

NISTIR 7210

Conformance Testing of the Government Smart Card

Elizabeth Fong
Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg MD 20899

February 2005

U.S. Department of Commerce
Technology Administration

National Institute of Standards and Technology

Conformance Testing of the Government Smart Card

Elizabeth Fong
National Institute of Standards and Technology

Information Technology Laboratory
Software Diagnostic and Conformance Testing Division

ABSTRACT

A conformance test suite helps to ensure consistency between a specification and the
behavior of a product. This paper presents the conformance testing methodology for the
Government Smart Card Interoperability Specification. It starts with some basic
terminology in the area of testing and discusses a methodology on how to design
conformance test. The test strategy used for the design of this conformance test suite
uses the eXtended Markup Language (XML) which is a declarative, implementation-
neutral markup language. Finally, the paper explores the benefits and limitations with the
conformance testing approach for the Government Smart Card Interoperability
Specification.

KEY WORDS: Conformance testing, smart card, specification, test assertions, test
suite, XML.

ACKNOWLEDGEMENTS

NIST Computer Security Division (CSD) has the lead for developing technical
interoperability and security standards for smart cards for use in the US Government.
CSD asked Software Diagnostics and Conformance Testing Division (SDCT) to partner
with them to create conformance testing program. Barbara Guttman, manager of
Interoperability Group provided technical direction to this project. I thanked my team
members, Alan Goldfine and Eric Dalci for their contributions, without which, this
project will not be successful.

 -ii-

TABLE OF CONTENTS

1. INTRODUCTION .. 2

2. CONFORMANCE TESTING AND RELATED TERMINOLOGY................... 2

3. COMPONENTS OF CONFORMANCE TESTING... 3

3.1 CONFORMANCE CLAUSE ... 3
3.2 VALIDATION AND CERTIFICATION PROCESS .. 4
3.3 EXECUTABLE TEST SUITE ... 4

4. CONFORMANCE TEST SUITE DESIGN METHODOLOGIES...................... 4
4.1 TEST SUITE DESIGN ... 6
4.2 TEST DEVELOPMENT.. 6
4.3 TEST REPORT OUTPUT ... 7

5. ARCHITECTURE OF GSC-IS... 7

5.1 CONFORMANCE REQUIREMENTS FOR GSC-IS ... 9
5.1.1 Requirements at the BSI Interface.. 9
5.1.2 Requirements at the Virtual Card Edge Interface Level 10
5.1.3 Requirements for Conformant Government Smart Cards................. 10

6. DESIGN OF THE CONFORMANCE TEST SUITE ... 10
6.1 .. 11CONFORMANCE TESTING SYSTEM
6.2 CONFORMANCE TEST CODE ... 11
6.3 CONFORMANCE TEST SUITE REPORTS .. 12

7 ASSESSMENT OF THE TEST SUITE.. 13

8 CONCLUDING REMARKS ... 14

9 REFERENCES.. 15

APPENDIX A.. 17

APPENDIX B .. 22

 -iii-

DISCLAIMER

Certain commercial software products and companies are identified in this report for
purposes of specific illustration. Such identification does not imply recommendation or
endorsement by NIST, nor does it imply that the products identified are necessarily the
best ones available for the purpose.

 -1-

1. Introduction

Smart cards have been used throughout the world in a variety of applications. The US
Government has been trying to use smart cards to improve security efficiency for a long time.
The Administration wants to adopt ‘smart card’ technology so that, ultimately, every Federal
employee will be able to use one card for a wide range of purposes, including travel, small
purchases, and building access. Smart cards are also an important part in the implementation
of the Homeland Security Presidential Directive (HSPD) #12 “Policy for a Common
Identification Standard for Federal Employees and Contractors,” Aug, 2004

In 1999, the National Institute of Standards and Technology (NIST) agreed to lead
development of specifications and standards related to the Government Smart Card program.
A General Services Administration (GSA) Smart Access Common ID Contract was awarded
in 2000. This effort has resulted in the publication of the Government Smart Card
Interoperability Specification (GSC-IS).

Since specifications are typically written in narrative form, they can often be ambiguous and
subject to interpretations. To ensure that implementations faithfully adhere to the
specifications, it is necessary to have conformance tests that methodically compare the
implementation results against the syntax (the structure) and semantics (the intent) contained
in the specification.

In 2001, NIST Software Diagnostics and Conformance Testing Division was tasked to
develop a comprehensive Government smart card conformance testing program. The GSC-
IS was revised and resulted in GSC-IS Version 2.1 published in July 2003 as NISTIR 6887
[1]. This version was used as basis for the development of a conformance testing program.

The purpose of this paper is to present the conformance testing program for the GSC-IS
Version 2.1. We begin with some basic terminology and methodology on how to do
conformance testing. We then describe our approach to the design of the conformance
testing architecture of the Government Smart Card Interoperability Specification.

2. CONFORMANCE TESTING AND RELATED

TERMINOLOGY

The term “testing” is used in the general sense of finding errors, but in the broad sense,
testing means the activity of evaluating operational software products.

Software testing is the technical operation that determines whether a given software system
works or contains errors. There are many types of software testing [2,3,4,5]. This paper
only addresses the conformance test methodology.

Conformance testing activities assess whether a software product meets the requirements of
a particular specification or standard. To do conformance testing, there must be a written
specification or a standard. The specification must contains conformance clauses, that is a

 -2-

section of a specification that states all the requirements or criteria that must be satisfied for
an implementation to claim conformance to the specification. Therefore, conformance
testing is the process of determining whether or not an implementation exhibits deviations
from the specification.

Interoperability testing activities assesses whether a software product will exchange and
share information (interoperate) with other products. Conformance testing facilitates
interoperability between various products by confirming that each product meets an agreed-
upon standard or specification. Therefore, when two implementations of a given
specification behave the same to client applications, then the two implementations can
interoperate. However, interoperability does not necessarily mean that an implementation is
conformant. Two implementations may interoperate while both being non-conformant with
the specification. Also, they may be conformant and not interoperate if the specification or
standard is not sufficiently detailed.

Validation is the result of evaluating a product and seeing that it meets the requirements as
stated in the specification.

Certification is a formal validation program with the establishment of a certificate authority
to issue a certificate to the organization whose implementation was tested. The certificate
denotes an acknowledgement that a validation has been completed and the criteria
established by the certifying organization have been met.

Accreditation is the procedure by which an authoritative body gives formal recognition that
an organization or person is competent to carry out validation.

3. COMPONENTS OF CONFORMANCE TESTING

A conformance testing program usually includes the following components:

- A standard or a specification which includes conformance clauses,
- A validation and certification process, and
- An executable test suite.

 3.1 Conformance Clause

The conformance clause of a standard or a specification is a high-level description of what is
required of implementations to be considered in conformance with the specification. The
conformance clause may specify minimal requirements for certain functions and may specify
the permissibility of extensions, options, and alternative approaches and how they are to be
handled.

The conformance clause appears in Section 1.3 of the GSC-IS Version 2.1 [1], and this forms
the basic requirements for the development of the GSC conformance test suite.

 -3-

3.2 Validation and Certification Process

Government smart card buyers need to be confident that they are procuring smart cards that
conform to the GSC-IS. Smart card vendors, in order to provide certified products must
submit their implementations to a conformance testing process and earn a certificate of
conformance.

The validation and certification process is the agreed-upon process whereby buyer and seller
can get the product validated. There are varying degrees of formality in the formulation of
the validation program. The most informal of programs occurs when implementers self-test
with publicly availably test suites. This is now becoming a common approach in today’s
internet-time environment. The most formal validation program requires independent, third-
party testing by nationally accredited testing laboratories.

For the Government smart card validation and certification process, we recommended a
framework involving the following roles:

- Testing Laboratory
- Certification Authority
- Certificate Issuer
- Control Board

These roles and a recommendation of establishing a validation and certification process for
the GSC-IS appeared in [6] and will not be repeated in this paper.

3.3 Executable Test Suite

An executable test suite is the software, consisting of code and data, to be executed on the
implementation under test (IUT). The approach for the development of the GSC-IS Version
2.1 test suites is described in this paper.

Together with the test suite, there must also be procedures for describing how the test is to be
done and the instructions for the tester to follow. The procedures should be detailed enough
so that testing of a given implementation can be repeated with no change in test results. The
procedures should also contain information on what must be done when failures occur.

4. CONFORMANCE TEST SUITE DESIGN

METHODOLOGIES

The design of conformance test approach must first consider the nature of the conformance
points. If the conformance points are specified at the interface level, such as application
programming interface (API), the design of test requires invoking a call with the API
command and checking for the behavior of implementation under test. If the conformance
points are defined as finite state machine or event-driven interaction, the design of the test

 -4-

requires testing for each state and the transitions for each state. The GSC-IS Version 2.1
defines conformance at the API level.

The sequence of steps in the development of the conformance test suite typically consists of
the following. These are the steps used for the design of GSC-IS Version 2.1.

- The first step is to identify the series of requirements for conformance testing
based upon the conformance clauses in the specification. In other words,
requirements are statements of what the IUT must do or must not do.

- Each requirement translates into one or more test assertions, sometimes called

abstract test specifications. Each test assertion typically states that if the IUT is in
a particular start state, a specified atomic action is performed to the
implementation under test, and the IUT must produce the expected result(s) as
passing the test, else the IUT fails this assertion.

- To implement the test assertion, a test scenario or test script that describes the

sequence of test steps to perform a test must be generated. The test sequencing
generally consists of a start state condition(s), the instantiation action(s) to be
performed, and the verification action(s), if any, to check after the action is
executed. Each test scenario will generate one or more test cases.

- The test case is a single function to be tested such that the implementation under

test must yield a pass/fail answer.

- All of the test cases are grouped logically into a complete executable test suite.

The test suite can be executed upon the particular hardware/software platform,
which the implementation under test could be accepted, and generate an
observable output.

- A test reporting capability is an important element of the conformance test

design. A good test result report should have easy to read and uniform headings.
Typically, the test report should contain a header section listing the test
environment in which the test was done and a repetitious section that lists each
test case executed.

- Finally, for ease of testing, a test driver or test harness can be provided. The

test harness typically includes a user interface, a sequentially automatic execution
scripts, an automatic matching for expected results, and a pass/fail test report.

The above-described methodology for developing conformance test suite can be adjusted to
tailor to a particular type of software domain that is being tested. Using the scenario test
sequencing approach, one important factor is that there is an assumption that the pre-
condition test must work before the actual instantiation test could be issued. Therefore, the
ordering of test and some temporal mechanisms must be considered.

 -5-

4.1 Test Suite Design

Test suite design is the process of detailing the overall test approach. In the case of
Government Smart Card conformance testing, the conforming criteria are described in the
form of application programming interface (API). API testing requires that the IUT must
recognize the program call, behaves accordingly in order to perform the required actions, and
produce a result. This type of testing, sometimes referred to as “black box” testing [7],
involves exercising the IUT with an API call. This means that the IUT is treated as a black-
box and its internal structure or source code of the implementation is not examined. The test
only tests the external functionality of an implementation – how the implementation appears
to client applications.

The “Falsification Testing” approach is also used for the GSC-IS Version 2.1 conformance
testing. This means that the test assertions are designed as a collection of valid and invalid
inputs to the implementation under tested. The first test case is a call to the IUT with valid
parameters, and subsequent calls to the IUT consists of combinations and permutations of
invalid inputs with the purpose to demonstrate that the IUT indeed produced the expected
error code. For each valid and invalid call, the corresponding “expected results” are known
and these expected results are compared with the outputs from the IUT to determine a
pass/fail test result.

It is generally accepted that designing exhaustive test cases to cover every single legal or
illegal cases can be prohibitively expensive, therefore, the Government Smart Card
conformance test suite are designed with “reasonable” amount of test coverage.

A good conformance test design should also have the following attributes:

- Atomicity. Each test assertion only contains a single, independent purpose.

- Repeatability. Every test assertion can be executed repeatedly and produce the

same result.

- Tracebility. Every test assertion can be trace back to a single requirement in the
specification.

4.2 Test Development

Developing conformance testing code can be very time consuming and expensive. There are
many test tools in the marketplace aimed at various types of tests [2]. There are also some
tools that can automatically generate test code [8, 9]. The disadvantage of these automated
tools are that they require the test assertions to be written in formal languages, and the
generated test code is sometimes superfluous.

The approach for the development of the GSC-IS Version 2.1 conformance test is the use of
eXtended Markup Language (XML) [10]. The test scenarios were first developed in
narrative form. These test scenarios were then translated into well-defined and modular

 -6-

XML format, producing the actual test cases. Each test case is coded in XML in accordance
with the corresponding Document Type Definition. An example of the XML for GSC-IS
Version 2.1 appears in Appendix A.

The XML files are parsed using JDOM [11], which is a Java API that can read or write
XML. The execution of the test cases extracts data from XML, calls the command, and
produces the output as HTML test reports.

4.3 Test Report Output

Typically, the test report should contain a header section listing the specific environment in
which the test was done. This includes information such as date and place the test is
conducted, the name of the operator who executed the test, the hardware, software, OS, the
name of the IUT. In the case of the smart card test, the card reader name and the
smart card identifier are all listed. The test report also must contain a repetitious section, one
for each test case, with a test case number corresponding to the test case definition. The
repetitious section should contain a narrative description and purpose or this test, the actual
test actions to be performed and the input data values. Most importantly, the test report
should list the expected returned codes and expected return values. The report should also
list the tested returned codes and returned data values. For the GSC-IS Version 2.1, the test
statuses consisting either pass or fail indictor, is given in color green or red. If the test
cannot be completed, the test status will be shown in yellow. A narrative assessment or
analysis of this test is produced. Depending upon the type of test, it is sometimes necessary
to provide test log files.

The GSC-IS Version 2.1 test report is produced in HTML format. An example of the HTML
test report for the GSC-IS Version 2.1 appears in Appendix B,

5. ARCHITECTURE OF GSC-IS

This portion of the paper describes the requirements for conformance for the Government
Smart Card and the design of the conformance test suite including the XML approach.

The Government Smart Card Interoperability Specification Version 2.1 describes an
architectural model (See Figure 1). The following components are discussed.

 -7-

Client

Basic Services Interface (BSI) Extended Service Interface(s) (XSI)

Virtual Card Edge Interface (VCEI)

riverCard Reader D

Card Reader

GS -IS Compliant Smart

Data Model Object (DMO)

Card Capabilities Container
(CCC)

Host
PC

Client

Basic Services Interface (BSI) Extended Service Interface(s) (XSI)

Virtual Card Edge Interface (VCEI)

riverCard Reader D

Card Reader

-GSC-IS Compliant Smart Card

Data Model Object (DMO)Data Model Object (DMO)

Card Capabilities Container
(CCC)

Host
PC

Smart
Card

Card
Reader

Service
Provider
Software

(SPS)

Service
Provider
Module
(SPM)

Figure 1 – GSC-IS Version 2.1 Architectural Model

• The Basic Services Interface (BSI) is a core set of smart card services at the
Application Programming Interface (API) layer between client applications and the
smart card service provider modules.

• The Extended Services Interface (XSI) which defines additional API functions

specific to particular implementations. These additional functions are optional
features and are outside of the scope of the conformance requirements.

• The Virtual Card Edge Interface (VCEI) defines from ISO 7816 sets of Application
Protocol Data Units (APDUs). The ADPUs are commands sent and received from the
card. These sets of ADPUs support two types of smart cards: file system cards and
Java virtual machine smart cards.

• The Card Capabilities Container (CCC) is one of the required containers. The purpose

of the CCC is to describe the differences between a card’s native APDU set and the set
defined in the GSC-IS.

 -8-

• The GSC Data Model object defines the user data, such as name and social security
number, etc. It consists of a set of containers and associated data elements. The GSC-
IS Version 2.1 defines two data models and expects future data models to be added.
For GSC-IS Version 2.1, the conformant card may implement all, some or none of the
data models. However, if the smart card uses any of the data elements defined in
either data model then it must use the container and the format specified by the data
model for that element.

5.1 Conformance Requirements for GSC-IS Version 2.1

The mandatory conformance requirements for implementations of the GSC-IS Version 2.1
are defined at two levels: the service call level and the card command (APDU) level. The
mandatory requirement for the CCC is that it must exist in a specified location and can be
retrieved using a standard procedure. The data model and the extended service interface are
optional features and are not included in the conformance test.

The service call level is concerned with functional calls required to obtain various services
from the card. The GSC-IS Version 2.1 addresses interoperability at this level by defining
the Basic Service Interface (BSI) API.

The card command level is concerned with the exact APDUs that are sent to the card to
obtain the requested service. The GSC-IS Version 2.1 addresses interoperability at this level
by defining the Virtual Card Edge Interface. The VCEI consists of a card-independent,
standard set of APDUs implemented by the Service Provider Module. The smart card
themselves include the mandatory container called Card Capability Container (CCC). The
CCC is a file that contains rules and procedures for translating between the smart card's
native APDU set and the standard APDU set defined by the VCEI.

The complete conformance requirements for Government smart cards consist of four separate
test suites: conformance test suites at the BSI level for the Java and C bindings, and test
suites at the VCEI level for file system and virtual machine cards.

5.1.1 Requirements at the BSI Interface

The Basic Services Interface is a high level API specifying standard smart card services that
can be used by client applications. The BSI defines 23 functions grouped into three
functional modules: the utility provider module, the generic container provider module, and
the cryptographic provider module.

The BSI, as specified in GSC-IS Version 2.1, has two programming language bindings: C
and Java. The conforming IUT must support at least one of the language binding.

Conformance testing requirements for the BSI are:

 -9-

• All GSC-IS conformant Service Provider Modules (SPM) must accept each of the
defined BSI function calls.

• BSI functions exposed by the SPM must be callable from external applications.

• For every conformance test scenario, the SPM will behave correctly. That is, the SPM

must give the expected results regarding access to and data on the smart card, and
return the proper return code, as specified in the GSC-IS.

5.1.2 Requirements at the Virtual Card Edge Interface Level

The Virtual Card Edge Interface (VCEI) is a lower-level, APDU interface between an SPM
and a smart card. The GSC-IS Version 2.1 specifies two sets of default APDU commands,
each of which, for the most part, conforms to the ISO 7816-4 protocol for the formatting of
APDU commands. These two sets are referred as File System (FS) or Virtual Machine (VM)
APDU sets. Any differences between a vendor’s native APDU set and the GSC-IS Version
2.1 default APDU set are accommodated by the rules and procedures documented in the
mandatory Card Capability Container.

The conforming IUT must support both sets of APDU level commands, the file system
APDU set and the virtual machine APDU set.

5.1.3 Requirements for Conformant Government Smart Cards

The complete requirements for a GSC-IS Version 2.1 conformant card are:

• The card must have a Card Capability Container whose address is known and contains
data and structure as defined in Chapter 6 of the GSC-IS Version 2.1. The
conformance test suite tests for the existence of the CCC.

• The card service provider module must implement the BSI with at least one of the

language bindings, C or Java.

• The card must support the VCEI that defines default sets of interoperable APDU level
commands for both files system and virtual machine Java cards.

6. DESIGN OF THE CONFORMANCE TEST SUITE

Based upon the above requirements for interoperability, a GSC-IS Version 2.1
implementation must be tested for conformance at both the BSI and VCEI levels. The GSC-
IS Version 2.1 describes the BSI with two language bindings, Java and C and the VCEI
supports two types of cards, file system and virtual machine cards. The complete GSC-IS
Version 2.1 conformance test suite consists of 4 separate modules.

 -10-

6.1 Conformance Testing System

Conformance test systems have been developed for both the C and Java BSI bindings.
For each of C or Java, there are 23 sets of BSI functions, corresponding to the 23 commands
defined in the GSC-IS Version 2.1. Each BSI function test assertion is defined in narrative
form. Each assertion is a statement of the behavior expected of the candidate
implementation as it processes the respective command under different conditions. The test
assertions are combined together to produce test scenarios that are also written in narrative
form [12,13,14,15]. The scenario consists of:

• a starting state,

• a function (C) or method (Java) call with a set of generic legal or illegal input
parameters, and

• the return code, generic return values, and return conditions that are anticipated of the

candidate implementation, based on the input parameters.

Similarly, the Application Protocol Data Unit (APDU) test assertions, defined for file system
cards and for virtual machine Java cards, are written in narrative form. These APDU test
assertions are combined together to produce test scenarios that are also written in narrative
form [16,17,18.19].

Each test scenario is then coded in XML and validated with the corresponding document type
definition (DTD).

6.2 Conformance Test Code

The well-defined and modular XML files are centered on a method call to the BSI
implementation being tested, or an APDU call to the VCEI implementation being tested.
Each test case is fully defined using XML tags which are defined by the DTD, such as
“parameters”, “expected results”, etc.

A test program (Executer) was written in Java to do the parsing (data extraction from the
XML files), the execution of the test cases, and the output of the results as HTML test
reports.

When a test case is executed, the observed results are compared with the expected results.
For example, if a bad card handle is given as input to a method, it is expected that the method
will reply with the response code BSI_BAD_HANDLE.

The HTML output indicates the status of each test case (passed, failed, undetermined).

The following figure illustrates the architecture described in this document.

 -11-

Automatically generated

XML parsing

Test assertions in narrative

Test scenarios in XML

Java program (Test case executer):
- Parsing, Command call, Evaluation of

Results and Built HTML output

JDOM Java API (pluggable JARs file)

Test results in HTML form

Test scenarios in narrative

Automatic step

Manually coded

Methods
Calls Implementation

under test (JARs
files)

Figure 2 – GSC-IS Version 2.1 Conformance Test Architectural Model

6.3 Conformance Test Suite Reports

The test reports for the four test suites (C binding, Java binding, file system and virtual
machine) are each constructed using HTML format. Each report contains a header
information section specifying the software and hardware platform upon which the suite was
executed, identification of the card reader and tested card, the date, and the name of the test
operator. The body of the report consists of an account of the execution of each test case.
For each test case,

• starting conditions and input parameters

• expected return codes and values, and

 -12-

• the actual codes and values returned by the candidate implementation are noted. If the
actual results are the same as the expected ones, the implementation is considered to
have passed the test case, and a "test passed" notice is highlighted in green.
Otherwise, the implementation is considered to have failed, and a "test failed" notice is
highlighted in red.

In some cases, the test cannot be completed because the start state cannot be accomplished.
Those tests notices are highlighted in yellow.

In some cases, the return code is the expected return code, however, the value of the test
result requires a visual inspection to check whether the return value is correct. In this case,
the test result gives an “inspection” icon to alert the tester for visual inspection.

7 ASSESSMENT OF THE TEST SUITE

This section assesses how well the use of XML to represent test case definition worked. This
first version of this test suite design used eXtended Style Sheet Language (XSLT) embedded
in the XML to automatically generate source code. This approach worked well with the
generation of test report in HTML; however, the generated test source code was not optimal.
The source code was quite long due to the fact that the source was carrying all the parameters
and value extracting from the XML files with the XSLT engine. It was not easy to design the
code through the XSLT style sheet because the code was mixing C, Java, XSLT and HTML.
The handling of a returned value and comparison with a reference value later in the test flow
was fastidious. The XSLT version was discarded to favor a more natural fit by using JDOM
API with Java code.

The test scenario written in XML has many advantages. The general features with this test
suite design are as follows:

- The test suite architecture is modular. The complete GSC-IS Version 2.1
conformance test suite consists of 4 separate modules. For each module, the
commands are individually executable. For instance, the Basic Service Interface,
Java binding defines 23 methods. Each method can be individually called to
produce a separate test report. This allows for profiles or levels of conformance
to be defined for the specification. The definition of profiles or levels of
conformance levels means defining a subset of a general list of test requirements.
This modular design of the test suite allows for flexibility for users to selectively
assemble commands and produce a custom test report.

- The test scenario is written in eXtended Markup Language (XML). Because

XML is a markup language, it is easy to read and write, thus maintaining the test
code at the XML level is easier than going to the programming code level. XML
also offers consistency because the XML document is validated according to a
structure described by the DTD. The characteristic of well-formedness means
every XML document is type-validated and tag-validated. Finally, XML provides

 -13-

portability because XML is language-independent and platform-independent. It is
easy to move the test suites from one platform to another.

- The test suite is highly configurable. The scope of this test suite ranges from

specifying all valid test scenarios as well as a reasonable number of invalid test
scenarios. The number of test instance for each BSI command averaged around
the number of parameters in the call command together with the number of error
codes associated with this command. The XML tree-structured metadata
declaration makes it easy to add or delete test cases or regroup test cases in
various levels. For example, if one wishes to run only all commands with valid
parameters and create a mini test suite, this can be easily done by selecting the
appropriate portion of the XML code.

8 CONCLUDING REMARKS

This paper presents the general methodology for conformance testing design. Specifically,
this paper presents the conformance testing approach for the Government Smart Card as
specified in the GSC-IS Version 2.1. The application of XML to produce test code provides
a clean and fast development of tests.

 -14-

9 REFERENCES

[1] T. Schwarzhoff, J. Dray, J. Wack, E. Dalci, A. Goldfine, and M. Iorga, “Government

Smart Card Interoperability Specification” Version 2.1, NISTIR 6887, July 16, 2003.

[2] National Institute of Standards and Technology (NIST), “Metrology for Information

Technology,” NISTIR 6025, May 1977.

[3] National Institute of Standards and Technology (NIST), “The Economic Impacts of

Inadequate Infrastructure for Software Testing,” Final Report Prepared for G. Tassey,
Prepared by RTI, RTI Project Number 7007.011, May 2002.

[4] L. Gallagher, J. Offutt, and A. Cincotta, “Integration Testing of Object-Oriented

Components using Finite State Machines,” to appear in Journal on Software Testing,
Verification and Reliability (STVR), Draft submitted publication, March 2001,
Revision resubmitted March 2002, Second revision September 2004.

[5] W. Oberkampf, T. Trucano, and C. Hirsch, “Verificartion, Validation, and Predictive

Capbility in Computational Engineering and Physics, in J. Fong and R. deWit (eds.)
Verification & Validation of Computer Models for Design and Performance
Evaluation of High-Consequence Engineering System. November 2004.

[6] E. Fong, “Conformance Test Framework for Government Smart Card – A White

Paper,” June 2002, http://xw2k.sdct.itl.nist.gov/smartcard/.

[7] B. Beizer, “Black-Box Testing – Techniques for Functional Testing of Software and

Systems,” John Wiley & Sons, Inc. ISBN 0-471-12094-4, 1995.

[8] P. Black, “Automatic Test Generation from Formal Specification,”

http://hissa.nist.gov/~Black/FTG/autotest.html.

[9] Chandramouli, R, Blackburn, M., “Automated Testing of Security Functions

Using a combined Model & Interface-driven Approach" - Proceedings of the
Thirty-Seventh Hawaii International Conference on System Sciences
(HICSS-37), Big Island, HI, January 2004.

[10] Extensible Markup Language (XML) Conformance Test Suites,

http://xw2k.sdct.itl.nist.gov/brady/xml/generate.asp?tech=XML

[11] The JDOM project, http://www.jdom.org.

[12] A. Goldfine,“Government Smart Card Interoperability Specification V2.1 (NISTIR

6887 – 2003 Edition) Basic Services Interface Java Binding Conformance Test
Assertion.” http://xw2k.sdct.itl.nist.gov/smartcard/.

 -15-

http://xw2k.sdct.itl.nist.gov/smartcard/
http://hissa.nist.gov/~Black/FTG/autotest.html
http://xw2k.sdct.itl.nist.gov/brady/xml/generate.asp?tech=XML
http://www.jdom.org/
http://xw2k.sdct.itl.nist.gov/smartcard/

[13] A. Goldfine,“Government Smart Card Interoperability Specifcation V2.1 (NISTIR
6887 – 2003 Edition) Basic Services Interface Java Binding Conformance Test
Instantiation, Verification, and Reporting Scenarios.”
http://xw2k.sdct.itl.nist.gov/smartcard/.

[14] A. Goldfine,“Government Smart Card Interoperability Specification V2.1 (NISTIR

6887 – 2003 Edition) Basic Services Interface C Binding Conformance Test
Assertion.” http://xw2k.sdct.itl.nist.gov/smartcard/.

[15] A. Goldfine,“Government Smart Card Interoperability Specifcation V2.1 (NISTIR

6887 – 2003 Edition) Basic Services Interface C Binding Conformance Test
Instantiation, Verification, and Reporting Scenarios.”
http://xw2k.sdct.itl.nist.gov/smartcard/.

[16] A. Goldfine,“Government Smart Card Interoperability Specification V2.1 (NISTIR

6887 – 2003 Edition) Virtual Card Edge Interface File System Cards Conformance
Test Assertion.” http://xw2k.sdct.itl.nist.gov/smartcard/

[17] A. Goldfine,“Government Smart Card Interoperability Specifcation V2.1 (NISTIR

6887 – 2003 Edition) Virtual Card Edge Interface File System Cards Conformance
Test Instantiation, Verification, and Reporting Scenarios.”
http://xw2k.sdct.itl.nist.gov/smartcard/

[18] A. Goldfine,“Government Smart Card Interoperability Specification V2.1 (NISTIR

6887 – 2003 Edition) Virtual Card Edge Interface Virtual Machine Cards
Conformance Test Assertion.” http://xw2k.sdct.itl.nist.gov/smartcard/

[19] A. Goldfine,“Government Smart Card Interoperability Specifcation V2.1 (NISTIR

6887 – 2003 Edition) Virtual Card Edge Interface, Virtual Machine Cards
Conformance Test Instantiation, Verification, and Reporting Scenarios.”
http://xw2k.sdct.itl.nist.gov/smartcard/

 -16-

http://xw2k.sdct.itl.nist.gov/smartcard/
http://xw2k.sdct.itl.nist.gov/smartcard/
http://xw2k.sdct.itl.nist.gov/smartcard/
http://xw2k.sdct.itl.nist.gov/smartcard/
http://xw2k.sdct.itl.nist.gov/smartcard/
http://xw2k.sdct.itl.nist.gov/smartcard/
http://xw2k.sdct.itl.nist.gov/smartcard/

APPENDIX A

The following Document Type Definition is the schema for XML Java Binding of the BSI
Test Scenario

<!-- August 16, 2004 Elizabeth Fong -->
<!-- This files represents the DTD used to build the XML Test Scenario for the Java Binding of the
BSI -->
<!-- DTD start -->
<!ELEMENT test-method (method+)>
<!ELEMENT method (description+, reference+, BSI-definition, assertions+)>
<!ATTLIST method
 method-name CDATA #REQUIRED
 number CDATA #REQUIRED
>
<!--the attribute "number" is a reference number for parameter naming -->
<!ELEMENT description (#PCDATA)>
<!ELEMENT reference (#PCDATA)>
<!ELEMENT BSI-definition (commandBSI+)>
<!ELEMENT commandBSI (#PCDATA)>
<!ELEMENT assertions (purpose, parameters*, sequenceBSI*)>
<!ATTLIST assertions
 id CDATA #REQUIRED
 test CDATA #IMPLIED
>
<!-- the attribute "test" gives an optional information about the assertion -->
<!ELEMENT purpose (#PCDATA)>
<!ELEMENT parameters ANY>
<!ATTLIST parameters
 way (IN | OUT) #REQUIRED
 type CDATA #REQUIRED
 pname CDATA #REQUIRED
>
<!-- "pname" is the parameter's name -->
<!ELEMENT sequenceBSI (BSIset+)>
<!ELEMENT BSIset (test-type-description, local-param*, method-call, expected-results*, print*)>
<!ATTLIST BSIset
 caseNo CDATA #REQUIRED
 testType (CON | PRE | INST | TEXT | OTH | VER | END | DISC) #REQUIRED
 opMode (REPEAT | PAUSE | PAUSE_BAD_CARD_REQUIRED) #IMPLIED
>
<!-- testType :
 CON : Smart card Connection call
 PRE : Precondition call
 INST : Instanciation call
 TEXT : Extended error text call
 OTH : Other call (used for intermediate calls)
 VER : Verification call
 END : End call ("clean up" calls)
 DISC : Smart card Disconnection call
-->
<!-- opMode :

 -17-

 REPEAT : indicates that the call should be repeated a few times (e.g PIN blocking)
 PAUSE : indicates that the test should pause and get the tester's input.
 PAUSE_BAD_CARD_REQUIRED: indicate that the test should pause and require the insertion of
a bad card
-->
<!ELEMENT test-type-description (#PCDATA)>
<!ELEMENT local-param ANY>
<!ATTLIST local-param
 way (IN | OUT) #REQUIRED
 type CDATA #REQUIRED
 pname CDATA #REQUIRED
>
<!ELEMENT method-call (BSIset-param*)>
<!ATTLIST method-call
 method-name (gscBsiUtilAcquireContext | gscBsiUtilConnect | gscBsiUtilDisconnect |
gscBsiUtilBeginTransaction | gscBsiUtilEndTransaction | gscBsiUtilGetVersion |
gscBsiUtilGetCardProperties | gscBsiUtilGetCardStatus | gscBsiUtilGetExtendedErrorText |
gscBsiUtilGetReaderList | gscBsiUtilPassthru | gscBsiUtilReleaseContext | gscBsiGcDataCreate |
gscBsiGcDataDelete | gscBsiGcGetContainerProperties | gscBsiGcReadTagList |
gscBsiGcReadValue | gscBsiGcUpdateValue | gscBsiGetChallenge | gscBsiSkiInternalAuthenticate |
gscBsiPkiCompute | gscBsiPkiGetCertificate | gscBsiGetCryptoProperties) #REQUIRED
>
<!ELEMENT BSIset-param (#PCDATA)>
<!ATTLIST BSIset-param
 way (IN | OUT) #IMPLIED
 type CDATA #REQUIRED
 pname CDATA #REQUIRED
>
<!ELEMENT expected-results (exception*, return-value*)>
<!ELEMENT exception (#PCDATA)>
<!ATTLIST exception
 messageF CDATA #IMPLIED
 messageP CDATA #IMPLIED
 messageNT CDATA #IMPLIED
>
<!-- messageF : message associated with an Exception which Fails the test
 messageP : message associated with an Exception which Passes the test
 messageNT : message associated with an Exception which makes the test Not Testable
-->
<!ELEMENT return-value ANY>
<!ATTLIST return-value
 type (String | int | ArrayByte | ArrayShort | Short | Vector | CardProperties | CryptoProperties |
ContainerProperties) #REQUIRED
 pname CDATA #IMPLIED
>
<!ELEMENT print (#PCDATA)>
<!ATTLIST print
 printpass CDATA #REQUIRED
 printfail CDATA #REQUIRED
>
<!--
 printpass : default message associated with a successful test
 printfail : default message associated with an unsuccessful test
-->

 -18-

The following XML file is the Java BSI method gscBsiUtilConnect ()

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE test-method SYSTEM "jsdtd.dtd">
<!--Connect- BSI Java Binding- September 14, 2004 Elizabeth Fong- -->
<test-method>
 <method method-name="gscBsiUtilConnect" number="0200">
 <description>This is the method to connect a card to a reader</description>
 <reference>GSC-IS 4.4, F.2.2</reference>
 <BSI-definition>
 <commandBSI>gscBsiUtilConnect(readerName)</commandBSI>
 </BSI-definition>
 <assertions id="2.1">
 <purpose>The method is tested using valid parameters, with a good card inserted into a
specified reader.</purpose>
 <sequenceBSI>
 <BSIset caseNo="2.1 INST" testType="INST">
 <test-type-description>Instantiation call</test-type-description>
 <method-call method-name="gscBsiUtilConnect">
 <BSIset-param type="String"
pname="readerName0200">constants.defReaderName</BSIset-param>
 </method-call>
 <expected-results>
 <return-value type="String">hCard</return-value>
 </expected-results>
 <print printfail="Test 2.1 failed - gscBsiUtilConnect () called with valid parameters
with a good card inserted into a specified reader returned an incorrect code." printpass="The call
returns the code BSI_OK. Verify that the card is indeed connected by calling
gscBsiUtilGetCardStatus"/>
 </BSIset>
 <BSIset caseNo="2.1 VER" testType="VER">
 <test-type-description>To verify by calling gscBsiUtilGetCardStatus ()</test-type-
description>
 <method-call method-name="gscBsiUtilGetCardStatus">
 <BSIset-param type="int" pname="hCard">goodhCard</BSIset-param>
 </method-call>
 <print printfail="Test 2.1 failed - gscBsiUtilConnect () called with valid paramters has
not been verified because a subsequent call to gscBsiUtilGetCardStatus () was unsuccessful,
indicating that the card had not been connected. " printpass="Test 2.1 passed -gscBsiUtilConnect ()
called with valid parameters has been verified because a subsequent call to
gscBsiUtilGetCardStatus () was successful, indicating that the card had been connected. "/>
</BSIset>
 </sequenceBSI>
 </assertions>
 <assertions id="2.2">
 <purpose>The method is tested using valid parameters, with a good card inserted into a
non-specified reader.</purpose>
 <sequenceBSI>
 <BSIset caseNo="2.2 INST" testType="INST">
 <test-type-description>Instantiation call</test-type-description>
 <local-param way="OUT" type="int" pname="hCard0200"/>
 <method-call method-name="gscBsiUtilConnect">
 <BSIset-param type="String" pname="emptyString">emptyString</BSIset-
param>
 </method-call>

 -19-

 <expected-results>
 <return-value type="String">hCard0200</return-value>
 </expected-results>
 <print printfail="Test 2.2 failed - gscBsiUtilConnect () called with valid parameters
with a good card inserted into a non-specified reader returned an incorrect code." printpass="The call
returns the code BSI_OK. Verify that the card is indeed connected by calling
gscBsiUtilGetCardStatus"/>
 </BSIset>
 <BSIset caseNo="2.2 VER" testType="VER">
 <test-type-description>To verify by calling gscBsiUtilGetCardStatus ()</test-type-
description>
 <method-call method-name="gscBsiUtilGetCardStatus">
 <BSIset-param type="int" pname="hCard">goodhCard</BSIset-param>
 </method-call>
 <expected-results/>
 <print printfail="Test 2.2 failed - gscBsiUtilConnect () called with valid parameters
with a good card inserted into a non-specified reader has not been verified because a subsequent call
to gscBsiUtilGetCardStatus () was unsuccessful, indicating that the card had not been connected."
printpass="Test 2.2 passed -gscBsiUtilConnect () called with valid parameters with a good card
inserted into a non-specified reader has been verified because a subsequent call to
gscBsiUtilGetCardStatus () was successful, indicating that the card had been connected "/>
 </BSIset>
 </sequenceBSI>
 </assertions>
 <assertions id="2.3">
 <purpose>The method is tested using a bad reader name.</purpose>
 <sequenceBSI>
 <BSIset caseNo="2.3 INST" testType="INST">
 <test-type-description>Instantiation call</test-type-description>
 <method-call method-name="gscBsiUtilConnect">
 <BSIset-param type="String"
pname="badreaderName">constants.badReaderName</BSIset-param>
 </method-call>
 <expected-results>
 <exception>BSI_UNKNOWN_READER</exception>
 <return-value type="int">hCard</return-value>
 </expected-results>
 <print printfail="Test 2.3 failed - gscBsiUtilConnect () called with a bad reader name
returned incorrect code." printpass="Test 2.3 passed -gscBsiUtilConnect () called with a bad reader
name has been verified."/>
 </BSIset>
 </sequenceBSI>
 </assertions>
 <assertions id="2.5">
 <purpose>The method is tested using a bad inserted card. Manual Instruction: BAD
CARD IN THE READER.</purpose>
 <sequenceBSI>
 <BSIset caseNo="2.5 INST" testType="INST"
opMode="PAUSE_BAD_CARD_REQUIRED">
 <test-type-description>Instantiation call</test-type-description>
 <local-param way="OUT" type="int" pname="hCard0200"/>
 <method-call method-name="gscBsiUtilConnect">
 <BSIset-param type="String"
pname="readerName0200">constants.defReaderName</BSIset-param>
 </method-call>
 <expected-results>

 -20-

 <exception>BSI_CARD_ABSENT</exception>
 <exception>BSI_UNKNOWN_ERROR</exception>
</expected-results>
 <print printfail="Test 2.5 failed -gscBsiUtilConnect () called with a bad inserted card
returned an incorrect code." printpass="Test 2.5 passed -gscBsiUtilConnect () called with a bad
inserted card has been verified."/>
 </BSIset>
 </sequenceBSI>
 </assertions>
 <assertions id="2.4">
 <purpose>The method is tested with no card in the reader. Manual Instruction: NO CARD
IN THE READER.</purpose>
 <sequenceBSI>
 <BSIset caseNo="2.4 INST" testType="INST" opMode="PAUSE">
 <test-type-description>Instantiation call</test-type-description>
 <method-call method-name="gscBsiUtilConnect">
 <BSIset-param type="String"
pname="readerName0200">constants.defReaderName</BSIset-param>
 </method-call>
 <expected-results>
 <exception>BSI_CARD_ABSENT</exception>
 <return-value type="int">hCard</return-value>
 </expected-results>
 <print printfail="Test 2.4 failed -gscBsiUtilConnect () called with no card in the reader
returned an incorrect code." printpass="Test 2.4 passed -gscBsiUtilConnect () called with no card in
the reader has been verified. "/>
 </BSIset>
 </sequenceBSI>
 </assertions>
 </method>
</test-method>

 -21-

APPENDIX B

 HTML Test Report for the Basic Service Interface Java Binding

 -22-

 -23-

 -24-

	I
	CONFORMANCE TESTING AND RELATED TERMINOLOGY
	COMPONENTS OF CONFORMANCE TESTING
	3.1 Conformance Clause
	Validation and Certification Process
	3.3 Executable Test Suite

	CONFORMANCE TEST SUITE DESIGN METHODOLOGIES
	4.1 Test Suite Design
	4.2 Test Development
	4.3 Test Report Output

	ARCHITECTURE OF GSC-IS
	5.1 Conformance Requirements for GSC-IS Version 2.1
	Requirements at the BSI Interface
	Requirements at the Virtual Card Edge Interface Level
	Requirements for Conformant Government Smart Cards

	DESIGN OF THE CONFORMANCE TEST SUITE
	6.1 C
	E

	6.2 Conformance Test Code
	Conformance Test Suite Reports

	ASSESSMENT OF THE TEST SUITE
	CONCLUDING REMARKS
	REFERENCES
	APPENDIX A
	<!-- August 16, 2004 Elizabeth Fong -->
	The following XML file is the Java BSI method gscBsiUtilConn
	APPENDIX B

