

NISTIR 7185

CPM 2: A REVISED CORE PRODUCT MODEL FOR REPRESENTING
DESIGN INFORMATION

Steven J. Fenves
Sebti Foufou
Conrad Bock
Rachuri Sudarsan
Nicolas Bouillon
Ram D. Sriram

NISTIR 7185

CPM 2: A REVISED CORE PRODUCT MODEL FOR REPRESENTING
DESIGN INFORMATION

Steven J. Fenves
Sebti Foufou
Conrad Bock
Rachuri Sudarsan
Nicolas Bouillon
Ram D. Sriram

October, 2004

U.S. DEPARTMENT OF COMMERCE
Donald L. Evans, Secretary

TECHNOLOGY ADMINISTRATION
Phillip J. Bond, Under Secretary of Commerce for Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
Arden L. Bement, Jr., Director

ABSTRACT

This report presents a revised version of the Core Product Model (CPM) initially reported
in [1]. The initial CPM was intended to provide a base-level product model that is: not
tied to any specific application or software; open; non-proprietary; simple; generic;
expandable; independent of any product development process; and capable of capturing
all product information shared throughout the product’s lifecycle. The revisions presented
continue to support these intentions.

The objectives of the report are: (1) to document the changes in the CPM relative to the
initial version; (2) to describe in detail the revised CPM, represented as a UML class
diagram; (3) to show, through Java and XML implementations, how the CPM can be
used as the basis, or organizing principle, of a product information-modeling framework
that can support the full range of product design information; and (4) to present a rational,
model-based process for converting a CPM supporting the early conceptual phases of
design into an implementation-level operational database support system.

UML, XML and Java representations of the model are presented so as to provide
interoperability with other models. A case study example is discussed and its XML
representation is presented and analyzed to illustrate the principal elements of the revised
CPM.

Keywords
Product modeling, information modeling, data modeling, artifact, form, function,
behavior, entity-relationship data model, core product model

3

TABLE OF CONTENTS

1 Introduction__ 6

1.1 Objectives ___ 6
1.2 Historic background ___ 6

2 The revised Core Product Model _______________________________________ 7
2.1 Representation of attributes and class types ___________________________ 8
2.2 The CPM classes__ 9

2.2.1 Abstract classes___ 9
2.2.2 Object classes ___ 10
2.2.3 Relationship classes __ 12
2.2.4 Utility classes ___ 14
2.2.5 Class hierarchies ___ 14
2.2.6 Associations and aggregations ________________________________ 15

3 Java and XML Implementations of CPM ________________________________ 15
3.1.1 The Java Artifact class ______________________________________ 15
3.1.2 The XML Artifact complexType ______________________________ 16
3.1.3 Example: XML representation of a planetary gear_________________ 17

4 Model compilation for the CPM_______________________________________ 20
5 Future work___ 23
6 Summary and conclusions ___ 24
References__ 24
Appendix A: Java implementation of CPM ___________________________________27
Appendix B: CPXS of the Core Product XML Schema _________________________ 29
Appendix C: XML representation of a planetary gear __________________________ 43

4

LIST OF FIGURES

Figure 1: Class diagram of the Core Product Model ____________________________ 8
Figure 2: CPM abstract classes__ 10
Figure 3: CPM object classes ___ 11
Figure 4: CPM relationship classes___ 13
Figure 5: Relationships between object classes _______________________________ 13
Figure 6: The Java Artifact class __ 16
Figure 7: The XML Artifact complexType __________________________________ 17
Figure 8: Example of a consistency constraint in the XML artifact schema _________ 17
Figure 9: The planetary gear system__ 18
Figure 10: An XML element representing the planetary gear system ______________ 19
Figure 11: Behavior element of the planetary gear system_______________________ 20
Figure 12: CPM instance of attributes ______________________________________ 20
Figure 13: CPM class diagram of attributes __________________________________ 21
Figure 14: Java code generated from an attribute instance ______________________ 21
Figure 15: Derivation path of attributes _____________________________________ 22

5

1 Introduction

1.1 Objectives

This report presents a revised version of the Core Product Model (CPM) initially reported
in [1]. The objectives of the report are: (1) to document the changes in the CPM relative
to the first version; (2) to describe in detail the revised CPM, represented as a Universal
Modeling Language (UML) class diagram; (3) to show, throughout Java and eXtensible
Markup Language (XML) implementations, how the CPM can be used as the basis, or
organizing principle, of a product information-modeling framework that can support the
full range of product design information; and (4) to present a rational, model-based
process for converting a CPM supporting early conceptual phases of design into an
implementation-level operational database support system.

1.2 Historic background

As discussed in detail in [1], the initial direction of the work presented was an attempt to
provide a common basis among four in-house research and development projects at
NIST:

• the NIST Design Repository project
• the Design-Process Planning Integration project
• the Design for Tolerancing of Electro-Mechanical Assemblies project
• the Object-Oriented Distributed Design Environment project.

As the projects progressed the commonality of concepts became apparent and a more
general direction was sought. This direction was provided by the perception of the need
for new engineering design and analysis tools. Product development is increasingly
performed by geographically and temporally distributed teams with a high level of
outsourcing of many phases of the product development process. New tools will be
needed to address the full spectrum of product development activities encompassed by
Product Lifecycle Management (PLM) systems, rather than just the narrow range covered
by traditional Computer Aided Design and Engineering (CAD/CAE) systems. Next-
generation tools will require representations that allow all information used or generated
in the various product development activities to be transmitted to other activities by way
of direct electronic interchange. Furthermore, product development across companies,
and even within a single company, will almost invariably take place within a
heterogeneous software environment.

The Core Product Model was conceived as a representation for product development
information which can form the basis of future systems that respond to the demands
sketched above and provide for improved interoperability among software tools in the
future [2]. The model focuses on an artifact representation that encompasses a range of
engineering design concepts beyond the artifact’s geometry, including function, form,
behavior and material; as well as physical and functional decompositions, mappings
between function and form, and various kinds of relationships among these concepts.

6

CPM follows the tradition of work in the area of artifact representation. The division of
artifact information into the categories of form, function, and behavior has its roots in
earlier work in intelligent design systems. The model is most directly descended from the
representation developed as part of the NIST Design Repository project [3], [4]. The
model presented here shares both conceptual and representational aspects with that
developed by the MOKA (Methodology and tools Oriented to Knowledge based
engineering Applications) Consortium, an ESPRIT-funded collaborative project of the
European Union [5]. The initial Core Product Model was completed in the Fall of 2000
and is documented in [1].

2 The revised Core Product Model

The Core Product Model is heavily influenced by the entity-relationship data model [6].
Accordingly, the CPM consists of two sets of classes, called object and relationship. The
two sets of classes are equivalent to the Unified Modeling Language (UML) terms of
class and association class, respectively [7].

In the text that follows, names of classes have initial capitalization (e. g., Information) and
names of attributes do not (e. g., information).

A UML class diagram of the CPM is shown in Figure 1.

7

Entity Association

Constraint

Port

Usage

CommonCoreRelationship

Trace

CommonCoreObject

0..1

0..*

+associatedCCO

0..1

+ccRelationship

0..*

CoreEntity

1..*

0..*

+associatedEntity
1..*

+entity Association

0..*

{or}
{or}

CoreProperty

1

0..*

+constrainedProperty

1

+constraint

0..*

Requirement

0..*
0..*+requiredProperty

0..* +hasRequirement
0..*

Geometry Material

Behav ior Specif ication1

1..* +containedIn

1+decomposedInto

1..*

Feature

Function
0..*

0..1

+f eatureHasFunction

0..*

+f unctionOf Feature
0..1

Form

1..*
1+hasGeometry

1..*

+geometry Of Form

1
1..*

1+hasMaterial
1..*

+materialOf Form
1

0..*

0..1

+f eatureHasForm

0..*

+f ormOf Feature
0..1

Transf erFunction

Artif act

0..*

0..1

+subArtif acts
0..*

+subArtif actOf
0..1

0..*

1

+hasBehav ior
0..*

+Behav iorOf artif act

1 1..*

1

+specif ies1..*

+satisf ies
1

10..*
+f eatureOf Artif act

1+hasFeature0..*

0..*

0..1

+hasFunction

0..*

+f unctionOf Artif act

0..1

0..*

0..1

+hasForm

0..*

+f ormOf Artif act
0..1

Flow

0..*

1

+inputFlow
0..*

+sourceOf1

0..*

1

+ouputFlow

0..*

+destinationOf
1

0..*

1

+hasInputFlow
0..*

+isSourceOf
1 1

0..*

+isDestinationOf

1

+hasOutputFlow

0..*

CoreProductModel

Figure 1: Class diagram of the Core Product Model

The general characteristics of the classes are discussed first. Then, the semantics of each
class of objects and relationships is presented. Finally, the hierarchies and relationships
among the classes are presented.

2.1 Representation of attributes and class types

In order to make the representation as robust as possible without having to predefine
attributes that might be relevant only in a given domain, the CPM is limited to attributes
required to capture generic product information and to create relationships among the
classes. The representation intentionally excludes attributes that are domain-specific (e.g.,
attributes of mechanical or electronic devices) or object-specific (e.g., attributes specific
to function, form or behavior). For the representation of this information, two generic
information modeling concepts have been adopted.

First, each object and relationship has an information attribute. The class Information is a
container consisting of:

• a textual description slot;

8

• a textual documentation string (e.g., a file path or URL referencing more
substantial documentation); and

• a properties slot that contains a set of attribute-value pairs stored as strings
representing all domain- or object-specific attributes.

This lack of specialization results in a small number of broadly applicable classes.

Second, all object and relationship classes, except for the abstract classes and the utility
classes Information, ProcessInformation and Rationale, have an attribute called type, the
value of which is a string that acts as a symbolic classifier1. Each object and relationship
class may have a distinct hierarchical taxonomy of terms associated with that class. The
value of the type attribute corresponds to one of the terms within the taxonomy for the
given class. For example, “convert” is one of numerous types of transfer functions and
the term can serve as the value of the type attribute of an instance of the class. Thus, all
object and relationship classes in the representation may have their own individual
generic engineering classification hierarchies that are independent of any other hierarchy
(eventually, these taxonomies may be expanded into full ontologies of the terms and their
semantic relationships). Implementations based on the CPM may use the type attributes,
their underlying taxonomies and the attribute-value pairs stored in the entities’
Information container to provide the means for model compilation of domain-specific
specializations of the CPM classes, as discussed in Section 4.

Extensions and implementations of the CPM may explicitly assign attributes to
specializations of the CPM objects and relationships. This has been done, for example, in
the Open Assembly Model (OAM) discussed in a companion report [9], so as to provide
interoperability with new systems, legacy data models such as STEP, or existing CAD
programs.

2.2 The CPM classes

The classes comprising the CPM are grouped below into four categories: abstract classes,
object classes, relationship classes and utility classes.

2.2.1 Abstract classes

In UML and in object-oriented programming, abstract classes are classes for which all
instances are instances of a subclass. Abstract classes are used in the top of class
hierarchies to store common methods or attributes. Figure 2 shows the four abstract
classes in the CPM.

CoreProductModel
This class represents the highest level of generalization; all CPM classes are specialized
from it according to the class hierarchy shown in Figure 2 and further discussed in
Section 2.2.5. The common attributes type, name and information for all CPM classes are
defined for this class.

1 The semantics of the term type used in this report differs from that of the term “data type” commonly used in computer
science data structure definitions. The use of the term type in this report is consistent with the definition used in the FRISCO report:
“Type (Synonym: 'Category'): A type of things is a specific characterisation (e.g., a predicate) applying to all things of that type” [8]

9

CommonCoreObject
This is the base class for all the object classes. CommonCoreRelationship and its
specializations, the EntityAssociation, Constraint Usage and Trace relationships, may be
applied to instances of classes derived from this class.

CommonCoreRelationship
This is the base class from which all association classes are specialized according to the
class hierarchy presented in Section 2.2.5. As stated above, the CommonCoreRelationship
class serves as an association to the CommonCoreObject class.

CommonCoreRelationship

CoreEntityCoreProperty

CoreProductModel

CommonCoreObject

1

1..*

+RelatedCommonCoreObject

1

1..*
+CommonCoreObject

Figure 2: CPM abstract classes

CoreEntity
This is an abstract class from which the classes Artifact and Feature are specialized.
EntityAssociation relationships may be applied to entities in this class.

CoreProperty
This is an abstract class from which the classes Function, Flow, Form, Geometry and
Material are specialized. Constraint relationships may be applied to instances of this class.

2.2.2 Object classes

Figure 3 gives an abstract view of the CPM where only object classes are shown. The
containment relationship subArtifacts/subArtifactOf is illustrated in the figure as an
example.

Artifact
The key object class in the CPM is Artifact. Artifact represents a distinct entity in a
product, whether that entity is a component, part, subassembly or assembly. All the latter
entities can be represented and interrelated through the subArtifacts/subArtifactOf
containment hierarchy discussed in Section 2.2.5. The Artifact’s attributes, other than the
common ones described in Section 2.1, refer to the Specification that specifies the
Artifact, the Form, Function and Behavior objects comprising the Artifact, i.e., in UML
terminology, forming an aggregation with the Artifact, and the Features that may
comprise the Artifact.

10

Feature
A Feature is a portion of the artifact’s form that has some specific function assigned to it.
Thus, an artifact may have design features, analysis features, manufacturing features, etc.,
as determined by their respective functions. Feature has its own containment hierarchy,
so that compound features can be created out of other features (but not artifacts).

Port

CommonCoreObject

CoreEntityCoreProperty Requirement

Geometry Material

Behav ior Specif ication

Feature

FunctionForm

Transf erFunction

Artif act

0..*

0..1

+subArtif acts
0..*

+subArtif actOf

0..1

Flow

Figure 3: CPM object classes

Port
A Port, a specialization of Feature, is a specific kind of feature (sometimes referred to as
an interface feature) through which the artifact is connected to (or interfaces with) other
artifacts. The semantics of the term port are deliberately left vague: in some contexts
ports only denote signal, control or display connection points, while in other contexts
ports are equivalents of assembly features through which components mate.

Specification
A Specification represents the collection of information relevant to the design of an
Artifact deriving from customer needs and/or engineering requirements. The Specification
is a container for the specific requirements that the function, form, geometry and material
of the artifact must satisfy.

Requirement
A Requirement is a specific element of the specification of an artifact that governs some
aspect of its function, form, geometry or material. Conceptually, requirements should

11

only affect the function, i.e., the intended behavior, of the artifact; in practice, some
requirements tend to affect the design solution directly, i.e., the form, geometry or
material of the artifact. Requirements cannot apply to behavior, which is strictly
determined by the behavioral model.

Function
A Function represents one aspect of what the artifact is supposed to do. The artifact
satisfies customer needs and/or engineering requirements largely through its function.
The term function is often used synonymously with the term intended behavior.
TransferFunction
A TransferFunction is a specialized form of Function involving the transfer of an input
flow into an output flow. Examples of transfer functions are “transmit” a flow of fluid,
current, or messages, etc., or “convert” from one energy flow to another or from a
message to an action.

Flow
A Flow is the medium (fluid, energy, message stream, etc.) that serves as the output of
one or more transfer function(s) and the input of one or more other transfer function(s). A
flow is also identified by its source and destination artifacts.

Behavior
Behavior describes how the artifact implements its function. Behavior is governed by
engineering principles which are incorporated into a behavioral or causal model.
Application of the behavioral model to the artifact describes or simulates the artifact’s
observed behavior based on its form. The observed behavior can then be examined with
respect to the requirements to yield the evaluated behavior. In the evaluation process,
unintended behaviors, i. e., that do not contribute to the intended function, can be
identified and evaluated. Behavior has three specialized attributes or slots to hold the
behavioralModel, the observedBehavior and the evaluatedBehavior (typically, URLs to
the executable analysis program that embodies the behavioral model, the output of the
behavioral model and the output of the external evaluation, respectively).

Form
The Form of the artifact can be viewed as the proposed design solution for the design
problem specified by the function. In the CPM, the artifact’s physical characteristics are
represented in terms of its geometry and material properties. This subdivision was
introduced because some of the intended applications tend to treat these two aspects quite
differently (e. g., the product development process may have a separate task of material
selection for a given function and geometry).
Geometry
Geometry is the spatial description of the artifact.

Material
Material is the description of the internal composition of the artifact.

2.2.3 Relationship classes

12

Relationship classes are derived from the CommonCoreRelationship class. They are
shown in Figure 4. Relationships between object classes are shown in Figure 5.

Entity Association Constraint Usage

CommonCoreRelationship

Trace

Figure 4: CPM relationship classes
Constraint
A Constraint is a specific shared property of a set of entities that must hold in all cases.
At the level of the CPM, only the entity instances that constitute the constrained set are
identified. If it is intended to represent a mathematical equality or inequality constraint,
the properties slot of the Information element associated with the constraint can hold the
names of the attributes that enter in the constraint as well as the relational operator
linking them.

Entity Association

Constraint

Usage

CommonCoreRelationship

Trace

CommonCoreObject

1

1..*

+RelatedCommonCoreObject

1

+CommonCoreObject

1..*

CoreEntity

0..*

0..*

+associatedEntity

0..*

+entity
0..*

CoreProperty

1

1..*

+constrainedProperty

1

+property

1..*

RequirementBehav ior Specif ication

CoreProductModel

Figure 5: Relationships between object classes
EntityAssociation
EntityAssociation is a simple set membership relationship among artifacts, features and
ports. In applications of the CPM this relationship can be specialized; for example, in the
Open Assembly Model, EntityAssociation is specialized to ArtifactAssociation [9].

Usage
Usage is a mapping from CommonCoreObject to CommonCoreObject. The relationship is
particularly useful when constraints apply to the specific “target” entity but not to the
generic “source” entity, or when the source entity resides in an external catalog or design
repository.

Trace

13

Trace is structurally identical to Usage. The relationship is particularly useful when the
“target” entity in the current product description depends in some way on a “source”
entity in another product description. The type attribute of Trace specifies the nature of
the dependence, as follows:

(a) Alternative_of: this link points from one alternative to another at the highest
level of the artifact decomposition hierarchy where the two alternatives differ
(it is assumed that multiple alternatives may be in the product development
process simultaneously and that they respond to the same set of requirements);

(b) Version_of: this link points from one version to another at the highest level of
the artifact decomposition hierarchy where two versions differ (it is assumed
that a new version supercedes a previously designed and approved version;
changes in requirements leading to the new version can be represented by the
same mechanism, i. e., as versions of the original requirements);

(c) Derived_from: similar to Version_of, this link allows family derivations to be
represented;

(d) Is_same_as: at any level of the artifact decomposition hierarchy below the one
where the alternative, version or derivative diverges, this link identifies a sub-
artifact of the original artifact that this alternative, version or derivative is
identical to;

(e) Is_based_on: at any level of the artifact decomposition hierarchy below the
one where the alternative, version or derivative diverges, this link identifies a
sub-artifact of the original artifact on which the sub-artifact of this alternative,
version or derivative is based, modified so as to accommodate the new sub-
artifacts of the alternative, version or derivative.

2.2.4 Utility classes
The utility package of the CPM contains the following three classes.

Information
The class Information is a container consisting of: (i) a textual description slot; (ii) a
textual documentation string (e. g., a file path or URL referencing more substantial
documentation); and (iii) a properties slot that contains a set of attribute-value pairs
stored as strings representing all domain- or object-specific attributes. Information is an
attribute of CoreProductModel and all its specializations.

ProcessInformation
The class ProcessInformation represents attributes related to the product development
process, such as state and level, as used in [10], alternative and/or version designation or
other product development process parameters that may be used in a PLM environment.
ProcessInformation is an attribute of Artifact.

Rationale
The class Rationale represents attributes that record explanatory information on the
reasons for or justifications of a particular decision in the product development process.
Rationale is an attribute of CoreProperty and all its specializations.

2.2.5 Class hierarchies

14

All object classes are specializations of the abstract class CommonCoreObject. The
attributes of CommonCoreObject are linkages to the CommonCoreRelationship, Usage
and Trace relationships.

Specializations of CommonCoreRelationship are the Constraint, EntityAssociation, Usage
and Trace classes.

2.2.6 Associations and aggregations

First, all object classes, i. e., specializations of the abstract class CommonCoreObject,
except Flow, have their own separate, independent decomposition hierarchies, also known
as “partOf” relationships or containment hierarchies2. Decomposition hierarchies are
represented by attributes such as subArtifacts/subArtifactOf for the Artifact class.

Second, there are associations between:

(a) a Specification and the Artifact that results from it
(b) a Flow and its source and destination Artifacts and its input and output

Functions
(c) an Artifact and its Features

Third, and most importantly, four aggregations are fundamental to the CPM:

(a) Function, Form and Behavior aggregate into Artifact
(b) Function and Form aggregate into Feature
(c) Geometry and Material aggregate into Form
(d) Requirement aggregates into Specification.

3 Java and XML Implementations of CPM

In order to illustrate how the CPM can be implemented and used, we have generated the
equivalent Core Product XML Schema (CPXS:) and a set of Java classes. We have also
developed a Java graphical user interface to input product data and generate XML
documents according to the grammar of CPXS.

Appendix A and Appendix A contain, respectively, the Java classes and the CPXS.

3.1.1 The Java Artifact class
As example of the implementation, Figure 6 shows the Java Artifact class. In addition to
the attributes shown in the figure, the Artifact class is participating in eight associations
playing nine different roles, inherited from CoreEntity. These roles are converted into
attributes of the Java Artifact class; these attributes are either simple valued or multiple
values (arrays) according to the multiplicity at the end of the association. Furthermore,
the inherited attributes name, type and information are not shown.

2 For clarity, only the subArtifacts/subArtifact_of containment hierarchy of Artifact is labeled in Figures 1 and 3.

15

public class Artifact extends CoreEntity {
 public Specification satisfies ;
 public Feature hasFeature[] ;

 public Artifact subArtifactOf ;
 public Artifact subArtifacts[] ;

 public Flow hasInputFlow[] ;
 public Flow hasOutputFlow[] ;

 public Function hasFunction[] ;
 public Form hasForm[] ;
 public Behavior hasBehavior[] ;

 public ProcessInformation processInfo ;
}

Figure 6: The Java Artifact class

3.1.2 The XML Artifact complexType

The XML schema language is not an object-oriented language. The XML schema
resulting from the conversion of an UML class diagram needs to be constrained to ensure
the consistency of the XML instance document. Figure 7 shows the XML complexType
representing an Artifact. Inherited attributes are not shown in this figure; the ListOfxxx
type represents a set of strings referring to the name subelement of elements of type xxx
(e.g., inside an artifact, the hasFeature element contains a set of subelements, each of
which refers to the name of a feature of that artifact).

As an example of constraints for XML document consistency, consider the element (tag)
satisfies inside the Artifact element. This tag references the name or code of the
Specification element that the artifact satisfies; moreover the referenced Specification
element must be an element of the XML document; otherwise the document is not
consistent.

16

<xsd:complexType name="Artifact">
 <xsd:complexContent>
 <xsd:extension base="CoreEntity">
 <xsd:sequence>
 <xsd:element name="hasBehavior" type="ListOfBehaviors"
minOccurs="0"/>
 <xsd:element name="hasFunction" type="ListOfFunctions"
minOccurs="0"/>
 <xsd:element name="hasForm" type="ListOfForms" minOccurs="0"/>
 <xsd:element name="satisfies" type="xsd:string" minOccurs="1"/>
 <xsd:element name="hasFeature" type="ListOfFeatures"
minOccurs="0"/>
 <xsd:element name="subArtifacts" type="ListOfArtifacts"
minOccurs="0"/>
 <xsd:element name="subArtifactOf" type="xsd:string" minOccurs="0"/>
 <xsd:element name="hasInputFlow" type="ListOfFlows" minOccurs="0"/>
 <xsd:element name="hasOutputFlow" type="ListOfFlows"
minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Figure 7: The XML Artifact complexType

To ensure this consistency, we define the name element to be the key of the specification
element (Figure 8) and indicate that the element satisfies of the artifact element is a
reference to this key. The figure also shows that the element containedIn in requirement
must reference a valid and unique specification name (i. e., a key).

<xsd:key name="PKSpec">
 <xsd:selector xpath="cpm:specification"/>
 <xsd:field xpath="cpm:name"/>
</xsd:key>

<!-- Elements that shall reference a specification
name -->
<xsd:keyref name="specRef" refer="PKSpec">
 <xsd:selector xpath="cpm:artifact"/>
 <xsd:field xpath="cpm:satisfies"/>
</xsd:keyref>
<xsd:keyref name="spec1fRef" refer="PKSpec">
 <xsd:selector xpath="cpm:requirement"/>
 <xsd:field xpath="cpm:containedIn"/>
</xsd:keyref>

Figure 8: Example of a consistency constraint in the XML artifact schema

3.1.3 Example: XML representation of a planetary gear

The planetary gear system (PGS) example considered in this section was presented in
detail in the Open Assembly Model report [11], illustrating the representation of both

17

containment hierarchy and the assembly. Our interest in the example here is to show how
the revised CPM can be used to capture design information about the product; thus, only
data important from the design point of view are represented.

Figure 9 shows the components of the PGS: the main artifact is the planetary gear; it is
composed of 13 subartifacts: 8 screws, the output housing, the input housing, the ring
gear, the sun gear, and the planet gear carrier. Information such as function, form,
behavior and specification, related to these subartifacts are not considered in this
example.

• ••

8 Screws Output
housing

Input
Housing

Ring Gear Sun Gear
Planet Gear
Carrier

Planetary Gear

Figure 9: The planetary gear system
Figure 10 shows an XML Artifact element describing the PGS. The figure shows that this
element includes the following set of subelements:

• information: a description and brief documentation of the PGS artifact
• behaviors: a list of names of elements that describe the behavior of the PGS

artifact.
• functions, forms, features: Three lists the elements of which give the names of the

function, “changeSpeedOfRotation“, the from, “cylindricalForm“, and the
features, “fasteningHoles, outputShaftHole“ of the PGS.

• satisfies: this is the name of the XML element that gives the Specification that the
PGS shall satisfy. Appendix C shows how this specification is decomposed into a
set of requirements including: form, input speed, output speed, input torque and
output torque requirements.

• subartifacts: this list gives the names of subartifacts of the current PGS artifact:
planetGearCarrier, sunGear, ringGear, inputHousing, outputHousing and eight
screws.

18

<artifact>
 <name>PlanetaryGearSystem</name>
 <information>
 <description>
 The PlanetaryGearSystem for changing speed rotation
 </description>
 <documentation>
 This is an assembly of 13 different
 subartifacts and subassemblies
 </documentation>
 </information>
 <behaviors>
 <theBehavior name="pgsBehavior"/>
 </behaviors>
 <functions>
 <theFunction name="changeSpeedOfRotation"/>
 </functions>
 <forms>
 <theForm name="cylindricalForm"/>
 </forms>
 <satisfies>pgsSpecification</satisfies>
 <features>
 <theFeature name="fasteningHoles"/>
 <theFeature name="outputShaftHole"/>
 </features>
 <subArtifacts>
 <theArtifact name = "planetGearCarrier"/>
 <theArtifact name = "sunGear"/>
 <theArtifact name = "ringGear"/>
 <theArtifact name = "inputHousing"/>
 <theArtifact name = "outputHousing"/>
 <theArtifact name = "screw1"/>
 …
 <theArtifact name = "screw8"/>
 </subArtifacts>
</artifact>

Figure 10: An XML element representing the planetary gear system

19

Figure 11 shows the element named pgsBehavior. One can see how the properties slot of
the information element is used to capture important information such as speed ratio and
output torque.

<behavior>
 <name>pgsBehavior</name>
 <information>
 <description>the behavior of the planetary gear
 system after assembly analysis and validation
 </description>
 <properties>
 <property name="speedRatio">3.0:1</property>
 <property name="torqueOut">6.78 N.m</property>
 </properties>
 </information>
 <artifact>PlanetaryGearSystem</artifact>
</behavior>

Figure 11: Behavior element of the planetary gear system

The complete XML instance document of this example is presented in Appendix C,
where more detail about the components, functions, forms, behaviors, etc. of the PGS
can be found.

4 Model compilation for the CPM

CPM is a conceptual model intended for representing product design information from an
engineer's point of view and not necessarily for the implementation of large-scale Product
Lifecycle Management (PLM) information support systems.

Specifically, as discussed in Section 2.1, CPM uses the special attributes type and
properties to record user-defined artifacts, exemplified in the instance diagram of Figure
12.

 : Information

properties = "length 5.00 diameter 0.50"

: Artifact
type = "Pin" +information

: Information
properties = "length 5.00 diameter 0.50"

: Artifact
type = "Pin" +information

Figure 12: CPM instance of attributes
This figure is an instance of the class diagram shown in Figure 13, showing an artifact of
type “pin” that has specified length and diameter attribute values. The values of these
slots are delimited strings representing user-defined subtypes of Artifact and their
properties.

20

Artifact
(from CommonCoreObject)

Information
properties : string

0..10..1

+information

Artifact
(from CommonCoreObject)

Information
properties : string

0..10..1

+information

Figure 13: CPM class diagram of attributes
Such a representation will generally be appropriate and sufficient for the early conceptual
phases of design, where typically there is a small number of instances and few attributes
of interest for each instance. This representation will not scale to an implementation
model, where thousands of instances may occur, each with a long list of application-
specific attributes.

For application to industrial-scale systems, the conceptual model of CPM must be
translated to an implementation model. This is called model compilation and is a part of
the overall Model-driven Architecture (MDA) defined by the Object Management Group
(OMG) [12]. MDA provides for translation of platform-independent models (PIMs),
such as the CPM, to platform-specific models (PSMs) and for the generation of efficient
implementation languages. For example, the type/properties representation above is
inefficient because fast attribute value lookup can only be obtained with preparation at
compile time. If the model compiler is able to tell where each attribute will be stored at
runtime, it can compile each access to an attribute into retrieval from that predefined
location, rather than repeating the runtime lookup at each retrieval. This requires user-
defined attributes to be translated to a compilable language, such as Java. Specifically,
the model compiler creates subclasses of Artifact from the specifications in the type slot,
and defines attributes on the subclasses. These subclasses could be generated into a
UML repository [13], as a PSM, then into a compilable language. This provides
flexibility in choosing an implementation language. The end result in Java, for example,
is shown in Figure 14.3

class Artifact
{
Form form;
Function function ;
…
}

class Pin extends Artifact
{
string length;
string diameter;
}

Figure 14: Java code generated from an attribute instance

Once the code above is compiled, a design tool can be used to instantiate the Pin class for
specific pin designs, such as modeled in Figure 13, and insert values into the length and
diameter slots. These values can be accessed efficiently because the attribute locations

3 Other aspects of CPM’s Information class can be translated to features on either CommonCoreObject or Artifact. For example,
documentation can be an attribute of CommonCoreObject, while methods can be translated to to operations on classes such as Pin.

21

are compiled. The instances of the CPM used to begin the compilation process can be
generated from graphical user interfaces, existing databases of designs, UML
repositories, or whatever source has the information required. The model compiler can
produce languages other than Java, for example, DDL for relational databases. There
may be as many attribute-value implementations as there are implementations of the
conceptual model of the CPM, which covers all of them because it is conceptual.

Another application of model compilation in the CPM is consistency maintainance of
user-defined attribute values of an artifact with those of other instances of the CPM
around it, such as instances of Geometry, Material, and so on. For example, Figure 15
shows a UML model for the Pin artifact, with derivation of user-defined attributes of an
artifact from other instances of the CPM around it, expressed in UML's Object Constraint
Language (OCL) [14]. This provides more efficient lookup of commonly used attribute
values directly from an artifact, rather than navigating through the objects around it. The
generated code in Figure 14 would include accessor operations that maintain consistency
by propagating values from instances of Geometry, and so on, to the artifact attributes, or
in the other direction, or both, obeying the constraints specified in OCL.4

Pin : Artifact
length = form.geometry.information.property.length
diameter = form.geometry.information.property.diameter
material = form.material.information.property.materialtype
breakingStength = function.information.property.breakingStrength

Pin : Artifact
length = form.geometry.information.property.length
diameter = form.geometry.information.property.diameter
material = form.material.information.property.materialtype
breakingStength = function.information.property.breakingStrength

Figure 15: Derivation path of attributes

Finally, model compilation can be used to translate CPM's delegation-style of reusing
designs to the type/instance style of computational modeling. CPM uses Artifact for the
representation of three things:

1. Description of classes of physical objects. For example, the design of a particular
kind of gear box.

2. Use of these descriptions in composing designs for other physical objects, for

example, the use of a particular gear box design in the description of a certain
model of car.

3. Descriptions of physical objects conforming to the designs above. For example,

maintenance record for an individual, physical gear box, with serial number 3463,
installed in a particular car with VIN number 92345645.

The use of Artifact for all three reflects the engineer's viewpoint that they represent
different stages in the lifecycle of the same artifact. These stages are related by
associations in the CPM, such as the Usage association, which relates stages 1 and 2
above. Each stage may have different attribute values and even different attributes. For

4 If a parameterized CAD model is available, an Artifact can refer to that model and its parameter values, rather than to the rest of
the CPM model.

22

example, a stage 1 artifact might have an attribute for the designer's name, a stage 2
artifact will describe its relations to other artifacts of the design in which is being
composed, and a stage 3 artifact might have attributes about its date of manufacture, the
owner, and physical wear characteristics.

Computational models, on the other hand, usually have distinct elements for each of the
above stages, called type (or class), usage (or role), and instance.5 These reflect common
information system construction practices of using program development environments
to define the shapes of data structures (types, stage 1), and monitoring the execution of
those programs in a separate debugging environment to find the actual data stored in
those structures (instances, stage 3). Modern modeling techniques introduce usages or
roles to more reliably compose designs (usages, stage 2) [16].

Model compilers can bridge the engineering and computational viewpoints by storing the
rules by which the three stages are distinguished in the engineering model, using these to
categorize artifacts, and generate the corresponding computational models. For example,
in the CPM, an artifact that is used by other, but not used itself, is a stage 1 artifact. A
model compiler can use this rule to determine which CPM artifacts should be translated
to types in the computational models. Likewise, a stage 3 artifact is one that uses other
artifacts that in turn use other unused artifacts. A model compiler can translate artifacts
matching this rule to instances. The complete rule set and comparison of engineering and
computational approaches will be the topic of future work.

5 Future work

The revisions leading from the initial CPM [1] to the model described above have all
arisen from the experience gained in using the CPM as the basis for a number of
extensions and applications, notably, the Design-Analysis Integration project [17] and the
Open Assembly Model project described in [11] and in the companion report [9].

It is anticipated that a major part of the future work will continue to involve (a)
extensions and applications that attempt to use the CPM as the basic organizing principle;
and (b) generalizations, revisions, modifications and extensions of the CPM proper in
light of the experience gained from such extensions and applications. The CPM is by no
means mature or complete, as indicated by the need to produce the present revised
version three years after the initial version.

Future work will also include review of the research literature on design and product
modeling, as well as reviews of existing product modeling systems, aimed at identifying
additional objects, relationships and shared attributes that may be added to the next
revision of CPM. The overall objective is to find ways of extending the CPM so that it
can eventually serve as the central model for collecting, correlating and organizing all
product information throughout the entire product lifecycle from conception to disposal.

5 Some computational models use one element as CPM does, but distinguish the three stages by a special attribute, for example,

MOOD in the Health Level 7 Reference Information Model [15].

23

6 Summary and conclusions

The report documents the revised version of the Core Product Model initially presented
in [1], together with brief descriptions of two pilot implementations and some
preliminary thoughts about the use of a Model-driven Architecture for converting
conceptual product models based on the CPM to robust implementation models. This
report is to be viewed as a progress report, as it is expected that experience with further
extensions and applications will give rise to further generalizations, revisions,
modifications and extensions of the CPM .

References

 1. Fenves, S. J., A Core Product Model For Representing Design Information,

National Institute of Standards and Technology, NISTIR6736 , Gaithersburg, MD
20899, USA, 2001.

 2. Szykman, S., Fenves, S. J., Keirouz, W. T., and Shooter, S., A foundation for
interoperability in next-generation product development systems, Computer-Aided
Design, Vol. 33, No. 7, 2001, pp. 545-559.

 3. Szykman, S., Racz, J. W., and Sriram, R. D., The Representation Of Function In
Computer-Based Design , Las Vegas, Nevada, 1999.

 4. Szykman, S., Racz, J. W., Bochenek, C., and Sriram, R. D., A Web-based System
for Design Artifact Modeling, Design Studies, Vol. 21, No. 2, 2000.

 5. MOKA: A Framework for structuring and representing engineering knowledge.
http://www.kbe.coventry.ac.uk/moka/miginfo.htm . 1999.

 6. Chen, P. P., The Entity-Relationship Model: Toward a Unified View of Data, ACM
Transactions on Database Systems, Vol. 1, No. 1, 1976, pp. 9-36.

 7. Booch, G., Rumbaugh, J., and Jacobson, I., The Unified Modeling Language User
Guide, Addison-Wesley 1997.

 8. Verrijn-Stuart A A. FRISCO - A framework of information system concepts - The
Revised FRISCO Report (Draft January 2001), IFIP WG 8.1 Task group FRISCO.
2001.

 9. Sudarsan, R., Baysal, M. M., Roy, U., Foufou, S., Bock, C., Fenves, S. J., and
Sriram, R. D., Information Models for Product Representation: Core and Assembly
Models, National Institute of Standards and Technology, NISTIR 7173,
Gaithersburg, MD 20899, USA, 2004.

 10. Shooter, S. B., Keirouz, W. T., Szykman, S., and Fenves, S. J., A Model For
Information Flow In Design, Proceedings of DETC2000: ASME International
Design Engineering Technical Conferences, Baltimore, Maryland, 2000.

24

http://www.kbe.coventry.ac.uk/moka/miginfo.htm

 11. Sudarsan, R., Young-Hyun H, Feng, S. C., Roy, U., Fujun W., Sriram, R. D., and
Lyons, K. W., Object-oriented Representation of Electro-Mechanical Assemblies
Using UML, National Institute of Standards and Technology, NISTIR 7057,
Gaithersburg, MD 20899, USA, 2003.

 12. OMG: Model-driven Architecture. 2004. http://www.omg.org/mda/

 13. Bock, C., UML without Pictures, IEEE Software Special issue on Model-driven
Development, 2004.

 14. OMG: UML 2.0 OCL Specification. 2004. http://www.omg.org/cgi-
bin/doc?ptc/2003-09-15

 15. Health Level 7. HL7 Reference Model. 2004.

 16. OMG: UML 2.0 Superstructure Specification. 2003. http://www.omg.org/cgi-
bin/doc?ptc/2003-08-02 http://www.hl7.org/

 17. Fenves, S. J., Choi, Y., Gurumoorthy, B., Mocko, G., and Sriram, R. D., Master
Product Model for the Support of Tighter Design-Analysis Integration, National
Institute of Standards and Technology, Gaithersburg, MD 20899, NISTIR 7004,
2003.

25

Appendix A : Java implementation of the CPM
This is not a complete working implementation; the following Java classes are provided
only to give an idea of possible implementations.

CPM2 Java Classes

package cpm2 ;
import utility.Information ;
import utility.ProcessInformation;

public class TransferFunction extends Function {
 public Flow inputFlow[] ;
 public Flow outputFlow[] ;
}

public class Artifact extends CoreEntity {
 public Specification satisfies ;
 public Feature hasFeature[] ;

 public Artifact subArtifactOf ;
 public Artifact subArtifacts[] ;

 public Flow hasInputFlow[] ;
 public Flow hasOutputFlow[] ;

 public Function hasFunction[] ;
 public Form hasForm[] ;
 public Behavior hasBehavior[] ;

 public ProcessInformation processInfo ;
}

public class Behavior extends CommonCoreObject{
 public Artifact behaviorOfArtifact ;
}

public abstract class CommonCoreObject extends CoreProductModel {
 public CommonCoreRelationship ccRelation[] ;
}

public abstract class CoreEntity extends CommonCoreObject{
 public EntityAssociation entityAssociation[] ;
}

public abstract class CoreProductModel {
 public String type ;
 public String name ;
 public Information information ;
}

public abstract class CoreProperty extends CommonCoreObject{
 public Constraint constraint[];
 public Requirement hasRequirement[] ;
}

26

public class Feature extends CoreEntity {
 public Artifact artifact;
 public Feature subFeatureOf ;
 public Feature subFeatures[] ;

 public Function featureHasFunction[] ;
 public Form featureHasForm[] ;
}

public class Flow extends CoreProperty {
 public Artifact isDestinationOf ;
 public Artifact isSourceOf ;
 public TransferFunction destinationOf ;
 public TransferFunction sourceOf ;
}

public class Form extends CoreProperty {
 public Feature formOfFeature;
 public Artifact formOfArtifact ;
 public Form subForms[] ;
 public Form subFormOf ;
 public Geometry hasGeometry[] ;
 public Material hasMaterial [] ;
}

public class Function extends CoreProperty {
 public Feature functionOfFeature ;
 public Artifact functionOfArtifact ;
 public Function subFunctions[] ;
 public Function subFunctionOf ;
}

public class Geometry extends CoreProperty {
 public Form geometryOfForm;
 public Geometry subGeometries[] ;
 public Geometry subGeometryOf ;
}

public class Material extends CoreProperty {
 public Form materialOfForm;
 public Material subMaterials[] ;
 public Material subMaterialOf ;
}

public class Port extends Feature {

}

public class Requirement extends CommonCoreObject{
 public Specification containedIn;
 public CoreProperty requiredProperty[] ;
}

public class Specification extends CommonCoreObject{
 public Requirement decomposedInto[] ;
 public Artifact specifies[] ;

27

}

package utility ;

public class Information {
 public String description ;
 public String documentation ;
 public String Properties ;
}

public class ProcessInformation {

}

public class Rationale {

}

CPM2 association classes converted into Java classes

public class Usage extends CommonCoreRelationship {

}

public abstract class CommonCoreRelationship extends CoreProductModel {
 public CommonCoreObject associatedCCO[] ;
}

public class Constraint extends CommonCoreRelationship {
 public CoreProperty ConstrainedProperty[] ;
}

public class EntityAssociation extends CommonCoreRelationship {
 public CoreEntity associatedEntity[] ;
}

public class Trace extends CommonCoreRelationship {

}

Appendix B : CPXS of the Core Product XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
targetNamespace="http://namespace.nist.gov/msid/cpm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:e="http://namespace.mist.gov/msid/ext"
xmlns="http://namespace.nist.gov/msid/cpm"
xmlns:cpm="http://namespace.nist.gov/msid/cpm"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xsd:element name="model" type="Model">

28

<!-- ====================================
for Behavior the name is a key

=== -->
<xsd:key name="PKBeh">
 <xsd:selector xpath="cpm:behavior"/>
 <xsd:field xpath="cpm:name"/>
</xsd:key>

<!-- Elements that shall reference a Behavior name -->
<xsd:keyref name="behRef" refer="PKBeh">
 <xsd:selector
xpath="./cpm:artifact/cpm:hasBehavior/cpm:Behavior"/>
 <xsd:field xpath="@name"/>
 </xsd:keyref>

<!-- ====================================
 for Requirement the name is a key
=== -->
<xsd:key name="PKReq">
 <xsd:selector xpath="cpm:requirement"/>
 <xsd:field xpath="cpm:name"/>
</xsd:key>

<!-- Elements that shall reference a Requirement name -->
<xsd:keyref name="reqRef" refer="PKReq">
 <xsd:selector
 xpath="cpm:specification/cpm:decomposedInto/cpm:Requirement"/>
 <xsd:field xpath="@name"/>
</xsd:keyref>

<!-- ====================================
 for Specification the name is a key
=== -->
<xsd:key name="PKSpec">
 <xsd:selector xpath="cpm:specification"/>
 <xsd:field xpath="cpm:name"/>
</xsd:key>

<!-- Elements that shall reference a Specification name -->
<xsd:keyref name="specRef" refer="PKSpec">
 <xsd:selector xpath="cpm:artifact"/>
 <xsd:field xpath="cpm:satisfies"/>
</xsd:keyref>
<xsd:keyref name="spec1fRef" refer="PKSpec">
 <xsd:selector xpath="cpm:requirement"/>
 <xsd:field xpath="cpm:containedIn"/>
</xsd:keyref>

<!-- =======================================

for Artifact the name is a key
======================================= -->
<xsd:key name="PKArt">
 <xsd:selector xpath="cpm:artifact"/>
 <xsd:field xpath="cpm:name"/>
</xsd:key>

<!-- Elements that shall reference an Artifact name -->

29

<xsd:keyref name="art1Ref" refer="PKArt">
 <xsd:selector xpath="cpm:function"/>
 <xsd:field xpath="cpm:functionOfArtifact"/>
</xsd:keyref>
<xsd:keyref name="art2Ref" refer="PKArt">
 <xsd:selector xpath="cpm:form"/>
 <xsd:field xpath="cpm:formOfArtifact"/>
</xsd:keyref>
<xsd:keyref name="art3Ref" refer="PKArt">
 <xsd:selector xpath="cpm:flow"/>
 <xsd:field xpath="cpm:isSourceOf"/>
</xsd:keyref>
<xsd:keyref name="art4Ref" refer="PKArt">
 <xsd:selector xpath="cpm:flow"/>
 <xsd:field xpath="cpm:isDestinationOf"/>
</xsd:keyref>
<xsd:keyref name="art5Ref" refer="PKArt">
 <xsd:selector xpath="cpm:feature"/>
 <xsd:field xpath="cpm:featureOfArtifact"/>
</xsd:keyref>
<xsd:keyref name="art6Ref" refer="PKArt">
 <xsd:selector xpath="cpm:behavior"/>
 <xsd:field xpath="cpm:behaviorOfArtifact"/>
 </xsd:keyref>
<xsd:keyref name="art7Ref" refer="PKArt">

<xsd:selector
xpath="./cpm:specification/cpm:specifies/cpm:Artifact"/>

<xsd:field xpath="@name"/>
</xsd:keyref>
<xsd:keyref name="art8Ref" refer="PKArt">
 <xsd:selector xpath="cpm:artifact"/>
 <xsd:field xpath="cpm:subArtifactOf"/>
</xsd:keyref>
<xsd:keyref name="art9Ref" refer="PKArt">
 <xsd:selector
xpath="./cpm:artifact/cpm:subArtifacts/cpm:Artifact"/>
 <xsd:field xpath="@name"/>
</xsd:keyref>

<!-- =======================================
 for Feature the name is a key
======================================= -->
<xsd:key name="PKFeat">
 <xsd:selector xpath="cpm:feature"/>
 <xsd:field xpath="cpm:name"/>
</xsd:key>

 <!-- Elements that shall reference a Feature name -->
 <xsd:keyref name="featRef" refer="PKFeat">
 <xsd:selector xpath="cpm:function"/>
 <xsd:field xpath="cpm:functionOfFeature"/>
 </xsd:keyref>
 <xsd:keyref name="feat2Ref" refer="PKFeat">
 <xsd:selector xpath="cpm:form"/>
 <xsd:field xpath="cpm:formOfFeature"/>
 </xsd:keyref>
 <xsd:keyref name="subFeatRef" refer="PKFeat">

30

 <xsd:selector xpath="cpm:feature"/>
 <xsd:field xpath="cpm:subFeatureOf"/>
 </xsd:keyref>
 <xsd:keyref name="featNameRef" refer="PKFeat">
 <xsd:selector xpath="./cpm:feature/cpm:subFeatures/cpm:Feature"/>
 <xsd:field xpath="@name"/>
 </xsd:keyref>
 <xsd:keyref name="feat2NameRef" refer="PKFeat">
 <xsd:selector xpath="./cpm:artifact/cpm:hasFeature/cpm:Feature"/>
 <xsd:field xpath="@name"/>
 </xsd:keyref>

 <!-- ================== ==================
 for TransferFunction the name is a key
 ======================================= -->
 <xsd:key name="PKTFun">
 <xsd:selector xpath="cpm:transferFunction"/>
 <xsd:field xpath="cpm:name"/>
 </xsd:key>

 <!-- Elements that shall reference a TransferFunction name -->
 <xsd:keyref name="tfunOfRef" refer="PKTFun">
 <xsd:selector xpath="cpm:flow"/>
 <xsd:field xpath="cpm:sourceOf"/>
 </xsd:keyref>
 <xsd:keyref name="tfun2OfRef" refer="PKTFun">
 <xsd:selector xpath="cpm:flow"/>
 <xsd:field xpath="cpm:destinationOf"/>
 </xsd:keyref>

 <!-- ====================================
 for Flow the name is a key
 ======================== ================== -->
 <xsd:key name="PKFlow">
 <xsd:selector xpath="cpm:flow"/>
 <xsd:field xpath="cpm:name"/>
 </xsd:key>

 <!-- Elements that shall reference a Flow name -->
 <xsd:keyref name="flow0NameRef" refer="PKFlow">
 <xsd:selector xpath="./cpm:artifact/cpm:hasInputFlow/cpm:Flow"/>
 <xsd:field xpath="@name"/>
 </xsd:keyref>
 <xsd:keyref name="flow1NameRef" refer="PKFlow">
 <xsd:selector xpath="./cpm:artifact/cpm:hasOutputFlow/cpm:Flow"/>
 <xsd:field xpath="@name"/>
 </xsd:keyref>
 <xsd:keyref name="flow2NameRef" refer="PKFlow">
 <xsd:selector
xpath="./cpm:transferFunction/cpm:inputFlow/cpm:Flow"/>
 <xsd:field xpath="@name"/>
 </xsd:keyref>
 <xsd:keyref name="flow3NameRef" refer="PKFlow">
 <xsd:selector
xpath="./cpm:transferFunction/cpm:outputFlow/cpm:Flow"/>

31

 <xsd:field xpath="@name"/>
 </xsd:keyref>

 <!-- ====================================
 for Form the name is a key
 =======================================- -->
 <xsd:key name="PKForm">
 <xsd:selector xpath="cpm:form"/>
 <xsd:field xpath="cpm:name"/>
 </xsd:key>

 <!-- Elements that shall reference a Form name -->
 <xsd:keyref name="formOfRef" refer="PKForm">
 <xsd:selector xpath="cpm:geometry"/>
 <xsd:field xpath="cpm:geometryOfForm"/>
 </xsd:keyref>

 <xsd:keyref name="fromOfRef" refer="PKForm">
 <xsd:selector xpath="cpm:material"/>
 <xsd:field xpath="cpm:materialOfForm"/>
 </xsd:keyref>
 <xsd:keyref name="subFromRef" refer="PKForm">
 <xsd:selector xpath="cpm:form"/>
 <xsd:field xpath="cpm:subFormOf"/>
 </xsd:keyref>
 <xsd:keyref name="formNameRef" refer="PKForm">
 <xsd:selector xpath="./cpm:form/cpm:subForms/cpm:Form"/>
 <xsd:field xpath="@name"/>
 </xsd:keyref>
 <xsd:keyref name="form2NameRef" refer="PKForm">
 <xsd:selector xpath="./cpm:artifact/cpm:hasForm/cpm:Form"/>
 <xsd:field xpath="@name"/>
 </xsd:keyref>
 <xsd:keyref name="form3NameRef" refer="PKForm">
 <xsd:selector xpath="./cpm:feature/cpm:featureHasForm/cpm:Form"/>
 <xsd:field xpath="@name"/>
 </xsd:keyref>

 <!-- =======================================-
 for Geometry the name is a key
 =======================================- -->
 <xsd:key name="PKGeom">
 <xsd:selector xpath="cpm:geometry"/>
 <xsd:field xpath="cpm:name"/>
 </xsd:key>

 <!-- Elements that shall reference a Geometry name -->
 <xsd:keyref name="geomRef" refer="PKGeom">
 <xsd:selector xpath="./cpm:form/cpm:hasGeometry/cpm:Geometry"/>
 <xsd:field xpath="@name"/>
 </xsd:keyref>
 <xsd:keyref name="subGeomRef" refer="PKGeom">
 <xsd:selector xpath="cpm:geometry"/>
 <xsd:field xpath="cpm:subGeometryOf"/>
 </xsd:keyref>
 <xsd:keyref name="geomNameRef" refer="PKGeom">

32

 <xsd:selector
xpath="./cpm:geometry/cpm:subGeometries/cpm:Geometry"/>
 <xsd:field xpath="@name"/>
 </xsd:keyref>

 <!-- =======================================-
 for Material the name is a key
 =======================================- -->
 <xsd:key name="PKMat">
 <xsd:selector xpath="cpm:material"/>
 <xsd:field xpath="cpm:name"/>
 </xsd:key>

 <!-- Elements that shall reference a Material name -->
 <xsd:keyref name="matRef" refer="PKMat">
 <xsd:selector xpath="cpm:form/cpm:hasMaterial/cpm:Material"/>
 <xsd:field xpath="@name"/>
 </xsd:keyref>
 <xsd:keyref name="subMatRef" refer="PKMat">
 <xsd:selector xpath="cpm:material"/>
 <xsd:field xpath="cpm:subMaterialOf"/>
 </xsd:keyref>
 <xsd:keyref name="matNameRef" refer="PKMat">
 <xsd:selector
xpath="./cpm:material/cpm:subMaterials/cpm:Material"/>
 <xsd:field xpath="@name"/>
 </xsd:keyref>

 <!-- =======================================-
 for Function the name is a key
 ======================================= -->
 <xsd:key name="PKFun">
 <xsd:selector xpath="cpm:function"/>
 <xsd:field xpath="cpm:name"/>
 </xsd:key>

 <!-- Elements that shall reference a Function name -->
 <xsd:keyref name="subFunRef" refer="PKFun">
 <xsd:selector xpath="cpm:function"/>
 <xsd:field xpath="cpm:subFunctionOf"/>
 </xsd:keyref>
 <xsd:keyref name="funNameRef" refer="PKFun">
 <xsd:selector
xpath="./cpm:function/cpm:subFunctions/cpm:Function"/>
 <xsd:field xpath="@name"/>
 </xsd:keyref>
 <xsd:keyref name="funName2Ref" refer="PKFun">
 <xsd:selector xpath="./cpm:artifact/cpm:hasFunction/cpm:Function"/>
 <xsd:field xpath="@name"/>
 </xsd:keyref>
 <xsd:keyref name="funName3Ref" refer="PKFun">
 <xsd:selector
xpath="./cpm:feature/cpm:featureHasFunction/cpm:Function"/>
 <xsd:field xpath="@name"/>
 </xsd:keyref>
 </xsd:element>

33

 <!-- This is the main type containing all other types -->
 <xsd:complexType name="Model">
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="form" type="Form"/>
 <xsd:element name="geometry" type="Geometry"/>
 <xsd:element name="material" type="Material"/>
 <xsd:element name="function" type="Function"/>
 <xsd:element name="transferFunction" type="TransferFunction"/>
 <xsd:element name="flow" type="Flow"/>
 <xsd:element name="artifact" type="Artifact"/>
 <xsd:element name="feature" type="Feature"/>
 <xsd:element name="specification" type="Specification"/>
 <xsd:element name="requirement" type="Requirement"/>
 <xsd:element name="behavior" type="Behavior"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>

 <!-- Core Product Model-->
 <xsd:complexType name="CoreProductModel" abstract="true">
 <xsd:sequence>
 <xsd:element name="type" type="xsd:string" minOccurs="0"/>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="information" type="Information" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- Information -->
 <xsd:complexType name="Information">
 <xsd:sequence>
 <xsd:element name="description" type="xsd:string" minOccurs="0"/>
 <xsd:element name="documentation" type="xsd:string" minOccurs="0"/>
 <xsd:element name="properties" type="Properties" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="Properties">
 <xsd:sequence>
 <xsd:element name="property" type="Property" minOccurs="1"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="Property">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <!--
===
In the following classes (CommonCoreObject, CommonCoreRelationship,
Constraint, EntityAssociation, CoreEntity, CoreProperty, Requirement)
some elements are commented. This is to avoid errors

34

during schema validations, these elements are of type ListOfxx, xx
stands for an abstract class. As XML doesn't allow any instanciations
of abstract classes, the commented elements can not be used, but are
provided to show how some object oriented programming of the UML model
can not be faithfully represented using XML schema.
===-->

 <!-- CommonCoreObject -->
 <xsd:complexType name="CommonCoreObject" abstract="true">
 <xsd:complexContent>
 <xsd:extension base="CoreProductModel">
 <xsd:sequence>
 <!--<xsd:element name="commonCoreRelationship"
type="ListOfCCRelations" minOccurs="0"/>-->
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- CommonCoreRelationship -->
 <xsd:complexType name="CommonCoreRelationship" abstract="true">
 <xsd:complexContent>
 <xsd:extension base="CoreProductModel">
 <xsd:sequence>
 <!--<xsd:element name="associatedCCObject" type="ListOfCCObjetcs"
minOccurs="0"/>-->
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Constraint -->
 <xsd:complexType name="Constraint">
 <xsd:complexContent>
 <xsd:extension base="CommonCoreRelationship">
 <xsd:sequence>
 <!--<xsd:element name="constrainedProperty"
type="ListOfCoreProperties" minOccurs="0"/>-->
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- EntityAssociation -->
 <xsd:complexType name="EntityAssociation">
 <xsd:complexContent>
 <xsd:extension base="CommonCoreRelationship">
 <xsd:sequence>
 <!--<xsd:element name="associatedEntity" type="ListOfCoreEntities"
minOccurs="0"/>-->
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- CoreEntity -->
 <xsd:complexType name="CoreEntity" abstract="true">

35

 <xsd:complexContent>
 <xsd:extension base="CommonCoreObject">
 <xsd:sequence>
 <!--<xsd:element name="entityAssociation"
type="ListOfEntityAssociations" minOccurs="0"/>-->
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- CoreProperty -->
 <xsd:complexType name="CoreProperty" abstract="true">
 <xsd:complexContent>
 <xsd:extension base="CommonCoreObject">
 <!--<xsd:element name="constraint" type="ListOfConstraints"
minOccurs="0"/>-->
 <!--<xsd:element name="hasRequirement" type="ListOfRequirements"
minOccurs="0"/>-->
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Requirement -->
 <xsd:complexType name="Requirement">
 <xsd:complexContent>
 <xsd:extension base="CommonCoreObject">
 <xsd:sequence>
 <xsd:element name="containedIn" type="xsd:string" minOccurs="1"/>
 <!--<xsd:element name="requiredProperty"
type="ListOfCoreProperties" minOccurs="0"/>-->
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Specification -->
 <xsd:complexType name="Specification">
 <xsd:complexContent>
 <xsd:extension base="CommonCoreObject">
 <xsd:sequence>
 <xsd:element name="specifies"
type="ListOfArtifacts"
 minOccurs="0"/>
 <xsd:element name="decomposedInto"
type="ListOfRequirements"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Behavior -->
 <xsd:complexType name="Behavior">
 <xsd:complexContent>
 <xsd:extension base="CommonCoreObject">
 <xsd:sequence>

36

 <xsd:element name="behaviorOfArtifact" type="xsd:string"
minOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Artifact -->
 <xsd:complexType name="Artifact">
 <xsd:complexContent>
 <xsd:extension base="CoreEntity">
 <xsd:sequence>
 <xsd:element name="hasBehavior" type="ListOfBehaviors"
 minOccurs="0"/>
 <xsd:element name="hasFunction" type="ListOfFunctions"
 minOccurs="0"/>
 <xsd:element name="hasForm" type="ListOfForms"
minOccurs="0"/>
 <xsd:element name="satisfies" type="xsd:string"
 minOccurs="1"/>
 <xsd:element name="hasFeature" type="ListOfFeatures"
 minOccurs="0"/>
 <xsd:element name="subArtifacts"
type="ListOfArtifacts"
 minOccurs="0"/>
 <xsd:element name="subArtifactOf" type="xsd:string"
 minOccurs="0"/>
 <xsd:element name="hasInputFlow" type="ListOfFlows"
 minOccurs="0"/>
 <xsd:element name="hasOutputFlow"
type="ListOfFlows"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Feature -->
 <xsd:complexType name="Feature">
 <xsd:complexContent>
 <xsd:extension base="CoreEntity">
 <xsd:sequence>
 <xsd:element name="featureOfArtifact" type="xsd:string"
minOccurs="1"/>
 <xsd:element name="featureHasFunction" type="ListOfFunctions"
minOccurs="0"/>
 <xsd:element name="featureHasForm" type="ListOfForms"
minOccurs="0"/>
 <xsd:element name="subFeatures" type="ListOfFeatures"
minOccurs="0"/>

 <xsd:element name="subFeatureOf" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

37

 <!-- Port -->
 <xsd:complexType name="Port">
 <xsd:complexContent>
 <xsd:extension base="Feature">
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Form -->
 <xsd:complexType name="Form">
 <xsd:complexContent>
 <xsd:extension base="CoreProperty">
 <xsd:sequence>
 <xsd:element name="hasGeometry" type="ListOfGeometries"
minOccurs="0"/>
 <xsd:element name="hasMaterial" type="ListOfMaterials"
minOccurs="0"/>
 <xsd:element name="subForms" type="ListOfForms" minOccurs="0"/>
 <xsd:element name="subFormOf" type="xsd:string" minOccurs="0"/>
 <xsd:choice minOccurs="0" maxOccurs="1">
 <xsd:element name="formOfArtifact" type="xsd:string"
minOccurs="0"/>
 <xsd:element name="formOfFeature" type="xsd:string"
minOccurs="0"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Geometry -->
 <xsd:complexType name="Geometry">
 <xsd:complexContent>
 <xsd:extension base="CoreProperty">
 <xsd:sequence>
 <xsd:element name="subGeometries" type="ListOfGeometries"
minOccurs="0"/>
 <xsd:element name="subGeometryOf" type="xsd:string"
minOccurs="0"/>
 <xsd:element name="geometryOfForm" type="xsd:string"
minOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Material -->
 <xsd:complexType name="Material">
 <xsd:complexContent>
 <xsd:extension base="CoreProperty">
 <xsd:sequence>
 <xsd:element name="subMaterials" type="ListOfMaterials"
minOccurs="0"/>
 <xsd:element name="subMaterialOf" type="xsd:string"
minOccurs="0"/>
 <xsd:element name="materialOfForm" type="xsd:string"
minOccurs="1"/>

38

 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Function -->
 <xsd:complexType name="Function">
 <xsd:complexContent>
 <xsd:extension base="CoreProperty">
 <xsd:sequence>
 <xsd:element name="subFunctions" type="ListOfFunctions"
minOccurs="0"/>
 <xsd:element name="subFunctionOf" type="xsd:string"
minOccurs="0"/>
 <xsd:choice minOccurs="0" maxOccurs="1">
 <xsd:element name="functionOfArtifact" type="xsd:string"
minOccurs="0"/>
 <xsd:element name="functionOfFeature" type="xsd:string"
minOccurs="0"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- TransferFunction -->
 <xsd:complexType name="TransferFunction">
 <xsd:complexContent>
 <xsd:extension base="Function">
 <xsd:sequence>
 <xsd:element name="inputFlow" type="ListOfFlows" minOccurs="0"/>
 <xsd:element name="outputFlow" type="ListOfFlows" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Flow -->
 <xsd:complexType name="Flow">
 <xsd:complexContent>
 <xsd:extension base="CoreProperty">
 <xsd:sequence>
 <xsd:element name="sourceOf" type="xsd:string" minOccurs="1"/>
 <xsd:element name="destinationOf" type="xsd:string"
minOccurs="1"/>
 <xsd:element name="isSourceOf" type="xsd:string" minOccurs="1"/>
 <xsd:element name="isDestinationOf" type="xsd:string"
minOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- ListOfFlows -->
 <xsd:complexType name="ListOfFlows">
 <xsd:sequence minOccurs="1">
 <xsd:element name="Flow" minOccurs="1" maxOccurs="unbounded">

39

 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <!-- ListOfForms -->
 <xsd:complexType name="ListOfForms">
 <xsd:sequence minOccurs="1">
 <xsd:element name="Form" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <!-- ListOfGeometries -->
 <xsd:complexType name="ListOfGeometries">
 <xsd:sequence minOccurs="1">
 <xsd:element name="Geometry" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <!-- ListOfMaterials -->
 <xsd:complexType name="ListOfMaterials">
 <xsd:sequence minOccurs="1">
 <xsd:element name="Material" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <!-- ListOfFunctions -->
 <xsd:complexType name="ListOfFunctions">
 <xsd:sequence minOccurs="1">
 <xsd:element name="Function" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <!-- ListOfBehaviors -->
 <xsd:complexType name="ListOfBehaviors">
 <xsd:sequence minOccurs="1">
 <xsd:element name="Behavior" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>

40

 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <!-- ListOfFeatures -->
 <xsd:complexType name="ListOfFeatures">
 <xsd:sequence minOccurs="1">
 <xsd:element name="Feature" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <!-- ListOfArtifacts -->
 <xsd:complexType name="ListOfArtifacts">
 <xsd:sequence minOccurs="1">
 <xsd:element name="Artifact" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <!-- ListOfRequirements -->
 <xsd:complexType name="ListOfRequirements">
 <xsd:sequence minOccurs="1">
 <xsd:element name="Requirement" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <!-- ProcessInformation -->
 <xsd:complexType name="ProcessInformation">
 <xsd:sequence>
 </xsd:sequence>
 </xsd:complexType>

 <!-- Rational -->
 <xsd:complexType name="Rational">
 <xsd:sequence>
 </xsd:sequence>
 </xsd:complexType>

 <!-- Trace -->
 <xsd:complexType name="Trace">
 <xsd:complexContent>
 <xsd:extension base="CommonCoreRelationship">
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

41

 <!-- Usage -->
 <xsd:complexType name="Usage">
 <xsd:complexContent>
 <xsd:extension base="CommonCoreRelationship">
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

</xsd:schema>

Appendix C : XML representation of a planetary gear
<?xml version="1.0" encoding="UTF-8"?>
<model xmlns="http://namespace.nist.gov/msid/cpm">

<!-- Artifact -->
<artifact>
 <name>PlanetaryGearSystem</name>
 <information>

<description>The PlanetaryGearSystem for changing speed
 rotation

</description>
documentation>This is an assembly of 13 different

 subartifacts and subassemblies
</documentation>

 </information>
 <hasBehavior>
 <Behavior name="pgsBehavior"/>
 </hasBehavior>
 <hasFunction>
 <Function name="changeSpeedOfRotation"/>
 </hasFunction>
 <hasForm>
 <Form name="cylindricalForm"/>
 </hasForm>
 <satisfies>pgsSpecification</satisfies>

<hasFeature>
 <Feature name="fasteningHoles"/>
 <Feature name="outputShaftHole"/>
 </hasFeature>

<subArtifacts>
<Artifact name = "planetGearCarrier"/>

 <Artifact name = "sunGear"/>
 <Artifact name = "ringGear"/>
 <Artifact name = "inputHousing"/>
 <Artifact name = "outputHousing"/>
 <Artifact name = "screw1"/>
 <Artifact name = "screw2"/>
 <Artifact name = "screw3"/>
 <Artifact name = "screw4"/>
 <Artifact name = "screw5"/>
 <Artifact name = "screw6"/>
 <Artifact name = "screw7"/>
 <Artifact name = "screw8"/>

42

</subArtifacts>
</artifact>

 <!-- Features -->
 <feature>
 <name>fasteningHoles</name>
 <information>
 <description>8 holes to contain screws</description>
 <documentation>4 holes are in the output housing side,

 the other 4 are in the input housing side. They are
 used to fasten the output housing and the input
 housing to the ring gear.

 </documentation>
 </information>
 <featureOfArtifact>PlanetaryGearSystem</featureOfArtifact>
 </feature>
 <feature>
 <name>outputShaftHole</name>
 <information>
 <description>the cylindrical stem of the output shaft
 will be inserted into this hole</description>
 </information>
 <featureOfArtifact>PlanetaryGearSystem</featureOfArtifact>
 <featureHasFunction>
 <Function name="stemInsertion"/>
 </featureHasFunction>
 </feature>

 <!-- subartifacts: These artifacts are incomlete. Their
specifications,
 behaviors, functions, forms are TBD -->
 <artifact>
 <name>planetGearCarrier</name>
 <satisfies>pgsSpecification</satisfies>
 <subArtifactOf>PlanetaryGearSystem</subArtifactOf>
 </artifact>
 <artifact>
 <name>sunGear</name>
 <satisfies>pgsSpecification</satisfies>
 <subArtifactOf>PlanetaryGearSystem</subArtifactOf>
 </artifact>
 <artifact>
 <name>ringGear</name>
 <satisfies>pgsSpecification</satisfies>
 <subArtifactOf>PlanetaryGearSystem</subArtifactOf>
 </artifact>
 <artifact>
 <name>inputHousing</name>
 <satisfies>pgsSpecification</satisfies>
 <subArtifactOf>PlanetaryGearSystem</subArtifactOf>
 </artifact>
 <artifact>
 <name>outputHousing</name>
 <satisfies>pgsSpecification</satisfies>
 <subArtifactOf>PlanetaryGearSystem</subArtifactOf>
 </artifact>
 <artifact>

43

 <name>screw1</name>
 <satisfies>pgsSpecification</satisfies>
 <subArtifactOf>PlanetaryGearSystem</subArtifactOf>
 </artifact>
 <artifact>
 <name>screw2</name>
 <satisfies>pgsSpecification</satisfies>
 <subArtifactOf>PlanetaryGearSystem</subArtifactOf>
 </artifact>
 <artifact>
 <name>screw3</name>
 <satisfies>pgsSpecification</satisfies>
 <subArtifactOf>PlanetaryGearSystem</subArtifactOf>
 </artifact>
 <artifact>
 <name>screw4</name>
 <satisfies>pgsSpecification</satisfies>
 <subArtifactOf>PlanetaryGearSystem</subArtifactOf>
 </artifact>
 <artifact>
 <name>screw5</name>
 <satisfies>pgsSpecification</satisfies>
 <subArtifactOf>PlanetaryGearSystem</subArtifactOf>
 </artifact>
 <artifact>
 <name>screw6</name>
 <satisfies>pgsSpecification</satisfies>
 <subArtifactOf>PlanetaryGearSystem</subArtifactOf>
 </artifact>
 <artifact>
 <name>screw7</name>
 <satisfies>pgsSpecification</satisfies>
 <subArtifactOf>PlanetaryGearSystem</subArtifactOf>
 </artifact>
 <artifact>
 <name>screw8</name>
 <satisfies>pgsSpecification</satisfies>
 <subArtifactOf>PlanetaryGearSystem</subArtifactOf>
 </artifact>

 <!-- Functions -->
 <function>
 <name>changeSpeedOfRotation</name>
 <information>
 <description>this the main function of the
PlanetaryGearSystem.
 it provides adequate and variabel speed for all
possible
 operations
 </description>
 <properties>
 <property name="input">rotational energy</property>
 <property name="output">rotational energy</property>
 <property name="speedIn">1800rpm</property>
 <property name="speedOut">TBD</property>
 <property name="torqueIn">2.26 N.m</property>
 <property name="torqueOut">TBD</property>

44

 </properties>
 </information>
 <functionOfArtifact>PlanetaryGearSystem</functionOfArtifact>
 </function>
 <function>
 <name>stemInsertion</name>
 <functionOfFeature>outputShaftHole</functionOfFeature>

</function>

 <!-- Specifications -->
 <specification>
 <name>pgsSpecification</name>
 <specifies>
 <Artifact name="PlanetaryGearSystem"/>
 </specifies>
 <decomposedInto>
 <Requirement name="formSpecification"/>
 <Requirement name="inputSpeed"/>
 <Requirement name="outputSpeed"/>
 <Requirement name="inputTorque"/>
 <Requirement name="outputTorque"/>
 </decomposedInto>
 </specification>

 <!-- Requirements -->
 <requirement>
 <name>inputSpeed</name>
 <information>
 <description>input speed shall be between 900 and 1800 rpm
 </description>
 </information>
 <containedIn>pgsSpecification</containedIn>
 </requirement>
 <requirement>
 <name>outputSpeed</name>
 <information>
 <description>output speed shall be between 300 and 600 rpm
 </description>
 </information>
 <containedIn>pgsSpecification</containedIn>
 </requirement>
 <requirement>
 <name>inputTorque</name>
 <information>
 <description>input torque shall be around 2.26
N.m</description>
 </information>
 <containedIn>pgsSpecification</containedIn>
 </requirement>
 <requirement>
 <name>outputTorque</name>
 <information>
 <description>output torque shall be around 6.78
N.m</description>
 </information>
 <containedIn>pgsSpecification</containedIn>
 </requirement>

45

 <requirement>
 <name>formSpecification</name>
 <information>
 <description>length less than 100mm, width and height less
than
 60mm, weight less that 150g
 </description>
 </information>
 <containedIn>pgsSpecification</containedIn>
 </requirement>

 <!-- Form -->
 <form>
 <name>cylindricalForm</name>
 <information>
 <description>the form of the PlanetaryGearSystem
 shall be cylindrical
 </description>
 <documentation>length less than 100mm, width and height
less

than 60mm, weight less that 150g. No more details
about

the geometry of this form are available
</documentation>

 </information>
 <formOfArtifact>PlanetaryGearSystem</formOfArtifact>
 </form>

 <!-- Behavior -->
 <behavior>
 <name>pgsBehavior</name>
 <information>
 <description>the behavior of the the planetary gear

system after assembly analysis and validation
 </description>
 <properties>
 <property name="speedRatio">3.0:1</property>
 <property name="torqueOut">6.78 N.m</property>
 </properties>
 </information>

 <behaviorOfArtifact>PlanetaryGearSystem</behaviorOfArtifact>
 </behavior>
</model>

46

	Objectives
	Historic background
	Representation of attributes and class types
	The CPM classes
	Abstract classes
	Object classes
	Relationship classes
	Utility classes
	Class hierarchies
	Associations and aggregations
	The Java Artifact class
	The XML Artifact complexType
	Example: XML representation of a planetary gear

