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Abstract

Measuring system performance is conceptually straightforward; it is the inter-
pretation of the results and their use as predictors of future performance that are
the exceptional challenges in system evaluation, and experimentation in general.
Good experimental design is critical in evaluation, but there have been very few
techniques that a scientist may use to check their design for either overlooked as-
sociations or weak assumptions. For biometric and vision system evaluation, the
complexity of the systems make a thorough exploration of the problem space im-
possible. This lack of verifiability in experimental design is a serious issue. In this
paper, we present a new evaluation methodology that aids the researcher in discov-
ering false assumptions about the homogeneity of cofactors — when the data is not
“well mixed.” The new methodology is then applied in the context of a biometric
system evaluation.

Keywords — biometrics; evaluation; variance estimation; performance charac-
terization; sample design
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1 Introduction

Conceptually, measuring system performance is straightforward — run the system over
some input data, then, combine the output and ground truth reporting some metric.
With the data volume computational requirements inherent to vision systems, the me-
chanics and logistics involved in running a system evaluation is considerable (con-
sider [1] or the forthcoming NIST Fingerprint Vendor Technology Evaluation 2003 1,
for example). Furthermore, a more significant difficulty in performance evaluation is
the interpretation of the results. Results from an evaluation are most valuable if they
can be used as predictors of performance on compatible data. But what is meant pre-
cisely by performance prediction and compatible data?

From a statistical perspective, system performance prediction is often viewed as a
parameter estimation problem. For biometric systems, this might be a system’s identi-
fication rate, or some point on an ROC (receiver operator characteristic). Traditionally,
the performance parameter is estimated by executing an experiment and computing
the performance metric. A single measurement alone, however, gives limited insight
into the expected range of performance values should the experiment be run again.
For this, we need to estimate the variance of the potential results, and ideally, their
corresponding likelihoods of occurring. Various vision papers have looked at comput-
ing performance with added statistical data or confidence intervals [2–8]. However,
implicit in each of these analyses are simplistic sample designs that may not always
properly reflect the nature of the data.

The concept of compatible data is more nebulous. For vision systems, the map-
ping from real-world predicates to the data that impacts the system is very complex. If
the mapping from these cofactors to the actual data produces an unpredicted cluster-
ing, the observations within an experiment may not be compatible. On the subject of
homogeneity and the implications of clustered data, Kish [9] wrote

The correspondence with the “well-mixed urn,” inherent in the assumption
of independence, is negated; and formulas that depend on that assumption
fail to apply.

Therefore, consider the following definition. Given a pair of observations ���� �,
where � is a vector of cofactors and � is some value(s) of interest, we consider a
cofactor �� to be sufficiently homogeneous if and only if across trials of an experiment
the ��s are independent and identically distributed, or iid. (This includes the trivial
case in which �� is constant). This is compatible with the desire in experimental
design that cofactors be either (a) constrained or (b) sufficiently randomized. In either
case, the cofactor would be sufficiently homogeneous, and might be analyzed as an (a)
fixed or (b) random effect in some statistical model [10]. Homogeneity of all cofactors
is not a necessary condition for � to be iid, since it is possible that a cofactor has a
nominal effect on the observations. Note that such a model requires explicitly culling
out each cofactor ��.

A proposed model that departs from empirical data calls into question the cofactor
homogeneity assumptions proposed by an experimenter. For example, suppose for

1http://fpvte.nist.gov
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a given experiment, the statistic of interest is ��

� , the variance of some performance
metric � across multiple trials. Let ���� represent the point estimator of ��

� computed
from a single trial. Then, if ����� , the average point estimator of the sample variance and,
� ����, the sample variance of the parameter of interest do not converge — that is, if
����� � � ���� does not hold as the number of trials goes to infinity, 2 then this indicates
that at least one of the assumptions required for this equality to hold must be false. One
of the most common model departures, addressed in this research, is the violation of
the iid assumption — that is, one or more of the cofactors � � or observations �� are
not sufficiently homogeneous.

Statistical literature is rich with research regarding the effects of cofactors that do
not meet the experimenter’s expectations once they are known [11]. It is the authors’
conjecture that there is much less research regarding the identification, selection, and
incorporation of influential cofactors when it comes to analysis ( [12, 13] for example)
because of the intimate domain dependence of any cofactor judgment. While many
researchers consider cofactors in their own experiments, it seems there as been little
discussion within the performance evaluation literature as a whole (particularly within
computer vision and biometrics) with respect to the discovery of influential cofactors
that remain unmodeled.

In this paper we present a methodology that can be used to help identify false
cofactor homogeneity assumptions. The new methodology is not a panacea, and is no
substitute for thoughtful experimental design. It can, however, help guide an evaluator
in determining the validity of various cofactor assumptions. Unlike other biometric- or
classifier-oriented methods [2–4], a distinguishing characteristic of this research is the
recognition that influential cofactors may each have their own sample designs, and that
this sample design may have a large influence on the resultant variance and therefore,
confidence intervals.

The new methodology has some unique features worth separate consideration:

� Iterative. The new methodology is iterative in nature. This allows information
gained from one analysis to be used as feedback to the next iteration. In this
manner experimenters can adjust assumptions until they fail to reject a proposed
sampling design. Given the often large amounts of data/computation needed in
vision this iterative feature is well suited to vision system evaluation.

� Hierarchical RVs. In its current form, the methodology is best suited, but not
limited to, for random variables (RVs) having distributions that are hierarchical
in nature. (Hierarchical RVs will be reviewed in the following section).

� Binary. The new methodology exploits some unique relationships between sur-
vey sampling and binary data. These properties are at the core of the methodol-
ogy’s capability to provide evidence against false cofactor homogeneity assump-
tions.

The methodology is primarily data-driven, — i.e., the data of interest itself is used
to explore the cofactors of interest. Therefore, the methodology is most convenient for

2��
���� � � by definition since we assumed that �� is unbiased
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use in studies where the experiment can be easily repeated. Computational experiments
and simulations that allow for the generation of large amounts of data are a particularly
good fit to the proposed method.

Fundamentally, it is the goal of this paper to provide a methodology that may be
used to not only select an appropriate variance estimator for an experiment, but also
provide an estimator that is empirically justified. Ideally, the methodology would pro-
vide a way to prove the correctness of the estimator, however, this is far beyond the
scope of this paper. Regardless, using an emperically justified variance estimate is a
significant improvement from the common practice of selecting a traditional variance
estimator (along with its requisite assumptions) out of convenience.

This paper is organized as follows. In Section 2, Background, we provide the
necessary information on hierarchical distributions, repeated measures, sample design,
infinite populations and their relationships to binary statistics. Next, in Section 3,
Methodology Outline, we show the basic steps that are to be iterated until valid set
of homogeneity assumptions are found. In Section 4, Experimentation, we show how
the methodology can be applied to a biometric system evaluation. Section 6, Conclu-
sions, closes the paper.

2 Background

In this section, we will consider hierarchical distributions of random variables and how
they relate to survey sampling statistics. A hybridization of both methods serves as the
basis of the new methodology.

The distribution of a random variable is hierarchical if that random variable is real-
ized through sampling of a cascade of two or more component distributions, or stages.
A typical mixture distribution (such as a mixture of Gaussians commonly used in mod-
eling vision systems) is a two-stage hierarchical distribution since each realization re-
quires two separate samplings. In hierarchical models of two levels, the high-level
stage or hyperdistribution is effectively a distribution of distributions.

Many system evaluations are concerned with random variables having distributions
that are hierarchical in nature. For example, consider the distribution of the input to a
classifier system. The first stage corresponds to the selection of a particular class and
the second stage a particular instance of the selected class. Hierarchical distributions
can be problematic with respect to cofactor homogeneity when they are sampled in
non-designed ways. Specifically, when data contains repeated measures, there can
be groups of data that share an influential cofactor in an unbalanced fashion. From
a distributional standpoint, repeated measures can occur whenever one level of the
hierarchy is constrained in a manner inconsistent with other observations. For example,
in a classifier experiment in which � instances of each of � classes are observed, the
classifier label (certainly an important cofactor) is not well-mixed in the iid sense.

The statistics of survey sampling are particularly well-suited for repeated measure-
ments [11,14]. However, traditional survey sampling is primarily concerned with mod-
eling finite populations, or more generally, with observations made by a sampling pro-
cess that eventually terminates. The finite population correction terms found in survey
sampling estimators ensure that if, in each trial,n all of the population elements are se-
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lected and selection occurs without replacement, then the variance of a statistic across
different trials will be zero.

The vast majority of vision and biometric system evaluations, however, are con-
cerned with modeling infinite quantities of input-output pairs. The potential values
that these pairs may take on may be finite, but the process by which these values are
generated does not terminate in the same sense of sampling from finite population
without replacement. Likewise, sampling a finite population with replacement is not a
process that must terminate.

As noted in [15], [16], and [17], traditionally, random variable-oriented research
lacks robustness when it comes to describing data with complex sample designs (i.e.,
non-iid data). Specificially, it is not a general rule that survey sampling estimators can
be applied as is to infinite populations, without breaking down. For example, consider
the finite population stratified sampling estimator from [14](p. 92)

���� ����	�����

��
�


�

� (1)

where � is the total elements per stratum, � is the number of sampled elements per
stratum, � is the number of strata and 
 �

� is the element variance of stratum �. Clearly,
this estimator breaks down as � approaches infinity. Therefore, what is needed is
a collection of unbiased estimators for various sample designs as they correspond to
infinite population models. This requires mapping the sample design concept from
survey sampling to random variables.

We have not yet considered accommodating how repeated measures are generated
given a hierarchical distribution. In survey sampling, the sample design is the map-
ping from elements in the population to their respective probabilities of being selected.
With random variables of hierarchical distributions, we do not have quite the same
concept — observations are not viewed as having an a priori determined value. Philos-
ophy aside, we will discuss three survey sampling designs — simple random sampling,
stratified sampling, and cluster sampling — with respect to hierarchical distributions
where the sampling process at each stage of the distribution does not terminate.

2.1 Variance Estimators

It is common to find discussions within the computer vision community of what is
considered to be a repeatable experiment. We propse the definition that a repeatable
experiment is one that can be modeled statistically and verified empirically. While most
experiments have a potentially infinite number of parameters that can be modeled, our
focus will be on the minimal modeling needed for prediction — i.e. on estimating
variance. The ultimate goal of the method is quite simple — seek a sample design
in which the variance estimate computed from a single trial agrees with the average
sample variance from repeating experiments. When this is not true, the assumed sample
design is rejected.

In this section, we derive unbiased estimators of the variance of the mean of group
means for simple random sampling (srs), stratified sampling (st), and cluster sampling
(cl).
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2.1.1 Simple Random Sampling

We begin with the relationship between simple random sampling and iid data. In survey
sampling, srs implies that every population element has the same (uniform) probabil-
ity of being selected. We can make an analogous construction for random variables.
Consider a discrete population of � elements, where each element  � has a relative
frequency ��. Then, it is trivial to construct an index set over the interval ��� �� and a
mapping ��� from indexes to outcomes such at � �� is the quantile function of � , the
CDF of all ��s. Then, a uniform selection over the index set generates iid samples of
� [18]. A similar construction can be used for the continuous case.

2.1.2 Stratified Sampling

In survey sampling, stratified sampling involves partitioning the population into � non-
overlappying groups, or strata , and then systematically selecting � elements via srs
within each stratum. Given the duality of srs and iid data, it follows that for infinite
populations, stratified sampling is tantamount to selecting, across trials, the same �
hyperdistributions. Notice that having a hyperdistribution that is effectively discrete is
a necessary (but not sufficient) condition for stratified sampling. A hyperdistribution
might cover an infinite population, but if the sampling process results in a determinis-
tic and repeatable selection of particular mixture components, then stratified sampling
results, since the same hyperdistributions (or strata) are selected every trial.

It can be demonstrated that an unbiased estimator of � ���� ���, the variance of the
expected value of the stratum means is �
�

� 	��. Let ��� be the �th element of stratum
�. Then

� � ���st� �
�

����

��
�

��
�

� ���� ��(2)

But ��� and ���� share the same distribution �� for � �� � �, so

� � ���st� �
�

����

��
�

��
�

� ����� (3)

However, by definition of the stratified sampling process, samples are iid within a stra-
tum, so

� � ���st� �
�

����

��
�

�� ����� (4)

�
�

���

��
�

��� (5)

where ��� is the variance the statistic of interest over stratum �. Therefore, an unbiased
estimator of � � ���st� is �
�

� 	��, since �� �
�

� � � ��� 	�. This form is similar, but not quite
the same as the survey sampling estimator for finite populations.
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2.1.3 Cluster Sampling

In survey sampling, cluster sampling involves two stages of srs. First, srs is performed
such that each sample selects a subpopulation. Second, srs is performed over each
selected subpopulation. From a random variable standpoint, this is tantamount to first,
realizing a distribution — e.g. fixing a hyperdistribution parameter — and second,
sampling iid data from that constrained distribution. Note the subtle, but important
difference from stratified sampling, where the same subpopulations are selected every
trial.

We derive the variance of the cluster sample mean for doubly infinite populations
by first considering the case in which the mean is computed from � samples of one
hyperdistribution sample. This case is easily generalized to � hyperdistributions since,
for iid �s, � �

��
� � � �� �� �.

We make use of the conditional variance formula,

� �� � � � �� �� ���� 	 � ���� ���� (6)

where, in our case, � corresponds to fixing the hyperdistribution. From Equation (6),

� � ��� �
�

��

�
� ���

�
�

� ���� 	��� �
�
�

� ����

�
(7)

� � ���� ���� 	
�

�
��� �� ���� (8)

Therefore, for � repetitions of the sample process

� � ���cl� �
�

�
� ���� ���� 	

�

��
��� �� ���� (9)

�
�

�
� ���� 	

�

��
����� � (10)

However, we still need an unbiased estimator of � � ��� �. We might use a linear combi-
nation of �
�

� �
�


�

� 	� for����� � and 
�
��
�
�

���� ����	����� for � ����. Although

�� �
�

� � � ����� �, ��
�
��
� � � � ����, suggesting another application of the conditional

variance formula. This yields

��
�
�� � � � ���� 	

�

�
������ (11)

which implies 
�
��
	� should be used for an unbiased estimator of � � ���cl�. Comparing

this with Equation (5), we can see that the subtle difference between stratified and
cluster sampling leads to significantly different variance estimators.

2.2 Binary Data

In the introduction it was mentioned that a key component of the new methodology
stems from reducing the response variable of interest into binary data. In performance
evaluation this is common — we produce experiment data that is classified as either
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a success or a failure. We may group this into higher level constructs, such as an
ROC curve, but the inherent binary nature has important implications on the statistical
models we can use. Here, we will examine how our estimators interact with binary
data, and present an important inequality used in the main result of the paper.

For a two-stage hierarchical distribution in which the final observations are binary,
the hyperdistribution consists of the space of all single-dimensional distribution func-
tions over ��� ��. (For simplicity, we restrict ourselves to only distributions with finite
first and second moments.) It follows that the second stage is a Bernoulli distribution
with mean � (probability of success) and variance ��� � ��. Let �� and ��� represent
the true mean and variance of �, as determined by the hyperdistribution.

For cluster sampling, we combine the identity

��� � ��� � ���������� 	����������� (12)

� ����� ���� ��� (13)

with Equation (9), to get

� � ���cl� �
� ���

�
	
��� � ���

��
(14)

�
���
�

	
����� ���� ���

��
(15)

�
��� �����

��
	
����� ���

��
(16)

Observe, that for srs, � � �, so � � ���srs� � ���� � ���	�. Therefore, � � ���srs� from
�� � �� samples is always less than or equal to � � ���cl�.

For stratified sampling, each stratum has its own probability of success, � �. From
Equation (9),

� � ���st� �
�

��

��
�

����� ���� (17)

It can be shown ( [19]) that Equation (17) is equivalent to

� � ���st� �
����� ���

��
�

��
� �� � ���
��

� (18)

which is always less than or equal to � � ���srs� for �� samples.
In conclusion, for two-stage hierarchical distribution of binary outcomes, the fol-

lowing inequality always holds true

� � ���st� � � � ���srs� � � � ���cl�� (19)

In the next section, we will show from an evaluation perspective, the great utility
of this inequality. These variances are directly parameterized by: �, the number of
selected distributions in the hierarchy — �, the samples per distribution, and finally
— the sample design. The effect of different kinds of groupings, and the reconciliation
of the observed versus expected variances provide insight into the effect of the cofactors
that define those groupings. This is discussed in greater detail in the next section.
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3 Methodology Outline

With the terminology defined, we can now proceed with an overview of the new
methodology. The overall process consists of three steps, that are repeated as long
as a violation of assumptions is detected. They are:

A. Dichotomization. Reduce the statistic of interest to a binary value.

B. Assumptions. Propose a data partition and sample design.

C. Analysis. Compare the sample (empirical) statistic to the point estimate average.
If the statistics are not considered compatible, reject the proposed assumptions
and iterate.

We now consider each step in more detail.

3.1 Dichotomization Step

The first step of the methodology is to reduce the system output to a binary value.
In evaluations where the metric of interest is a rate of success or failure, this usually
involves a simple thresholding of a result.

Dichotomizing the performance measures allows for the exploitation of some unique
interactions between sample design and binary data. However, it is not without disad-
vantages. For scalar data, the binary requirement is nominal, since it can be thresholded
and the analysis performed over a wide variety of thresholds. Multidimensional data or
scalar data depending on multiple cofactors may require a complex transformation or
an analysis in a high-dimensional space. This view could make the application of the
new methodology difficult. While it might be tempting to view this as a preprocessing
step and try to have a methodology that simply uses the dichotomized data, including
this in the iterative process is important because a poor projection into the binary space
may itself cause unmodeled clustering of the data that impacts predictability. As illus-
trated in [19], the thresholding of performance measures can be problematic when it
forces the results into the tails of the distribution.

3.2 Assumptions Step

The second step of the methodology is to assume a set of influential cofactors along
with a sample design. The grouping involves selecting a partition � based on cofactors
� that the experimenter believes divides the observations � into one of the equivalence
classes such that

1. For each set, all observations within an equivalence class are mutually iid.

2. The observations � are partially exchangeable3 according to � .

3If, for arbitrary �, the (symmetric) distribution function � ��� �� � � � � �� of �� is the same for all orders of
the observations �, then the observations are considered exchangeable. If the observations are exchangeable
only within an equivalence class, then the observations are considered partially exchangeable. Clearly,
partial exchangeability is a weaker constraint than conditional iid [20].
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Standard survey sampling theory (e.g. [14]) can be used to show that the estimators
derived in Section 2.1 hold for Item 1 in the list above. Sugden [21] shows that the
estimators hold for the more relaxed Item 2.

In addition to proposing a partition, an experimenter must assume a sample design.
At each level of the hierarchy, the experimenter must determine the sample design — in
this methodology we restrict ourselves to comparing three designs, stratified sampling
(st), simple random sampling (srs), and cluster sampling (cl). If an influential cofactor
is selected in a deterministic, repeatable fashion, this suggests that stratified sampling
is in use. Cofactors that are randomly selected, but constrained for sets of observations,
suggest that a cluster sampling process is present. Cluster sampling collapses to simple
random sampling when the number of elements is one. That is, observation is made
via the same process, and the level of the cofactor is not dependent on the trial number.

3.3 Analysis Step

Finally, in the analysis step, the sample variance of the statistic of interest is compared

with the average point estimate of the sample variance. Only the means of � cl and ��� are
of interest in the analysis phase, since � � ��� can be made arbitrarily small by increasing
the number of trials per experiment.

If and only if the statistic of interest is known to be of a particular distribution,
then the analysis step could be made more formal by using a hypothesis test to decide
whether or not to reject the proposed grouping and sample design. We recommend
that should a hypothesis test be used, it be used only in the very last iteration of the
methodology so that an experimenter does not reach conclusions about any particular
assumptions prematurely.

The desired output of the analysis stage is not only a partition that is not rejected,
but also insight into the effect of the cofactor of interest and how it is sampled. For
example, consider the case where for a particular cofactor, cluster sampling is assumed
but the sample variance is more similar to simple random sampling. Then, an evaluator
may wish to perform another experiment in which a cofactor previously suspected as
influential is demoted to a nuisance parameter.

The analysis phase might also suggest that additional randomization is needed.
Suppose that no estimator — i.e., neither �st, �srs, nor �cl — is compatible with a par-
ticular partition. The divergence of the sample variance and the point estimators could
be due to a basic lack of stationarity required for obtaining a repeatable experiment.
We investigate this phenomenon with a real experiment in the next section.

4 Experimentation

In this section, we apply the new methodology to the biometric system evaluation in-
stallation which we will refer to as the Photohead experiments. The main goal of this
section is to show a systematic application of the new methodology for a vision system
evaluation.

The Photohead system is a testbed designed to evaluate the influence of environ-
mental and sensor effects have on the performance of face recognition systems. Col-
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lecting sufficient data for many different subjects, over all times of day and weather
conditions, is simply not feasible. Furthermore, the inherent variance in pose and sub-
ject would be confounded with the sensor and environmental effects, but separating the
cofactors would require a very large amount of data. The basic function of the Pho-
tohead system is to isolate the effects of sensors/weather by displaying a sequence of
facial imagery, and ‘recapturing’ the image via another sensor located at some distance
away from the display. Such a re-imaging would effectively isolate the degradation
of image quality due to environmental and sensor effects. Because the Photohead
system uses a displayed image and not a live subject, the recognition results are po-
tentially confounded with cofactors due to the imaging display. However, the effect
of that confounding is much simpler than subject variations over time or pose varia-
tion. Therefore, although the Photohead system is not a replacement for using actual
human subjects, it does provide a much more practical, and repeatable, mechanism for
obtaining the vast amount of outdoor data required for such an analysis and also helps
isolated particular variables of interest.

Functionally, the Photohead system takes a set of original images as input, and
produces a set of degraded images, or reimaged data. A data collection refers to the
generation of a particular set of degraded images. The software controlling the Pho-
tohead executes data collections autonomously, and was implemented with a client-
server architecture. The server side of the software controlled the image display, while
the clients were in charge of capture, where each client corresponded to a different
sensor.

At fixed intervals throughout the day, a data collection would begin by logging the
time of day, and downloading, from the National Weather Service website, the weather
conditions at the nearest airport. 4 After shuffling the order in which the set of original
images would be displayed (the reason for this is mentioned later), the server would
display an image, and indicate that an image was ready for capture. Upon receiving the
signal, each client would capture an image from their assigned sensor and signal back
to the server that they had captured an image. The server, after receiving a signal from
each client, would repeat the process, until every image in the original set had been
recaptured.

The Photohead data was collected over several months, and across all times of day
The images were degraded from a large variety of weather effects including snow, rain,
fog, and wind. Although the experimental setup is straightfoward, the changes in the
acquired images could hardly be considered trivial.

The Photohead data includes multiple images of each subject so a standard FERET-
style [22] probe/gallery test is possible — each probe differs from the gallery by a
change in some variable of interest. In a test like FERET, the same image would never
be used in both the gallery and the probe set because not only does this not makes
sense operationally, but it also changes the face recognition problem into a trivial im-
age matching problem. An important idea in the Photohead project, a form of self-
matching, is somewhat contrary to what one would do in a more traditional evaluation.
Suppose, instead of a probe-gallery pair consisting of two different images of the same
person, we used the same image, except that the probe version of the image undergoes

4Lehigh Valley International Airport in Allentown, PA
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some form of digital or analog processing such as imaging through the weather. This
is in keeping with the spirit of good experimental design, one parameter of interest is
varied between probe and gallery; the fact the that face is in exactly same pose and
lighting helps to isolate effects of weather and sensor cofactors from other cofactors.
Thus the self-matching experiments, any deviation from ideal performance can there-
fore be attributed solely to the analog degradation or image processing.

The facial imagery used for the Photohead experiments also came from the well-
known FERET database. The source data consists of 1,024 images, four each of 256
subjects. Let 
 represent the set of all 1,024 images, 
� consist of the all of the first
images of the 256 subjects, 
� the second, and so on. During a single data collection,
all 1,024 images are displayed, and recaptured. Let 
 � represent the set of recaptured
images from the data collection started at time �. Then, all 1,024 recaptured images 
 �

are compared via a commercial face recognition algorithm to all of the original 1,024
images 
, producing a similarity matrix. Since we do not perform any normalization
[1] virtual experiments can be extracted. Since we are interested in isolating the sensor
and atmospheric effects, we will primarily be interested in the experiments in which

� is a gallery and 
�� . If re-imaging has a nominal effect, then our identification rate
should be 100 percent.

4.1 Analysis

Our analysis involves computing collections of point estimators, and comparing their
mean to a set of sample statistics. The evaluations consist of nested loops that group,
sample, and calculate the various statistics of interest. The nested loops correspond to
different trials, runs, and experiments. An experiment may consist of several trials. The
experiment may itself be repeated in another run. Point estimators are generated at the
trial level — sample (empirical) variances are determined per run. Each experimental
run has an associated block of data; the particular block depending on the conditions
under consideration. It is easiest to visualize the data as a large table, where each row of
the table is a group (i.e., a cluster or stratum), the columns as different data collections,
and within each cell is a set of scores generated by a particular probe. This set of scores
can transformed to a summary statistic. To simplify the analysis, we choose recognition
rank (as defined by the FRVT 2002 protocol [1]) because it is unidimensional.

Within a run, each experiment uses a random subset of the total available data,
which is at most, one-half of the data. Therefore, across experiments, data is some-
times reused. This is not as desirable as having new data for each experiment, however,
we save the availability of new data for intra-experiment use. That is, the statistics
across experiments are primarily qualitative — where the statistics are use quantita-
tively, within an experiment, different trials do not share data.

As discussed in section 3.2, in these experiments we restrict ourselves to comparing
three designs, stratified sampling (st), simple random sampling (srs), or cluster sam-
pling (cl). Each design has an associated variance estimator which will be compared to
the point estimator described above. For each iteration, we identify if the cofactors of
interest are ignored (i.e., considered nuisance parameters), fixed, or randomized.

In out first experiment, we consider stratified sampling over the (rank one) identifi-
cation rate for clear days, where the data is partitioned by subject. The corpus of data
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Figure 1: Baseline sample variance and average point estimator of that variance. For
this case, all estimators are severely overdispersed (underestimate the true variance).
The solid (red) line corresponds to the sample variance, the dotted (green) line corre-
sponds to the mean cluster sampling point estimator, the dashed (gray) line corresponds
to the mean simple random sampling point estimator, and the dot-dash (blue) line cor-
responds to the stratified sampling estimator.

has 1,440 such collections (as defined in the previous section), so the total experimental
data is a 
�� � �� � array. For each experimental run, 180 columns were selected,
without replacement, from the full data array. Then, each experiment is broken into
a multitude of trials, or ���	� matrices of size 
�� � � where � is the number of
elements per trial. (� �  is chosen out of convenience, but other values work as
well [19]).

The results of this initial partition are shown in Figure 1. In these experiments, all
trials for a given experiment have the same set of fixed subject, each group within a
trial has the same fixed subject, and and all other potential cofactors are ignored. As
evident in the graph, the empirical variance (red, solid line) is grossly underestimated,
regardless of the class of estimators, which are orders of magnitute away (the �-axis is
logarithmic). This indicates that the data, used as is, fails to capture a large amount of
variance. Therefore, the data is not yet well-mixed. One way of resolving this would be
to model an additional level in the heiarchical distribution — i.e., try cluster stratified
sampling or three-stage cluster sampling. While this might incorporate the discrepancy
numerically, it would neither give us insight into why such a difference in variance is
present, nor would it allow us to compare sample variances and point estimators, since
we would be reducing our entire dataset into a single point estimator. It also suggests
if we had just blindly applied a statistical analysis of the sample of convenience — e.g.
using Bernoulli as a basis for hypothesis testing — we would not obtain meaningful
results.

To find the source of this variance a series of lattice plots were generated (not
shown). On visual inspection, it was apparent that the most influential cofactor was
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Figure 2: Sample variance (solid red line) and average point estimators of that variance
when randomizing over time. (Cluster in dotten green, simple random in dashed grey,
and statified in dot-dash blue.) This is a clear improvement over the previous case.

time. Therefore, to better accomodate any time-dependent variance, we introduce a
randomizaiton step at the beginning of the experiment phase. If we shuffle all of the
data within a row, then we simulate the condition where, within a stratum, images
are taken at a random time. By shuffling each row independently, and uniformly, we
reduce the dependence caused by all of the �th images within a group sharing the same
timestamp. This effectively, helps homogenize the cofactor of time.

The results after temporal randomization are shown in Figure 2. Here, we have
a fixed set of subjects across trials, a fixed subject per group, but unlike the previous
graph, we now randomize over time within each group. This is certainly an impove-
ment of the previous graph — the point estimates are no longer orders of magnitudes
away from the sample variance. However, we have now overestimated the sample
variance, for stratifed sampling, simple random sampling, and cluster sampling. This
suggests we still have not selected the best criterion for our data partition.

Recalling our experimental setup, consider a partition based on degraded images
corresponding to the same original image. That is, we have 1,024 instead of 256 groups
since there are four original images per subject. These results are shown in Figure 3.
Here, we have the a fixed set of subjects across trials, a fixed original image per group,
but we still randomize over time per group. This graph gives strong evidence that
for this Photohead installation, stratified sampling given temporal randomization is the
most appropriate variance estimator. A more formal hypothesis test might be devised
to test this assumption; this is a subject of future research.

These three graphs demonstrate importance of sampling design for estimation, and
the methodology in action. While for this data stratified sampling variance estimator
was the best match that is not always the case, different designs yield different results.
Consider the case where we use different subjects per trial. Figure 4 shows the results
when partitioning on original image with temporal randomization. In this case, the
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Figure 3: Sample variance (solid red line) and average point estimator of that variance
when randomizing over time and grouping by (original) image. (Cluster in dotten
green, simple random in dashed grey, and statified in dot-dash blue.) Finally we have
agreement between the the sample variance and a class of estimator, with stratified
sampling being most appropriate for this experiment.

set of images per trial is randomized, each group within a trial has a fixed original
image, and time is randomized within each group. This graph demonstrates the critical
nature of considering the proper sample design. Given the same underlying data, we
have vastly different variances given different selection mechanisms — i.e, if we use
stratified or cluster sampling.

In summary, this section showed how the new methodology can be applied to a
real biometric experiment. By rejecting homogeneity assumptions that were clearly
incorrect, an estimator compatible with the empirical variance was achieved. Under-
standing the variance and the nature of the sampling establishes the foundation for the
application of techniques such as BRR or Fay’s Method [5, 23], which allow for vari-
ance estimation of more general, non-linear statistics, such as the degrees of freedom
estimate required for confidence intervals.
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6 Conclusions

In this paper we showed a new methodology for rejecting incorrect homogeneity as-
sumptions in evaluation. We illustrated how the methodology in the context of a real
biometric system evaluation. Given randomization over time, and partitioning by orig-
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Figure 4: Sample variance (solid red line) and average point estimator of that variance
when randomizing over time and grouping by (original) image. (Cluster in dotten
green, simple random in dashed grey, and statified in dot-dash blue.) Between trials,
different subjects are used. This time the results are compatible with cluster sampling.
The sample variance point estimator shows a high variation due to the reduced number
of trials per experiment — changing subjects each trial without overlap severely limits
the number of independent repetitions (per experiment) that can be performed.

inal image, the Photohead data was compatible with stratified or cluster sampling, de-
pending on whether or not the same (stratified sampling) or different (cluster sampling)
original images we selected between trials.

Having a valid variance estimator is the most critical component in obtaining confi-
dence intervals. As shown in [19], the variance estimates developed using this method-
ology, may be transformed into confidence intervals by combining a resampling method
known as balanced repeated replication with the Satterthwaite approximation.

A feature that is both a strength and weakness of the new methodology is the re-
quirement for what could potentially be a considerable quantity of data. As always, a
large amount of data provides a great deal of support for a set of assumptions that are
not rejected. However, the resources required for a single experiment may simply not
allow enough data to be collected for a thorough application of the new methodology
accross all possible grouping or hypothesized cofactors. As is common in experimental
design, a pilot study using the proposed methodology could be applied to test assump-
tions before embarking on a more extensive data collection.

Finally, the methodology presented here is a better generalization than previous
work where stratified sampling was explicitly assumed [5], or where the use of the
binomial model presumes a well mixed urn [2, 24].
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