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Abstract—This paper proposes a framework for balancing 
competing user (i.e., application) level requirements by resolving 
the corresponding trade-offs in a distributed system with limited 
resources.  Assuming that each user’s preferences can be 
characterized by some utility function, the goal of balancing 
competing requirements for each user as well as across different 
users is to maximize the aggregate utility.  The framework 
assumes a presence of Intelligent Plane, which isolates users from 
details of the network properties and mechanisms of 
implementation of the user level requirements.  The Intelligent 
Plane performs the following tasks: (a) maps the user level 
requirements into the network resource requirements, (b) maps 
the resource congestion prices into prices of the user level 
requirements, and (c) maps the user willingness to pay for the 
user level requirements into payments for the specific sets of 
resources.  Once payments for the specific sets of resources are 
identified, the resources are allocated to the users by a “TCP-
friendly” algorithm.  The paper discusses this framework for a 
particular case of balancing user requirements for throughput 
and survivability in an unreliable network, where survivability is 
achieved through redundancy, e.g., using multipath routing. 

Index Terms— Distributed system, resource allocation, elastic 
user, pricing, intelligent plane.  

I. INTRODUCTION 
ince network resources are shared by multiple users (i.e., 
applications) and performance of each user is typically 
characterized by multiple competing criteria, network 

management includes the following two major tasks: (a) 
making the best use of the allocated resources for each user by 
resolving the trade-offs among competing user criteria, and 
(b) sharing resources among different users.  Framing the goal 
of network management as the aggregate utility maximization 
subject to the capacity constraints, where the aggregate utility 
is the sum of the individual user utilities, has been proposed in 
[1].  This framework is based on the concept of elastic users, 
capable of adjusting their behavior in response to congestion 
pricing signals.  Papers [2]-[3] have developed a distributed 
scheme for aggregate utility maximization in a case when user 
utilities are expressed in terms of the link bandwidths.  This 

Author is with the National Institute of Standards and Technology, 100 
Bureau Drive, Stop 8920, Gaithersburg, MD 20899-8920 (phone: 301-975-
2235; fax: 301-590-0932; e-mail: marbukh@ nist.gov).  

scheme interprets Lagrange multipliers associated with 
capacity constraints as congestion costs of the corresponding 
resources.  These costs are communicated to the elastic users, 
who adjust their resource requirements or willingness to pay 
for the resources by maximizing the individual net utilities. 
Figure 1 illustrates this scheme. 

Fig. 1.  Users directly responding to resource pricing 

However, assumption [2]-[3] that user utilities are 
expressed in terms of the network resources may be too 
restrictive.  Typically, users more naturally can express their 
preferences in terms of the user level requirements, such as 
rates and Quality of Service (QoS) parameters, rather than 
network level parameters, such as required bandwidth. 
Mapping user level requirements into network level resource 
requirements as well as mapping congestion resource pricing 
signals into pricing of the user level requirements depend on 
the specific network properties as well as specific 
implementation of the user level requirements.  In the Internet 
with a dumb core and intelligent applications concentrated at 
the network edges this mapping can be performed by 
intelligent applications through probing. 

Several recent proposals, starting with [4], argued in favor 
of relieving users from the burden of such probing by moving 
some intelligence to a separate “Intelligent Plane” (IntPlane). 
The IntPlane sits between the users and the network and hides 
the details of the network properties and user level 
requirements implementation mechanisms from the users. 
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The advantages of such enhanced architecture include user 
convenience, possibility of optimization of the resource 
allocation and security considerations [4].  This paper 
proposes the functionality for the IntPlane as a mapping 
mechanism, which is shown on Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Intelligent Plane as a mapping mechanism 
 
Each elastic user attempting to maximize its individual net 
utility informs the IntPlane on its relative marginal utilities 
and “willingness to pay” for the network resource.  The 
IntPlane performs the following tasks: (a) given the amount of 
the network resources allocated to each user, the IntPlane 
optimizes the balance among competing user level 
requirements for each user, (b) maps user willingness to pay 
into payments for specific sets of the network resources, and 
(c) communicates to the user the aggregate congestion cost of 
the resources allocated to the user.  Once the willingness to 
pay for the specific sets of resources is identified, the 
resources are allocated to users by a TCP-type algorithm.  The 
“payments“ may either represent real funds, or be simply a 
parameter in the TCP-type protocol [5].  To ensure capability 
of this scheme to operate in a competitive (non-cooperative) 
environment, the resource allocation should be proportionally 
fair, meaning that resources are allocated to the users 
proportionally to the payments [2]-[3].  Proportional fairness 
ensures that both schemes, based on the direct user payments 
for the resources and user payments for the QoS, result in the 
same resource allocation and user payments [6]. 

This paper discusses possible implementation and benefits 
of the proposed enhanced architecture in a case of providing 
reliable services in an unreliable network.  The reliability is 
achieved through redundancy by reserving extra bandwidth to 
protect against link capacity variability due to fading and 
mobility, and using multipath routing to protect against link 

failures.  The packet level implementation of the redundancy 
scheme can be based on the route diversity coding [7].  
Benefits of multipath routing for load balancing and 
protection against network element failures have been known 
for a long time [8].  However, research on load balancing, 
protection and restoration for wire-line and wireless networks 
has been mostly concentrated on evaluation of various 
performance and survivability metrics of certain multipath 
routing schemes [6].  While providing quantification of 
improving survivability with increase in redundancy through 
consuming more network resources, this research leaves aside 
the problem of balancing survivability and economic 
efficiency for each user as well as across different users.  
Conventional practical solutions, which offer users a limited 
set of choices with respect to survivability, attempt to resolve 
these trade-offs within a centralized framework by assigning 
the corresponding service classes.  A price based market 
framework shifts choices regarding requested services, 
including survivability levels, to the users, assuming that users 
are aware of the available services and their prices [10]-[11]. 

The paper is organized as follows.  Section II describes a 
model of the unreliable network and implementation of the 
reliable throughput.  Section III introduces user utility of 
obtaining certain QoS and formulates the corresponding 
aggregate utility maximization framework.  Section IV briefly 
extends decentralized aggregate utility maximization 
framework [2]-[3] to a case when each user is aware of 
mapping its QoS requirements into the requirements for the 
network resources.  The decentralization is based on 
congestion pricing of the resources and elastic users 
responding to these pricing signals by maximizing their 
individual net utilities expressed in terms of the requested 
network resources.  Section V develops a decentralized 
aggregate utility maximization framework assuming that users 
are unaware of the network properties and implementation of 
the user level requirements.  The decentralization is based on 
proportionally fair pricing of the user level requirements and 
elastic users responding to these pricing signals by 
maximizing their individual net utilities expressed in terms of 
the user level parameters.  The mapping between user and 
network level parameters is done by the IntPlane.  Section VI 
considers some examples and discusses the implication.  
Finally, conclusion briefly summarizes the proposed 
framework and proposes directions for future research. 

II. MODEL 

Subsection A defines two user Ss ∈  QoS parameters: the 
reliable throughput sµ  and the corresponding reliability 

exponent sγ .  Subsection B introduces a “fair” bandwidth 
sharing with controlled portions of link bandwidths allocated 
to different users.  This bandwidth sharing allows for 
implementation of the reliable throughput by creating a 
“safety margin” for the fluctuating instantaneous user 
throughput.  Subsection C describes an approximation for the 
reliability exponent used in the remainder of the paper. 
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A. User level parameters 

Consider a network with link capacities lc  being subject to 
variability due to fading, mobility, node and link reliability, 
etc.  Each network user Ss ∈  is uniquely identified by its 
origin-destination and user level Quality of Service (QoS) 
requirements.  Presence of several users with the same origin-
destination models different types of applications with the 
same origin-destination, e.g., voice and video.  We assume 
that link capacity fluctuations occur on such fast timescale that 
they cannot be completely absorbed by the network 
management actions.  Due to these fluctuations, link 
capacities lc  are in effect random variables and thus it may 
be difficult or even impossible to guarantee a fixed bandwidth 
(throughput) to a user.  Instead it may be more natural to view 
the instantaneous aggregate throughput sx  for a user Ss ∈  
as a random variable.  Due to possible large fluctuations in the 
instantaneous aggregate throughput sx  users may prefer to 

characterize their requirements in terms of the pair ),( ss γµ  

of the “reliable” aggregate throughput sµ  and the 

corresponding reliability exponent sγ  quantifying the 

confidence level that the instantaneous throughput sx  does 

not deteriorate below sµ , where 
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and the average aggregate bandwidth reserved for  user s  is 

sx~ .  Figure 3 illustrates that creating a “safety margin” 

sss x µ−=∆ ~  increases confidence that the instantaneous 

throughput sx  would not deteriorate below sµ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  Reliable aggregate throughput 
 
Note that besides reserved average aggregate throughput sx~  

and reliable throughput sµ , reliability exponent sγ  also 
depends on: (a) probability distribution of the random link 
capacities lc , (b) mechanism for sharing of the instantaneous 

link bandwidth among different users, (c) implementation of 
the reliable throughput sµ , given resources allocated to user 
s , and (d) bandwidths reserved on specific routes.  This paper 
assumes that random link capacities lc  are jointly statistically 

independent for all links Ll ∈ .  Assumptions (b)-(d) are 
described in the next two subsections. 

This paper assumes that each user s  instantaneous 
aggregate throughput sx  can be approximated by a normally 

distributed random variable with average sx~  and standard 

deviation sσ , and thus reliability exponent (1) is 
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where 
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Note that approximation (2)-(3) neglects small probability 
event that the bandwidth is negative.  In a case of high 
reliability requirements: ∞→sγ , reliability exponent (2) 
can be asymptotically approximated as follows: 

                          2
2 )~(

2
1~ ss

s
s x µ

σ
γ −                              (4) 

 

B. Bandwidth Sharing and Reliable Throughput 
We assume that each user s  is allocated a certain controlled 

portion lsφ  of the link l  bandwidth lc~ , or equivalently, the 

average bandwidth lslls cx φ~~ = , where average capacity of a 

link l  is ][~
ll cEc = , and 1≤=∑

∈
Σ

Ss
ls

def

l φφ .  The 

instantaneous bandwidth allocated to a user s  on a link l  is a 
random variable ( ) lslllslls xcccx ~~== φ .  In a case of small 
variability in the link capacities it is convenient to introduce 
“small” random variables lll cc ~1−=ξ  with zero averages 

0][ =lE ξ , so that the instantaneous bandwidth allocated to 

a user s  on a link l  is 
                                  lslls xx ~)1( ξ−=                                (5) 

In a particular case of a link failure model, when 
operational link l  has capacity ll cc ˆ=  and failed link has 

capacity 0=lc  it is convenient to introduce binary random 

variables 0=lδ  if link l  is operational and 1=lδ  

otherwise, so that the instantaneous link l  bandwidth is 

lll cc ˆ)1( δ−= , and lll δδξ −= , where ][ ll E δδ = .  In 
this particular case the instantaneous bandwidth (5) is 

lslls xx ˆ)1( δ−= , where lslls cx φˆˆ = . 

sµ

sx

sx~
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The rest of this subsection discusses implementation of the 
reliable throughput sµ , given the instantaneous link 

bandwidths slx  allocated to user s .  Given vector 

),( LlxX sls ∈= , the maximum achievable user s  

instantaneous aggregate throughput is ∑
∈

=
)(*

ss XMl
sls xx , where 

)(*
ss XM  is the corresponding min-cut.  This paper assumes 

a suboptimal implementation of the reliable throughput, based 
on the route diversity coding [4] and shown on Figure 4. 
 
 
 
 
 
 
 
 
Fig. 4.  Route diversity coding 
 
In this implementation, after adding redundant bits and 
coding, user Ss ∈  data stream of rate sµ  is transformed 

into stream of higher rate ssx µ≥~ .  This resulting stream is 

split into flows srx~  over feasible routes sRr ∈  with the 
same origin-destination: 
                                  ∑

∈

=
sRr

srs xx ~~ .                                     (6) 

User s  instantaneous throughput, i.e., rate of the user stream 
received at the destination, is 
                                  ∑

∈

=
sRr

srs xx ,                                     (7) 

where the instantaneous throughput over route sRr ∈  is 

                                srrsr xx ~)1( ξ−=                                 (8) 
and the normalized variability of a route r  capacity is 
characterized by random variable 
                           ∏

∈

−−=
rl

lr )1(1 ξξ .                              (9) 

The reliability exponent (1) quantifies the possibility of 
reconstructing user s  data stream at the destination [4].  Note 
that formula (9) is based on the assumption that link capacities 
fluctuate at much faster time scale than time needed for a 
packet to reach its destination.  In the opposite extreme case 
the normalized variability of a route r  capacity is 
characterized by random variable 

rllr ∈−−= ),1max(1 ξξ .  Our analysis can be easily 

carried out for this case also. 
Calculation of the reliability exponent (1) is comparatively 

simple in a case when routes sRr ∈  do not have overlapping 
links.  In this case the aggregate instantaneous throughput (7) 
is a sum of jointly statistically independent random variables 
since rξ  are jointly statistically independent random variables 

for sRr ∈ .  When routes sRr ∈  do have overlapping links, 
calculation of the reliability exponent (1) is generally a 
difficult problem [9]. 

 

C. Approximation for the Reliability Exponent 
We approximate the reliability exponent (1) by the leading 

term in the asymptotic expansion (4): 

                         ( )2
2
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where user s  average aggregate throughput is 
                              ∑

∈

=
sRr

srs xx ~~                                         (11) 

the variance of the aggregate throughput is 
                        ∑

∈

=
sRrr

srsrrrs xx
21

2121
,

22 ~~θσ                              (12) 

the “normalized correlation” between route sRrr ∈21 ,  
capacities is characterized by 
                             ∑

∈

=
I 21

21

22

rrl
lrr θθ                                      (13) 

and the normalized variance of the link l  capacity is 

[ ]22
ll E ξθ = .  Note that matrix ( )

sRrrrrs ∈
=Θ

2121 ,
2θ  is 

symmetric and positive: 22
1221 rrrr θθ =  and 

( )222
2121

,min0 rrrr θθθ ≤≤ , 21 , rr∀ .  Also note that 

expression (10) can be obtained from a Gaussian link model in 
a large deviation regime of high reliability [12].  For a 
particular model of link failures the normalized variance of the 
link l  capacity is ( )lll δδθ −= 12 , where the probability of 

link l  failure is ]1,0[∈lδ . 
 Reliability exponent (10) can be expressed as follows: 
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in terms of the user s  redundancy factor, i.e., the number of 
bits transmitted per a bit of the “payload” [7], 

                             ∑
∈

=
sRr

sr
s

def

s x~1
µ

ω                                   (15) 

and portions of load routed on feasible paths sRr ∈  are 

                            srss

def

sr x~)( 1−= µωα                               (16) 
where 
                                     1≥sω                                            (17) 

                                1=∑
∈ sRr

srα .                                        (18) 

Given load allocation vector ),( ssrs Rr ∈= αα , the upper 

limit on reliability exponent (14), achieved as ∞→sω , is 
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Given upper limit (19), the minimum redundancy (15) 
required to achieve reliability exponent γ  for user s  is 

                           ( ) 1
ˆ1

−
−= sγγω                                 (20) 

If routes sRr ∈  do not have overlapping links, formula 
(12) takes the following form 
                           ( )∑

∈

=
sRr

srrs x 22 ~θσ                                  (21) 

and thus, formula (14) simplifies as follows: 
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where we simplified notations as follows: 22
rrr θθ = . 

Given redundancy factor sω , one may attempt to maximize 
the reliability exponent (14): 
                                 ss

sr

γγ
α 0

* max
≥

=                                     (23) 

subject to constraints (18). 
Theorem 1.  Given redundancy factor sω  and network 

properties represented by matrix sΘ , solution to optimization 
problem (22)-(23), (18) is 
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and is achieved for load allocation  
                         ∑

∈′′
′′=

sRrr
rrrrsr tt

21

2121
,

22*α                                        (25) 

where symmetric and positive matrix ( )
sRrrrrs tT

∈
=

2121 ,
2  is the 

inverse to sΘ : 1−Θ= ssT . 
Proof.  The optimal load allocation is determined by 

solution to the following optimization problem: 
                          ∑

∈ s
s Rrr

srsrrr
21

2121
,

2min ααθ
α

                             (26) 

subject to constraints (18).  The Lagrangian for (25), (18) is 
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and, due to convexity, the corresponding necessary and 
sufficient Kuhn-Tucker conditions form the following linear 
system [13]: 
            02 =−=∂ ∑

∈′
′′ λαθα

sRr
rsrrsrL                            (27) 

where Lagrange multiplier λ  is determined by (18).  This 
ends the proof. 

The following statements directly follow from Theorem 1. 
Corollary 1. Given the network properties represented by 

matrix sΘ , the upper limit on the reliability exponent (10), 

achieved as redundancy factor ∞→sω , is 
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Corollary 2.  If routes sRr ∈  do not have overlapping links, 
the maximal reliability exponents (24) is 
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the optimal load allocation (25) is 
                           ∑

∈′

−
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22* θθα                                (30) 

and the upper limit (28) is 
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III. NETWORK MANAGEMENT OBJECTIVE 
Subsection A introduces individual user utility of obtaining 

service parameters ),( ss γµ .  Subsection B formulates the 
aggregate utility maximization framework [1] for a particular 
case of balancing competing requirements for reliable 
throughput and the corresponding reliability for each user as 
well as across different users. 
 

A. User Utilities 

Let ),( µxhs  be a function, monotonously increasing in 

both arguments ∞<≤≤ xµ0 .  Consider elastic user s  
whose satisfaction of obtaining service with parameters 

),( γµ  is characterized by a utility function 

                    )()(),( γµγµ sss vuU = ,                            (32) 

where function )(µsu  is a conditional average over the 

aggregate rate sx : 

                 [ ]µµµ >= ssxs xxhEu
s

),()( ,                    (33) 

and function )(γsv  is monotonously increasing for 

∞<≤ γ0 .  Note that under large deviation regime of high 
reliability, conditional average in (32) can be approximated by 
the corresponding unconditional average.  Figures 5 and 6 
sketch typical utility functions )(µsu  and )(γsv  
respectively. 

Definition (32)-(33) is quite flexible, covering a wide range 
of possibilities.  Consider some particular cases.  User s  
having “hard” requirements on the reliability parameter 

min
ss γγ ≥  is characterized by utility function (32)-(33), 

where 



6 

                         )()( min
ssv γγχγ −= ,                            (34) 

and step-wise function is 1)( =γχ  if 0>γ , and 
0)( =γχ  if 0≤γ .   

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.  Typical user utility of the reliable throughput  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.  Typical user utility of the reliability exponent  
 
User s , elastic with respect to the reliable throughput µ , is 
characterized by utility (32)-(33), where function 

)(),( µµ ss uxh ≡  does not depend on the actual random 

aggregate throughput ),[ ∞∈ µx  and depends only on the 
reliable aggregate throughput ),0[ ∞∈µ .  A particular case 

(32)-(34) with 0min =sγ  describes an elastic user concerned 

with the average throughput: ( )][ sss xEuU = .  A particular 

case of (32)-(34) with 0min =sγ  and function 

)(),( xuxh ss ≡µ  independent of the reliable throughput 

),0[ ∞∈µ  describes an elastic user whose satisfaction is 
characterized by the average utility of the instantaneous 
aggregate throughput: )]([ sss xuEU = . 
 

B. Aggregate Utility Maximization Problem 
S. Shenker has proposed [1] aggregate utility maximization 

to be the objective of network management.  In our particular 
case the aggregate utility maximization framework takes the 
following form: 
                        ( )∑

s
sssU γµ ,max                                  (35) 

over user level requirements ),,(),( Ssss ∈= γµγµ  and 

vector ),:~(~
ssr RrSsxX ∈∈=  subject to constraints 

(10), link capacity constraints  
                                ll cy ~~ ≤ ,                                              (36) 

flow non-negativity constraints: 0~ ≥srx  and constraints on 

the reliable throughput Ssxss ∈≤≤ ,~0 µ , where the link 

l  load is 
                          ∑ ∑

⊆∈

=
s Rrlr

srl
s

xy
:

~~                                     (37) 

Optimization problem (35) is equivalent to the following 
optimization problem 
                                 W

X~,,
max

γµ
                                             (38) 

subject to the same constraints except (37), where the “social 
welfare” is 
            ( ) ( )∑∑ −=

l
ll

s
sss yfUW ~,γµ                        (39) 

and appropriately selected penalty functions )(yfl  may 
quantify the congestion penalty in terms of delays or packet 
loss as link utilization approaches link capacities [3].  For 
packet networks it is often assumed [14]  
                           )~()( ycyyf ll −= .                             (40) 

A particular case of optimization problem (38)-(39), when 
each user s  specifies its service requirements ),( ss γµ  
correspond to the following traffic engineering problem: 

                   ∑ ∑ ∑ 
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IV. USERS RESPONDING TO BANDWIDTH PRICING 

This section assumes that each Ss ∈  (a) is aware of the 
network properties quantified by matrix sΘ , and (b) capable 

of finding the optimal balance ),( **
ss γµ  between competing 

requirements for the reliable throughput sµ  and the corresponding 

reliability exponent sγ  by maximizing the individual utility, given 

allocated bandwidths ),~(~
ssrs RrxX ∈= : 

            { })()2~(maxarg
0

* γγσγ
γ sssss vxu −=

≥
           (43) 

                         ** 2~
ssss x γσµ −=                                (44) 

Once optimization (43)-(44) is performed and thus individual 
utilities with respect to the bandwidth 

            )()2~()~(~ **
ssssssss vxuXU γγσ−=                (45) 

0

su

µ

0

sv

γ

1
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are identified,  the aggregate utility maximization problem 
(38)-(39)becomes 

           ( )




















−∑ ∑ ∑∑

⊂∈l s Rrlr
srl

s
ssX

s

xfXU
:

~
~~~max          (46) 

Note that under hard constraints on the reliability (34) the 
optimal operating point (43)-(44) is 

          ( )minmin** ,2~),( ssssss x γγσγµ −= Σ                  (47) 

and thus individual utility (45) is 

        )()2~()~(~ minmin
ssssssss vxuXU γγσ−=             (48) 

This section describes distributed algorithms to aggregate 
utility maximization (46), assuming that user Ss ∈  utility 

function sU~  is known only to this user.  The algorithms are 
the straightforward extension of algorithms proposed in [2]-

[3] for a case 







= ∑

∈ sRr
srss xUU ~~~

, and assume that elastic 

users respond to congestion price of the bandwidth.  
Subsection A describes algorithm based on users adjusting 
bandwidth requirements in response to bandwidth prices.  
Subsection B describes algorithms based on users adjusting 
their willingness to pay for bandwidth in response to rates 
charged for the bandwidth. 
 

A. Uses Adjusting Bandwidth Requirements 
Consider the following individual optimization problem for 

a user s  attempting to maximize its individual net utility: 

   








−− ∑
∈≥≥

s
sr Rr

srrssssx
xdvxu ~)()2~(maxmax

00~ γγσ
γ

     (49) 

where the route r  price is: 
                                ∑

∈

′=
rl

llr yfd )~(                                 (50) 

the link l  price )~( ll yf ′  is a derivative of the congestion 

penalty function for this link )~( ll yf , and the link load ly~  is 
given by (37).  Solving individual optimization problem (49)-
(50) by each user Ss ∈  also maximizes the aggregate utility 
(46) if the link prices are “right”, meaning that derivatives 

)~( ll yf ′  are calculated at the optimal link l  load 

lyy opt
ll ∀= ,~~ . 

Kuhn-Tucker necessary conditions for a vector 
),~(~

ssrs RrxX ∈=  to solve (49) are as follows [13]: 

      sr
s

r

Rr
rsrrs udif

u
dx

s

′≤
′

−=∑
∈′

′′
− 1~2 21 θσγ                (51) 

                        udifx rsr ′>= 0~                                   (52) 

where µµµ dduu ss )()( =′  is the derivative of the user  s  

utility at the point of this user reliable throughput sµµ =  

and sσ  is given by (12).  If user utilities )~(~
ss XU  are 

concave, (51)-(52) are also the corresponding sufficient 
conditions [13].  In this case, user s  optimal response to the 
pricing signals rd  is requesting bandwidth vector 

),~(~
ssrs RrxX ∈= , which solves system (51)-(52) and thus 

maximizes its individual net utility (49)-(50). 
Generally, optima in (46) and (49) are achieved when some 

flows are zero: 0~ =srx  for some SsRr s ∈∈ , .  In fact, 

this situation is typical in presence of “high cost”, e.g., highly 
congested or very “long” routes, when optimal solution is not 
to use these “expensive” routes.  For example, conventional 
shortest path routing uses only one, “optimal” route.  Given 

0≥µ , define a subset of feasible routes participating in user 
Ss ∈  transmission: 

              },)(:{)( srss RrdurR ∈>′= µµ                  (53) 

Consider two routes )(, 21 µsRrr ∈ , which do not have 
overlapping link with each other or with any other route 

)(µsRr ∈∀ : ∅=I rri , 2,1=i .  In this case we have 

from (51): 

                   
ssr

ssr

r

r

sr

sr

ud
ud

x
x

′−

′−










=

2

1

1

2

2

1

1
1

~
~ 2

θ
θ

                          (54) 

It follows from (54) that if two routes )(, 21 µsRrr ∈  have 

the same cost: 
21 rr dd = , then the user transmission rate on 

these routes should be inversely proportional to the variances 
of the fluctuating bandwidths of the corresponding routes: 
                      ( )2

1221

~~
rrsrsr xx θθ=                                 (55) 

This conclusion that load allocation among several routes of 
the same cost should send more traffic on the better quality 
routes while preserving routing diversity is intuitively 
plausible. 

 In a case of hard reliability constraints (34) when feasible 
routes sRr ∈  do not have overlapping links, the optimal 

flow vector ),~(~
ssrs RrxX ∈=  can be identified explicitly.  

Indeed, in this case Kuhn-Tucker equations (51) take the 
following form: 

              







′

−=
s

r

r

s
sr u

d
x 1,0max

2
~

2θγ
σ

                      (56) 

Summarizing (56) over sRr ∈  we obtain: 

            







′

−= ∑
∈ s

r

Rr r

s
s u

d
x

s

1,0max1
2

~
2θγ

σ
                 (57) 

Substituting (57) into (44) we obtain the following expression 
for sσ : 

       











−








′

−= ∑
∈

γ
θγ

µσ
µ

211
2 )(

2
*
sRr rs

r
s u

d
            (58) 
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Substituting sσ  into (56) we obtain the following expression 

for the flows )(,~ µssr Rrx ∈ : 

   2

)(
2

11
211

~
rs

r

Rr s

r

r

sr u
d

u
d

x

s

θ
γ

θ

µ

µ









′

−
−







′

−
=

∑
∈′

′

′

          (59) 

Substituting (59) into right-hand side of the following 
necessary condition for optimality in (49) 

                              ∑
∈

=′
sRr

srs xu ~1
µ

                                   (60) 

we obtain a quadratic algebraic equation for the derivative 

su ′ , yielding the reliable throughput sµµ = .  After that, 
flows are determined by (59). 
 

B. Uses Adjusting Willingness to Pay for Bandwidth 
Solving individual optimization problem (49) by each user 

results in a decentralized maximization of the aggregate utility 
assuming convexity and “right” link prices.  Formula (50) can 
be used as a basis for finding the right prices by a distributed 
algorithm [2], when users declare their requirements for 
bandwidth )~(~

srs xX = , then “the network” informs users on 
the route costs (50), then users adjust their bandwidth 
requirements, etc.  This subsection describes a distributed 
algorithm for finding the “right” prices, based on the user 
willingness-to-pay.  This algorithm, being a straightforward 
extension of the corresponding algorithm [3], probably better 
fits into existing Internet architecture. 

Consider a situation when, given bandwidth vector 
),~(~

ssrs RrxX ∈= , each user s  determines its willingness 

to pay srw  for bandwidth on each route sRr ∈  by 
maximizing its individual net utility: 

          












−







∑∑
∈∈≥

ss
sr Rr

sr
Rr

srsrsw
wpwU )(~max

0
                 (61) 

where srp  is the rate charged by the network for a unit of 

bandwidth on route sRr ∈ .  After user s  informs the 

network on the vector ),( ssr Rrw ∈ , the network, running 
Transmission Control Protocol – Active Queue Management 
(TCP-AQM) protocol [5], adjusts bandwidth vector 

),~(~
ssrs RrxX ∈=  according to the following system of 

differential equations: 
                         ( )rsrsrsr dxwkx ~~~ −=&                              (62) 

Assuming that each user s  monitors its rates rx~  on routes 

sRr ∈  and instantaneously adjusts parameters srw  by 
solving optimization problem (61) the user willingness-to-pay 
is 

                         
sr

ss
srsr x

XU
xw ~

)~(~
~

∂
∂

=                                (63) 

Consider rate of change of the social welfare (39) with time: 

                           ∑∑
∈ ∂

∂=
s Rr

sr
srs

x
x
WW && ~
~                              (64) 

Substituting (62)-(63) into right-hand side of (64) we obtain 

      

0~
~

~

~
~~

~

2

≥







−

∂
∂

=

=







−








−

∂
∂

=

∑∑

∑∑

∈

∈

sr
s Rr

r
sr

s

sr
s Rr

r
sr

sr
r

sr

s

xd
x
U

xd
x
w

d
x
U

W

s

s

&

               (65) 

Thus social welfare (39) is a Lyapunov function for the 
dynamic system (62)-(63).  Note that since social welfare (39) 
may have multiple local maxima for streaming applications 
[1], inequality (65) only implies that the bandwidth adjustment 
process (62)-(63) converges to the local maximum of the 
social welfare (39). 
 

V. INTELLIGENT PLANE: QOS PRICING AND IMPLEMENTATION  
This section proposes algorithms for aggregate utility 

maximization (35) assuming that users are unaware of the 
network layer parameters.  These algorithms assume presence 
of the IntPlane, which isolates users from the network 
properties and QoS implementation mechanisms.  Subsection 
A considers implementation and pricing of the service 
parameters ),( ss γµ  by the IntPlane, given price of the 

bandwidth ),( sr Rrd ∈ .  This setting may describe a case of 
“fat” links carrying traffic from a large number of users, so 
that the link costs can be considered fairly stable.  Subsection 
B describes a cross-layer, distributed algorithm for aggregate 
utility maximization,.  The algorithm is based on user 
willingness to pay for service parameters ),( ss γµ  and 
results in proportionally fair pricing.  Subsection B also 
demonstrates that under certain, rather restrictive, conditions 
this algorithm maximizes the aggregate utility. 
 

A.  Users Adjusting QoS Requirements  
Consider a user Ss ∈  individual optimization problem 

                     { })(),(max
0,

γµγµ
γµ ss DU −

≥
                        (66) 

where the price of a unit of reliable throughput for user s  is 

                        
s

s
s

d
D

γγ ˆ1

~

−
=                                      (67) 

the price of a unit of the average throughput for user s  is 

                           ∑
∈

=
sRr

srrs dd α~
                                      (68) 
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the upper limit on the reliability exponent sγ̂  is given by (19), 

cost of a route r  is rd  and vector ),( ssrs Rr ∈= αα  
characterizes implementation of user s  requirements. 

Given implementation of all user level requirements 
),( Sss ∈= αα , maximization individual net utility (66) by 

each user Ss ∈  also maximizes the aggregate utility: 

∑ ∑ ∑∑ 










−
−

⊂∈l s Rrlr
sr

ss

s
l

s
sss

s

fU
:ˆ1

),( α
γγ

µγµ     (69) 

over user level requirements ):,( Ssss ∈γµ  if the route 
costs are 

       ∑ ∑ ∑
∈ ⊂∈ 











−
′=

rl s Rrlr
sr

ss

s
lr

s

fd
:ˆ1

α
γγ

µ
                  (70) 

The problem of joint maximization of the aggregate utility 
(69) over user level parameters ):,( Ssss ∈γµ  and 

implementation ),,( SsRr ssr ∈∈α  can be decomposed 
into (a) maximization of individual net utility (66) by each 
user Ss ∈ , and (b) minimization of the cost of 
implementation of user Ss ∈  requirements by the IntPlane: 

  ∑
∑ ∈

∈

≥ −
=

s

s

r Rr
srr

Rrr
srsrrr

s dD α
ααθγα

21

2121
,

20

*

21
1min~

         (71) 

subject to constraints (18). 
Cost minimization (71) subject to constraint (18) can be 

carried out as follows.  Consider optimization problem: 
                      ∑

∈≥
=

s
sr Rrr

srsrrr
21

2121
,

2

0
min~ ααθθ
α

                        (72) 

subject to constraints  
                              dd

sRr
srr

~≤∑
∈

α                                     (73) 

and constraints (18).  Note that this optimization problem 
intends to maximize the bound on the reliability exponent (19) 
subject to upper constraint on the average route cost, or, 
equivalently, to minimize the average route cost subject to 
lower bound on the reliability exponent (19).  The Largangian 
for this optimization problem is [13]: 









−+








−−

−=

∑∑

∑

∈∈

∈

ss

s

Rr
sr

Rr
srr

Rrr
srsrrr

dd

L

αλαλ

ααθ

1~
21

,

2

21

2121

                 (74) 

where the corresponding Largange multipliers are 1λ  and 2λ .  
Optimization problem (72)-(73), (18) is convex and thus, the 
necessary and sufficient conditions for a vector 

),( ssrs Rr ∈= αα  to be a solution to this optimization 
problem are as follows [13]: 

      
00

0

12

1212
2

≤−=

>−−=∑
∈′

′′

rsr

rr
Rr

rsrr

dif

difd
s

λλα

λλλλαθ
            (75) 

where Largange multipliers are 1λ  and 2λ  are determined 
from (18) and (73). 

It can be shown that 0, 21 ≥λλ , and thus the structure of 
the solution to (72)-(73), (18) is as follows.  Without loss of 
generality, assume that all sRK dim=  routes sRr ∈  are 

arranged in M  mutually exclusive groups MmGm ,..,1, =  

so that all routes in the same group have the same cost md~  
and cost increases as the group number increases: 

44 344 21

44 844 76

44 344 21

44 844 76

43421

48476

M

M

M

d

G

KK

d

G

KK

d

G

K dddddd
~~

1
~

1 .........
1

2

2

21

1

1

1

==

+

=

==<<==<==
−

 

Routes within each group are numbered arbitrarily.  To avoid 
trivialities we further in the paper assume that 

sr Rr ∈∀> ,0θ .  Since solution to system (75) is 

           ∑
=

−=
mK

j
jmiji dt

1
12

2 ),0max( λλα ,                        (76) 

where matrix ( ) mK

jimijm tT
1,

2
=

=  is inverse to the matrix 

( ) mK

jiijm 1,
2

=
=Θ θ , at the optimum the load is spread over 

feasible routes from groups miGi ,..,1, =  and m  is 

determined by conditions: 12112
~,~ λλλλ >≤ +mm dd .  

Substituting (76) into conditions (73) and (18) results in 
explicit, though elaborate, expressions for Lagrange 
multipliers 1λ  and 2λ .  Thus, the complexity of solving 
optimization problem (72)-(73), (18) lies in inverting matrices 

Mmm ,..,,1, =Θ . 

Once solution )~(dαα = , )~(~~ dθθ =  to optimization 
problem (72)-(73), (18) is found, solution to optimization 
problem (71), (18) is )~( optopt dαα = , where optd~  and 

opt
sD , solve the following optimization problem: 

                  
)~(~21

~
min~

~
*

d

dD
ds

θγ−
=                               (77) 

subject to constraint  
                              Mddd ~~~

1 ≤≤                                       (78) 
It can be shown that (76)-(77) is a convex optimization 
problem, which can be solved by fixed points as follows: 

                           
γθλ

γθ
1

22~ −=d                                        

where 1λ  is the Lagrange multiplier in (74).  It is also 
possible to show existence of M  constants 
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           1..0 1210

def

MM

def
=≤≤≤≤<= +ηηηηη          (79) 

such that if ),[ˆ 1
*

mms ηηγγ −∈  then mi Ki ,..,1,0* =>α  

and KKi mi ,..,1,0* +==α .  Once optimal load split is 

identified, the redundancy factor is given by (20) and the 
optimal reliable throughput is determined by solution to the 
corresponding individual optimization problem. 

In a case of a user s  concerned only with the average 
throughput: 0→sγ , solution to (71)-(18) sends entire traffic 

on minimum cost routes 1Gr ∈ .  If there are several 

minimum cost routes: 2dim 1 ≥G , a situation of minimum 
equal cost multipath arises.  The optimal load split among 
minimum cost routes 1Gr ∈  is 

       

otherwise

Kkiftt

k

K

j
kj

K

ji
ijk

0

,..,1 1
1

2
1

1

1,

2
1

11

=

=







= ∑∑

=

−

=

α

α
              (80) 

and the redundancy factor is 1=ω .  In another extreme case 
of very reliability sensitive user s : 0ˆ* −→ sγγ , the optimal 

load split among feasible routes sRr ∈  is given by (25), and 
redundancy factor is given by (20). 
 

B. Users Adjusting Willingness to Pay for QoS 
We assume that user s  is charged for service ),( γµ  a 

price proportional to the reliable throughput µ  

                             µss pP =                                              (81) 

where rate sp  is some increasing functions of the reliability 

exponent γ .  Given service ),( γµ  and price structure (81), 
user s  (a) determines and communicates to the IntPlane its 
willingness to pay for the service sww = , where 

               ( ){ }wpwUw ssws −=
≥

γ,maxarg
0

                 (82) 

and (b) estimates and communicates to the IntPlane the 
relative importance of its competing requirements for the 
reliable throughput µ  and reliability exponent γ  quantified 
by its relative marginal utility 

                         
µγ

γµ
∂

∂
∂

∂
= ss

s
UU

g ),(                        (83) 

 Based on this information and being aware of the network 
properties quantified by matrix Θ , the IntPlane performs the 
following tasks: (a) maximizes user s  utility ),( γµsU , 

given bandwidth vector sX~ , as follows: 

          [ ]{ }
sXssssss gk ~),(1 µγγµµ ∂∂+=&                (84) 

where 0>k  is some constant, and (b) allocates portions 

                            
sr

s

s

sr
sr x

x
~

~

∂
∂

=
µ

µ
π                                      (85) 

of user s  payment (82) to “pay” for the route sRr ∈  
bandwidths, where the reliable throughput is 
                       γσµ 2~

sss x −= .                                  (86) 
Combining (85) with (86) we obtain 

                  ( )
s

sr
srsrsr

x
x

µ
σθγπ

~
~21 12 −−=                       (87) 

It is easy to verify that 

                          1~
~1 ≡

∂
∂∑

∈ sRr sr

s
sr

s x
x

µ
µ

                                (88) 

and thus the proposed payment scheme is proportionally fair 
[2]-[3].  Once payments srssr ww π=  are identified, the flow 

vector )~(~
srxX =  is adjusted by a “TCP-type” load 

allocation algorithm (62). 
Consider a particular situation, when (a) relaxation of the 

user level parameters (84) is much faster than relaxation of the 
allocated bandwidths (62), i.e., kk ~>>  and thus: 

            0
~

≡







∂
∂

+







∂
∂









∂
∂

sss
s

s

Xs

s

s

s UU

µγ γγ
µ

µ
,                (89) 

(b) each user s  instantaneously adjusts and informs the 
IntPlane on its willingness to pay rw  (82): 

                               
µ

µ
∂

∂
= s

ss
U

w                                     (90) 

(c) the IntPlane instantaneously allocates each user s  
payment (90) into payments srssr ww π=  for the bandwidths 

on specific routes sRr ∈ . 
Consider rate of change of the social welfare (39) with 

time: 

               ∑ 







∂
∂+

∂
∂=

s
s

s
s

s

WWW γ
γ

µ
µ

&&&                           (91) 

Due to our assumptions 
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s Rr

r
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sr
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d
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−
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∂
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=
µ

µ
&       (92) 

where 

                     
sr

s

s

s
srsr x

U
xw ~
~

∂
∂

∂
∂

=
µ

µ
                                   (93) 

Substituting (86) and (93) into (92) we obtain that the 
proposed adaptation algorithm increases the social welfare: 

              0~
~

2

≥







−

∂
∂

∂
∂

=∑∑
∈

sr
s Rr

r
sr

s

s

s xd
x

U
W

s

µ
µ

&           (94) 

and in a convex case maximizes the social welfare. 
Note that proportional fairness of this scheme is a result of 

property (88) of approximation (10).  For more general trade-
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offs than (10) property (88) may not hold, and thus ensuring 
of the proportional fairness may require more complicated 
pricing structure than (81). 
 

VI. EXAMPLES AND IMPLICATIONS 
Subsection A looks at benefits of multi-path routing.  
Subsection B considers a case of feasible routes without 
overlapping links. 

 

A. Benefits of Multi-path Routing  
In a case of a single-path routing, when user traffic must be 

routed on a single path, the optimal route and the 
corresponding price of a unit of the reliable throughput under 
approximation (10) are determined by solution to the 
following optimization problem 
                          )(min)(* γγ rRrr DD

ss ∈
=                               (95) 

where the price of a unit of the reliable throughput on a route 
r  is 

                         
γθ

γ
21

)(
r

r
r

d
D

−
=                               (96) 

Figure 7 sketches the price of a unit of the reliable throughput 
on a fixed route (96), the price of optimal single-route 
implementation (95) (fat curve), and the price of optimal 
implementation using multipath routing (71) as functions of 
the reliability parameter γ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.  Price of a unit of the reliable throughput 
 
Figure 7 assumes a typical situation, when higher quality 
routes are more congested due to higher demand: 

321 rrr ddd << , while 
321 rrr θθθ >> .  In a case of a 

single-path routing, when user reliability requirements for γ  

are low, the least congested, low quality route 1r  should be 
used.  As user reliability requirements increase, the user traffic 
should be carried on more congested, higher quality route 2r .  
As user reliability requirements keep increasing, the user 
traffic should be shifted to the most congested route 3r  having 
the highest quality.  Sufficiently high user reliability 
requirements cannot be met with a single-path routing.   

Since, according to (95)-(96), maximal reliability exponent 
user s  can achieve with a single path routing is 
                          2* max)21( −

∈
= rRrs

s

θγ( ,                                     (97) 

it follows from (31) that this user can increase its reliability 
exponent with multi-path routing without overlapping links up 
to 

                 1min 22 >







=Γ

∈∈

−∑ rRrRr
rs

s
s

θθ                            (98) 

times.  Gain (98) increases with increase in the routing 
diversity.  Beneficial effect of multi-path routing on load 
balancing manifests itself in reduction of the average price of 
the unit of reliable throughput.  Generally, this beneficial 
effect increases with increase in the user reliability 
requirements.  Note that multi-path routing does not have 
beneficial effect for a user not concerned with reliability 

)0( =γ , since in this case optimal implementation is based 
on the minimum congestion cost routing. 

To get feeling of equal cost multi-path routing consider a 
network shown on Figure 8. 
 
 
 
 
 
 
 
 
 
Fig. 8.  Network topology 
 
The network has three feasible routes )3,2,1(1 =r , 

)3,2,4,1(2 =r , and )3,5,1(3 =r  with the same congestion 

costs: dddd === 321 , and matrix 

                    
















=Θ
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22

22

00
0
0

θ
θχθ
χθθ

                            (99) 

where parameter ]1,0[∈χ  characterizes overlapping 

between routes 1r  and 2r .  In this case the optimal load split 
(80) is as follows: 

                 
χ

αα
+

==
3

1
21 , 

χ
χα

+
+=

3
1

3                     

If 0=χ , i.e., equal cost routes 1r , 2r  and 3r  do not 
overlap, the optimal allocation splits load equally among these 
three routes: 31321 === ααα .  If 1=χ , i.e., matrix 
(99) describes a network with just two equal cost routes 

21 rrr ≡≡  and 3r , the optimal loads allocation splits load 

equally among these two routes: 213 ==αα r . 
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B. A Case of Routes without Overlapping Links 
To illustrate our results, consider a case of K  feasible routes 
without overlapping links: ( )22

2
2

1 ,..,, Kdiag θθθ=Θ , where 

without loss of generality we assume that Kθθθ ≥≥ 21 , i.e., 

route 1r  has lower quality than route jr  if Kji ≤<≤1 .  

Figure 9 sketches the phase diagram, given the route costs 

kd , 2,1=k  and reliability exponent γ  in a case of 2=K  
feasible routes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9.  Optimal route mixture, given route costs 
 
This diagram shows three qualitatively different region with 
respect to the optimal route mixture ),( 21 αα , where kα  is 

the portion of the user traffic to be routed on path kr , given 

route relative congestion costs 21 dd  and user reliability 

requirements γ .  In the region 0,1 21 == αα  entire user 

traffic should be sent over route 1r .  In the region 

1,0 21 == αα  entire user traffic should be sent over route 

2r .  In the region 1,0 21 << αα  user traffic should be split 

between routes 1r  and 2r .  Note that after some 
enhancements this model can be used to describe a situation of 
a soft handoff.  Also note that the part of Figure 9, where 

121 ≤dd  represents a typical situation when lower quality 
route is less congested. 

It is instructive to analyze the optimal route mixture as user 
reliability requirements γ  or relative route congestion  cost 

21 dd  changes.  Not reliability conscious user should use 
the minimum cost route.  As user reliability requirements γ  
increase, multi-path routing becomes preferable until upper 
bound (28) is reached.  Consider change in optimal 
connectivity as low quality route 1r  becomes more congested, 

i.e., as 21 dd increases from zero to infinity.  In this case 
optimal connectivity for not reliability sensitive user should 
change from single route 1r  to multi-path routing U 21 rr , 

and eventually to single high quality, less congested route 2r .  
Connectivity for moderately reliability sensitive user should 

change from multi-path routing U 21 rr  to single route 2r  

since low quality route 1r  alone cannot provide required 
transmission reliability.  Highly reliability sensitive user 
should be always connected over both routes: 1r  and 2r , 
since neither route alone can guarantee required transmission 
reliability.  Generalization to case of an arbitrary number of 
feasible routes without overlapping links is straightforward. 

Figures 10 sketches the phase diagram with respect to the 
optimal route mixture, given the average route capacities kc~ , 

Kk ,..,1=  and service parameters ),( γµ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10.  Optimal route mixture, given route capacities. 
 
Figure 10 assumes a typical situation when lower quality 
routes have higher capacity: Kcc ~..~

1 >> .  In the region 

}0..;0,..,:,( 11 ===>= + KkkkA ααααγµ  routes 

krr ,..,1  are utilized while routes Kk rr ,..,1+  are not.  As 

service requirements ),( γµ  become more demanding, lower 
capacity, and thus more expensive, routes are utilized.  Upper-
right border of the region kA  also represents service 

requirements ),( γµ  having the same congestion cost.  In a 
case of penalty function (40), the link l  cost is 

2)~~(~
llll yccd −= , where the average link load is ly~ , and 

thus, the upper-right border of the region kA  represents 

service requirements ),( γµ  resulting in the same average 

delay on route 1+kr : 1
~1 += kcT  if 1,..,1 −= Kk , and 

∞=T  if Kk = . 

VII. CONCLUSION 
This paper has proposed a framework for aggregate utility 

maximization in a distributed environment, where utilities are 
expressed in terms of application-level requirements.  The 
framework assumes presence of the Intelligent Plane, which 
isolates users from the network layer.  Numerous issues 
deserve further investigation, including the following:  (a) 
Stability in presence of delays in feedback loops. (b) 
Implications of possibility that in non-steady regime some 
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srπ  in (87) may be negative: 0<srπ , meaning that certain 
routes receive negative “payments” for offering their 
bandwidth.  This situation may cause difficulties, especially if 
different routes represent different autonomous systems and 
payments are associated with real funds.  Even if payments do 
not represent real funds and willingness to pay is simply a 
protocol parameter controlled by the user, an interesting 
question is whether a user can benefit by keeping the system 
from reaching an equilibrium.  (c) Property (88) ensures that 
pricing structure (81) results in proportionally fair resource 
allocation.  Property (88) is a result of approximation (10) and 
may not hold in other situations, e.g., for a link failure model, 
when more sophisticated pricing schemes may be required to 
ensure proportional fairness [15]-[16].  (d) Possible 
generalization to a case when users are not only “buyers” but 
also “sellers” of the limited resources, such as in a case of a 
wireless multi-hop network, when intermediate nodes may 
expend their battery energy for relaying other users’ traffic 
[17]-[18]. 
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