
Identifying Sensory Processing Requirements for an
On-Road Driving Application of 4D/RCS ∗

John A. Horsta, Anthony Barberaa, Craig Schlenoffa, and David W. Ahab

aIntelligent Systems Division, The National Institute of Standards and Technology,
U.S. Department of Commerce, Gaithersburg, MD 20899, USA

bIntelligent Decision Aids Group, Navy Center for Applied Research in Artificial Intelligence,
Naval Research Laboratory (Code 5515), Washington, DC 20375, USA

ABSTRACT

Sensory processing for real-time, complex, and intelligent control systems is costly, so it is important to perform only the
sensory processing required by the task. In this paper, we describe a straightforward metric for precisely defining sensory
processing requirements. We then apply that metric to a complex, real-world control problem, autonomous on-road driving.
To determine these requirements the system designer must precisely and completely define 1) the system behaviors, 2) the
world model situations that the system behaviors require, 3) the world model entities needed to generate all those situations,
and 4) the resolutions, accuracy tolerances, detection timing, and detection distances required of all world model entities.

Keywords: On-road driving, hierarchical control architecture, 4D/RCS, task decomposition, sensory processing, world
model, world model entities, sensory processing requirements, autonomous on-road driving, behavior generation, intelligent
control

1. INTRODUCTION

This paper describes our work identifying sensor requirements on NIST’s On-Road Driving project, which is sponsored by
DARPA/IPTO’s Mobile Autonomous Robot Software (MARS) program. The overall project goal is to design, implement,
and evaluate an intelligent real-time control system for an on-road autonomous vehicle that drives under a variety of typical
conditions and whose skill approaches human levels of performance. This is an ambitious task, and many researchers
have addressed this topic. For example, Dellaert et al1 describe an autonomous vehicle that is designed for highway
driving, but it cannot drive in urban conditions, and it is not robust with respect to varied weather, road surface, and other
conditions. In addition, many researchers (e.g., Ichise et al2) have limited their work concerning on-road driving behaviors
to simulation, which can significantly reduce focus on identifying real-world sensory processing (SP) requirements for
this task. Dickmanns has demonstrated a successful on-road autonomous system and has a detailed architecture, however,
connections to sensing requirements through the world model are either not explicit or not complete.3

We know of no one who has formally addressed the task of using an autonomous on-road driving system definition
to specify sensor system requirements. Of course, anyone building an autonomous on-road system has to do this, albeit
informally, otherwise the sensors will not be sufficient for the task. However, one wonders how many sensor systems are
more sophisticated than necessary or if system delays and failures could be avoided if an explicit understanding of exact
sensor requirements was had at design time. Clearly a formal method for determining these requirements will be useful, as
long as the cost of generating such requirements does not outweigh the cost of not generating them. We also have loftier
goals to which this sensor requirements identification contributes: design a system that has a toolkit of task capabilities that
surpass any that is currently available in a single autonomous on-road driving system.

The function of an SP subsystem is to generate actual measurements of the entities in the environment needed to perform
the requisite system behaviors successfully. These entities are represented in the world model (WM) of the system. The

∗This work was supported by DARPA’s Mobile Autonomous Robotics program (PM: Douglas Gage). We thank Jim Albus, Elena Messina, and our
other project colleagues for their continuing support of this work.

Further author information: (Send correspondence to John Horst)
NIST authors: {john.horst, tony.barbera, craig.schlenoff}@nist.gov, phone: (301) 975-{3430, 3460, 3456}, isd.mel.nist.gov
NRL author: David.Aha@nrl.navy.mil, phone: (202)404-4940

NISTIR 7167
2006

types of WM entities can only be discovered if we have defined the system behaviors correctly and completely. System
behaviors, in turn, are dependent on situations† that trigger transitions from behavior to behavior. Situations that trigger
behavior transitions are further dependent on sub-situations. Situations and sub-situations are all dependent on WM entities‡.
Proceeding in this manner, the designer can correctly identify all the WM entities needed to generate all situations. After
identifying the type of WM entities required, the designer can specify the resolutions, accuracy tolerances, detection timing,
and detection distances required of all these WM entities. Finally, the designer determines how this required accuracy
impacts SP in terms of processing costs and sensor system requirements. For large-scale problems (like on-road driving),
the use of the hierarchical control paradigm 4D/RCS4 helps to keep the total design task manageable. We describe an
example of ascertaining SP requirements for an On-Road Driving application built according to the 4D/RCS paradigm. The
overall On-Road Driving task is to design, implement, and test a controller that directs an autonomous vehicle to maneuver
successfully through common, but complex on-road driving situations. We briefly review the 4D/RCS design methodology
and reference architecture, and our design for applying it to this task, including our task decomposition representation format
for on-road driving task knowledge. We also detail our approach for two subtasks - passing a vehicle and maneuvering
about objects while following a lane. In particular, we describe the planning algorithms, supporting reasoning strategies,
required WM entities, the SP tasks required to compute their values, and the tolerances within which they must perform.

The sensory processing requirements of different driving tasks have significantly different resolutions, identification,
and classification requirements will allow a performance metric to be defined for each of these tasks. Because these tasks
fit into a hierarchy of tasks, performance metrics on these tasks should reveal strikingly valuable detail, allowing resources
to be applied appropriately. For example, the task of "maneuvering the vehicle within a single lane" (the task) is at the
Elementary Maneuvers System module (see Figure 3). Because the task is at that level in the control hierarchy, the task
only requires that the in-lane maneuvering sub-system utilize previously computed items such as in-lane object cost, size,
velocity, and acceleration and road surface conditions. At this level there is little requirement for detailed recognition of
object types or the need to monitor them at a distance or to sense and read signs alongside or overhead of the road.

However, if our autonomous vehicle decides to pass a vehicle on an undivided two-lane road, then a world representation
must be sensed that identifies other WM entities, such as upcoming intersections, railroad crossings, vehicles in the oncoming
lane out to very large distances, lane marking types, and roadside signs. Systems satisfying these requirements probably do
not exist today.

Our work is to show just how these sensor requirements are connected to the particular driving task that the system
is trying to accomplish. In summary, our approach is to exercise the RCS methodology on the on-road driving tasks and
employ this to generate our sensor requirements. This methodology is described in (Barbera et al 2004).5 This will
provide the set of specifications that allow us to determine if particular sensor systems and sensor processing algorithms
are sufficient to support particular driving tasks. Conversely, if the goal is to accomplish a particular set of driving tasks,
this specification can be used to select the appropriate sensors and specify the required sensor processing requirements.

By detailing the features, attributes, and classifications of entities required in the world to reason about and generate
specific driving tasks, we will have a specification that can be used to

1. identify the SP requirements to the sensory processing researchers and

2. be used as testing performance metrics to evaluate the capabilities of various sensors and sensory processing algo-
rithms.

2. A PARADIGM AND METHODOLOGY FOR BUILDING COMPLEX SYSTEMS

The challenges encountered when designing and building autonomous on-road vehicles are virtually the same as that
encountered with any other Complex Electro-Mechanical System (CEMS). We know from experience that general complex
systems, e.g., word processing software or a Mars rover, are painstakingly designed, built, and maintained. Nothing can be
left to chance and virtually nothing good happens by chance. Careful thought produces success, careless thought produces
bugs. No one flips coins to aid in the production of large-scale, complex software. This is our universal experience and
we have no evidence to the contrary for artificial systems. Therefore, it is simply foolhardy to think that any truly complex

†A "situation" is an estimate of a world state at a particular point in time.
‡A "world model entity" is either a primitive (atomic) world state or an aggregate of primitive world states.

system can be anything other than painstakingly built. While it is true that clever algorithms (e.g., ones that learn) will help
make the code more efficient and robust, such cleverness requires all the more that the algorithm developer understand the
task in even fuller detail, than required by designing a system with all tasks explicitly encoded. There may be clever ways
to encode and execute the task in the artificial system, but in order to develop these clever techniques, the system designer
must comprehend the task knowledge completely.

At least two questions arise:

1. What is the nature of this painstaking work?

2. What is a CEMS design method that make design and implementation efficient?

A simple answer to the first question is in two parts. 1) All the task knowledge must be gleaned from the domain expert and
2) all this task knowledge must be translated into code that the system can successfully execute. Experience teaches that
we cannot expect to get the highly functional system we desire by gleaning only some small subset of all the necessary task
knowledge from the domain expert, with only a little additional input from the designer. Evidence from successful CEMS
universally rejects this hope. So for the time being we need a system design paradigm that expects that all this information
needs to be explicitly and painstakingly defined and that there are no short cuts or silver bullets. Furthermore, one must
encode that human task knowledge into a computer-controlled system. This is where an architecture, methodology, and
tool set become so helpful, as we will argue in the next two sections.

Therefore, the answer to the second question is tied into the answer for the first: selecting the type of design method
will dictate just how the expert’s task knowledge will be realized in the artificial system. We surely want a paradigm that
has the following characteristics.

• A conceptual framework allowing the explicit entry of all the knowledge relevant to the system task

• A conceptual framework that employs appropriate division of labor between the system components that avoids
combinatorial explosion of knowledge complexity

• A precisely defined design method that consists of explicit design steps that the designer can follow and that works
for any CEMS system

• A software design and implementation tool that hides unnecessary complexity, allowing the designer/implementer to
focus on realizing the task knowledge in the artificial system

A conceptual framework,4 design method,5 and tool set6 exist, which to some degree satisfy these requirements.

In the next few sections we will describe the 4D/RCS architecture and methodology. A description of an appropriate
tool set will not be described in this paper, but can be found in (Horst, 2000).6

3. THE 4D/RCS ARCHITECTURE SUMMARIZED

A design architecture is a framework for system design with terms, definitions, and guidelines. A methodology embodies
the design process. So, the architecture is a "framework" and the methodology is a "process". In terms of a common food
recipe, the architecture would define the ingredients, tools, terms, and meanings of terms, and the methodology are the steps
by which the food is prepared. We describe the architecture in this section and the methodology is described in Section 4.

4D/RCS has been used for conceptualizing, designing, engineering, integrating, and testing intelligent software for
vehicle systems with any degree of autonomy. It integrates NIST’s Real-time Control System (RCS)7 and Universität
der Bundeswehr München’s VaMoRs 4-D approach to dynamic machine vision.8 Their integration can be used to define
a multi-resolution hierarchy of feedback control loops between sensing and acting that integrates reactive behavior with
perception, world modelling, and planning. 4D/RCS has been used to develop several real-time control systems, including
ones for an inspection workstation,6 groups of unmanned air vehicles, and an experimental off-road vehicle. Albus and
Meystel (2001)9 and Meystel and Albus (2002)10 review several 4D/RCS applications and describe how 4D/RCS relates to
other intelligent system architectures.

Figure 1 displays an overview of the control loop supported by 4D/RCS. It characterizes complex real-time control
systems as involving the interaction of three components, which each need performance metrics to judge their quality and
correctness:

S E N S O R Y
P R O C E S S I N G

W O R L D M O D E L I N G
V A L U E J U D G M E N T

K N O W L E D G E

Im a g e s

M a p s E n ti t ie s

S e n s o r s A c tu a to r s W o r ld

C la s si f ica tio n
E s t im a t io n
C o m p u ta tio n
G r o u p in g
W in d o w in g

M is s io n (G o a l)

in te rn a l
e x te rn a l

E v e n ts
P la n n e r s
E x e c u to r s

T a s k
K n o w le d g e

B E H A V I O R
G E N E R A T I O N

Figure 1. The basic internal structure of a 4D/RCS control loop. Sensory processing performs the functions of windowing, grouping,
computation, estimation, and classification on input from sensors. World modelling maintains knowledge in the form of images, maps,
entities, and events with states, attributes, and values. Relationships (e.g., class membership, inheritance, pointers to situations) between
images, maps, entities, and events are defined by ontologies. Value judgment provides criteria for decision making. Behavior generation
is responsible for planning

1. Behavior generation (BG) processing: BG develops, selects, and executes plans for accomplishing the given goal
tasks.

2. Sensory processing (SP): SP measures entities of interest in the environment and internal to the system.

3. World model (WM) processing: WM derives internal representations from sensory processing, and its value judgment
logic makes them available for behavior generation.

In more detail, the world modelling component is responsible to maintain up-to-date estimates of task-relevant models
of the environment and the system. These task-relevant models can be, for example, maps, object shapes, object types,
costs, histories, events, or value judgments. For example, we may make a judgment that it is safe to straddle an object
between the wheels of the vehicle, based on details about the object’s measured shape and cost. This kind of computation
is all done in the world model.

Behavior generation involves reasoning from real-time world model representations to conduct strategic and tactical
behaviors (e.g., for on-road civilian driving tasks). This includes planning alternate courses of action and alternate paths,
evaluating these plans, and selecting the most appropriate action through some type of value judgment. Some challenges
with applying 4D/RCS involve identifying appropriate sensors, developing sensory processing algorithms to generate
accurate, registered world maps, and recognizing and classifying entities at sufficient resolution to populate a world model
representation for use by the behavior generation component.

The sensory processing components perform sensor fusion, feature and attribute detection, object classification, etc. -
all in the context of the current task activities. We will describe how to develop these sensory processing components given
the world model data specification.

4. THE RCS METHODOLOGY

As we mentioned in the previous section, a methodology is the process by which an architecture is realized for a particular
problem. The following sections describe the steps in creating a 4D/RCS design. Examples throughout will be gleaned
from the on-road driving application.

The 4D/RCS methodology has the following steps. 1) Define the total system task with help from domain experts and
decompose that task into logical subtasks as in Figure 6. 2) Group subtasks into agent control modules by functionality
as in Figure 3. 3) Define a finite state machine (FSM) for each subtask, with state transitions (world/system conditions)
and state transition functions (commands to next lower level, responses to upper level, or other functions) as in Figure 5.

GoToDestination...

GoOn...RdTurnLeftOnto...Rd TurnRightOnto...Rd

PassVehInFront

PassVehInFront

DriveOnTwoLaneRd NegotiateLaneConstriction

ChangeToLeftLane ChangeToRightLaneFollowLane

DoTrajSeg

Steer AdjustThrottle ApplyBrake

Figure 2. An example representation of a hierarchical task decomposition for the on-road driving task

4) Determine the world model entities that are needed to generate the state transition conditions as in Figure 7. 5) Determine
the sensory processing system requirements dictated by the world model entities as in Figure 7. The following two sections
describe these steps in more detail.

4.1. Task Decomposition Knowledge

One of our first tasks in this project was to provide a task analysis for autonomous on-road driving that can serve, among
other things, as the basis for developing a number of performance metrics. This task analysis is based on earlier work
performed by the Department of Transportation11 although our context required many modifications, additions, and, in
general, a focus on tasks relevant to autonomous driving.

The 4D/RCS methodology uses a hierarchical task decomposition format9 for representing domain knowledge. Hi-
erarchies are the architectural mechanisms used to "chunk" and abstract systems into manageable layers of complexity.
The scenario descriptions of intelligent control system activities naturally evolve into a task decomposition representation
because the scenarios are task sequences and can easily be discussed at many levels of abstraction, leading to well-defined
levels within the task hierarchy. This provides a convenient framework for system designers and knowledge engineers to
organize the information from the expert within an architecture that preserves the narrative character of the expert’s scenar-
ios, thus allowing the expert to easily review this representational format. A hierarchical task decomposition representation
is clearly well suited for this. Figure 2 shows an example of how a task decomposition hierarchy can be used to represent
expert knowledge for the on-road driving task.

This task decomposition hierarchy also acts as a convenient structure in which to encode semantic knowledge from the
expert. In the on-road driving task, semantic knowledge includes such knowledge items as the rules of the road, the rules
that require the vehicle to drive more slowly on wet or icy roads or to allow larger following distances on wet roads, etc.
Because each layer in the task decomposition represents a different abstraction level of the tasks, each layer also delineates
levels of detailed task context for incorporating semantic knowledge relevant to that level of detail within a particular task’s
activities. We will exploit this very organized layering of the task knowledge into different levels of abstraction and task
responsibility to aid us in performing a detailed analysis of the knowledge associated with finely partitioned task activities
for the on-road driving activities.

Given that the 4D/RCS methodology uses a task decomposition decision hierarchy to capture knowledge from the
expert’s narratives, it is straightforward to instantiate this into an implementation of a hierarchical architecture for agent
control modules executing this task decomposition in a one-to-one fashion (Figure 3). This 4D/RCS implementation
technique represents the knowledge in the implemented system in a manner that continues to be easily recognized by the

GotoDestination...

GoOn…Rd

PassVehInFront

FollowLane

DoTrajSeg

Vehicle

Trajectory

Destination

Manager

Driving

Behaviors

Route Segment

Manager

Elemental

Maneuvers

Steer

Steering

Servo

Adjust Speed

Speed

Servo

P

N

D

2

1

GoToDestination...

GoOn...RdTurnLeftOnto...Rd TurnRightOnto...Rd

PassVehInFront

PassVehInFront

DriveOnTwoLaneRd NegotiateLaneConstriction

ChangeToLeftLane ChangeToRightLaneFollowLane

DoTrajSeg

Steer AdjustThrottle ApplyBrake

Figure 3. The RCS implementation creates a hierarchical organization of agent control modules (right side of figure) that will be the
execution engine for the task decomposition (left side of figure). An agent control module is assigned to each actuator system to be
controlled and an organizational structure is built up that mimics the same number of layers in the task decomposition representation.
Each corresponding agent control module will accept the appropriate subtask command at the equivalent level in the task hierarchy and
will determine which subgoal command will next be given to its subordinate, based on the rules encoded in the corresponding state table.
For example, the subgoal command PassVehInFront to the Driving Behaviors agent control module will select the state table that contains
all of the rules necessary to evaluate the present world state at this level of abstraction and in the context of passing the vehicle in front. It
will send the appropriate subgoal command (i.e., FollowLane, ChangeToRightLane, or ChangeToLeftLane) for this present state to the
Elemental Maneuvers agent control module.

domain expert. It maintains the layered partitioning of the task to create levels of abstraction, task responsibility, execution
authority, and knowledge representation in a manner so as to greatly enhance the designer’s ability to think about each of
these layers separately. Each layer totally encapsulates the problem domain at one level of abstraction so all aspects of the
task at this one layer can be analyzed without overwhelming the designer. All of the system’s interactions and co-ordinations
within the context of this abstraction layer are contained here so that modifications and enhancements to it can be evaluated
with respect to their completeness and potential interaction with other task activities at that same abstraction level. At
each layer, all of the relevant sensory processing, world modelling, and behavior generation processing for that level of
responsibility and authority is encapsulated. As such, the 4D/RCS approach provides a very well ordered representation of
the tasks at various levels of finer and finer detail, clustered at each level in a task sensitive context. This is ideal for the
manner in which we want to identify the performance metrics.

A generic agent control module (Figure 4) is used as the unit building block in our hierarchical implementation system.
Tasks are grouped into modules based on similarity of function and purview. The task decomposition process is not
executable until explicit and complete process plans are defined for each task. These process plans are generally expressed
as Finite State Machines (FSMs).

A task is decomposed at one hierarchical level into a sequence of constituent subtasks at a subordinate level, which may
perform some processing at that level and/or send a command to the next subordinate level. Each task at each level can
be realized as an FSM. An FSM consists of states, state transition situations (STS), and state transition functions (STF).
STFs are generally tasks executed by FSMs at a lower hierarchical level. The STSs are snapshots of world states that
generally come from sensory processing (SP). STSs are mediated through the generation of world model (WM) entities and

SENSORY

PROCESSING

KNOWLEDGE

DATABASE

BEHAVIOR

GENERATION

WORLD

MODEL

VALUE

JUDGMENT

COMMANDED

TASK (GOAL)
STATUS

COMMANDED

SUBGOALS
STATUS

GENERIC AGENT

CONTROL MODULE

DriveOnT woLaneRd

PassVehInFront

PassVehInFro nt

DriveOnTwo LaneRd

NegotiateLaneConstrict

.

PassVehInFront

.

BEHAVIOR

GENERATION

COMMANDED

TASK (GOAL)

STATUS

STATUS

NEXT

SUBGOAL

SENSORY

INPUT

STATE-TABLES

Figure 4. Every agent control module in the 4D/RCS hierarchy has the same processing structure of the generic agent control module.
A module receives a commanded task (goal) that represents the present activity to be done at this level in the hierarchy at this instant.
The Behavior Generation (BG) function uses this commanded task to look up and retrieve the state-table that contains the rules relevant
to this activity. This sets the context for all of the processing at this module. Sensory Processing (SP) fills in world model data from the
environment that is important to this particular task. If the situation requires planning activity, then the Value Judgment (VJ) function
projects possible courses of action and performs some cost based analysis to determine a plan. As the situation creates matches to the
rules in the BG’s state table, the corresponding action part of the rule generates the next subgoal command to the subordinate agent
control module.

sub-situations derived from those WM entities.

FSMs, which can be represented as state tables, are also an extremely convenient representational format for the
developer. They capture the relevant task sequencing and state knowledge at each control module for every task activity.
As the need arises to modify the system, the state table that contains the knowledge rule set that concerns the activity to
be modified can be easily identified and retrieved. Potential conflicts that might arise in the execution are easily detected
through inspection (because this is such a small set of rules) and avoided by ordering the rules using additional state variables.
In this manner, the expert can provide additional task knowledge to resolve potential conflicts in specific task activities rather
than require the system designer to devise some arbitrary and general conflict resolution mechanism. Figure 6 displays an
example mapping of task decomposition knowledge into a state table.

4.2. World Model Knowledge

The FSMs described above are used to encode task decomposition knowledge. Each line of each state table uses some
symbolic value to describe the present situation that must be matched to execute the corresponding output action of that
rule. The processing required to determine whether a given situation is true can be thought of as a knowledge tree lying
on its side, funnelling left to right, from the detailed sensory processing branches until all of the values have been reduced
to an appropriate situation identification encoded in a symbolic value such as "ConditionsAreGoodToPass" (see Figure 6)
or "Circ Obj1 AND Circ Obj2" (see Figure 7). This lateral tree represents the layers of refinement processing made on the
present set of world model data to conclude that a particular situation now exists (e.g., "ConditionsAreGoodToPass").

GotoDest inat ion...

GoOn …Rd TurnRigh tOnto...RdTurnLeftOnt o. ..Rd

FollowLane

DoTrajS eg

DriveOnTwoLane Rd P ass VehInFront Negot iateLane Cons t riction

ChangeToRigh tLaneChan geToLeftLan e

Go On…Rd GoOn…Rd

Follow Lane Follow Lane

DoTrajS egDoTrajSegDoTrajSeg

Steer Adjust Thro ttle ApplyBrake

Fo llowLane Cha ngeToR ight LaneChan geToLeftLan e FollowLan e Fo llowLan e

Pas s VehInF ro nt

State table for "PassVehInFront"

Input Situations Output Actions

 S1 Condit ionsGoodToPass S2 ChangeToLeftLane

 S2 Condit ionsGoodToPass

 InPass ingLane
 S3 FollowLane

 S4 ReturnedToLane
 S0 FollowLane

 Done

 NewPlan S1 FollowLane

 S3 ClearOfPassedVehicle

 Suffic ientReturnSpace
 S4 ChangeToRight Lane

Figure 5. The task to "Pass a vehicle in front" is shown in both a task tree representation on the left and as a state table (FSM) on the right.
The state transition situations, such as "ConditionsGoodToPass", "InPassingLane, and "ClearOfPassedVehicle", are in the left column
of the state table, along with the states, S1, S2, etc. The state transition functions, such as "FollowLane", "ChangeToLeftLane", and
"ChangeToRightLane", are in the right column of the state table, and, in this case, consist only of tasks at the subordinate level. The task
knowledge for this particular on-road driving task is the set of subgoals, their sequence, and the conditions (i.e., current world situations)
that cause each of these subgoals to be commanded.

 S1
 ConditionsGoodToPass S2 ChangeToLeftLane

S2 ConditionsGoodToPass

 InPassingLane
 S3 FollowLane

S4 ReturnedToLane
 S0 FollowLane

 Done

NewPlan S1 FollowLane

 S3 ClearOfPassedVehicle

 SufficientReturnSpace
 S4 ChangeToRightLane

ConditionsGoodToPassEnvironmentSafeToPass

SituationInFrontOKtoPass

SituationInBackOKtoPass

OnComingTrafficOKtoPass

NoTransitOrSchoolBusStopping

NoBridgeInPassZone

NoIntersectionsInPassZone

LaneMarkingsAllowPass

NoPassZone-NotInEffect

hInPassZone

NoTunnelInPassZone

NoConstructionInPassZone

NoTransitOrSchoolBusStopping

NoBridgeInPassZone

NoIntersectionsInPassZone

LaneMarkingsAllowPass

NoPassZone-NotInEffect

NoTollBootNoTollBoothInPassZone

NoTunnelInPassZone

NoConstructionInPassZone

CrossBu

LegalToPass

NoRailroadXInPassZone

ck(pos)

0.07 degr ees @ 600 ft

15 ft

54 in

RoadSplashNotSignifcant

WeatherNotObscuringPassZone

WindsNotSignificant

OwnVehicleCapableToPass

RoadSurfaceSuitableToPass

RoadSurfaceNotToSlipperyToPass

RoadSplashNotSignifcant

WeatherNotObscuringPassZone

WindsNotSignificant

OwnVehicleCapableToPass

RoadSurfaceSuitableToPass

RoadSurfaceNotToSlipperyToPass

NoVehicleEnteringRoadInPassZone

VehInFrontNotBlockingSightInPassZone

NoCurveBockingSightInPassZone

NoHillBlockingSightInPassZone

NoVehicleInFrontAttemptingLeftTurn

NoPedestrianOnRoadSideInPassZone

NoPersonOnBikeInPassZone

VehicleInFrontDrivingNormally

VehicleInFrontNotAttemptingToPass

SufficientReturnSpaceInFrontAfterPass

NoVehicleOnRoadsideReadyToComeIntoLane

NoPostalVehicleOrDeliveryVehicleMakingStops

NoActiveEmergencyVehiclesInFront

NoVehicleEnteringRoadInPassZone

VehInFrontNotBlockingSightInPassZone

NoCurveBockingSightInPassZone

NoHillBlockingSightInPassZone

NoVehicleInFrontAttemptingLeftTurn

NoPedestrianOnRoadSideInPassZone

NoPersonOnBikeInPassZone

VehicleInFrontDrivingNormally

VehicleInFrontNotAttemptingToPass

SufficientReturnSpaceInFrontAfterPass

NoVehicleOnRoadsideReadyToComeIntoLane

NoPostalVehicleOrDeliveryVehicleMakingStops

NoActiveEmergencyVehiclesInFront

NoTransitOrSchoolBusStopping

LaneMarkingsAllowPass

NoPassZone-NotInEffect

NoConstructionInPassZone

NoTransitOrSchoolBusStopping

LaneMarkingsAllowPass

NoPassZone-NotInEffect

NoConstructionInPassZone

NoRailroadXInPassZone

NoIntersectionsInPassZone

NoRailroadXInPassZone

NoIntersectionsInPassZone

World Model: entities Value Judgment: situations Behavior Generation:

motion inducing plans

State table for "PassVehInFront"

Input Situations Output Actions

Lights(pos, state)

CrossingGate(pos)

Signs(pos, facing-

 dir, text and

 graphics

Tracks(pos, dir)

Train(pos, dir)

Lanes(pos, dir,

 width, curva-

 ture)

PassingZone(veh

 speeds, safety

 buffer, accel)

 . . .

Figure 6. The "PassVehInFront" Plan State Table encodes the task decomposition representation of its input conditions and corresponding
output action subgoals. In this example, the next subgoal "ChangeToLeftLane" is chosen as the output action when the input condition
"ConditionsGoodToPass" is recognized. This figure illustrates how all of the dependencies on the world model data are derived. The
high level group of situations that must be true for "ConditionsGoodToPass" to be true are identified. Here, one of these (LegalToPass)
is further refined to identify all of the world model states that help define this situation. Similarly, we display detail on one of these
world model states (NoRailroadXInPassZone) and the world entities, attributes, features, dimensions, and resolutions that help determine
whether this state is true. One of these entities (CrossBuck sign) is further detailed in terms of the features, dimensions, and sensor
resolutions required to recognize it within the distances required for the passing vehicle task.

The identification of these layers of knowledge processing to evaluate to the situation value is done in reverse. We know
that we cannot change into the oncoming traffic lane (the "ChangeToLeftLane" action) during the passing operation until
"ConditionsAreGoodToPass". Now we have to determine what must be considered for this to be true. To do this, we review
many different example scenarios to determine all of the pieces of knowledge required for all of these variations. The results
are grouped by category into (in this example) five major evaluation areas. Thus, to be able to say that the "Conditions-
AreGoodToPass", we first had to evaluate that each of the five sub-groups were true (i.e., the conditions "LegalToPass",
"EnvironmentSafeToPass", "SituationInFrontOKtoPass", "SituationInBackOKtoPass", and "OncomingTrafficOKtoPass").
In this example, we have clustered all of the rules of the road that pertain to the passing operation at this level of task detail
into the "LegalToPass" subgroup evaluation. We have itemized nine world states to be evaluated and named them with
the identifiers such as "NoConstructionInPassZone", "NoTransitOrSchoolBusStopping", and "NoPassZone-NotInEffect".
These world states can now be further decomposed into the primitive world model elements we need to measure (e.g.,
vehicles, their speed, direction, location, lane markings, signs, railroad tracks) to determine whether these world states
exist. These primitive world model elements then set the requirements for the sensory processing system we need to build
to support these control tasks. Everything has been determined in the context of the individual tasks that we want the system
to support.

5. APPLICATION EXAMPLES

In this section, we exemplify the use of the RCS methodology through two different on-road driving tasks, passing and
maneuvering around obstacles in-lane. Section 5.1, focuses on the example mentioned throughout this paper pertaining to
passing another vehicle on a two lane undivided road. Section 5.2 concerns a related task pertaining to following a lane and
doing in lane maneuvers. Maneuvers are any change in own vehicle (OV) dynamics. Whereas in Section 5.1 we emphasize
the RCS methodology, in Section 5.2 we emphasize a broader coverage of sensory processing requirements.

5.1. Passing

5.1.1. Applying the 4D/RCS methodology

Domain experts are consulted and play an integral part throughout this entire process. In the case of on-road driving, we are
all domain experts, though many of the conditions we examine and the actions we perform are determined subconsciously.

1. Scenario development with a domain expert: For any task in on-road driving, we walk through detailed scenarios
with domain experts to deeply understand the actions they take in certain situations, what conditions spawned those
actions, and why they believed the actions were most appropriate in that situation. If possible, we try to immerse
the domain expert in similar situations and have them talk through their behaviors. In the case of passing on a two
lane undivided road, it is often beneficial to drive in a vehicle with the domain expert and to have them describe
their process of determining when it was appropriate to pass. Specific conditions that spawn behaviors often change
slightly depending on the driver’s personality and aggressiveness level, but we try to generalize the behavior to its
fundamental components when encoding it in the control system.

2. Develop the task decomposition hierarchy: Before we can encode the knowledge needed to pass on a two lane
undivided road, we must understand and build an initial, overall task decomposition hierarchy for on-road driving.
This is an iterative process, and the task decomposition hierarchy often changes as new on-road driving scenarios
are explored. Changes in the task decomposition hierarchy are much more frequent in the beginning, and gradually
reduce in frequency as more scenarios are explored. This passing scenario is one of many scenarios that has been
used to develop this task decomposition hierarchy.

3. Determine the conditions that cause you to perform an action and the sub-actions that are needed to perform that
action: In the case of passing, the actions that need to be performed are fairly straightforward: change to left lane,
follow left lane for some period of time, and change to right lane. This is shown in Figure 5. However, the conditions
of when the vehicle should start this sequence of actions and when it should progress from one action to the next is
much more difficult to understand.

Let’s examine the conditions when one would initiate a passing operation. In speaking with domain experts, one
could decompose the conditions (that must be true to pass) into two categories: namely, that our autonomous vehicle

desires to pass and that the conditions are good to pass. Only when both of these conditions are true will it initiate
the passing operation. Through continued interrogation and "what-if" scenarios, we determined five conditions that
must be true when it is "good to pass":

(a) it is legal to pass,

(b) the environmental weather and visibility conditions are conducive to passing (often related to weather condi-
tions),

(c) the situation in front of our vehicle is OK to pass (other vehicles, pedestrians, and objects in front of us do not
hinder our ability to pass),

(d) the situation behind our vehicle is OK to pass (the vehicle behind us is not passing or tailgating us), and

(e) oncoming traffic allows us to pass safely (we have time to get around the vehicle in front of us).

Each of these five sub-conditions would be recursively decomposed until we identify the objects in the environment,
and their pertinent attributes, that impact the decision of whether to perform this passing action.

4. Use the previous step to define the concepts that must be captured in the system’s underlying knowledge base, and
structure the knowledge base to ensure maximum efficiency for the application: The objects and attributes discovered
in the previous step sets the requirements for the knowledge base that underlies the system. Following through with
the scenario of passing on a two lane undivided road, in order to evaluate the conditions mentioned in the previous
step, the knowledge base must contain concepts such as:

• other vehicles, including their speed, dimensions, direction, location, and possibly intention;

• pedestrians, including their speed, orientation, direction, location, and possibly intention;

• lane markings, along with the type of lane marking;

• weather conditions and visibility; and

• signs, including the text on each sign.

Once these concepts are captured in the knowledge base, they can be structured in such a way to ensure maximum
system efficiency.

5. Carefully evaluate all of the above objects and attributes in the context of the appropriate tasks to define resolutions,
distances, and timing of the measurement of these items by the sensory processing system: As shown in Figure 6 with
the identification of the railroad crossing buck sign, we must define the sizes, shapes, relative locations, and angles to
the road, distances at which they have to be identified (thereby setting resolution requirements), etc. This will yield
the sensory processing specifications in terms of the world model elements that must be measured and generated.
These same specifications become the performance requirements on sensory processing during test and evaluation.

5.1.2. Defining sensory processing requirements for the passing task

In this section, we will examine some detailed examples of requirements for sensory processing, following through with
our passing example. In particular, we will determine what it requires of the vehicle sensors to decide, at any given time
and speed, if it is legal to pass.

As shown in Figure 6, for a passing operation to be legal, there cannot be:

• any construction in the passing zone

• a transit or school bus stopping in the passing zone

• a no-passing-zone sign in the passing zone

• lane markings that prohibit passing,

• intersections in the passing zone

• a railroad crossing in the passing zone

• a bridge in the passing zone

• a tunnel in the passing zone

• a toll booth in the passing zone

Therefore, the sensory processing system must detect these items, or indicators that these items are approaching, at a distance
that allows the vehicle to pass safely. In this analysis we make a few assumptions:

• the vehicle can accelerate comfortably at 1.65 m/s2

• our vehicle is positioned approximately one second behind the vehicle in front of it (i.e., our vehicle will be at the
preceding vehicle’s current position in one second travelling at constant velocity)

• our vehicle will begin merging back into its original lane when it is one car length in front of the vehicle it is passing

• the merging operation that brings our vehicle back into its original lane will take one second

• each vehicle is five meters in length

All of these values are variables, and can easily be changed depending on the exact situation. With these assumptions,
we calculated the distance that our vehicle would travel during a passing operation, how long it would take to travel that
distance, and its final velocity assuming both vehicles have initial speeds of 13.4 m/s (30 m/h), 17.9 m/s (40 m/h), and 26.8
m/s (60 m/h). Table 1 displays the results (we assume un-occluded visibility).

For the "no railroad crossing in passing zone"
Speed (m/s) Time to

Complete
Pass (s)

Distance
Travelled in
Pass (m)

Velocity at
End of Pass
(m/s)

13.4 6.32 117.8 23.9
17.9 6.81 159.3 29.1
26.8 7.68 253.9 39.5

Table 1. Pertinent values for passing operation at various speeds

requirement, there are multiple markings that
can indicate a railroad crossing is upcoming,
such as a crossbuck just before the railroad cross-
ing, or railroad signs at pre-defined distances be-
fore the railroad crossing. Table 2 displays the
specification of how far before a railroad cross-
ing a warning sign should be placed, what size
the sign must be, and what size the letter on the
signs must be, according to the Manual of Uni-
form Traffic Control Devices12 (MUTCD).

Considering that the railroad warning sign is
Speed (m/s) Distance from

Railroad
Crossing (m)

Sign
Dimensions
(m×m)

Letter
height
(m)

13.4 99 0.450 × 0.450 0.125
17.9 145 0.450 × 0.450 0.125
26.8 236 0.450 × 0.450 0.125

Table 2. Specifications for railroad crossing signs

a pre-defined distance before the railroad cross-
ing, we can subtract that distance from the full
passing distance shown in Table 1 to identify the
forward distance our sensors must to be able to
sense. These distances are shown in Table 3.
This sets the specification for how far a sensor
must be able to "see" to determine if there is a
railroad crossing sign in the passing zone. How-
ever, we can take this one step further and de-
termine what the resolution of the sensors must be to read the sign. The following paragraphs examine the requirements of
the sensor itself. We ignore the software that performs the character and object recognition task in this discussion, although
we recognize that it is at least as important as the specifications for the sensors.

For a sign that needs to be read (i.e., where its shape and/or color do not convey its meaning), we assume that a 20×20
array of pixels hits on each letter is required to recognize it. Using simple trigonometry based on the distance to the sign
and the size of its letters as shown in Table 2, we can determine that a camera with resolutions of about 0.3491 × 10−3 rad
(0.02◦) is needed for all three cases above.

In some cases, a warning sign is not present and the sensors must rely on recognizing a crossbuck that is immediately
before the railroad crossing. In this case, we assume that we need an array of 5×5 pixel hits on the crossbuck to recognize
it by shape, and that the size of the crossbuck is the standard 900×900 mm in total dimensions, as specified by the MUTCD
manual. Based on this information, we would need a sensor with a resolution as shown in Table 4. Similar calculations
could be performed for all other items the sensor would need to sense when determining if it is legal to pass at any given
time and speed.

5.2. Lane following

5.2.1. Applying the 4D/RCS methodology

We now describe how we can generate sensory processing (SP) requirements merely by performing the 4D/RCS methodology
for a particular command, namely, the FollowLane command. FollowLane is one of the commands processed at the
Elemental Maneuvers (EM) level of the 4D/RCS hierarchy. Sensing system requirements are a natural byproduct of
performing the steps in the methodology.

The EM level is responsible for executing real-time maneuvers based on the presence of "objects" in the road, any
weather-related condition that may change OV motion parameters, and any road surface type that may change OV motion
parameters. Road surface types are things like concrete, macadam, gravel, grass, dirt, etc. Objects are defined as any
physical item on the road of finite size with respect to the whole road that may require OV to change motion parameters. An
object can be part of the road like a pothole. It can be moving like another vehicle or a bicyclist. It can be a large block of ice
or a deep puddle of water. However, the EM level knows nothing about the type of the object. What it does have is a boolean
indication of whether the generic object can be run over, what is its safe clearance distance (called its "offset"), and what
is its maximum safe passing speed. These distillations of higher level information are computed at the Driving Behaviors
(DB) level,5 the next highest level in the 4D/RCS hierarchy, see Figure 3. This distillation of information substantially
simplifies the logic and math computations of the EM level. This reduction of computation is the goal of the distribution of
labor in a hierarchical control system like 4D/RCS.

The EM level can execute the following com-
Speed
(m/s)

Passing
Distance (m)

Warning Sign
Distance (m)

Sensor Sign
Distance (m)

13.4 117.8 99 18.8
17.9 159.3 145 14.3
26.8 253.9 236 17.9

Table 3. Sight distance for a railroad warning sign

mands: FollowLane, PassLeft, ChangeToLeft-
Lane, ChangeToRightLane, TurnRightToLane,
TurnLeftToLane, ChangeLanes, StopAt, and a
few other commands. In the process of execut-
ing these commands EM looks to see if there
is any local entity that may require trajectory
path adjustment maneuvers such as, slow down,
speed up, stop, circumvent object, straddle ob-
ject, or run over object. These maneuvers permit the autonomous vehicle to travel safely in the presence of other objects
(including vehicles, of course), in the presence of motion-affecting local weather conditions like rain or snow, and in the
presence of different road surface types such as concrete or macadam. The commands that FollowLane can give to the next
lower level, namely the Vehicle Trajectory (VT) level,5 are DoTrajSeg, DoTrajClockWiseCircularArc, and DoTrajCoun-
terClockWiseCircularArc, see Figure 3.

As is true for the other levels, the EM level can access in-
Speed (m/s) Sensor Resolution

13.4 1.819 × 10−3 rad (0.1042◦)

17.9 1.241 × 10−3 rad (0.0711◦)

26.8 0.7086 × 10−3 rad (0.0406◦)

Table 4. Sensor resolution required by a standard crossbuck sign

formation that was prepared for it by nodes at higher levels.
This includes three tables, one pertaining to information on
the autonomous vehicle itself (the Own Vehicle (OV) table –
Table 5), another concerning other objects (the Active Objects
(AO) table – Table 6) that are being tracked by EM’s supervi-
sors; this may include other vehicles, bicycles, objects lying in
the road, etc., and another called lane segments (LS) data that
is a data base of the lane segments and their properties appropriate to the task to be performed. We assume the availability
of a Road Network Database (RND), which provides detailed information on a scenario’s road network (e.g., lanes, lane
segments, intersections). The LS data is derived from the RND by the Drive Behavior (DB) level, just above the EM level.
Tables 5 and 6 display some (not all) of the information that we expect to locate in the OV and AO tables, respectively. For
the OV, this includes information such as the autonomous vehicle’s current lane segment, position, size, and displacement

ChangeInConditions

MotionParams
Changed

NotSafeToRunOverObject

RoadSurfaceType
 NoChange

WeatherRelatedRoad
 SurfaceConditions
 NoChange

VisibilityNoChange

OV dynamic state

OV body width

OV outer tire

 width

objecti dynamic

 state (p, v, a)

objecti width

objecti offset

objecti passing

 speed

gap between

 objects

lane width

 . . .

 . . .

 . . .

NotOKtoStraddle
ObjectiInLane

OKtoCircumventObjecti
InLane

Object2
Conditions
PossibleFor
Circumvent

Object1
Conditions
PossibleFor
Circumvent

ObjectiType
SlowDownOK

OVwithinRange
OfObject1

ObjectiGoingTooSlowly

 S1

 S1

 S1NewCommand S0

S1

S1

 S1

S2

S2

S1

S1

 S1

OV
body
width

object1

object
positions
in-lane

object2

OV

gap between
objects

OV
(own vehicle)

dynamic
state

c1¬s1c2¬s2

ChangeMotion
Params()

c1¬s1¬c2s2

¬c1s1¬c2¬s2

State table for "FollowLane"

Input Situations Output Actions

World Model: entities World Model: situations Behavior Generation:

motion inducing plans

State table for "c1¬s1c2¬s2"
Description: Vehicle can circumvent but cannot straddle object 1 AND can circumvent
but cannot straddle object 2 (Note: object 1 is the object OV is expected to encounter 1st)

Situations Actions
New plan S1: Checking relative forward speeds of

objects 1 and 2
S1 AND object 1 is faster than or same
speed as object 2 in forward direction
S1 AND object 2 is faster than object 1
in forward direction

S2: checking gaps and acceleration/time
costs
S3: checking gaps and acceleration/time
costs

S2 AND insufficient gap to circumvent 1,
then circumvent 2

S4: plan goal path for OV slow down

S4 AND sufficient gap to circumvent 2,
then circumvent 1

S5: compute goal paths and parameters for
circumvent 2 then circumvent 1

S3 AND insufficient gap to circumvent 1,
then circumvent 2

S6: plan goal path for OV slow down

(S2 OR S3 OR S6) AND sufficient gap to
circumvent 1, then circumvent 2

S7: compute goal paths and parameters for
circumvent 1 then circumvent 2

(S5 OR S7) AND only one goal path S8: execute goal path
(S5 OR S7) AND two separate goal paths S9: execute first goal path
S9 AND first goal path done S10: execute second goal path

c1¬s1c2¬s2

c1¬s1¬c2s2

¬c1s1¬c2¬s2

BlahBlahBlah
BlahBlahBlah

BlahBlahBlahBlah

WindConditions
 NoChange

BlahBlahBlah
BlahBlahBlah

BlahBlahBlahBlah

RoadCharacteristics
 NoChange

BlahBlahBlah
BlahBlahBlah

BlahBlahBlahBlah

WarningMessagesOKBlahBlahBlah
BlahBlahBlah

BlahBlahBlahBlah

BlahBlahBlah

BlahBlahBlahBlah

BlahBlahBlahBlah

BlahBlahBlah

BlahBlahBlahBlah

BlahBlahBlah

BlahBlahBlahBlah

BlahBlahBlah

BlahBlahBlahBlah

TIghtnessOfPath
 NoChange

BlahBlahBlah

BlahBlahBlahBlah

BlahBlahBlahBlah

GapBetweenObjects
OKforCircumvent

NoChangeIn
Conditions

Figure 7. Here is a snapshot of the connection between world model primitives, conditions, and behaviors for EM level activity. The
conditions for circumvent object 1 in lane, circumvent object 2 in lane, and NoChangeInConditions have to be true for the followLane
state table to run the plan c1¬s1c2¬s2 for the command of the Elemental Maneuvers level in the 4D/RCS hierarchy for the on-road
driving task. Shown also are the details of the sub-plan table c1¬s1c2¬s2. This subplan negotiates the relative speeds and positions of the
two objects to determine an approximate maneuvering trajectory for OV. The subplan then computes acceleration, velocity, and position
values for the OV and sends these at the correct times as command parameters to the vehicle trajectory level (see Figure 3) until the plan
is completed or another command is sent to the EM control module from the Drive Behaviors module. To the left of the FollowLane state
table along with the value judgment logic for one of this table’s conditions. To the left of this logic lie its leaves, which denote the world
modelling primitives that it depends on. For example, determination of the gap between objects 1 and 2 is shown as a situation and it
feeds into the subplan table c1¬s1c2¬s2 as do object speeds.

from the center of its lane segment. For each object being monitored, its AO table will include information such as the cost
of damaging it if comes into contact with the OV, its jerk vector, and its type.

Figure 7 displays a portion of the state transition table for FollowLane, shown on the right. This figure also displays,
at the bottom, the subplan to be executed for one of its conditions, namely that there are exactly two active objects in front
of the OV in its lane segment, and that, taken independently, both can be circumvented but neither can be straddled. Also
shown is the value judgment (VJ) logic for this condition, shown to the left of the condition’s position in the state transition
table. The far left "leaves" of this logic are the WM entities whose values are required to compute the truth value for this
condition. For example, these include such variables as the OV’s body width, an object’s dynamic state, and the width of the

Table 5. Some parameters maintained in the Own Vehicle table

Name Description

body width Width of Own Vehicle (OV)
cost Cost for damaging OV via contact with another object
desired speed Desired tangential velocity
displacement Distance (±) of OV from center of lane in a direction normal to OV’s

"forward direction" in the lane segment
dynamic state position, vtan, atan, jtan, vnorm, anorm, jnorm

headlights Contribution to visibility conditions
inner_tire_width Width of space between inner right and left tires
LS_id OV’s current lane segment
min_desired_forward_speed OV’s maximum desired speed
noise Contribution to "conditions around the road"
orientation OV’s current orientation
outer_length Length of OV from front to rear bumpers
position Current x, y location of OV
tire_width Width of OV’s tires
underbody_height Distance between OV’s underbody and the road
vnorm, anorm, jnorm Current motion parameters in direction normal to OV’s "forward

direction" in the lane segment
vtan, atan Current motion parameters in direction tangent to OV’s "forward

direction" in the lane segment

current lane segment. The complexity of this figure suggests that the number of nodes in the VJ logic could be quite large,
as well as the number of logical functions that must be defined that connect a parent node in the VJ logic to its children,
each providing a functional definition for computing the parent’s truth value.

For WM entities that are in the OV table, one of the AO tables, or the RND, their values can be directly looked up
without requiring any additional sensing. This is because this information was previously sensed, most often by one of
EM’s supervisors (i.e., an ancestor node in the hierarchy). However, some of these WM entities have not yet been sensed.
For example, in Figure 7, examples of WM entities that must be sensed at the EM level include road surface temperature,
the road surface normal and tangential spatial derivatives, and the position of an object at the time when the OV will contact
it, assuming a constant velocity, acceleration, and direction model for both the OV and object. We focus on this subset of
the WM entities in Section 5.2.2, fleshing out their sensory processing needs.

5.2.2. Elementary maneuver level world model entities and conditions

We have determined most of the sensory processing requirements for all the WM entities at the EM level. A few of these
entities are shown in Figure 7. The tables in the Appendix B detail these requirements. For each entity, we provide the
following information:

• Type: These are either entities or conditions. So far, we have identified only one situation, Water Spray, which we
consider to be a situation, due to its transitory existence and the subjective evaluation of its nature.

• Motivation: This summarizes how each entity (or situation) is necessary for deciding conditions critical to behavior.
For example, in Figure 7, there are exactly two active objects in front of the OV in its lane. OV can determine the
situation, "both are circumventable independently and neither can be straddled" only if individual object positions,
velocities, sizes, etc. are known at some frequency and to sufficient accuracy.

• Attributes: These describe details for the entities that need to be sensed. For each attribute, we include its name,
possible values, and sensing requirements. In some cases, notes on implementation priorities are also given.

Here is our current list of entities or conditions that need to be sensed at the EM level in our 4D/RCS hierarchy. In
Appendix B, we include tables for all of them.

1. Water spray: Composed of a set of sprays, these come from other vehicles, and could possibly impact driving behavior
(e.g., slowing down and/or veering) by reducing OV’s sensing capabilities. This is the only situation sensed at the
EM level; the others are all entities.

2. Air: Attributes include Ambient Temperature, Wind Speed, and Wind Direction. As an example motivation for
studying these, OV’s behaviors may be impacted by high winds. Ambient temperature may affect the coefficients of
friction for different road surface types.

3. Predicted object position: This is the predicted position of the two other objects in the OV’s lane at the time that the
OV will encounter (each of) them. This information could indicate whether there is sufficient room for OV to safely
maneuver about these objects. Currently, we use a simple linear model and constant velocity assumptions using only
OV’s current dynamic state to predict the positions of encounter. This could be expanded, but probably would be
done by a higher level agent module. This item may be computed by the DB module and be placed in the AO table
(Table 6).

4. Road surface: This has the attributes Just Wet, Salt, Grit, and Temperature. As an example motivation for sensing,
the amount of salt on the road, particularly when its surface contains snow, could impact the maximum safe speed
for the OV to traverse it. We may want to use surface freezing temperature instead of amount and type of salt.

5. Spatial derivatives: The derivatives of the lane segment’s normal and tangential slope could constrain OV movement
and desired speeds.

6. Ice Cover: Composed of the attribute Pattern and a set of Ice Objects, the values of these entities could obviously
impact safe speed and acceleration maximums on the OV’s driving behavior.

7. Snow cover: Similar to Ice Cover, these entities could likewise constrain safe OV dynamics.

8. Water cover: Similar to Ice Cover, these entities could likewise constrain safe OV dynamics.

9. Wet leaves: Composed of Position, Extent, and Height attributes, these could reduce OV traction and, thus, could
impact OV safe speeds and selected path (as can several of the preceding entities).

10. Ambient light: The level and amount of ambient light could affect OV’s sensing capabilities. We group this together
with three other visibility-affecting conditions, namely Direct celestial light, Shadow, and Street light, which have
similar attributes.

The tables in Appendix B describe detailed sensing requirements for a few of these situations and entities, and also
some of their sub-entities (e.g., Ice Object, Snow Object, and Water Object). An example of the impact of these entities
and conditions on the follow lane behavior is shown in Figure 7.

We have analyzed the sensory processing requirements for each of the WM entities shown in Figure 7 that must be
sensed at the EM level. The tables in the Appendix detail these requirements. For each primitive, we provide the following
information:

• Type: The primitives are either entities or situations. In this case, we have only one situation (Water Spray).

• Motivation: This summarizes the logic denoted by the value judgment that motivates the role of that primitive for
contributing to the decision making for the highlighted condition (i.e., that there are exactly two active objects in
front of the OV in its lane, both are circumventable, and neither can be straddled).

• Attributes: These describe details for the primitives that need to be sensed. For each attribute, we include its name,
possible values, and sensing requirements. In some cases, notes on implementation priorities are also given.

In the Appendix we include tables for each of the following primitives sensed at the EM level in our 4D/RCS hierarchy:

1. Water spray: Composed of a set of sprays, these come from other vehicles, and could possibly impact driving behavior
(e.g., slowing down, veering) by reducing the OV’s sensing capabilities. This is the only situation sensed at the EM
level; the others are all entities.

2. Air: Attributes include Ambient Temperature, Wind Speed, and Wind Direction. As an example motivation for
studying these, OV’s behaviors may be impacted by high winds.

3. Predicted object position: This is the predicted position of the two other objects in the OV’s lane at the time that the
OV will encounter (each of) them. This information could indicate whether there is sufficient room to permit the OV
to circumvent these objects. Currently, we use a simple linear model and constant velocity assumptions to predict
the positions of encounter.

4. Road surface: This has the attributes Just Wet, Salted, and Temperature. As an example motivation for sensing, the
amount of salt on the road, particularly when its surface contains snow, could impact the maximum safe speed for
the OV to traverse it.

5. Spatial derivatives: The derivatives of the lane segment’s normal and tangential slope could constrain OV movement
and desired speeds.

6. Ice Cover: Composed of the attribute Pattern and a set of Ice Objects, the values of these entities could obviously
impact maximum safe speed limits on the OV’s driving behavior.

7. Snow cover: Similar to Ice Cover, these entities could likewise constrain safe OV speeds.

8. Water cover: Similar to Ice Cover, these entities could likewise constrain safe OV speeds.

9. Wet leaves: Composed of Position, Extent, and Height attributes, these could reduce OV traction and, thus, could
impact OV safe speeds and selected path (as can several of the preceding entities).

10. Ambient light: The level and amount of ambient light could affect OV’s sensing capabilities. We group this together
with three other visibility-affecting conditions, namely Direct celestial light, Shadow, and Street light, which have
similar attributes.

In summary, the tables in the Appendix describe detailed sensing requirements for these situations and entities, and also
some of their sub-entities (e.g., Ice Object, Snow Object, and Water Object). All are expected to impact decision making
for the condition highlighted in Figure 7 for the FollowLane state transition table.

Table 6. Some parameters maintained in the Active Objects table

Parameter Name Description

Acceleration vector Object’s absolute world acceleration coordinates
Behavior type Object’s behavior type e.g., consistent, erratic
Cost Cost of damaging object through contact with OV
Cost of violating minimum following distance Cost to OV and object for violating minimum following distance
Cost of exceeding height offset Cost for damaging an object via contact with OV
Cost to exceed maximum passing speed Cost to OV and object violating Min following distance
Cost to violate minimum offset When passing in less distance than Minimum offset
Displacement Object’s displacement from center of its lane segment
Distance OV to object Distance from object to OV
Dynamic state Object position, vel, acc, and jerk vectors, orientation
Estimated time past object Estimated time for OV to completely pass object
Estimated time to object Estimated time for OV nose to reach object
Headlights Contribution to visibility conditions
Height Object’s height

ID Object’s unique identifier
Jerk vector Lane motion
Left side object offset Distance of object’s left side from the center of its lane
Length Length of object
LS ID Lane segment within which the object resides
Maximum passing speed Maximum speed at which the OV is permitted to pass this object
Min following distance Min tangential distance permitted from OV to this object
Minimum offset Min value for the desired offset
Noise Affect of object noise on relevant conditions
Normal acceleration Object’s acceleration along it lane segment
Normal extent Object’s width normal to its lane segment
Offset dynamics Dynamics required when OV moves past object
Offset normal Max normal safe distance needed from object for OV to clear it
Offset tangential Min tangential safe distance needed from object for OV to clear it
Offset vertical Min height safe distance needed from object for OV to clear it
Orientation Object’s orientation
Passing speed Desired speed for OV when passing object
Position Object’s position in world coordinates
Relative lane position Object’s normal position relative to OV’s position
Relative motion Object’s motion relative to its lane segment
Right side object displacement Distance of Object’s right side from the center of its lane segment
Straddlable Indicates that ability of OV to straddle object
Straddle flag Indicates whether supervisor permits OV to straddle object
Subtype Adult, box, teenager, child, debris dropping, Jersey barrier, etc.
Tangential acceleration Object’s acceleration along its forward direction
Tangential extent Object’s length along its forward direction
Type Bicycle, obstacle, pedestrian, car, truck, barrier
Velocity lane normal component Object’s velocity perpendicular to its lane segment
Velocity lane tangential component Object’s velocity along its lane segment
Velocity vector Object’s absolute world velocity coordinates
Width Object’s width

6. SUMMARY

Our goal is to produce a taxonomy of on-road driving behaviors that can be further analyzed to produce the specifications for
identifying the world model entities, features, attributes, resolutions, recognition distances, and locations for each separate
driving task. These specifications can be used as the basis of performance metrics for sensory processing and world model
building. This requires representing two sets of domain knowledge. One is the task decomposition knowledge that defines
the sequences of subtask activities for every aspect of every type of driving task. This task decomposition knowledge is
encoded into ordered sets of production rules clustered by the context of the individual driving tasks. These rules consist
of input conditions (present world situations) that, when matched, cause the output of the appropriate sub-task goals. The
second set of domain knowledge is the detailed world state descriptions and evaluation functions required to produce the
world situation symbolic values that are used as the input transition conditions by the task decomposition rules.

We described how the 4D/RCS methodology and reference architecture was used to define the task decomposition
and the resulting state tables of production rules. We then described how the input conditions of these rules were further
evaluated to derive all of their dependencies on all of the corresponding world model states and world entities, features, and
attributes. Still using the context of the individual driving tasks, the appropriate recognition distances were factored in to
attain a specification of the requirements for the sensory and world model processing necessary for each separate driving
task behavior. These requirements now serve as both a requirements list for the development of the sensory and world
model processing for different on-road driving tasks as well as the performance metrics against which they can be measured
to assess the correctness of their operations.

The main need for future research is to spend the huge effort and painstaking work of defining FSMs, world model
entities, and sensing requirements for all the tasks in the system, and then continuously reforming the design based on
feedback received from implementation and testing. Such an effort will only be taken when there is either the will to
accomplish the effort, or there is an broadly accepted persuasion that no short cut or silver bullet is available to accomplish
the tasks, only techniques to make the design task more efficient.

REFERENCES

1. F. Dellaert, D. Pomerleau, and C. Thorpe, “Model-based car tracking integrated with a road-follower,” in International
Conference on Robotics and Automation, 1998.

2. R. Ichise, D. G. Shapiro, and P. Langley, “Learning hierarchical skills from observation,” in Proceedings of the Fifth
International Conference on Discovery Science, pp. 247–258, Springer-Verlag, (Lübeck, Germany), 2002.

3. E. D. Dickmanns, “An Expectation-based Multi-focal, Saccadic (EMS) Vision System for Vehicle Guidance,” in
Proceeding 9-th International Symposium on Robotics Research (ISRR’99) , address=,

4. J. S. Albus, et al, “4D/RCS version 2.0: A reference model architecture for unmanned vehicle systems,” (NISTIR
6910), (Gaithersburg, MD: National Institute of Standards and Technology, Intelligent Systems Division), 2002.

5. A. Barbera, J. Horst, C. Schlenoff, and D. Aha, “Task analysis of autonomous on-road driving,” in Proceedings of the
SPIE, D. Gage, ed., 5609, SPIE Mobile Robots XVII, (Optics East, Philadelphia, PA USA), 2004.

6. J. Horst, “Architecture, design methodology, and component-based tools for a real-time inspection system,” in Pro-
ceedings of the 3rd IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, 2000.

7. J. S. Albus and A. M. Meystel, “A reference model architecture for design and implementation of intelligent control
in large and complex systems,” International Journal of Intelligent Control and Systems 1, p. 15, 1996.

8. E. D. Dickmanns, R. Behringer, D. Dickmanns, T. Hildebrandt, M. Maurer, F. Thomanek, and J. Schiehlen, “The
seeing passenger car ’VaMoRs-P’,” in Proceedings of the IEEE Symposium on Intelligent Vehicles, pp. 68–73, IEEE
Press, (Paris, France), 1994.

9. J. S. Albus and A. M. Meystel, Engineering of mind, John Wiley & Sons, New York, 2001.
10. A. M. Meystel and J. S. Albus, Intelligent systems: Architecture, design, and control, John Wiley & Sons, New York,

2002.
11. J. McKnight and B. Adams, “Driver Education Task Analysis. Volume 1: Task Descriptions,” (Washington, D.C.:

Department of Transportation, National Highway Safety Bureau, Human Resource Research Organization), 1970.
12. “Manual on uniform traffic control devices (MUTCD 2000) millennium edition.” U.S. Department of Transportation,

Federal Highway Administration, 2000.

APPENDIX A. STATE TRANSITION TABLE AND VALUE JUDGMENT LOGIC FOR
FOLLOWLANE

Figure 7 presents sample of the entire state transition table for FollowLane, a task within the Elemental Maneuvers Level
in the 4D/RCS hierarchy for NIST’s on-road driving project. A complete listing of this state table is in Table 7

Table 7. This table displays the full FollowLane state table associated with the action of the highlighted condition-action pair in Figure 7.
We next display the value judgment logic required by this condition.

State: Conditions State: Actions

S0: newCommand S1
S1: changeInConditions S2: pl_changeMotionParams
S2: motionParamsChanged S1
S1: noObjects S1: pl_noObject
S1: can circumvent object 1 AND can straddle object 1 AND exactly one object S1: pl_c1s1
S1: can circumvent object 1 AND cannot straddle object 1 AND exactly one object S1: pl_c1s1
S1: cannot circumvent object 1 AND can straddle object 1 AND exactly one object S1: pl_c1s1
S1: cannot circumvent object 1 AND cannot straddle object 1 AND exactly one object S1: pl_c1s1

S1: can circumvent object 1 AND can straddle object 1 AND cannot circumvent object 2 AND
cannot straddle object 2 AND exactly two objects

S1: pl_c1s1c2s2

S1: can circumvent object 1 AND can straddle object 1 AND cannot circumvent object 2 AND
can straddle object 2 AND exactly two objects

S1: pl_c1s1c2s2

S1: can circumvent object 1 AND can straddle object 1 AND can circumvent object 2 AND
cannot straddle object 2 AND exactly two objects

S1: pl_c1s1c2s2

S1: can circumvent object 1 AND can straddle object 1 AND can circumvent object 2 AND
can straddle object 2 AND exactly two objects

S1: pl_c1s1c2s2

S1: can circumvent object 1 AND cannot straddle object 1 AND cannot circumvent object 2
AND can straddle object 2 AND exactly two objects

S1: pl_c1s1c2s2

S1: can circumvent object 1 AND cannot straddle object 1 AND cannot circumvent object 2
AND can straddle object 2 AND exactly two objects

S1: pl_c1s1c2s2

S1: can circumvent object 1 AND cannot straddle object 1 AND can circumvent object 2 AND
cannot straddle object 2 AND exactly two objects

S1: pl_c1s1c2s2

S1: can circumvent object 1 AND cannot straddle object 1 AND can circumvent object 2 AND
can straddle object 2 AND exactly two objects

S1: pl_c1s1c2s2

S1: cannot circumvent object 1 AND can straddle object 1 AND cannot circumvent OR cannot
straddle object 2 AND exactly two objects

S1: pl_c1s1c2s2

S1: cannot circumvent object 1 AND can straddle object 1 AND cannot circumvent object 2
AND can straddle object 2 AND exactly two objects

S1: pl_c1s1c2s2

S1: cannot circumvent object 1 AND can straddle object 1 AND can circumvent object 2 AND
cannot straddle object 2 AND exactly two objects

S1: pl_c1s1c2s2

S1: cannot circumvent object 1 AND can straddle object 1 AND can circumvent object 2 AND
can straddle object 2 AND exactly two objects

S1: pl_c1s1c2s2

S1: cannot circumvent object 1 AND cannot straddle object 1 AND cannot circumvent object 2
AND cannot straddle object 2 AND exactly two objects

S1: pl_c1s1c2s2

S1: cannot circumvent object 1 AND cannot straddle object 1 AND cannot circumvent object 2
AND can straddle object 2 AND exactly two objects

S1: pl_c1s1c2s2

S1: cannot circumvent object 1 AND cannot straddle object 1 AND can circumvent object 2
AND cannot straddle object 2 AND exactly two objects

S1: pl_c1s1c2s2

S1: cannot circumvent object 1 AND cannot straddle object 1 AND can circumvent object 2
AND can straddle object 2 AND exactly two objects

S1: pl_c1s1c2s2

APPENDIX B. TABLES OF SENSORY PROCESSING REQUIREMENTS

Below we present 12 tables concerning WM entities and SP requirements for the FollowLane command that were introduced
in Section 5.2.2. These tables describe WM entities, their attributes, the attribute name, the required accuracy and precision
in the values of the attributes, and finally the sensing needed to generate that attribute at the required accuracy. FollowLane
is a command performed at the Elementary Maneuvers level of the 4D/RCS control hierarchy for NIST’s on-road driving
task as sketched in Figure 7. Absent more precise detail on a given task, we chose to approximate intuitively the required
accuracy for a sensing parameter.

This is still a work in progress. For example, the assignment of appropriate priorities of implementation are not yet
complete.

FrameSituation
Component Name Values

Sensing
Requirements

Implementation
Priority (high,
medium, low);
Comments

Sub-
Situations

Water Spray per Other Vehicle Water Spray

Motivation This type of visibility condition could impact motion-affecting conditions
(e.g., either by constraining some OV motion dynamics parameter
maximums or represent a sufficient change in conditions so as to affect
driving behavior).
Vehicle Available in AO

Table
Current height
& width

{h, w} to nearest
0.5m

Current
location

Center of mass
{x, y, z} m

Predicted max
height & width

{h, w} to nearest
0.5m

Need water spray
object ID and
image
segmentation
capability

Current
transparency

Percent Requires
knowledge of
depth of water
attribute or water
object

Vehicle (that
caused this
spray)

{Motorcycle,
car, truck, large
truck}

Detection of the
amount of
anything NOT
water spray
within the
field of view

Start time Estimated
Greenwich mean
time, nearest
second

Pointer to the
Active Objects
Table

Attributes

Expected
Duration

Time in seconds +/- 0.25 sec

Transparency is
important and is
strongly
dependent upon
the current
amount of rain
precipitation.
Height, width,
and location
important for
any planned
maneuvering.
However,
priority is lower
because there is
usually a safe
option, namely,
slow down to
place larger
distance between
OV and spraying
vehicles

Water Spray
per Other
Vehicle

Parent Water Spray

Table 8. Sensing requirements for water spray attributes

FrameEntity

Component Name Values

Sensing
Requirements

Implementation Priority
(high, medium, low);

Comments
Motivation Temperature is a weather-related road surface condition, which is a type of

road surface condition, and it can impact motion-affecting conditions (e.g., by
constraining some OV motion dynamics parameter maximums or
representing a sufficient change in conditions so as to affect driving
behavior).
Wind direction and speed are wind conditions that could impact motion-
affecting conditions (e.g., by constraining some OV motion dynamics
parameter maximums or representing sufficient changes in conditions so as to
affect driving behavior).
Ambient
Temperature

Temperature T
in degrees
Celsius;
accurate to
±0.5˚ C
generally and
±0.25˚ C for a
range of
roughly ±10˚
C around the
freezing point
at the road
surface

Precision:
±0.25˚C (±0.1˚C
about road
surface freezing
point)

Wind
direction

Scalar angle in
radians

Precision: ±π/8
radians

This precision allows
for directions {north,
north-northwest, west-
northwest, west-
southwest, etc.}

Air

Attributes

Wind speed Scalar in m/s Precision: ±5 m/s

Table 9. Sensing requirements for air-related attributes

FrameEntity

Component Name Values

Sensing
Requirements

Motivation

Motivation The predicted position of each of the two objects, at the time of encountering
OV, along with the lane width at that location, will help to determine whether
the OV can circumvent that object while staying within its lane. These
variables are also consulted when considering whether it is unsafe to go
around an object that is moving too slowly and will soon be encountered.
Lane
Segment
Parameters

Predicted
<x,y> position
of object for
each of next
10s

Improvement of
dynamic values
in AO table
based on EM’s
sensors (e.g.,
LADAR)

Predicted
Object
Position

Attributes

Lane Width scalar double

None: Look up
from RND

Table 10. Sensing requirements for predicted object positions

Frame Entity

Component Name Values

Sensing Requirements Implementation

Priority (high,

medium, low);

Comments

Motivation These weather-related road surface conditions can impact motion-affecting

conditions (e.g., by constraining some OV motion dynamics parameter maximums

or representing a sufficient change in conditions so as to affect driving behavior).

Just

Wet

Time in minutes

since most recent

precipitation situation

began, if precipitating

History of current

precipitation situation?

Some other analysis of

oil slickness and/or

traction?

Low

Salt Amount in grams

per square meter;

Type of salt with

melting properties

and friction props

Three possible

methods:

1) road surface image

processing, 2) active

tests of traction on road,

and 3) explicit reports

of salt

Medium; most

freezing-temperature-

reducing elements are

based on some type

of salt (potassium,

magnesium, or

sodium chloride)

Grit A possible value:

coefficients of

dynamic and static

friction as a function

of surface position

Three possible

methods:

1) road surface image

processing, 2) active

tests of traction on road,

and 3) explicit reports

of grit application

Medium; may simply

depend on local and

real-time

measurements of

friction

Road

Surface

Attributes

Tem-

pera-

ture

Temperature T in

degrees Celsius;

accurate to ±0.5° C

generally and ±0.25°

C for a range of

roughly ±10° C

around the freezing

point at the road

surface

Precision to satisfy T Medium

Table 11. Sensing requirements for road surface conditions

Frame Entity
Component Name Values

Sensing
Requirements

Implementation
Priority (high,
medium, low);

Comments
Motivation These are a type of road characteristic that could impact motion-affecting

conditions (e.g., by constraining some OV motion dynamics parameter
maximums or representing sufficient changes in conditions that affect
driving behavior).
Tangential
Spatial
Derivative
(to detect
hills, dips)

[m≥10˚,
 10˚≥m≥5˚,
5˚≥m≥0˚,
0˚≥m≥-5˚,

-5˚≥m≥-10˚,
-10˚≥m], for 11
intervals of 0-10

seconds in front of
OV assuming

constant dynamic
state

Slope detector
on OV for
local slope
and LADAR
for surrounding
slopes

medium

medium

Spatial
Derivatives

Attributes

Normal
Spatial
Derivative

Same as for
Tangential,

bounded by LS
width

Slope detector,
LADAR

Table 12. Sensing requirements for road spatial derivatives

Frame
Entity

Component Name Values

Sensing
Requirements

Implementation Priority
(high, medium, low);

Comments

Motivation Ice coverage is a weather-related road surface condition that can impact
motion-affecting conditions (e.g., by constraining some OV motion dynamics
parameter maximums or representing a sufficient change in conditions so as
to affect driving behavior).

Attributes Pattern {Uniform,
Left, Right,
Spotty}

-

Ice
Cover
(on
current
LS)

Sub-entity Ice Object

Relative
Tangential
Position in
LS

Relative
distance in
feet from
front tires

Precision: ±0.1 m

Relative
Normal
Position in
LS

Relative
location in
feet from
center of OV

Precision: ±0.1 m

Extent
width in
feet,
centered on
the Relative
Position

Precision: ±0.1 m

Orientation Degrees Precision: ±
radians

Average
Thickness

Thickness of
this ice
object

Precision: ± 0.5in

Ice
Object
(on
current
LS)

Attributes

Type {Cracked,
Smooth,
Rough}

π/8

Length and

Table 13. Sensing requirements for ice cover

Frame
Entity

Component Name Values

Sensing
Requirements

Implementation Priority
(high, medium, low);

Comments

Motivation Snow coverage is a weather-related road surface condition that can impact
motion-affecting conditions (e.g., by constraining some OV motion
dynamics parameter maximums or representing a sufficient change in
conditions so as to affect driving behavior).
Moisture
Level

{Very wet,
moderately
wet, dry}

Temperature meas-
urement plus 'white'
color detector

Image segmenta-
tion plus 'white'
color detector

 This is a total
characteristic of the road

Pattern {Uniform,
left, right,
spotty}

Need to distinguish
between dry and snow-
covered road surfaces
for determining
kinematics maximums.
Color detection may be
sufficient. Left and
right are important since
finding a dry spot can
greatly increase
coefficient of friction for
tires.

Attributes

Depth {Shallow,
deep, very
deep}

May be difficult to
detect generally:
combination of
precipitation
history
(precipitation/state/
duration)
integrated with
precipitation/attri-
bute/rate

Shallow means tires are
still touching some
pavement; deep means
tires contacting snow
only; very deep means
not traversable at any
speed

Snow
Cover
(on
current or
local LS)

Sub-component Snow Object

Table 14. Sensing requirements for snow cover

Frame
E ntity

C omponent Name V alues

Sensing
R equ irements

I mplementa tion
Prior ity (high, medium,

low); C omments

 Snow
Object
(on
current or
local LS)

Attributes Relative
Tangential
Position in
LS

Relative
distance in
feet from
front tires

Precision: ±0.1 m A snow object is some
finite snow entity that
needs to be analyzed
further for possible impact
on driving maneuver (not
just change in speeds and
accelerations), i.e. OV will
most likely have to avoid
running over this entity

Relative
Normal
Position in
LS

Relative
location in
feet from
center of OV

Precision: ±0.1 m

Extent Length and
width in feet

Precision: ± 0.1 m

Orientation Degrees Precision: ±
radians

Type {Pile, Drift,
Untouched,
Flattened,
Slush}

Piles and drifts have
above-average
height/depth vs.
coverage, but drifts are
otherwise Untouched.
Flattened results in
below-average but
relatively consistent
depth, while slush has a
high (“Wet”) moisture
level and highly variable
depth

Moisture
Level

{Wet, Dry} Function of air,
road surface
temperatures, and
amount of solar
radiation

Average
Depth

Centimeters Precision: ±2 cm

Parent Snow Cover

π/8

Table 15. Sensing requirements for snow object

Frame Entity

Component Name Values

Sensing
Requirements

Implementation
Priority (high,
medium, low);

Comments
Motivation Water coverage is a weather-related road surface condition that can impact

motion-affecting conditions (e.g., by constraining some OV motion
dynamics parameter maximums or representing a sufficient change in
conditions so as to affect driving behavior).
Moisture
Level

{Very wet,
moderately
wet, dry}

Mere detection of
specularity may be
sufficient

This is a total
characteristic of the
road and can be used to
describe wetness levels
at the onset and the tail
end of a rainfall
situation, for example

Pattern {Uniform,
left, right,
spotty}

Mere detection of
specularity may be
sufficient, but also
need image
segmentation
capability

Need to distinguish
between dry and wet
road surfaces for
determining kinematics
maximums. Left and
right are important
since finding a dry spot
can greatly increase
coefficient of friction
for tires.

Attributes

Depth {Shallow,
deep, very
deep}

May be difficult to
detect generally:
might require 3D
analysis of the
intersection of
water surface plane
with predicted road
surface under the
water (LADAR)

Deep means too deep to
traverse at speed limit
without hydroplaning;
very deep means not
traversable at any speed;
in this latter case, the
water cover should be
considered a water object

Water
Cover (on
current or
local LS)

Subcomponent Water Object

Table 16. Sensing requirements for water cover

Frame Entity

Component Name Values

Sensing
Requirements

Implementation Priority
(high, medium, low);

Comments
Relative
Tangential
Position in
LS

Relative
distances in
feet from
front tires

Precision: ±0.1 m

Relative
Normal
Position in
LS

Relative
location in
feet from
center of OV

Precision: ±0.1 m

Extent Length and
width in feet

Precision: ±0.1 m

Water on the road

typically becomes an

object when water

depth is “deep” or

“very deep” (see
definitions
above)…affecting
traverability

Orientation Degrees Precision: ±
radians

Attributes

Depth {Thin layer,
Deep
enough to
hydroplane
at speed
limit, Not
traversable}

There are several
methods to detect
water depth, and
most of them are
challenging.
Options: 1) static
image analysis
(specularity), 2)
situation analysis
(rain type,
precipitation
history, knowledge
of road contour,
spray emanating
from other
vehicles), 3)
dynamic image
analysis (waves)

Velocity m/sec Precision: ±10 m/s low
low

medium

low

medium

 State
Flow
Direction

Angle in
radians

Precision: ±

Water
Object
(on
current or
local LS)

Parent Water Cover

π/8 rad

π/8

Table 17. Sensing requirements for water object

Frame Entity

Component Name Values

Sensing
Requirements

Implementation
Priority (high,
medium, low);

Comments
Motivation This type of road surface condition can impact motion-affecting conditions

(e.g., by constraining some OV motion dynamics parameter maximums or
representing sufficient changes in conditions so as to affect driving
behavior).

Relative
Position

<x,y> offset
from OV

 low

low

low

Extent Length and
width in feet

Wet Leaves

Attributes

Height Max Height

Table 18. Sensing requirements for wet leaves

Frame Entity

Component Name Values

Sensing
Requirements

Implementation
Priority (high,
medium, low);

Comments
Entities

Related to
Visibility

Conditions
(see below)

Motivation These time-of-day visibility conditions could impact motion-affecting
conditions (e.g., by constraining some OV motion dynamics parameter
maximums or representing sufficient changes in conditions so as to affect
driving behavior).

Level
square meter

(cd/m2)

Ambient
Light

Type {sun , moon}

Amount {in Candela
per square

meter
(cd/m2)}

Amount of
obstruction
of forward

view

{serious,
minor, none}

Direct
Celestial

light

Amount of
obstruction
of rear view

{serious,
minor, none}

Relative
Position

<x,y> Shadow

Gradient
between
shadow

region and
lighted

region {in
cd/m2}

Relative
Position

<x,y> Street light

Attribu Candela per

Candela per

tes

Level
square meter

(cd/m2)

Table 19. Sensing requirements for visibility conditions relating to the time of day

