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Abstract

The task of using molecular dynamics to determine the shear viscosity and the thermal

conductivity of a model fluid is examined in detail for the Lennard-Jones fluid. The

equilibrium time correlation function approach is compared with three nonequilibrium

methods, Poiseuille Flow, Momentum Impulse Relaxation, and Reversed Perturbation

Nonequilibrium Molecular Dynamics. The conventional wisdom is that the equilibrium

approach requires very long simulation times in order to obtain statistically significant

results. This study finds that only the Reversed Perturbation Nonequilibrium Molecular

Dynamics method has the possibility of significantly reducing the simulation time required

to obtain “good” estimates for the thermal conductivity. All of the reliable methods

examined can produce accurate estimates for the shear viscosity with shorter simulation

times than are needed for the determination of the thermal conductivity.

1. Introduction

In this note, we consider some schemes for estimating transport coefficients of fluids that

do not make use of the Green-Kubo formulation of transport coefficients [1]. The Green-

Kubo methods are derived from statistical mechanics and yield correct values when prop-

erly evaluated. However, they require very long run times to obtain reliable estimates.

In the alternative methods discussed below, the system is arranged so that the proper-

ties of the system can be mapped onto a calculable hydrodynamic flow and the transport

coefficient (s) are then obtained as parameters that make the computations match the hy-

drodynamic solution, just as is done experimentally. The objective of this study is to

identify computationally efficient methods for estimating transport coefficients for fluids

that are defined in terms of molecular structure and interactions. The methods examined

here are labeled Poiseuille Flow, Momentum Impulse Relaxation, and Reversed Perturba-

tion Nonequilibrium Molecular Dynamics. In all of the simulations discussed in this note,

the equations of motion were integrated using the Beeman algorithm [2]. A neighbor table

was used to improve the efficiency of the simulations [3] with the result that the simulation

time approximately scales as the number of particles.
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In order to compare results for the methods to be discussed, we list in Table 1 some

Green-Kubo based estimates of the transport coefficients thermal conductivity A and shear

viscosity 77 of the Lennard-Jones fluid for several dense fluid state points [4]. As usual,

all properties are listed in terms of the Lennard-Jones potential parameters for energy (e)

and length (a) and in terms of the mass m of the Lennard-Jones particle and are therefore

dimensionless. The Lennard-Jones potential, </>(r), has the form

4>(r
)
— 4e[(cr/r)

12 — (tr/r)
6
] .

(1.1)

The time unit r for simulations is

r = yjmcr 2 /e. (1.2)

The tests of the methods reported here are all for the Lennard-Jones fluid and the values

in Table 1 are used to evaluate the effectiveness of the alternative methods. Other sets

of transport coefficients for the Lennard-Jones fluid determined using the Green-Kubo

method are found in the literature [5, 6, 7, 8, 9]. This is not an all-inclusive list of

sources. While the Lennard-Jones fluid is an idealization, it has been shown that when

the potential parameters are appropriately chosen, the model predicts values for the shear

viscosity and thermal conductivity for the rare gases argon, krypton, and xenon that are

in good agreement with experimental values [10].

Table 1. A set of Green-Kubo based thermal conductivity A and shear viscosity rj transport

coefficients for the Lennard-Jones fluid at specified number densities n and temperatures T are

listed here. The estimated uncertainty in the transport coefficients is reported to be on the order

of 5% [4].

n T A V

0.85 0.745 7.66 3.28

0.85 0.908 7.18 2.64

0.85 1.033 7.34 2.75

0.85 1.318 8.03 2.56

0.85 1.503 8.19 2.44

0.85 1.976 8.08 2.28

0.85 2.905 8.46 2.31

0.75 1.008 4.72 1.66

0.75 1.330 5.64 1.68

0.75 2.017 6.06 1.51

0.75 2.913 7.02 1.53

0.65 1.588 4.14 0.88

0.65 1.851 4.46 0.99

0.65 3.564 5.30 1.00
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The three nonequilibrium methods are discussed in the next three sections. In each case,

the method is first reviewed based on the existing literature. Then the way we have imple-

mented the method is described and some results for the Lennard-Jones fluid are presented.

The final section contains a discussion of the merits of the methods and some recommen-

dations on which methods are potentially useful for the simulation of more complex fluids.

In order to make explicit comparisons of the computational effort involved in the different

methods, we first introduce the equilibrium time correlation function approach known as

the Green-Kubo method and present results for the first state point listed in Table 1.

The Green-Kubo method expresses transport coefficients as time integrals of equilibrium

time correlation functions of fluctuating currents [11, 12]. For the shear viscosity, the

current is the off-diagonal element of the stress tensor Vap,

N
^Pa/3 ~ ot ft

m.ivrVi

i=

1

- E'li'T
j>i

(1.3)

The shear viscosity is

1 f°°
V =

yfcgj
1

J
< 'Patpity'Pais{t) > dt (1-4)

where < . . . > indicates an ensemble average of the enclosed quantity. The corresponding

current for the thermal conductivity, the heat current Ja ,
takes the form in the micro-

canonical ensemble [12],

Ja = ^2 \vf [\rnvf + 4>{rij)] + 1 • Vi)rf

.

i= 1 j^i j^i

The thermal conductivity is

(1.5)

< Ja (t)Ja (t) > dt. (1.6)

It is important to realize that the heat current expression is ensemble dependent [12].

The shear viscosity and thermal conductivity have been determined for a 500 Lennard-

Jones particle system in the microcanonical ensemble. That is for constant number of

particles N, constant system volume V, and constant energy E. The total momentum of

the system is set to zero. A total of 106 time steps of duration 0.01 r were needed to

obtain satisfactory convergence of the current-current time correlations to zero for long

times. This amounts to an overall time interval of 104 r. A total of 3985 time origins

separated by 2.5r were generated so that the time correlation functions are averaged over
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3985 independent samples. The influence of system size on the transport coefficients is less

than the uncertainty in the estimates for N>500 [13, 14, 15, 16]. In addition to the explicit

results for the state with T = 0.76 and n = 0.85 that are presented below, the other states

listed in Table 1 have been run in order to estimate the uncertainties in the transport

coefficients. A rough estimate of the uncertainty in these coefficients can be obtained

by determining the variance of the values of the integrals of the three time correlation

functions [17]. In general the uncertainties in the shear viscosity are on the order of 5%

and those in the thermal conductivity are on the order of 10%.

Shear viscosity

The time correlation functions were generated for the xy, xz, and yz components of the

stress tensor and are shown in Fig. 1.1 as Vaf3
(t) scaled so that

V = Va0 (t)dt. (1.7)

P“
P
(t)

ap: xy, xz, yz

t/x

Fig. 1.1. The normalized time correlation functions that appear in eq. 1.5 are shown as functions

of time.

Fig. 1.2 shows the average of the three time correlation functions and the integral of the

averaged correlation function. The “long time” value of the integral is 3.38, in reasonable

agreement with the value listed in Table 1. The standard uncertainty for this state is

±0.2.
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30

T = 0.76, n = 0.85

r| —> 3.38

0 1 2

Mi

Fig. 1.2. The averaged time correlation functions (solid line) and the time integral for the shear

viscosity (dotted line) are shown here.

Thermal conductivity

The current-current correlation functions, Ja (t), scaled so that

/•OO

A = / Ja (t)dt (1.8)
Jo

are shown in Fig. 1.3 for the x, y, and z components of the heat current.

J„(t)

t/x

Fig. 1.3. The averaged time correlation functions for the heat current are shown here.

Fig. 1.4 shows the average of the three time correlation functions and the integral of the
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T = 0.76 n = 0.85

A.—>7.50

0 1 2

t/x

Fig. 1.4. The averaged time correlation functions (solid line) and the time integral for the thermal

conductivity (dotted line) are shown here.

averaged correlation function. The “long time” value of the integral is 7.50, in reasonable

agreement with the value listed in Table 1. The standard uncertainty in this value is ±0.8.

Note that the long time limit for the time correlation functions for this state point is

reached when t < 1.5r so that the individual samples of the correlation functions are

independent.

2. Poiseuille Flow

Poiseuille flow refers to the flow of a fluid, subject to a uniform body force, between parallel

plates with stick boundary conditions. If the plates are located at y = ±h and the flow is

in the x direction, then according to linear Navier-Stokes hydrodynamics, the steady state

x-component of the flow velocity, ux (y ), satisfies

ux (y) (2.1)

where Fe is the driving force for the flow (such as gravity), n is the number density, and

rj is the shear viscosity. The corresponding temperature profile in the slit is

T(y) = T0 -
(nFe )

2
y
4

(12r,\)
(
2 . 2

)

where To is the midchannel temperature and A is the thermal conductivity of the fluid.

The heat generated by the viscous damping is dissipated by thermal conduction through

the walls of the slit [18].
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This suggests that it might be feasible to determine both the thermal conductivity and the

shear viscosity of a fluid from a single nonequilibrium molecular dynamics simulation of

Poiseuille flow. This would entail determining both the temperature profile and the flow

velocity profile. Denis Evans and co-workers have examined the issues associated with the

molecular dynamics simulation of Poiseuille flow in a series of papers [19, 20, 18, 21, 22, 23].

Their objective was not the extraction of transport coefficients but rather understanding

the issues involved in performing steady-state nonequilibrium simulations. Some of the

salient results from this body of work are discussed in the following paragraphs.

Their simulations used a simple arrangement that is sketched in Fig. 2.1. The simulation

cell of dimensions Lx xLy
xL z is periodic in all three dimensions. The plates are represented

by three layers of atoms at one boundary (dark circles in the figure) that are tethered to fee

sites by a harmonic potential. Note that only one set of layers is in the basic simulation cell.

The other layer is just the periodic image of the first layer. The wall atoms also interact

with the fluid molecules by a specified potential. The wall atoms are thermostated so

that the heat generated in the fluid is removed from the system. The fluid atoms are not

thermostated and, in addition to intermolecular interactions, are subject to a uniform, time

independent driving force in the x direction. The use of a uniform external driving force

means that density gradients that would be produced by a pressure gradient are absent.

Once a steady state is achieved, the velocity profile, ux (y) and the temperature profile in

the fluid are determined as time averages.

O
O

o

O O
o

• •••<>mu
Fig. 2.1. A sketch of the simulation scheme used by Todd and Evans [18]. The dark frame

indicates the simulation cell (the z-direction is normal to the page) and the dashed lines indicate

the effective size of the channel (2h).

The initial studies used a short range WCA-type potential to describe the interactions
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between the fluid atoms and between the fluid atoms and the wall atoms. For this simple

system, it was necessary to postulate the existence of a strain rate term in the heat flux

vector in order to accurately describe the temperature profiles generated in the simulations.

In addition to the fourth power term in the Navier-Stokes solution, this coupling generates

a quadratic term. When a molecular fluid (liquid chlorine) was examined, the quadratic

term in the temperature profile was not observed [23]. Also, when ethane and hexane in

fairly narrow channels were simulated, the quartic form described the temperature profiles

except near the walls.

A major concern in many of these studies was how to accurately and efficiently generate

the temperature profile. The kinetic approach uses the particle velocity minus the flow

velocity to determine the local temperature, namely

1
N

kBT{y) = £»«i(vi(i/)
- u(t/))

2
(2.3)

!#

where the sum is over the molecules at a distance y from the center of the channel. Some

special sampling methods were developed to facilitate evaluation of spatial distributions

without recourse to the “bins” used in histogram methods [20]. The kinetic approach is

computationally inefficient for nonequilibrium simulations as it requires two simulations,

one to determine the flow profile u(y) and then a second simulation to determine T(y) or,

if the distribution is generated within a single simulation by taking ratios of the velocity

at a position divided by the density at that position. It requires long runs to reduce the

statistical scatter.

An alternative method for determining the temperature that depends only on the configu-

ration of the atoms was examined in some detail. The theory for this approach is described

extensively in Ref. [24] and is based on the thermodynamic relation

1

k^T (-)\dEJv
(2.4)

The details are not pertinent here, so we only consider the form that is readily implemented

in a simulation without the need for multiple simulations or extra force loops. The result

is

1

k^f <-£ v <- F*>/(£ f?>. (2.5)

l l

Another concern with the simulation of flow in a channel is how the width of the channel

is reflected in departures from the predictions of the continuum Navier-Stokes equations

[21]. Significant departures from the simple hydrodynamics predictions are found when the

width of the channel (2h) is less than about 10 particle diameters. The “stick” boundary

8



condition does not strictly apply when the wall and fluid atoms are different in that the

fluid-fluid and fluid-wall interactions are significantly different. The lesson appears to be

that behavior near the walls shows significant departures from the predictions of Navier-

Stokes hydrodynamics.

Finally, the examples in the literature are for short-range potentials. It is not known

what the result would be if longer range interactions or Coulomb interactions were used.

System size effects would be of particular concern. Coulomb interactions would have

additional complications since periodicity in the {/-direction would seem to be unphysical.

One possible approach, that would not be too expensive computationally, would be to use

the Ewald scheme for slab geometry that has a very large repeat distance in the {/-direction

with most of that region empty [25]. Alternatively, one could use the scheme proposed by

Lekner [26, 27] although it is computationally quite expensive.

Implementation

In this section, we describe the implemention of the Poiseuille Flow simulation and also

discuss the strengths and weaknesses of the proposed methods based on our experience.

First we discuss a method that follows the approach of Evans, et al. Then some alternative

methods are discussed. The examples are for atomic fluids interacting via a Lennard-Jones

12-6 potential. Quantities are reported in units of the Lennard-Jones parameters e and a

of the fluid atoms and the mass of the particles is the unit of mass of the fluid atoms.

In the first method to be considered, we followed the approach described above with

one modification. Instead of placing a wall layer at one end of the simulation cell and

considering the second wall .layer to be the periodic image of the first layer, we considered

having two explicit walls within the simulation cell, as indicated in Fig. 2.2.

Initially, we did not have periodic boundary conditions in the ^-direction. However, this

was not fully satisfactory as the wall layers tended to be pushed out by the fluid. After

some experimentation, we settled on having the wall layers as indicated in Fig. 2 but with

periodic boundary conditions in all three dimensions. With periodic boundary conditions,

the two wall layers are in fact one larger layer with two surfaces in contact with the fluid.

This eliminates most of the distortion of the walls by the fluid.

The code written to simulate Poiseuille flow contains 2000 Lennard-Jones fluid particles

and 480 Lennard-Jones wall particles. The tethering positions for the wall molecules are

specified to be fee sites that are consistent with the x- and z-dimensions of the simulation

cell. The L-J a for the fluid-wall interaction is set to 1.2 to strongly inhibit penetration

of the wall by the fluid and the cr for the wall-wall interactions is set to 2
-1 / 6 so that the

“equilibrium” separation matches the tethering sites. The remainder of the Lennard-Jones

parameters are set to unity for all interactions. The mass of all particles is unity.
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Fig. 2.2. A sketch of the simulation scheme used here. The dark frame indicates the simulation

cell (the z-direction is normal to the page) and the dashed lines indicate the effective size of the

channel (2h). Note that the upper wall layers are within the simulation cell, unlike Fig. 2.1.

The temperature of the wall particles is maintained by a Nose-Hoover thermostat [28]. The

equations of motion are integrated using the Beeman algorithm [2] with a time step of O.Olr.

Initially, the system was equilibrated with no external driving force for a temperature of

1.0. The density, n of the fluid in the region away from the walls settled out to be 0.825.

A series of runs with driving forces Fe varying from 0.01 to 0.05 were implemented. For this

system, 0.01 was about the smallest driving force that resulted in a detectable temperature

profile. The kinetic temperature is determined at each time step using the local flow

velocity (eq. 2.3) at that instant. Once the driving force was applied, experience showed

that a run of 2000r (10
5 time steps) was needed to obtain a stationary temperature and

flow velocity profile. Then a final run of lOOOr was made to obtain the profiles that were

fit to the hydrodynamic forms. The profile information is collected in bins of width lcr.

An example of the profiles is displayed in Fig. 2.3.

The analysis procedes in two steps. First, the flow velocity of the fluid away from the wall

is fit to a parabola using linear least squares,

ux {yi) = u0 4- u2 {yi 4- yc )

2
(
2 . 6

)

where yc . the ‘‘center” of the fluid layer is the position of the maximum in the parabola

and yi is the position of bin i relative to yc . The centers the bins in the simulation cell are

Y = yi + yc . An example of the fit is shown in Fig. 2.4.

This simplifies the next step of fitting the temperature profile T(yi) to

T( yi ) = r0 - T4yt, (2.7)
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F« = 0.02, T
wa])

= 1.0

Fig. 2.3. The profiles for the density, temperature, flow velocity and mean square variation of the

flow velocity are shown for the case with Fx = 0.02

F* = 0.02, T^n =1.0

Fig. 2.4. The velocity profile, ux (Y), is shown for the case with Fx = 0.02. The filled circles are

the calculated values and the solid curve is the fitted profile, ux {Y) — A + BY 4- cY 2
.

as indicated in Fig. 2.5.

The transport coefficients are then determined using

—nFx
2u2

(2.8)

(nFx )

2

(2.9)
1277X4

11
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F, = 0.02. 1.0

Fig. 2.5. The temperature profile, T(y), is shown for the case with Fx — 0.02. The filled circles

are the calculated values and the solid curve is the fitted profile, T(y) = Tq — T^yA
.

The results for several different values of the driving force Fx are listed in Table 2.

Table 2. The driving force Fx ,
and the computed values for the shear viscosity, 77 and the thermal

conductivity, A are listed for the case with the density n = 0.825 and the wall temperature,

Twa ll
= 1-0.

Fx V A

0.010 2.57 7.39

0.015 2.49 7.34

0.020 2.50 7.27

0.025 2.47 7.44

0.030 2.42 7.62

0.040 2.35 8.00

0.050 2.32 7.60

These estimates for 77 and A are consistent with published values of these transport coeffi-

cients obtained using the time correlation method of statistical mechanics [4, 7].

In order to get some idea for the uncertainties associated with these estimates for 77 and

A, a set of ten runs of lOOOr duration were made for a driving force, Fx = 0.025, for the

same state as identified in Table 2. The viscosity values ranged from 2.43 to 2.49 with

an average and uncertainty (the variance) of 2.45T0.018. The themal conductivity values

ranged from 7.11 to 8.32 with an an average and variance of 7.46T0.36.

In order to obtain some idea of how long a simulation should run, the state identified in

Table 2 was run for 200r. The cumulative time averages for 77, A, and n are shown in
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Fig. 2-6. The convergence for 77 is quite good while the convergence for A is not convincing

for lOOOr.

t/l

Fig. 2.6. The cumulative values for 77 ,
A, and the number density n are shown a simulation of

2000t. The wall temperature is Twau = 1
,
and Fx = 0.025 The degree of convergence for 77 is

very good, while that for A is not as definite.

Some further tests were made by generating time averages of lOr over an interval of 5000r.

The shear viscosity values were closely grouped around the average while the thermal

conductivity values were broadly distributed over the interval from 5 to 12. From this we

conclude that this method can generate the shear viscosity from a lOOOr run while much

longer runs are needed to produce thermal conductivity estimates with reasonably small

uncertainties. This is consistent with the observation that long runs are needed to reduce

statistical scatter when the kinetic definition of local temperature is used.

In order to reduce the scatter in the thermal conductivity values, another set of ten sim-

ulations was performed with the local kinetic temperature being determined using the

accumulated flow profile, u(y), rather than the instanteneous value. The duration of each

of these simulations was 2000r as this was found to be necessary for approximate con-

vergence of the thermal conductivity. The averages and variances for the ten runs are

77 = 2.38±0.01, A = 7.34±0.40, and n - 0.832±0.00.
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Table 3. The results for the shear viscosity, the thermal conductivity and the number density are

listed for the ten simulations where the cumulative flow velocity was used to determine the kinetic

temperature.

V A n

2.35 7.09 0.832

2.36 7.39 0.832

2.38 7.50 0.832

2.39 7.70 0.832

2.39 7.25 0.832

2.40 8.19 0.832

2.42 6.76 0.832

2.35 7.33 0.832

2.37 7.39 0.832

2.38 6.76 0.832

Alternative boundary regions.

Two variants of the boundary region were tested. The approach of Evans is rather inflexible

in that the wall atoms are tethered to specific sites. There is some ambiguity about where

the fluid meets the wall. Also, the process of changing the density of the fluid by changing

the dimensions of the simulation cell involves some additional work. For these reasons,

some alternatives were considered.

Suppose the regions at the ends of the cell are considered to be the wall region, as shown in

Fig. 2.2. Molecules in the wall region are fluid molecules and are free to move in and out of

the wall region. If a molecule reaches either end of the cell, it is diffusely reflected back into

the fluid with momenta selected from a Boltzmann distribution with the wall temperature

imposed. This proved to be rather inefficient in establishing a good temperature profile

and was discontinued.

Instead, the approach that has been selected treats the two bins at the ends of the cell as

the “wall” . Periodic boundary conditions are imposed in all directions. At each time step,

the molecules in the wall region are thermostated to the wall temperature by rescaling the

momenta, and a zero net flow condition in the direction of the applied force that is imposed

on the molecules. In other respects, this approach is the same as the other methods.

This leads to coarse grained temperature and flow profiles that consistent are with those

predicted by linear hydrodynamics. The shear viscosity and thermal conductivity are

estimated by fitting quadratic and quartic profiles.

An extensive set of runs to implement this method has been made for a Lennard-Jones

fluid with a mean density of 0.85 and average temperatures ranging from 0.9 to 2.75. The

results are displayed in Fig. 2.7 for systems that were stabilized for 2000r followed by a

14



production run of an additional 2000r. The viscosities are in reasonable agreement with

those listed in Table 1. For temperatures greater than 2, the thermal conductivities are

larger than those in Table 1. Also, the scatter in the thermal conductivity values is large.

Poiseuille Flow for transport coefficients

L-J fluid, n=0.85

Fig. 2.7. The shear viscosity and thermal conductivity for a range of states for the Lennard-Jones

fluid are shown here. The circles are for Fx =0.3, the other symbols are for F^ =0.4. Varying the

number of layers in the system from 19 to 35 has minimal effect on the results.

3. Momentum Inpulse Relaxation

This approach to the determination of the shear viscosity uses the decay in time of a care-

fully designed transient momentum gradient and extracts the shear viscosity by matching

the simulated momentum gradient to the hydrodynamic solution for the same problem

[29]. The essence of the approach is the following.

Suppose the flow velocity is ux (y ,
t) given that the initial value is ux (y , 0) = ao exp(—b0y

2
).

If there is no pressure gradient or external force present, the flow velocity satisfies

dux {y,t) d2ux (y,t)

dt
V

dy2 ( '

The solution is

Ux(y,t)=
+ 1/^ }

1/2
exp[-fr0 j/

2
/(l + t/t 0 )] (3.2)
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where to = l/(4i/6o), and v is the kinematic viscosity, the shear viscosity divided by the

density.

While this appears to be a straightforward simulation, there is a problem with the periodic

boundary conditions in the ^/-direction. If the usual condition of not changing the y-

component of the momentum when a molecule leaves the simulation cell through a plane

perpendicular to the y-axis and its periodic image enters the cell through the opposite side

of the cell, the flow velocity will not decay to zero at long times. To take care of this, a

special procedure is introduced to permit the flow velocity to decay as if the system were

infinite. This is done by requiring the x-component of the velocity of the particle entering

the simulation cell to be consistent with the current estimate of the Gaussian velocity

profile.

The process of determining the Gaussian profile at a time t is achieved by partitionaing

the simulation cell into bins parallel to the x-z plane. The flow velocity of each bin is just

the average x-component of the velocity of the particles in each bin at that time. The

resulting velocity profile is then fitted to a two parameter Gaussian function,

ux (t) = up (t) exp(-y2
/a

2
(t))

.

(3.3)

The fit parameters, up (t) and cr
2
(£), are then used to determine by extrapolation the x-

component of the velocity of the image molecule, uf'(i), just before it enters the simulation

cell as

uf (t) = up (t) exp(~y
2
{t - At)/a 2

{t)) (3.4)

where y(t — At) is the ^/-coordinate of the image molecule at the time step before it enters

the cell. The decay of the imposed flow velocity is realized by assigning u^(t) to the

x-component of the velocity of the particle entering the cell.

This fitting procedure is also used to determine the shear viscosity. Both up (t) and cr
2
{t)

can be used to estimate the characteristic time to and therefore the viscosity. The peak

velocity, up (t) has the form

A
{l + Bt) 1 / 2

(3.5)

so that
pB
4bn

(3.6)

Also, the variance cr
2
(t) is a linear function of time and may be used to provide another

estimate of to-

In the reported tests, the cell had dimensions L/2 x L x L/2 and 19 bins were used. The

dimensions were such that on the order of 100 molecules were in each bin. The simulations
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were performed by equilibrating the fluid without any imposed flow field, and then running

the system with the initially imposed flow for about 10 ps. This sequence was repeated

20 times with separate initial conditions. Results are available for the Lennard-Jones

fluid and for “butane”. The results for the shear viscosity compare favorably with those

obtained both with Green-Kubo time correlations and with nonequilibrium applied shear

simulations. The required run times for this method are at least and order of magnitude

smaller that for the other methods.

Some possible concerns are about the uniformity of the density (not discussed) and about

appropriate parameters for the imposed initial conditions (extensively discussed below).

There has not been any proposal for a similar approach to determining the thermal con-

ductivity of a fluid, although the decay of a temperature pulse has been used in a molecular

dynamics simulation to estimate the thermal conductivity of a superlattice crystal [30]. It

would require a careful analysis of thermal expansion effects to implement such an approach

for a liquid.

Implementation

The Momentum Impulse Relaxation scheme has been implemented as follows. First, a set

of coordinates for 2000 molecules at the desired temperature and density are generated

with a uniform momentum distribution. Then a momentum pulse with amplitude a( 0)

and width 6(0) are imposed and the system evolves for lOr. The evolution of a(t
)
and b(t)

are determined using 19 bins uniformly distributed in the simulation cell. This sequence

is repeated 20 times and the average of a(t) is used to determine r\ using eq. 3.5. Some

results for n = 0.85 and three values of a(0) (0.3, 0.4, and 0.5) and 6(0) = 0.25 are shown

in Fig. 3.1. If a(0) were smaller than 0.3, it was difficult to extract a useful signal. These

values for the viscosity are consistent with those listed in Table 1.

While it is straightforward to set up the momentum pulse in an initially “equilibrium”

fluid state, I have encountered serious difficulties in realizing results in the form of eq. 3.2

over extended times. The task is to determine the amplitude and width of the momentum

pulse by fitting the calculated profile to a Gaussian form. This is a nonlinear fitting task,

but since the changes from one time step to the next are small, this is not a difficult thing

to do using a steepest descent method. For relatively short times, the fitted amplitude and

width conform the the scaled forms. However, for times longer than one time unit or so,

there are serious, systematic departures from the scaled form.

My conjecture is that the suggested way of dealing the the “leakage” of momentum out of

the simulation cell is not adequate. Actually only a few particles cross the cell boundary

at any one time so the flux out of the simulation cell is small. Since this method, while

requiring relatively short overall simulation times is potentially useful, it is not at this time
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Fig. 3.1. The estimated values of the shear viscosity and indicated for three values of the initial

amplitude of the momentum pulse. The circles are for a(0) = 0.3, squares are for a(0) = 0.4, and

the diamonds are for a(0) = 0.5. The lines connecting the points are to guide the eye.

sufficiently robust to warrant further investigation here.

4. Reversed perturbation nonequilibrium MD
Another approach to obtaining transport coefficients from molecular simulations is based

on the following observations. A transport coefficient is the proportionality coefficient

between a current and a force. For example,

(4.1)

where A is the thermal conductivity, dT/dz is the temperature gradient that drives the

current, and J is the heat current. In the “usual” molecular dynamics approaches to deter-

mining a transport coefficient, the driving force is specified and the current is calculated.

In the reversed perturbation approach, the current is established by some scheme and the

resulting gradient is determined [31, 32, 33, 34]. In these papers, the methodology for

determining thermal conductivity and shear viscosity are examined. Some initial applica-

tions for the determination of the thermal conductivity for a variety of systems have been

reported [35, 36, 37, 38, 39, 40, 41]. Extensions of the method to diffusion in mixtures has

also been described [42, 43].

The essential feature of this approach is to generate a known current that is stationary in

time. This is done by separating the simulation cell of dimensions Lx x Ly x L z into layers

as indicated in Fig. 4.1. The central layer and the layer at one end of the cell are special.

At some interval rtrans ,
a property of a molecule in each of these layers is interchanged
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such that energy and momentum are conserved and that a gradient between the layers is

established. Because of periodic boundary conditions in all three dimensions, a current

flows from the central layer to the layer at one end and also to the periodic image of the

end layer. Once a stationary current is established, one then determines the corresponding

gradient by sampling the temperature or flow velocity in each of the layers.

Fig. 4.1. A sketch of the simulation scheme. The dark frame indicates the simulation cell (the

x-direction is normal to the page). The dashed lines indicate the boundaries of the layers. The

cross hatched layers are the end layer and its periodic image and the tilted line layer is the central

layer. Note that the total number of layers is even so the the distance between the “walls” and

the central cell is the same in both directions.

First let us consider the way a heat current is established. Let the central layer be the hot

one and the other layer be the cold one. At time intervals of Ttrans ,
the velocity vectors

of the molecule with the largest kinetic energy of molecules in the cold layer and the

molecule with the lowest kinetic energy in the hot layer are exchanged. This conserves the

total momentum and energy of the fluid and eventually results in a temperature gradient

between the central layer and the two crosshatched layers shown in Fig. 3.1. The heat

current is then the difference in the kinetic energy transfered between the hot and cold

layers averaged over time and over the area of the layer. If v\ and v\ are the squares of

the velocities of the hot and cold molecules, then the time averaged heat current, J, is

J =__ Etrans/ers ”^-^)/2

2 // Zy j* Jj -j

(4.2)

where t is the averaging time and transfers is the set of energy transfers. If an exchange
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of kinetic energy occurs once every rtrans then t/rtrans is the number of transfer events.

The temperature gradient is obtained from the temperature profile of the layers. The

temperature of layer k, Tfc, is 2/3 times the average kinetic energy of the Nk molecules in

layer k divided by Boltzmann’s constant ks-

Tk
3Nkks

(4.3)

Determining the average temperature of the layers is less time consuming that evaluat-

ing the time correlation function of the properly defined heat current that goes into the

Green-Kubo expression for the thermal conductivity. The time consuming part is the

establishment of a stationary temperature gradient.

A similar scheme is used to establish a momentum flux. Instead of picking the hottest and

coldest molecules in the central and end layers, one picks the molecule with the largest

^/-component of velocity to the right in the central layer and the molecule with the largest

^component of velocity in the opposite direction in the end layer and interchanges the

velocity vectors. Again the total momentum and energy are conserved. The result is a

gradient of the z-direction of the ^/-component of the layer velocity. The layer velocity, uk

is just the average velocity of the molecules in the k-th layer. The momentum transfer

for a transfer event, A

p

y ,
is just the difference in the ^components of momentum of the

selected molecules and the shear viscosity, 77 ,
is then

_ Ytransfer APy
(4 .4 }

2tLxLydu/dz

and the shear gradient, du/dz
,
is the slope of the uy (k) vs z(k) curve.

Some limits on the applicability of this approach have been noted [44, 40]. If the switching

time rtrans is too long, then the gradients do not develop as intended and the simple

connection between the flux and the temperature or velocity profile is lost.

Implementation

This approach requires a separate simulation for the determination of the shear viscosity

and the thermal conductivity. First, we examine the results for the thermal conductivity,

A, for the state with T = 1.0 and the density n = 0.887. The results for a set of ten

(10) sequential simulations of duration lOOOr (10
5 time steps) are listed in Table 4. The

temperature profile for one of these runs is displayed in Fig. 4.2 to illustrate the sort of

profiles involved in determining dT(y)/dy.

The corresponding results for the shear viscosity are found in Fig. 4.3 and Table 5.
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A separate pair of runs, one each for 77 and for A, of 10 6At were also made, the results

are: AP = 0.0598, 77
= 3.75 and 3.76; Jq = 0.0737, A = 8.76 and 8.79. The results of the

longer runs are consistent with those listed in Tables 4 and 5.

As a further check on this method, a series of runs were made for the states listed in

Table 1.1. The results for n = 0.85 are displayed in Fig. 4.4.

y/o

Fig. 4.2. The temperature profile, T(y ), is shown for a case with switching interval =50 At. The

solid circles are the computed profile and the solid lines are the least-squares fit to the profile.

Table 4. The results for the thermal conductivity are listed for 10 runs, each of lOOOr duration;

Jq = 0.0735T0.004 and A = 8.53T0.26. The two values of the thermal conductivity listed for

each flux are determined from the two parts of the profile shown in Fig. 4.2. The switching interval

is 50 At.

Jq A A

0.0737 8.40 8.44

0.0732 8.05 8.16

0.0738 8.99 8.97

0.0741 8.56 8.54

0.0735 8.54 8.60

0.0730 8.34 8.20

0.0740 8.78 8.69

0.0730 8.35 8.38

0.0731 8.47 8.44

0.0738 8.80 8.97
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y/a

Fig. 4.3. The momentum profile, u(y), is shown for a case with switching interval = 50At. The

solid circles are the computed profile and the solid lines are the least-squares fit to the profile.

Table 5. The results for the shear viscosity are listed for 10 separate runs,each of lOOOr duration;

AP = 0.0599±0.0002 and rjs = 3.80T0.13. The two values of the shear viscosity listed for each

flux are determined from the two parts of the profile shown in Fig. 4.3. The switching interval is

1~trans — 5(3 At.

AP V V

0.0601 4.05 4.01

0.0598 3.88 3.95

0.0596 3.55 3.61

0.0599 3.76 3.66

0.0598 3.85 3.79

0.0601 3.78 3.87

0.0600 3.93 3.90

0.0599 3.70 3.69

0.0601 3.85 3.74

0.0598 3.72 3.78

The interval between swap events, rtrans is an important parameter that determines the

magnitude of the temperature or momentum gradient. Some tests of the sensitivity of

the results have been made for the T = 3.564, n = 0.65 state of Table 1. The results,

that were generated by Jim Rainwater [45], are listed in Table 6. These results indicate

that 0.25r < rtrans fer < 1.0r is an acceptable range of switching times. The Green-Kubo

estimates for this state are A = 5.4±0.3 and rjs = 1.15T0.03.
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9.5

T

Fig. 4.4. The results of this method (black squares) are compared with the Green-Kubo results

(open circles) of Table 1.1 for the n = 0.85 states.

Table 6. The results for the shear viscosity and thermal conductivity as a function of the switching

time Ttrans are listed for the T = 3.564, n = 0.65 state of Table 1.

Ttrans / T A r]

0.06 5.06

0.12 5.12 1.13

0.25 5.20 1.16

0.40 5.19

0.50 5.17 1.16

1.00 5.21 1.19

2.00 5.11 1.22

4.00 5.11 1.21

5. Discussion

First, we consider the relative wall clock/CPU time needed to obtain “satisfactory” es-

timates for the shear viscosity and the thermal conductivity using the various methods

examined. For purposes of reference, we note that a Green-Kubo simulation of duration

104 t generates estimates with approximately 5% uncertainty in the shear viscosity and

about 10% uncertainty in the thermal conductivity.

As indicated by the values in Table 3 and Figure 2.6, the results for Poiseuille flow are

that a simulation of 10 3 r will produce shear viscosity estimates with an uncertainty of less

than 5%. Even allowing for the larger system size (a factor of 5), this requires less CPU
time than the Green-Kubo method. That is not the case for the thermal conductivity as

a simulation nearly 20 times longer is needed to achieve a 10% uncertainty level.
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For the Reversed Pertubation Nonequilibrium Molecular Dynamics method, the results in

Tables 4 and 5 suggest that the 5% uncertainty for the shear viscosity and 10% uncertainty

for the thermal conductivity can be obtained with 103r simulations. Now allowing for the

need to establish the gradients and the larger system size involved, the individual transport

coefficients can be obtained in a time comparable to that required for the Green-Kubo

method. If both coefficients are needed, the Green-Kubo method would be a bit faster.

The Momentum Impulse Relaxation method is considerably faster than any of the other

methods. However, until the problem of departures from the scaling of the solutions from

the hydrodynamic predictions are resolved, this method remains a research topic.

There are some “loose ends” with the nonequilibrium simulation methods. These are

the “optimal” switching rate for the Reversed Perturbation method and the appropriate

magnitude of the driving force for Poiseuille flow. Another, potentially more significant

factor is the minimum system size needed to obtain proper profiles. The simulations

discussed here contained over 2000 atoms. If this could be reduced to 1000, the advantages

of the nonequilibrium methods over the Green-Kubo method would be significant.

Another factor to be considered concerns problems associated with these methods when

applied to molecular fluids as opposed to the monatomic Lennard-Jones fluid. If we restrict

our attention to rigid molecules, then there do not appear to be serious problems provided

the momenta and forces are center-of-mass values and molecular currents are used [46, 47].

Further discussion of this topic lies outside the scope of this report.

Finally, we note that cases where the viscosity of the fluid is sufficiently large that vis-

coelastic effects are present have not been examined. For those situations, it is known

that the correlation times for the shear viscosity correlation functions appearing in eq. 1.4

become much longer than occurs for any of the cases examined here. In that situation, the

Green-Kubo method will require much longer simulations in order to obtain statistically

independent samples. It is not known how the other methods will behave for such systems.
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