested: 3 d
w/c: 0.35
Sample mass: 56.0 mg
Temperature: 20 °C
Filename: cem152w35seal3d
Degree of hydration: 0.502
Date tested: Nov. 4, 2004

![LTC scan for CCRL Cement 152, w/c=0.35, cured for 3 d under sealed conditions at 20 °C.](image)
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: N/A

Curing: Sealed 2 d/resaturated
Age when tested: 3 d
Sample mass: 51.3 mg
Filename: cem152w35sealresat2d1222
Date tested: Dec. 23, 2004

Figure 39 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 2 d under sealed conditions, then resaturated for 1 d.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: 0.568
Curing: Saturated
Age when tested: 4 d
Sample mass: 35.7 mg
Filename: cem152w35sat4d
Date tested: Nov. 5, 2004

Figure 40 LTC scan for CCRL Cement 152, w/c=0.35, cured for 4 d under saturated conditions at 20 °C.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: 0.554
Curing: Sealed
Age when tested: 4 d
Sample mass: 58.6 mg
Filename: cem152w35seal4d
Date tested: Nov. 5, 2004

Figure 41 LTC scan for CCRL Cement 152, w/c=0.35, cured for 4 d under sealed conditions at 20 °C.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: N/A
Age when tested: 4 d
Sample mass: 74.3 mg
Filename: cem152w35sealresat3d
Date tested: Nov. 5, 2004

Figure 42 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 3 d under sealed conditions, then resaturated for 1 d.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: N/A
Age when tested: 5 d
Sample mass: 58.2 mg
Filename: cem152w35sealresat4d
Date tested: Nov. 6, 2004

Figure 43 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 4 d under sealed conditions, then resaturated for 1 d.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: 0.597
Date tested: Nov. 6, 2004

Figure 44
LTC scan for CCRL Cement 152, $w/c=0.35$, cured for 5 d under saturated conditions at 20 °C.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: 0.569
Date tested: Nov. 6, 2004

Figure 45
LTC scan for CCRL Cement 152, $w/c=0.35$, cured for 5 d under sealed conditions at 20 °C.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: 0.656
Date tested: Nov. 8, 2004

Figure 46 LTC scan for CCRL Cement 152, w/c=0.35, cured for 7 d under saturated conditions at 20 °C.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: 0.619
Date tested: Nov. 8, 2004

Figure 47 LTC scan for CCRL Cement 152, w/c=0.35, cured for 7 d under sealed conditions at 20 °C.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: N/A
Sample mass: 60.4 mg
Filename: cem152w35sealresat5d
Date tested: Nov. 8, 2004

Figure 48 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 5 d under sealed conditions, then resaturated for 2 d.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: N/A
Sample mass: 42.1 mg
Filename: cem152w35sealresat7d
Date tested: Nov. 10, 2004

Figure 49 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 7 d under sealed conditions, then resaturated for 2 d.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 $^\circ$C
Degree of hydration: N/A
Age when tested: 8+ d
Sample mass: 44.4 mg
Filename: cem152w35sealresatfr7d
Date tested: Nov. 9, 2004

Figure 50 LTC scan for CCRL Cement 152, $w/c=0.35$, cured at 20 $^\circ$C for 7 d under sealed conditions, frozen during an LTC scan (Figure 17), then resaturated for 1 d.
Figure 51 LTC scan for CCRL Cement 152, w/c=0.35, cured for 9 d under saturated conditions at 20 °C.

Figure 52 LTC scan for CCRL Cement 152, w/c=0.35, cured for 9 d under sealed conditions at 20 °C.
Cement: CCRL Cement 152 Curing: Saturated
Solution: Distilled water Age when tested: 14 d
w/c: 0.35 Sample mass: 49.3 mg
Temperature: 20 °C Filename: cem152w35sat14d
Degree of hydration: 0.715 Date tested: Nov. 15, 2004

Figure 53 LTC scan for CCRL Cement 152, w/c=0.35, cured for 14 d under saturated conditions at 20 °C.

Cement: CCRL Cement 152 Curing: Sealed
Solution: Distilled water Age when tested: 14 d
w/c: 0.35 Sample mass: 46.7 mg
Temperature: 20 °C Filename: cem152w35seal14d
Degree of hydration: 0.658 Date tested: Nov. 15, 2004

Figure 54 LTC scan for CCRL Cement 152, w/c=0.35, cured for 14 d under sealed conditions at 20 °C.
Cement: CCRL Cement 152 Curing: Sealed 14 d/resaturated
Solution: Distilled water Age when tested: 15 d
w/c: 0.35 Sample mass: 59.0 mg
Temperature: 20 °C Filename: cem152w35sealresat14d
Degree of hydration: N/A Date tested: Nov. 16, 2004

Figure 55 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 14 d under sealed conditions, then resaturated for 1 d.

Cement: CCRL Cement 152 Curing: Sealed 14 d/resaturated
Solution: Distilled water Age when tested: 18 d
w/c: 0.35 Sample mass: 35.3 mg
Temperature: 20 °C Filename: cem152w35sealresatb14d
Degree of hydration: N/A Date tested: Nov. 19, 2004

Figure 56 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 14 d under sealed conditions, then resaturated for 4 d.
Figure 57 LTC scan for CCRL Cement 152, w/c=0.35, cured for 18 d under saturated conditions at 20 °C.

Figure 58 LTC scan for CCRL Cement 152, w/c=0.35, cured for 18 d under sealed conditions at 20 °C.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: N/A
Age when tested: 18 d
Sample mass: 69.0 mg
Filename: cem152w35sealresat18d
Date tested: Jan. 7, 2005

Figure 59 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 17 d under sealed conditions, then resaturated for 1 d.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: N/A
Age when tested: 21 d
Sample mass: 43.6 mg
Filename: cem152w35sealresatc14d
Date tested: Nov. 22, 2004

Figure 60 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 14 d under sealed conditions, then resaturated for 7 d.
<table>
<thead>
<tr>
<th>Cement: CCRL Cement 152</th>
<th>Curing: Sealed 14 d/resaturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution: Distilled water</td>
<td>Age when tested: 29 d</td>
</tr>
<tr>
<td>w/c: 0.35</td>
<td>Sample mass: 66.5 mg</td>
</tr>
<tr>
<td>Temperature: 20 °C</td>
<td>Filename: cem152w35sealresatd14d</td>
</tr>
<tr>
<td>Degree of hydration: N/A</td>
<td>Date tested: Nov. 30, 2004</td>
</tr>
</tbody>
</table>

Figure 61 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 14 d under sealed conditions, then resaturated for 15 d.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: 0.759

Curing: Saturated
Age when tested: 30 d
Sample mass: 64.3 mg
Filename: cem152w35sat30d
Date tested: Dec. 1, 2004

Figure 62 LTC scan for CCRL Cement 152, w/c=0.35, cured for 30 d under saturated conditions at 20 °C.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: 0.674

Curing: Sealed
Age when tested: 30 d
Sample mass: 43.0 mg
Filename: cem152w35seal30d
Date tested: Dec. 1, 2004

Figure 63 LTC scan for CCRL Cement 152, w/c=0.35, cured for 30 d under sealed conditions at 20 °C.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Sample mass: 59.9 mg
Date tested: Dec. 3, 2004

Figure 64 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 30 d under sealed conditions, then resaturated for 2 d.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Sample mass: 91.4 mg
Date tested: Dec. 6, 2004

Figure 65 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 30 d under sealed conditions, then resaturated for 5 d.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Sample mass: 34.1 mg
Age when tested: 42 d
Filename: cem152w35sealresatd30d
Degree of hydration: N/A
Date tested: Dec. 13, 2004

Figure 66 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 30 d under sealed conditions, then resaturated for 12 d.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Sample mass: 74.2 mg
Age when tested: 49 d
Filename: cem152w35sealresate30d
Degree of hydration: N/A
Date tested: Dec. 20, 2004

Figure 67 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 30 d under sealed conditions, then resaturated for 19 d.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: N/A
Age when tested: 50 d
Sample mass: 72.5 mg
Filename: cem152w35sat50d
Date tested: Dec. 21, 2004

Figure 68 LTC scan for CCRL Cement 152, w/c=0.35, cured for 50 d under saturated conditions at 20 °C.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: N/A
Age when tested: 50 d
Sample mass: 75.1 mg
Filename: cem152w35seal50d
Date tested: Dec. 21, 2004

Figure 69 LTC scan for CCRL Cement 152, w/c=0.35, cured for 50 d under sealed conditions at 20 °C.
Cement: CCRL Cement 152 Curing: Sealed 50 d/resaturated
Solution: Distilled water Age when tested: 51 d
w/c: 0.35 Sample mass: 80.5 mg
Temperature: 20 °C Filename: cem152w35sealresat50d
Degree of hydration: N/A Date tested: Dec. 22, 2004

![Temperature vs. Heat flow diagram](image)

Figure 70 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 50 d under sealed conditions, then resaturated for 1 d.

Cement: CCRL Cement 152 Curing: Sealed 50 d/resaturated
Solution: Distilled water Age when tested: 52 d
w/c: 0.35 Sample mass: 50.2 mg
Temperature: 20 °C Filename: cem152w35sealresatb50d
Degree of hydration: N/A Date tested: Dec. 23, 2004

![Temperature vs. Heat flow diagram](image)

Figure 71 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 50 d under sealed conditions, then resaturated for 2 d.
Cement: CCRL Cement 152 Curing: Sealed 50 d/resaturated
Solution: Distilled water Age when tested: 63 d
w/c: 0.35 Sample mass: 40.3 mg
Temperature: 20 °C Filename: cem152w35sealresatc50d
Degree of hydration: N/A Date tested: Jan. 3, 2005

Figure 72 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 50 d under sealed conditions, then resaturated for 13 d.

Cement: CCRL Cement 152 Curing: Sealed 88 d/resaturated
Solution: Distilled water Age when tested: 91 d
w/c: 0.35 Sample mass: 52.2 mg
Temperature: 20 °C Filename: cem152w35sealresat91d
Degree of hydration: N/A Date tested: Jan. 31, 2005

Figure 73 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 88 d under sealed conditions, then resaturated for 3 d.
Cement: CCRL Cement 152
Solution: Distilled water
\(w/c \): 0.35
Temperature: 20 °C
Degree of hydration: N/A
Age when tested: 91 d
Sample mass: 68.7 mg
Filename: cem152w35sat91d
Date tested: Jan. 31, 2005

Figure 74 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured for 90 d under saturated conditions at 20 °C.

Cement: CCRL Cement 152
Solution: Distilled water
\(w/c \): 0.35
Temperature: 20 °C
Degree of hydration: N/A
Age when tested: 91 d
Sample mass: 91.3 mg
Filename: cem152w35sealb91d
Date tested: Jan. 31, 2005

Figure 75 LTC scan for CCRL Cement 152, \(w/c = 0.35 \), cured for 90 d under sealed conditions at 20 °C.
Cement: CCRL Cement 152
Curing: Saturated
Solution: Distilled water
Age when tested: 182 d
w/c: 0.35
Sample mass: 70.8 mg
Temperature: 20 °C
Filename: cem152182dsat
Degree of hydration: 0.844
Date tested: Oct. 25, 2004

Figure 76 LTC scan for CCRL Cement 152, w/c=0.35, cured for 182 d at 20 °C under saturated conditions.

Cement: CCRL Cement 152
Curing: Sealed
Solution: Distilled water
Age when tested: 182 d
w/c: 0.35
Sample mass: 53.4 mg
Temperature: 20 °C
Filename: cem152182dseal
Degree of hydration: 0.757
Date tested: Oct. 25, 2004

Figure 77 LTC scan for CCRL Cement 152, w/c=0.35, cured for 182 d at 20 °C under sealed conditions.
Cement: CCRL Cement 152 Curing: Sealed 7 d/resaturated
Solution: Distilled water Age when tested: 182 d
w/c: 0.35 Sample mass: 58.6 mg
Temperature: 20 °C Filename: cem152182dsealsat
Degree of hydration: 0.836 Date tested: Oct. 25, 2004

Figure 78 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 7 d under sealed conditions, then resaturated for 175 d.

Cement: CCRL Cement 152 Curing: Sealed 182 d/resaturated
Solution: Distilled water Age when tested: 183 d
w/c: 0.35 Sample mass: 54.3 mg
Temperature: 20 °C Filename: cem152182dsealresat
Degree of hydration: N/A Date tested: Oct. 26, 2004

Figure 79 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 182 d under sealed conditions, then resaturated for 1 d.
Figure 80 LTC scan for CCRL Cement 152, w/c=0.35, cured for 204 d at 20 °C under sealed conditions.

Figure 81 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 203 d under sealed conditions, then resaturated for 1 d.
Figure 82 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 203 d under sealed conditions, then resaturated for 4 d.

Cement: CCRL Cement 152 Solution: Distilled water
w/c: 0.35 Temperature: 20 °C
Curing: Sealed 203 d/resaturated Age when tested: 207 d
Sample mass: 51.0 mg
Filename: c152w35sealresatb204d
Date tested: Nov. 19, 2004

Figure 83 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 203 d under sealed conditions, then resaturated for 21 d.

Cement: CCRL Cement 152 Solution: Distilled water
w/c: 0.35 Temperature: 20 °C
Curing: Sealed 203 d/resaturated Age when tested: 224 d
Sample mass: 66.0 mg
Filename: c152w35sealresatc204d
Date tested: Dec. 6, 2004
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: N/A

Curing: Sealed 203 d/resaturated
Age when tested: 238 d
Sample mass: 75.3 mg
Filename: c152w35seal204resat2384d
Date tested: Dec. 20, 2004

Figure 84 LTC scan for CCRL Cement 152, w/c=0.35, cured at 20 °C for 203 d under sealed conditions, then resaturated for 35 d.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: N/A

Curing: Saturated
Age when tested: 228 d
Sample mass: 52.9 mg
Filename: c152w35sat228d
Date tested: Dec. 10, 2004

Figure 85 LTC scan for CCRL Cement 152, w/c=0.35, cured for 228 d at 20 °C under saturated conditions.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 20 °C
Degree of hydration: N/A

Curing: Sealed 7 d/resaturated
Age when tested: 228 d
Sample mass: 68.1 mg
Filename: c152w35sealsat228d
Date tested: Dec. 10, 2004

Figure 86 LTC scan for CCRL Cement 152, w/c=0.35, cured for 7 d at 20 °C under sealed conditions, then resaturated for 221 d.
Cement: CCRL Cement 152
Curing: Saturated
Solution: Distilled water
Age when tested: 214 d
w/c: 0.435
Sample mass: 48.7 mg
Temperature: 20 °C
Filename: c152w45sat214d
Degree of hydration: N/A
Date tested: Oct. 29, 2004

Figure 87 LTC scan for CCRL Cement 152, $w/c=0.435$, cured for 214 d at 20 °C under saturated conditions.

Cement: CCRL Cement 152
Curing: Sealed
Solution: Distilled water
Age when tested: 214 d
w/c: 0.435
Sample mass: 55.2 mg
Temperature: 20 °C
Filename: c152w45seal214d
Degree of hydration: N/A
Date tested: Oct. 29, 2004

Figure 88 LTC scan for CCRL Cement 152, $w/c=0.435$, cured for 214 d at 20 °C under sealed conditions.
Cement: CCRL Cement 152 Curing: Sealed 7 d/resaturated
Solution: Distilled water Age when tested: 214 d
w/c: 0.435 Sample mass: 54.0 mg
Temperature: 20 °C Filename: c152w45sealsat214d
Degree of hydration: N/A Date tested: Oct. 29, 2004

Figure 89 LTC scan for CCRL Cement 152, w/c=0.435, cured for 7 d at 20 °C under sealed conditions, then resaturated for 207 d.

Cement: CCRL Cement 152 Curing: Sealed 214 d/resaturated
Solution: Distilled water Age when tested: 218 d
w/c: 0.435 Sample mass: 60.0 mg
Temperature: 20 °C Filename: c152w45sealresat214d
Degree of hydration: N/A Date tested: Nov. 2, 2004

Figure 90 LTC scan for CCRL Cement 152, w/c=0.435, cured for 214 d at 20 °C under sealed conditions, then resaturated for 4 d.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.435
Temperature: 20 °C
Degree of hydration: N/A
Age when tested: 255 d
Sample mass: 51.6 mg
Filename: c152w45sealresatb214d
Date tested: Dec. 9, 2004

Figure 91 LTC scan for CCRL Cement 152, w/c=0.435, cured for 214 d at 20 °C under sealed conditions, then resaturated for 41 d.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.435
Temperature: 20 °C
Degree of hydration: N/A
Age when tested: 238 d
Sample mass: 75.3 mg
Filename: c152w35seal204resat238d
Date tested: Dec. 20, 2004

Figure 92 LTC scan for CCRL Cement 152, w/c=0.435, cured for 204 d at 20 °C under sealed conditions, then resaturated for 34 d.
Cement: CCRL Cement 152 Curing: Sealed
Solution: Distilled water Age when tested: 256 d
w/c: 0.435 Sample mass: 44.0 mg
Temperature: 20 °C Filename: c152w435seal256d
Degree of hydration: N/A Date tested: Dec. 10, 2004

Figure 93 LTC scan for CCRL Cement 152, w/c=0.435, cured for 256 d at 20 °C under sealed conditions.

Cement: CCRL Cement 152 Curing: Saturated
Solution: Distilled water Age when tested: 276 d
w/c: 0.435 Sample mass: 62.2 mg
Temperature: 20 °C Filename: c152w435sat276d
Degree of hydration: N/A Date tested: Dec. 29, 2004

Figure 94 LTC scan for CCRL Cement 152, w/c=0.435, cured for 276 d at 20 °C under saturated conditions.

53
Cement: Cement 152 + 20 % limestone
Curing: Saturated
Solution: Distilled water
Age when tested: 91 d
w/s: 0.35
Sample mass: 59.6 mg
Temperature: 20 °C
Filename: c152w35lf20sat91d
Degree of hydration: 0.855
Date tested: Jan. 24, 2005

Figure 95 LTC scan for CCRL Cement 152 with 20 % limestone filler substitution, w/s=0.35, cured for 91 d at 20 °C under saturated conditions.

Cement: Cement 152 + 20 % limestone
Curing: Sealed
Solution: Distilled water
Age when tested: 91 d
w/s: 0.35
Sample mass: 36.5 mg
Temperature: 20 °C
Filename: c152w35lf20seal91d
Degree of hydration: 0.763
Date tested: Jan. 24, 2005

Figure 96 LTC scan for CCRL Cement 152 with 20 % limestone filler substitution, w/s=0.35, cured for 91 d at 20 °C under sealed conditions.
Figure 97 LTC scan for CCRL Cement 152 with 20% limestone filler substitution, w/s = 0.35, cured under sealed conditions for 91 d at 20°C, then resaturated for 1 d.

Figure 98 LTC scan for CCRL Cement 152 with 20% limestone filler substitution, w/s = 0.35, cured under sealed conditions for 91 d at 20°C, then resaturated for 92 d.
Cement: Cement 152 + 20 % limestone
Curing: Saturated
Solution: Distilled water
Age when tested: 183 d
w/s: 0.35
Sample mass: 38.9 mg
Temperature: 20 °C
Filename: c152lf20w35sat182d
Degree of hydration: 0.907
Date tested: April 26, 2005

Figure 99 LTC scan for CCRL Cement 152 with 20 % limestone filler substitution, w/s=0.35, cured for 183 d at 20 °C under saturated conditions.

Cement: Cement 152 + 20 % limestone
Curing: Sealed
Solution: Distilled water
Age when tested: 183 d
w/s: 0.35
Sample mass: 65.8 mg
Temperature: 20 °C
Filename: c152lf20w35seal182d
Degree of hydration: 0.828
Date tested: April 26, 2005

Figure 100 LTC scan for CCRL Cement 152 with 20 % limestone filler substitution, w/s=0.35, cured for 183 d at 20 °C under sealed conditions.
Cement: Cement 152 + 20 % limestone
Solution: Distilled water
w/s: 0.35
Temperature: 20 °C
Age when tested: 184 d
Sample mass: 64.7 mg
Filename: c152lf20w35sealresat182t183d
Degree of hydration: N/A
Date tested: April 27, 2005

Figure 101 LTC scan for CCRL Cement 152 with 20 % limestone filler substitution, w/s=0.35, cured under sealed conditions for 183 d at 20 °C, then resaturated for 1 d.

Cement: Cement 152 + 20 % limestone
Solution: Distilled water
w/s: 0.435
Temperature: 20 °C
Age when tested: 213 d
Sample mass: 55.0 mg
Filename: c152w45lf20sat213d
Degree of hydration: N/A
Date tested: Dec. 23, 2004

Figure 102 LTC scan for CCRL Cement 152 with 20 % limestone filler substitution, w/s=0.435, cured for 213 d at 20 °C under saturated conditions.
Cement: Cement 152 + 20 % limestone
Solution: Distilled water
w/s: 0.435
Temperature: 20 °C
Degree of hydration: N/A

Curing: Sealed
Age when tested: 219 d
Sample mass: 57.9 mg
Filename: c152w45lfseal219d
Date tested: Dec. 29, 2004

Figure 103 LTC scan for CCRL Cement 152 with 20 % limestone filler substitution, w/s=0.435, cured for 219 d at 20 °C under sealed conditions.

Cement: Cement 152 + 20 % limestone
Solution: Distilled water
w/s: 0.435
Temperature: 20 °C
Degree of hydration: N/A

Curing: Sealed 218 d/resaturated
Age when tested: 220 d
Sample mass: 67.5 mg
Filename: c152w45lfseal219d
Date tested: Dec. 29, 2004

Figure 104 LTC scan for CCRL Cement 152 with 20 % limestone filler substitution, w/s=0.435, cured under sealed conditions for 218 d at 20 °C, then resaturated for 1 d.
Cement: CCRL Cement 152 Curing: Saturated
Solution: Distilled water Age when tested: 8 h
\(w/c: 0.25 \) Sample mass: 96.4 mg
Temperature: 40 °C Filename: c152w025T40Csat8h
Degree of hydration: 0.303 Date tested: June 8, 2005

Figure 105 LTC scan for CCRL Cement 152, \(w/c=0.25 \), cured for 8 h under saturated conditions at 40 °C.

Cement: CCRL Cement 152 Curing: Saturated
Solution: Distilled water Age when tested: 1 d
\(w/c: 0.25 \) Sample mass: 56.8 mg
Temperature: 40 °C Filename: c152w025T40Csat1d
Degree of hydration: 0.516 Date tested: June 1, 2005

Figure 106 LTC scan for CCRL Cement 152, \(w/c=0.25 \), cured for 1 d under saturated conditions at 40 °C.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.25
Temperature: 40 °C
Degree of hydration: 0.439

Curing: Sealed
Age when tested: 1 d
Sample mass: 55.5 mg
Filename: c152w025T40Cseal1d
Date tested: June 1, 2005

Figure 107 LTC scan for CCRL Cement 152, w/c=0.25, cured for 1 d under sealed conditions at 40 °C.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.25
Temperature: 40 °C
Degree of hydration: 0.596

Curing: Saturated
Age when tested: 2 d
Sample mass: 56.3 mg
Filename: c152w025T40Csat2d
Date tested: June 2, 2005

Figure 108 LTC scan for CCRL Cement 152, w/c=0.25, cured for 2 d under saturated conditions at 40 °C.
Cement: CCRL Cement 152
Curing: Sealed
Solution: Distilled water
Age when tested: 2 d
w/c: 0.25
Sample mass: 32.4 mg
Temperature: 40 °C
Filename: c152w025T40Cseal2d
Degree of hydration: 0.451
Date tested: June 2, 2005

Figure 109 LTC scan for CCRL Cement 152, w/c=0.25, cured for 2 d under sealed conditions at 40 °C.

Cement: CCRL Cement 152
Curing: Sealed 1 d/resaturated
Solution: Distilled water
Age when tested: 2 d
w/c: 0.25
Sample mass: 50.5 mg
Temperature: 40 °C
Filename: c152w025T40Csealresat1t2d
Degree of hydration: N/A
Date tested: June 2, 2005

Figure 110 LTC scan for CCRL Cement 152, w/c=0.25, cured for 1 d at 40 °C under sealed conditions, then resaturated for 1 d.
Cement: CCRL Cement 152
Curing: Saturated
Solution: Distilled water
Age when tested: 3 d
\(w/c \): 0.25
Sample mass: 44.0 mg
Temperature: 40 °C
Filename: c152w025T40Csat3d
Degree of hydration: 0.620
Date tested: June 3, 2005

\[\begin{array}{c}
\text{Temperature (°C)}
\end{array} \]
\[\begin{array}{c}
\text{Heat Flow (W/g)}
\end{array} \]

Figure 111 LTC scan for CCRL Cement 152, \(w/c = 0.25 \), cured for 3 d under saturated conditions at 40 °C.

Cement: CCRL Cement 152
Curing: Sealed
Solution: Distilled water
Age when tested: 3 d
\(w/c \): 0.25
Sample mass: 40.0 mg
Temperature: 40 °C
Filename: c152w025T40Cseal3d
Degree of hydration: 0.467
Date tested: June 3, 2005

\[\begin{array}{c}
\text{Temperature (°C)}
\end{array} \]
\[\begin{array}{c}
\text{Heat Flow (W/g)}
\end{array} \]

Figure 112 LTC scan for CCRL Cement 152, \(w/c = 0.25 \), cured for 3 d under sealed conditions at 40 °C.
Figure 113 LTC scan for CCRL Cement 152, w/c=0.25, cured for 2 d at 40 °C under sealed conditions, then resaturated for 1 d.

Figure 114 LTC scan for CCRL Cement 152, w/c=0.25, cured for 3 d at 40 °C under sealed conditions, then resaturated for 1 d.
Figure 115 LTC scan for CCRL Cement 152, \(w/c = 0.25 \), cured for 14 d under saturated conditions at 40 °C.

Figure 116 LTC scan for CCRL Cement 152, \(w/c = 0.25 \), cured for 14 d under sealed conditions at 40 °C.
Figure 117 LTC scan for CCRL Cement 152, w/c=0.25, cured for 14 d at 40 °C under sealed conditions, then resaturated for 1 d.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.25
Temperature: 40 °C
Degree of hydration: N/A
Age when tested: 15 d
Sample mass: 58.7 mg
Filename: c152w025T40Csealresat14t15d
Date tested: June 23, 2005

Figure 118 LTC scan for CCRL Cement 152, w/c=0.25, cured for 28 d under saturated conditions at 40 °C.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.25
Temperature: 40 °C
Degree of hydration: N/A
Age when tested: 28 d
Sample mass: 61.8 mg
Filename: c152w025T40Csat28d
Date tested: July 6, 2005
Cement: CCRL Cement 152
Curing: Sealed
Solution: Distilled water
Age when tested: 28 d
w/c: 0.25
Sample mass: 43.4 mg
Temperature: 40 °C
Filename: c152w025T40Cseal28d
Date tested: July 6, 2005

Figure 119 LTC scan for CCRL Cement 152, w/c=0.25, cured for 28 d under sealed conditions at 40 °C.

Cement: CCRL Cement 152
Curing: Sealed 28 d/resaturated
Solution: Distilled water
Age when tested: 29 d
w/c: 0.25
Sample mass: 59.8 mg
Temperature: 40 °C
Filename: c152w025T40Csealresat28t29d
Date tested: July 7, 2005

Figure 120 LTC scan for CCRL Cement 152, w/c=0.25, cured for 28 d at 40 °C under sealed conditions, then resaturated for 1 d.
Cement: CCRL Cement 152 Curing: Saturated
Solution: Distilled water Age when tested: 1 d
\(w/c: 0.35 \) Sample mass: 70.0 mg
Temperature: 40 °C Filename: c152w35T40sat1d
Degree of hydration: 0.516 Date tested: Jan. 12, 2005

Figure 121 LTC scan for CCRL Cement 152, \(w/c=0.35 \), cured for 1 d under saturated conditions at 40 °C.

Cement: CCRL Cement 152 Curing: Sealed
Solution: Distilled water Age when tested: 1 d
\(w/c: 0.35 \) Sample mass: 43.5 mg
Temperature: 40 °C Filename: c152w35T40seal1d
Degree of hydration: 0.504 Date tested: Jan. 12, 2005

Figure 122 LTC scan for CCRL Cement 152, \(w/c=0.35 \), cured for 1 d under sealed conditions at 40 °C.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 40 °C

Curing: Sealed 1 d/resaturated
Age when tested: 2 d
Sample mass: 38.3 mg
Filename: c152w35T40sealresat1d
Date tested: Jan. 13, 2005

Figure 123 LTC scan for CCRL Cement 152, w/c=0.35, cured for 1 d at 40 °C under sealed conditions, then resaturated for 1 d.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 40 °C

Curing: Sealed 1 d/resaturated
Age when tested: 3 d
Sample mass: 85.7 mg
Filename: c152w35T40sealresatb1d
Date tested: Jan. 14, 2005

Figure 124 LTC scan for CCRL Cement 152, w/c=0.35, cured for 1 d at 40 °C under sealed conditions, then resaturated for 2 d.
Figure 125 LTC scan for CCRL Cement 152, w/c=0.35, cured for 2 d under saturated conditions at 40 °C.

Figure 126 LTC scan for CCRL Cement 152, w/c=0.35, cured for 2 d under sealed conditions at 40 °C.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 40 °C
Degree of hydration: 0.738
Sample mass: 77.3 mg
Date tested: Jan. 18, 2005

Figure 127 LTC scan for CCRL Cement 152, w/c=0.35, cured for 7 d under saturated conditions at 40 °C.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 40 °C
Degree of hydration: 0.642
Sample mass: 50.9 mg
Date tested: Jan. 18, 2005

Figure 128 LTC scan for CCRL Cement 152, w/c=0.35, cured for 7 d under sealed conditions at 40 °C.
Cement: CCRL Cement 152 | Curing: Sealed 2 d/resaturated
Solution: Distilled water | Age when tested: 7 d
w/c: 0.35 | Sample mass: 76.8 mg
Temperature: 40 °C | Filename: c152w35T40sealresat2t7d
Degree of hydration: N/A | Date tested: Jan. 18, 2005

Figure 129 LTC scan for CCRL Cement 152, w/c=0.35, cured for 2 d under sealed conditions at 40 °C, then resaturated for 5 d.

Cement: CCRL Cement 152 | Curing: Sealed 7 d/resaturated
Solution: Distilled water | Age when tested: 13 d
w/c: 0.35 | Sample mass: 52.7 mg
Temperature: 40 °C | Filename: c152w35T40sealresat7t13d
Degree of hydration: N/A | Date tested: Jan. 24, 2005

Figure 130 LTC scan for CCRL Cement 152, w/c=0.35, cured for 7 d under sealed conditions at 40 °C, then resaturated for 6 d.
Cement: CCRL Cement 152
Curing: Saturated
Solution: Distilled water
Age when tested: 14 d
w/c: 0.35
Sample mass: 60.8 mg
Temperature: 40 °C
Filename: c152w35T40sat14d
Degree of hydration: 0.761
Date tested: Jan. 25, 2005

Figure 131 LTC scan for CCRL Cement 152, w/c=0.35, cured for 14 d under saturated conditions at 40 °C.

Cement: CCRL Cement 152
Curing: Sealed
Solution: Distilled water
Age when tested: 14 d
w/c: 0.35
Sample mass: 62.7 mg
Temperature: 40 °C
Filename: c152w35T40seal14d
Degree of hydration: 0.645
Date tested: Jan. 25, 2005

Figure 132 LTC scan for CCRL Cement 152, w/c=0.35, cured for 14 d under sealed conditions at 40 °C.
Cement: CCRL Cement 152 Curing: Saturated
Solution: Distilled water Age when tested: 28 d
w/c: 0.35 Sample mass: 97.0 mg
Temperature: 40 °C Filename: c152w35T40sat28d
Degree of hydration: 0.824 Date tested: Feb. 8, 2005

Figure 133 LTC scan for CCRL Cement 152, w/c=0.35, cured for 28 d under saturated conditions at 40 °C.

Cement: CCRL Cement 152 Curing: Sealed
Solution: Distilled water Age when tested: 28 d
w/c: 0.35 Sample mass: 80.2 mg
Temperature: 40 °C Filename: c152w035a40Cseal28d
Degree of hydration: 0.681 Date tested: Feb. 8, 2005

Figure 134 LTC scan for CCRL Cement 152, w/c=0.35, cured for 28 d under sealed conditions at 40 °C.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 40 °C
Degree of hydration: N/A
Age when tested: 29 d
Sample mass: 51.3 mg
Filename: c152w35T40seal14resat29d
Date tested: Feb. 9, 2005

Figure 135 LTC scan for CCRL Cement 152, w/c=0.35, cured for 14 d under sealed conditions at 40 °C, then resaturated for 15 d.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 40 °C
Degree of hydration: N/A
Age when tested: 29 d
Sample mass: 61.5 mg
Filename: c152w35T40Csealresat28d
Date tested: Feb. 9, 2005

Figure 136 LTC scan for CCRL Cement 152, w/c=0.35, cured for 28 d under sealed conditions at 40 °C, then resaturated for 1 d.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 40 °C
Degree of hydration: 0.794

Curing: Saturated
Age when tested: 58 d
Sample mass: 57.3 mg
Filename: c152w035T40Csat58d
Date tested: March 10, 2005

Figure 137 LTC scan for CCRL Cement 152, w/c=0.35, cured for 58 d under saturated conditions at 40 °C.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 40 °C
Degree of hydration: 0.743

Curing: Sealed
Age when tested: 58 d
Sample mass: 51.3 mg
Filename: c152w035T40Cseal58d
Date tested: March 10, 2005

Figure 138 LTC scan for CCRL Cement 152, w/c=0.35, cured for 58 d under sealed conditions at 40 °C.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 40 °C
Age when tested: 58 d
Sample mass: 62.1 mg
Filename: c152w035T40Csealresat58d
Date tested: March 10, 2005

Figure 139 LTC scan for CCRL Cement 152, w/c=0.35, cured for 57 d under sealed conditions at 40 °C, then resaturated for 1 d.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.35
Temperature: 40 °C
Degree of hydration: N/A
Age when tested: 63 d
Sample mass: 71.5 mg
Filename: c152w035T40Cresat58t63d
Date tested: March 15, 2005

Figure 140 LTC scan for CCRL Cement 152, w/c=0.35, cured for 57 d under sealed conditions at 40 °C, then resaturated for 6 d.
Cement: CCRL Cement 152
Curing: Saturated
Solution: Distilled water
Age when tested: 3 d
w/c: 0.45
Sample mass: 55.2 mg
Temperature: 40 °C
Filename: c152w45T40Csat3d
Degree of hydration: N/A
Date tested: Feb. 17, 2005

Figure 141 LTC scan for CCRL Cement 152, w/c=0.45, cured for 3 d under saturated conditions at 40 °C.

Cement: CCRL Cement 152
Curing: Sealed
Solution: Distilled water
Age when tested: 3 d
w/c: 0.45
Sample mass: 55.2 mg
Temperature: 40 °C
Filename: c152w45T40Cseal3d
Degree of hydration: N/A
Date tested: Feb. 17, 2005

Figure 142 LTC scan for CCRL Cement 152, w/c=0.45, cured for 3 d under sealed conditions at 40 °C.
Cement: CCRL Cement 152 Curing: Saturated
Solution: Distilled water Age when tested: 8 d
\(w/c \): 0.45 Sample mass: 69.1 mg
Temperature: 40 °C Filename: c152w45T40Csat8d
Degree of hydration: 0.822 Date tested: Feb. 22, 2005

Figure 143 LTC scan for CCRL Cement 152, \(w/c = 0.45 \), cured for 8 d under saturated conditions at 40 °C.

Cement: CCRL Cement 152 Curing: Sealed
Solution: Distilled water Age when tested: 8 d
\(w/c \): 0.45 Sample mass: 51.4 mg
Temperature: 40 °C Filename: c152w45T40Cseal8d
Degree of hydration: 0.786 Date tested: Feb. 22, 2005

Figure 144 LTC scan for CCRL Cement 152, \(w/c = 0.45 \), cured for 8 d under sealed conditions at 40 °C.
Cement: CCRL Cement 152 Curing: Sealed 3 d/resaturated
Solution: Distilled water Age when tested: 8 d
w/c: 0.45 Sample mass: 45.2 mg
Temperature: 40 °C Filename: c152w45T40sealresat3t8d
Degree of hydration: N/A Date tested: Feb. 22, 2005

Figure 145 LTC scan for CCRL Cement 152, \(w/c = 0.45 \), cured for 3 d under sealed conditions at 40 °C, then resaturated for 5 d.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.45
Temperature: 40 °C
Degree of hydration: 0.883
Date tested: Feb. 28, 2005

Curing: Saturated
Sample mass: 58.3 mg
Filename: c152w45T40Csat14d

Figure 146 LTC scan for CCRL Cement 152, w/c=0.45, cured for 14 d under saturated conditions at 40 °C.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.45
Temperature: 40 °C
Degree of hydration: 0.799
Date tested: Feb. 28, 2005

Curing: Sealed
Sample mass: 44.7 mg
Filename: c152w45T40Cseal14d

Figure 147 LTC scan for CCRL Cement 152, w/c=0.45, cured for 14 d under sealed conditions at 40 °C.
Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.45
Temperature: 40 °C
Degree of hydration: N/A
Age when tested: 14 d
Sample mass: 61.8 mg
Filename: c152w45T40sealres3t14d
Date tested: Feb. 28, 2005

Figure 148 LTC scan for CCRL Cement 152, w/c=0.45, cured for 3 d under sealed conditions at 40 °C, then resaturated for 11 d.

Cement: CCRL Cement 152
Solution: Distilled water
w/c: 0.45
Temperature: 40 °C
Degree of hydration: N/A
Age when tested: 14 d
Sample mass: 68.6 mg
Filename: c152w45T40sealres8t14d
Date tested: Feb. 28, 2005

Figure 149 LTC scan for CCRL Cement 152, w/c=0.45, cured for 8 d under sealed conditions at 40 °C, then resaturated for 6 d.
Figure 150 LTC scan for CCRL Cement 152, w/c=0.45, cured for 29 d at 40 °C under saturated conditions.

Figure 151 LTC scan for CCRL Cement 152, w/c=0.45, cured for 29 d at 40 °C under sealed conditions.
Cement: CCRL Cement 152 Curing: Sealed 28 d/resaturated
Solution: Distilled water Age when tested: 29 d
w/c: 0.45 Sample mass: 52.2 mg
Temperature: 40 °C Filename: c152w045T40Cresat28t29d
Degree of hydration: N/A Date tested: March 15, 2005

Figure 152 LTC scan for CCRL Cement 152, w/c=0.45, cured for 28 d under sealed conditions at 40 °C, then resaturated for 1 d.

CCRL Cement 140

Cement: CCRL Cement 140 Curing: Saturated
Solution: Distilled water Age when tested: 2 d
w/c: 0.40 Sample mass: 64.7 mg
Temperature: 20 °C Filename: c140w4nalk2d
Degree of hydration: N/A Date tested: Dec. 30, 2004

Figure 153 LTC scan for CCRL Cement 140, w/c=0.40, prepared with distilled water and cured for 2 d at 20 °C under saturated conditions.
Cement: CCRL Cement 140
Solution: Alkali sulfate solution
w/c: 0.40
Temperature: 20 °C
Date tested: Dec. 30, 2004

Figure 154 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali sulfates and cured for 2 d at 20 °C under saturated conditions.

Cement: CCRL Cement 140
Solution: Alkali hydroxide solution
w/c: 0.40
Temperature: 20 °C
Date tested: Dec. 30, 2004

Figure 155 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali hydroxides and cured for 2 d at 20 °C under saturated conditions.
Figure 156 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a LiOH solution and cured for 2 d at 20 °C under saturated conditions.

Figure 157 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a LiNO₃ solution and cured for 2 d at 20 °C under saturated conditions.
Figure 158 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a LiOH solution and cured for 4 d at 20 °C under saturated conditions.

Figure 159 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a LiNO₃ solution and cured for 4 d at 20 °C under saturated conditions.
Cement: CCRL Cement 140
Solution: LiOH solution
w/c: 0.40
Temperature: 20 °C
Degree of hydration: 0.664
Date tested: Feb. 8, 2005

Figure 160 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a LiOH solution and cured for 7 d at 20 °C under saturated conditions.

Cement: CCRL Cement 140
Solution: LiNO$_3$ solution
w/c: 0.40
Temperature: 20 °C
Degree of hydration: 0.686
Date tested: Feb. 8, 2005

Figure 161 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a LiNO$_3$ solution and cured for 7 d at 20 °C under saturated conditions.
Figure 162 LTC scan for CCRL Cement 140, w/c=0.40, prepared with distilled water and cured for 8 d at 20 °C under saturated conditions.

Figure 163 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali sulfates and cured for 8 d at 20 °C under saturated conditions.
Cement: CCRL Cement 140
Solution: Alkali hydroxide solution
w/c: 0.40
Temperature: 20 °C
Degree of hydration: 0.661
Age when tested: 8 d
Sample mass: 61.0 mg
Filename: c140w4walkoh8d
Date tested: Jan. 5, 2005

Figure 164 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali hydroxides and cured for 8 d at 20 °C under saturated conditions.

Cement: CCRL Cement 140
Solution: LiOH solution
w/c: 0.40
Temperature: 20 °C
Degree of hydration: 0.692
Age when tested: 8 d
Sample mass: 64.0 mg
Filename: c140w04lioh8d
Date tested: Feb. 9, 2005

Figure 165 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of LiOH and cured for 8 d at 20 °C under saturated conditions.
<table>
<thead>
<tr>
<th>Cement: CCRL Cement 140</th>
<th>Curing: Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution: LiNO$_3$ solution</td>
<td>Age when tested: 8 d</td>
</tr>
<tr>
<td>w/c: 0.40</td>
<td>Sample mass: 59.8 mg</td>
</tr>
<tr>
<td>Temperature: 20 °C</td>
<td>Filename: c140w04lino3a8d</td>
</tr>
<tr>
<td>Degree of hydration: 0.699</td>
<td>Date tested: Feb. 9, 2005</td>
</tr>
</tbody>
</table>

Figure 166 LTC scan for CCRL Cement 140, $w/c=0.40$, prepared with a solution of LiNO$_3$ and cured for 8 d at 20 °C under saturated conditions.

<table>
<thead>
<tr>
<th>Cement: CCRL Cement 140</th>
<th>Curing: Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution: Distilled water</td>
<td>Age when tested: 14 d</td>
</tr>
<tr>
<td>w/c: 0.40</td>
<td>Sample mass: 58.9 mg</td>
</tr>
<tr>
<td>Temperature: 20 °C</td>
<td>Filename: c140w04nalk14d</td>
</tr>
<tr>
<td>Degree of hydration: 0.732</td>
<td>Date tested: Jan. 11, 2005</td>
</tr>
</tbody>
</table>

Figure 167 LTC scan for CCRL Cement 140, $w/c=0.40$, prepared with distilled water and cured for 14 d at 20 °C under saturated conditions.
Cement: CCRL Cement 140
Curing: Saturated
Solution: Alkali sulfate solution
Age when tested: 14 d
w/c: 0.40
Sample mass: 48.7 mg
Temperature: 20 °C
Filename: c140w04walk14d
Degree of hydration: 0.655
Date tested: Jan. 11, 2005

Figure 168 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali sulfates and cured for 14 d at 20 °C under saturated conditions.

Cement: CCRL Cement 140
Curing: Saturated
Solution: Alkali hydroxide solution
Age when tested: 14 d
w/c: 0.40
Sample mass: 43.9 mg
Temperature: 20 °C
Filename: c140w04walkoh14d
Degree of hydration: 0.698
Date tested: Jan. 11, 2005

Figure 169 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali hydroxides and cured for 14 d at 20 °C under saturated conditions.
Cement: CCRL Cement 140
Solution: LiOH solution
w/c: 0.40
Temperature: 20 °C
Degree of hydration: 0.736
Sample mass: 95.7 mg
Date tested: Feb. 15, 2005

Figure 170 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of LiOH and cured for 14 d at 20 °C under saturated conditions.

Cement: CCRL Cement 140
Solution: LiNO₃ solution
w/c: 0.40
Temperature: 20 °C
Degree of hydration: 0.736
Sample mass: 53.1 mg
Date tested: Feb. 15, 2005

Figure 171 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of LiNO₃ and cured for 14 d at 20 °C under saturated conditions.
Figure 172 LTC scan for CCRL Cement 140, w/c=0.40, prepared with distilled water and cured for 30 d at 20 °C under saturated conditions.

Figure 173 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali sulfates and cured for 30 d at 20 °C under saturated conditions.
Cement: CCRL Cement 140
Solution: Alkali hydroxide solution
w/c: 0.40
Temperature: 20 °C
Degree of hydration: 0.738
Age when tested: 30 d
Sample mass: 75.5 mg
Filename: c140w04walkoh30d
Date tested: Jan. 27, 2005

Figure 174 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali hydroxides and cured for 30 d at 20 °C under saturated conditions.

Cement: CCRL Cement 140
Solution: LiOH solution
w/c: 0.40
Temperature: 20 °C
Degree of hydration: 0.761
Age when tested: 30 d
Sample mass: 57.9 mg
Filename: c140w04lioh30d
Date tested: March 3, 2005

Figure 175 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of LiOH and cured for 30 d at 20 °C under saturated conditions.
Cement: CCRL Cement 140 Curing: Saturated
Solution: LiNO$_3$ solution Age when tested: 30 d
w/c: 0.40 Sample mass: 65.8 mg
Temperature: 20 °C Filename: c140w04lino3a30d
Degree of hydration: 0.764 Date tested: March 3, 2005

Figure 176 LTC scan for CCRL Cement 140, $w/c=0.40$, prepared with a solution of LiNO$_3$ and cured for 30 d at 20 °C under saturated conditions.

Cement: CCRL Cement 140 Curing: Saturated
Solution: Distilled water Age when tested: 63 d
w/c: 0.40 Sample mass: 66.8 mg
Temperature: 20 °C Filename: C140w4nalksat63d
Degree of hydration: 0.82 Date tested: March 1, 2005

Figure 177 LTC scan for CCRL Cement 140, $w/c=0.40$, prepared with distilled water and cured for 63 d at 20 °C under saturated conditions.
Figure 178 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali sulfates and cured for 63 d at 20 °C under saturated conditions.

Figure 179 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali hydroxides and cured for 63 d at 20 °C under saturated conditions.
Cement: CCRL Cement 140 Curing: Saturated
Solution: LiOH solution Age when tested: 63 d
w/c: 0.40 Sample mass: 53.7 mg
Temperature: 20 °C Filename: c140w04lioh63d
Degree of hydration: 0.812 Date tested: April 5, 2005

![LTC scan](image)

Figure 180 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of LiOH and cured for 63 d at 20 °C under saturated conditions.

Cement: CCRL Cement 140 Curing: Saturated
Solution: LiNO₃ solution Age when tested: 63 d
w/c: 0.40 Sample mass: 56.2 mg
Temperature: 20 °C Filename: c140w04lino3a63d
Degree of hydration: 0.804 Date tested: April 5, 2005

![LTC scan](image)

Figure 181 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of LiNO₃ and cured for 63 d at 20 °C under saturated conditions.
Figure 182 LTC scan for CCRL Cement 140, w/c=0.40, prepared with distilled water and cured for 90 d at 20 °C under saturated conditions.

Figure 183 LTC scan for CCRL Cement 140, w/c=0.40, prepared with distilled water and cured for 91 d at 20 °C under saturated conditions.
Figure 184 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali sulfates and cured for 90 d at 20 °C under saturated conditions.

Figure 185 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali sulfates and cured for 91 d at 20 °C under saturated conditions.
Cement: CCRL Cement 140
Solution: Alkali hydroxide solution
w/c: 0.40
Temperature: 20 °C
Degree of hydration: N/A
Curing: Saturated
Age when tested: 90 d
Sample mass: 59.8 mg
Filename: c140w04walkoh90d
Date tested: March 28, 2005

Figure 186 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali hydroxides and cured for 90 d at 20 °C under saturated conditions.

Cement: CCRL Cement 140
Solution: LiOH solution
w/c: 0.40
Temperature: 20 °C
Degree of hydration: 0.831
Curing: Saturated
Age when tested: 90 d
Sample mass: 41.0 mg
Filename: c140w04lioh90d
Date tested: May 2, 2005

Figure 187 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of LiOH and cured for 90 d at 20 °C under saturated conditions.
Figure 188 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of LiNO$_3$ and cured for 90 d at 20 °C under saturated conditions.

Figure 189 LTC scan for CCRL Cement 140, w/c=0.40, prepared with distilled water and cured for 101 d at 20 °C under saturated conditions.
Cement: CCRL Cement 140
Solution: Distilled water
w/c: 0.40
Temperature: 20 °C
Degree of hydration: N/A
Sample mass: 49.8 mg
Date tested: July 22, 2002

Cure: Saturated
Age when tested: 105 d
Filename: c140p105d

Figure 190 LTC scan for CCRL Cement 140, w/c=0.40, prepared with distilled water and cured for 105 d at 20 °C under saturated conditions.

Cement: CCRL Cement 140
Solution: Alkali sulfate solution
w/c: 0.40
Temperature: 20 °C
Degree of hydration: N/A
Sample mass: 64.2 mg
Date tested: July 18, 2002

Curing: Saturated
Age when tested: 101 d
Filename: c140walk101d

Figure 191 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali sulfates and cured for 101 d at 20 °C under saturated conditions.
Figure 192 LTC scan for CCRL Cement 140, w/c=0.40, prepared with a solution of alkali sulfates and cured for 110 d at 20 °C under saturated conditions.
Observations

1) For low w/c, sealed curing first depercolates capillary pores, but then later repercolates them due to self-desiccation stresses, internal shrinkage, and possibly microcrack formation [2]. The sealed/resaturated scans for cement 152, w/c = 0.35 in Figures 39, 42, 43, 48, 49, 55, 59, 64, 71, 73, 79, and 81 illustrate this process for curing at 20 °C. For the small cement paste specimens employed in these studies, continuing resaturation of the specimens cured first under sealed conditions did result in a second depercolation of the repercolated capillary (size) pores; this is illustrated in Figures 67, 72, and 83. In Figures 83 and 84, however, the repercolated open gel (size) pores did not exhibit a second depercolation upon extended resaturation from 204 d to 224 d or 238 d. For curing at 40 °C, equivalent depercolation/repercolation behavior is indicated in Figures 124, 130, 135, 136, and 140. For cement pastes with a 20 % by mass fraction limestone substitution, equivalent repercolation behavior was observed (Figures 97 and 101), but without any evidence of a subsequent second depercolation of the capillary pores (Figure 98), perhaps due to the higher effective w/c in the specimens with the limestone substitution.

2) For extremely low w/c = 0.25 at 20 °C, this repercolation was observed both for specimens cured under sealed conditions and then resaturated (Figures 8, 11, 15, 18, 21, 24, 27, and 30) and for specimens cured under nominally “saturated” (water ponded on top) conditions (Figures 4, 6, 9, 13, 16, 19, 22, 25, and 28). Most likely, for this extremely low w/c, it was not possible to maintain saturated conditions using the techniques employed in this study. Similar repercolation observations apply for the 40 °C curing for the w/c = 0.25 cement pastes, as indicated in Figures 117, 118, and 120.

3) For saturated curing, more time (and hydration) is required to depercolate the pores in a w/c = 0.35 cement 152 paste when cured at 40 °C, as opposed to at 20 °C, in spite of the fact that the higher temperature curing significantly accelerates the cement hydration reactions. This suggests the formation of a coarser capillary pore structure when curing at higher temperatures in agreement with conventional wisdom [9]. For 20 °C curing under saturated conditions, depercolation of the capillary size pores occurred between 3 d (Figure 37) and 4 d (Figure 40) of curing. Conversely, for 40 °C saturated curing, this same depercolation occurred between 7 d (Figure 127) and 14 d (Figure 131).

4) For intermediate w/c (e.g., 0.40 to 0.45), it appears that some length of sealed curing followed by resaturation may be superior to saturated curing from the time of initial casting, in terms of providing an earlier depercolation of the capillary pores. Evidence for this can be found in Figures 146, 148, and 149 for the cement 152 w/c=0.45 cement pastes cured at 40 °C for 14 d and in Figures 87, 89, and 90 for the cement 152 w/c=0.435 cement pastes cured at 20 °C. This effect could be due to the fact that under the initial sealed curing conditions, cement hydration will be localized in the pore entryways and smaller pores and will not be occurring in the larger pores that are emptying due to self-desiccation (from the chemical shrinkage accompanying the hydration reactions). Figure 193 provides a simple 4-particle model of cement hydration illustrating this hypothesis.
5) For the low-alkali cement 140 pastes with \(w/c = 0.40 \), repercolation of the capillary and open gel pores was observed to occur at later ages even under saturated curing conditions, as exemplified by the LTC scans in Figures 172, 177, 182, 183, 189, and 190. It is likely that the C-S-H gel formed in this hydrating low-alkali cement paste is very amorphous with a highly random morphology; thus, subsequent rearrangement to a more ordered (nano)structure could be responsible for local shrinkage and the observed repercolation of the open gel and capillary (size) pores [3, 4]. Conversely, the addition of alkalis (lithium, sodium, or potassium) results in an earlier depercolation of the capillary pores as indicated by comparing Figures 162 to 166 for specimens cured for 8 d under saturated conditions. Furthermore, limited evidence of a later age repercolation is observed only for the specimens with potassium and sodium sulfate additions, as shown in Figures 191 and 192. The specimens with alkali hydroxide or lithium nitrate additions cured for 90 d under saturated conditions exhibited no evidence of either an open gel or capillary pore repercolation (Figures 186, 187, and 188).

![Figure 193](image)

Figure 193 Four particle model for hydrating cement paste microstructure, indicating hydration under saturated and sealed curing conditions. Dark grey is unhydrated cement grains, textured material and light grey are hydration products, white is water-filled porosity, and black is empty porosity, from reference [2].

Conclusions and Future Research

Low temperature calorimetry has been shown to be a valuable tool for characterizing the porosity of hydrating cement pastes, both in terms of the presence/absence of freezable water as a function of temperature and the percolation state of pore networks with various size entryways (dense gel, open gel, and capillary). Numerous examples of the influences of cement type, \(w/c \), curing temperature, curing time, curing saturation conditions, and the additions of alkali compounds or limestone fillers have been presented in this report. Future efforts will focus on extending these LTC and hydration studies to blended cements to examine the influence of additions of silica fume, slag, fly ash, and the like on the developing porosity. In addition, studies are also underway on the influence of several different shrinkage-reducing admixture (SRA) types and dosages on the freezable water content of hydrating cement pastes.
References

