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Abstract

The solubility of oxygen in liquid pyridine is estimated using molecular dynamics to eval-

uate the chemical potential of the gas molecule in the liquid. The Kirkwood charging

method is used with empirical potentials that generate reliable equations of state for the

pure components and sixth power combining rules to obtain the oxygen-pyridine interac-

tions. The computed value of the solubility is 120 times smaller than the experimental

value when combining rule parameters are used. A set of potential parameters that result

in the predicted solubility close to the experimental value are not accessible via the usual

combining rules.

Key words: Kirkwood charging, combining rules, molecular dynamics, oxygen, pyridine,

solubility.

1. Introduction

Molecular dynamics and Monte Carlo simulation methods make it possible to calculate

fluid properties provided suitable potential functions are available. This method is partic-

ularly attractive when the costs of experimental work are large due to extreme/hazardous

conditions or when samples are very expensive and when the interest is to screen for par-

ticular properties among several systems. The solubility of oxygen in organic liquids where

the risk of fire is a significant hazard, is an example where simulation provides an attractive

alternative to laboratory work. In this paper, we discuss the use of molecular dynamics

simulation to determine the solubility of oxygen in liquid pyridine. This is the first step in

developing a protocol for making solubility calculations of gases in polar liquids routine.

We employ the Kirkwood charging method [1] as discussed in the next section. As in any

simulation, the choice of potential functions is important. The potentials used here are

described in the next section along with the simulation details. The results are presented
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in section 3 and some discussion on how these results might be improved is found in the

final section.

2. Models and methods

The solubility, 5, of a gas in a liquid is the amount of gas dissolved to saturation relative

to the total number of molecules in the liquid. [2] It is equal to the mole fraction of the

gas, xg ,
in the liquid. The condition to be satisfied is that the chemical potential of the

gas molecule dissolved in the liquid equals the chemical potential of the gas molecule in

the vapor and therefore depends on the pressure in the gas phase. The chemical potential

in the vapor phase, ng
can be determined from the equation of state of the gas and the

ideal gas chemical potential. [3] The chemical potential of the gas molecule in the liquid

can be obtained by evaluating a “charging potential” integral as discussed by Swope and

Andersen [4] and more recently in a different context by Ferrario, et ai [5]

Suppose the interaction between the gas molecule and the liquid molecules is described

by a potential function U( A) where A is a charging parameter that can vary from 0 to 1.

Typically, U(0) = 0 and U(A) increases to the full solvent-solute interaction for A = 1. It

follows that the chemical potential of the gas molecule in the liquid, /q is

« = kBT ln(nsA
3

) + [ (dU(A)

/

dA) xd\ (1)
J 0

where n s is the number density of the solute in the solution, A is the thermal deBroglie

wavelength, and (...)* indicates an ensemble average in the NPT ensemble of the enclosed

quantity with the charging parameter set to A . If the gas in the vapor phase is suffi-

ciently dilute to be considered an ideal gas with number density nv ,
equating the chemical

potentials of the solute in the two phases yields

In(n s/nv ) = f (dU(\)/d\) xd\ (2)
Jo

with ksT the product of Boltzmann’s constant times the temperature,

therefore

s = xg =
ns

n s + ni

The solubility is

(3 )

where ni is the number density of the liquid. The explicit A variation of the solvent-solute

interaction used here has the overall form of

U (A, r) = - A
2

) + r) (4)

where factor a(l — A2
)
prevents singular behavior for the small r separations that occur

for small values of A. [6] The explicit form for the oxygen-pyridine interaction potential is
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described below. The modifications to eq. 2 needed when the gas is too dense to be treated

as an ideal gas are discussed in the appendix. Any complications due to the presence of

solute molecules in the gas phase are ignored.

It is important to realize that the path in the A-parameter space followed in eq. 1 is

arbitrary provided that U(0) = 0 and U( 1) is the full solute-solvent interaction. This is

because differences in thermodynamic potentials depend only on the states and not on the

equilibrium path followed between the states.

The charging parameter approach avoids one of the potential problems of small system size

when the solubility is expected to be small. In the Widom insertion method [7] and in the

NPT ensemble variant of that method [8] the acceptance rate of insertions per attempted

insertion would be on the order of 0.0005 if the experimental value for the solubility of

oxygen in pyridine [9] were realized. This would make it difficult to obtain statistically

significant results without resorting to extremely long simulations. The same concerns

apply to Gibbs ensemble methods since the number of oxygen molecules present in the

pyridine liquid would be small compared with the total number of molecules in the liquid.

(
10

]

The simulations are performed using NPT molecular dynamics [11] for a system of 215 rigid

pyridine molecules and 1 rigid oxygen molecule. The dynamical degrees of freedom of the

molecules are evolved using a variant of the velocity Verlet algorithm with quaternions used

to describe the orientation of the molecules. [12] The equations of motion were integrated

using a time step of 1 fs. The temperature of the system is held at 303 K and the pressure

is set to 0.1 MPa. The Ewald summation method is used to account for the long range

part of the Coulomb ineractions and a correction is made for the long range part of the

r
-6

interaction terms as well. [13] More detail about simulation procedures, including

uncertainty estimation methods and a convergence test, are found in the appendix.

The pyridine model treats the molecule as a rigid, all-atom object with the geometry of

the isolated molecule [14] and with site-site interactions of the form

4>ab{r) = t(ab) [2 (r0 (ab)/r)
9 - 3(r0 (a5)/r)

6

]
+ qaqb/r (5)

where e(ab) and ro(ab) are appropriate for sites a and b on distinct molecules and the sites

are separated by a distance r. The sites on the pyridine molecule are indicated in Fig. 1.

The charges and the e and ro values were initially taken from published sources [15] for

the charges and for the other parameters [16]. Sixth power combining rules [17] were used

to obtain the unlike site interaction parameters, namely

r0 {ab) = [(ro(aa)
6

4- r0 {bb)
6
)/ 2]

1/6
(6)
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and

e(ab) = 2^e(aa)e(bb)
(r0 (aa)ro(bb))

3 •

-r0 (aa)
6 4- r0 (bb)

6
.

'

(
7

)

These initial values of the interaction parameters were then adjusted so that the correct

value for the density of liquid pyridine at 303 K and 0.1 MPa (972 kg-m-3
)
was obtained

within 0.1%. [18] For the 10 MPa state, these parameters overestimate the density by

1.4%. The values of the 9-6 potential parameters are listed in Table 1.

3 2

Fig. 1. The pyridine molecule with equivalent sites are shown here. The nitrogen site is

the black filled circle, the carbon sites are the gray filled circles and the hydrogen sites are

the open circles. The labels 1, 2, and 3 identify the three types of carbon and hydrogen

sites with distinct charges as indicated in Table 1.

Table 1. The potential parameters for pyridine and pyridine-oxygen interactions. The

oxygen-oxygen parameters are included for completeness.

a-b pair e(ab)/kB ,
K ro(ab), nm Site number q

C-C 21.77 0.4466 Cl 0.25361

H-H 6.94 0.3299 C2 -0.50028

N-N 53.92 0.4161 C3 0.47827

C-N 33.51 0.4327 N -0.65797

C-H 8.53 0.4080 HI 0.06774

H-N 15.45 0.3847 H2 0.17813

O-C 21.48 0.4143 H3 0.01219

O-H 14.24 0.3931

O-N 37.51 0.3467

0-0 31.30 0.3602
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The oxygen molecule is also treated as a rigid object with the interatomic separation

of 0.1208 nm. [19] To be consistent with the pyridine interactions, the oxygen-oxygen

interaction is also of the form of a 9-6 interaction with an additional quadrupole-quadrupole

interaction. Interaction sites are located at the oxygen sites and at the point quadrupole

site located at the midpoint between the oxygen sites and is assigned the experimental value

of -0.4xl0~ 26 esu (-1.3 xlO-40 C m2
). [20] The 9-6 potential parameters were adjusted so

that the experimental values of the second virial coefficient, B(T ), were realized between

110 K and 400 K [21] within the standard error of the Monte Carlo procedure used to

evaluate B(T). The sixth power combining rules, eqs. 6 and 7, were used to obtain the

values for the unlike sites listed in Table 1. Since both the pyridine and oxygen potentials

are adapted to the conditions of interest, the solubility calculation is primarily a test of

the combining rules if the essential physics for solute-solvent interactions is contained in

the model potentials for the pure components.

The oxygen-pyridine interactions that enter the coupling expression are assumed to have a

modified Lennard-Jones plus charge-quadrupole interaction. As noted above, the inverse

power terms are modified by r being replaced by ra = a(\ — A)
2 + r so that singularities

are avoided. [6] The cutoff length a was arbitrarily set to 0.158 nm, a value that is on the

order of 1/2 of the position of the zeros of the Lennard-Jones potentials. The sensitivity

of the results to the value of a is discussed in the appendix. The result is

l/(A,r) = A 2 ^ [

e
[(
roAa)

12 - 2(r0 /ra )

6

]
+ qQr2

/rl[3(z r)
2 - r

2

]

sites

(8 )

where z is a unit vector lying along the axis of the oxygen molecule, q is the charge on the

pyridine site and Q is the quadrupole moment of the oxygen molecule. The total interac-

tion, [/, is a sum over all pyridine molecule sites and over the two oxygen sites with 12-6

interactions and the center of mass oxygen site with the charge-quadupole interaction. [22]

The 12-6 form was arbitrarily chosen after some initial results indicated possible problems

with the softer repulsion of the 9-6 form. This form for the 12-6 potential has r0 the

position of the minimum of the potential and e as the well depth, just as in the 9-6 case.

As will be shown in the next section, the problem was not with the 9-6 form but with the

combining rules. The zero of the Lennard-Jones potential, a satisfies r0 = 2
1//6

cr.

Molecular dynamics is used to sample phase space in this work. Since only thermodynamic

quantities are of interest, NPT Monte Carlo simulation could also be used. [23] Which

sampling method is used is largely a matter of individual choice.

3. Results

The first set of results are for the parameters in Table 1. As shown below, the prediction

of the solubility based on those parameters is significantly smaller than the experimental
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value.

The evaluations of (dU(X)/dX)\ have been performed for 0.1 increments of A from 0.0 to 1.0

plus a few additional values of A to better define how the (dU/d\) goes to zero as A goes to

zero and to fully resolve the maximum that occurs in the vicinity of A = 1/2. This proved

sufficient to obtain reliable estimates of the integral. The uncertainties in (dU(X)/d\)\

are obtained using block averaging [24] as described in detail in the appendix.

The integrand of eq. 2 for the parameters listed in Table 1 is shown in Fig. 2. The integral

has the value 6.76. When the experimental values for the number density of oxygen gas

and liquid pyridine
(
nv = 2.245 x 10 19cm-3 [25], rq = 7.39 x 1021cm~ 3

[18]) are used in

eq. 3, the solubility s = 3.8 x 10
-6

. This is much smaller than the experimental value of

4.5 x 1(T 4
[9]

Fig. 2. The integrand of eq. 2 obtained using the parameters listed in Table 1 exhibits a

maximum around A = 1/2.

The discrepancy between the calculated value of the solublity and the experimental value is

due to the excessively large value of the coupling integral. It is apparent from Fig. 2 that in

order to obtain agreement with experiment the large positive peak around A = 1/2 should

be reduced and/or the negative region for larger values of A be increased. Since we are

using purely empirical potentials for the 12-6 interactions, it is appropriate to experiment

with other values of the potential parameters. The values for the charges on the pyridine

molecule sites and the quadrupole moment of the oxygen molecule are based on quantum

chemistry calculations and experimental measurements so modifying them is not advisable

at this time. Also, the 9-6 parameters for pyridine-pyridine and oxygen-oxygen interactions

are dependent on the values for the charges and the quadrupole moment. Therefore, the

6



12-6 parameters are the simplest ones to adjust. Some initial tests indicated that modifying

the size parameters, ro(ab ), would have large influence on the results. Instead, the more

fruitful approach, one that does not lead to such large changes, is to vary the well depth

parameters, e(ab).

As an initial exercise in parameter adjustment, the e(OC), e(OH), and e(ON) parameters

were arbitrarily increased to 47.2 K, 30.4 K, and 80.2 K respectively, about twice the values

in Table 1. The resulting integrand is shown in Fig. 3. The value of the integral is 1.16

and the solubility is 1 x 10~ 3
. Therefore the well depth parameters were increased by too

much.

Fig. 3. The integrand of eq. 2 obtained using well depth parameters that are about twice

the values in Table 1.

Next, a series of calculations were performed that indicated that the integrand was not

sensitive to the value of e(OH) and was most sensitive to the value of the e(OC). This then

lead to further calculations that narrowed the values to 54.5 K, 14.0 K, and 60.2 K for

e(OC), e(OH), and e(ON) respectively. The resulting integrand is shown in Fig. 4. The

value of the integral is 2.0 and the solubility is 4.5 x 10“ 4
. This is essentially the same as

the experimental value. One should keep in mind that the uncertainty in the estimate for

the integral is on the order of 10% with a corresponding uncertainty of about 10% in the

solubility. There is no point to further adjustment of the well depth parameters at this

time. These well depth parameters are not accessible by the usual combining rules.

4. Discussion

The Kirkwood charging parameter approach to estimating the chemical potential of an

infinitely dilute solute has been implemented. The emphasis here will be on describing the
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Fig. 4. The integrand of eq. 2 for the e set that leads to agreement with the experimental

value of the solubility.

details of the implementation and not so much on the explicit results. The results indicate

that the use of combining rules to obtain solvent-solute potential parameters when the

two species are not similar is not likely to yield satisfactory results. Instead, one needs to

attempt to determine those quantities directly as discussed below.

The charging approach requires that the integrand, (dU(\)/d\)\, be obtained for enough

values of the charging parameter A so that the integral in eq. 2 can be obtained with good

accuracy. For the case at hand shown in Fig. 4, this means that the resolution around

the maximum must be on the order 0.05 while the other parts of the integrand can be

evaluated with 0.10 resolution. It is also important that the charging potentials contain a

cutoff length a that shields the system from the singularities in the potentials. The value

for a should be chosen so that the maximum is not so large as to make it necessary to use

very fine resolution. As discussed in the appendix, the value of a = 0.158 nm, about 1/2

the position of the zero of the Lennard-Jones potentials is a reasonably good choice for the

pyridine-oxygen system.

The steps that are needed to implement this approach to the determination of the solubility

of a volatile compound in a solvent are worth examining in a bit more detail. First, one

needs a solvent potential that will produce satisfactory PVT properties for the liquid over

the region of interest. Alternatively, one could adopt empirical potentials that produce

reliable vapor pressures. This might change the energy parameters, e(ab), so that the

combining rules would be useful. This possibility has not been examined.

The next step, one that is difficult to implement on the basis of fitting to physical properties

such as the equation of state, is to determine the solute-solvent potential. In the current
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work, this was done empirically by a trial and error approach using the known value of

the solubility as the target. Since the solubility is the quantity of interest, this amounts

to curve fitting with unknown ability to predict the solubility for other conditions. An

alternative would be to perform quantum chemistry calculations of the interaction energy

of a solute-solvent pair for a large number of configurations and then parameterize the

resulting energy surface in the form of a set of effective pair potentials. A quantum

chemistry approach could guide the development of a more detailed description of the

electrostatic interactions. In particular, the possiblity of induced polarization could be

considered. Another possibilty that has recently been proposed would be to use chemical

shift measurements, if available, to estimate the solute-solvent interactions. [26]

Finally, it is essential that the effective solute-solvent pair potentials be modified, as done

in eq. 8 so that any small separation singularities are screened for small values of the

charging parameter A.

Once the potentials are in hand, then a series of simulations need to be performed to

determine the A variation of (dU(\)/d\)\. The initial set would sketch out the A variation

with a resolution of 0.1. Once these 10 simulations are completed, any gaps in the resolution

can be filled in with additional simulations. While this is a tedious undertaking, it is certain

to provide a reliable estimate of the solubility for the model potentials used. The test for

convergence of a given run should be the convergence of the running average as illustrated

in Fig. A1 in the appendix.

In summary, the steps to be followed when using the Kirkwood charging approach to

determining the solubility of a gas in a liquid have been examined. The importance of an

independent determination of the solute-solvent interaction can not be overemphasized.

Reliance on combining rules can result in estimates of the solubility that are in serious

error.

Although it is outside the main topic of this report, it is interesting to compare the solubility

of N 2 in pyridine with that of O 2 . At 298 K, the solubility of N 2 in pyridine is 2.5 xlO -4
,

[27] slightly more than 1/2 that of O 2 . We also note that the quadrupole moment of N 2

is 3.5 times larger than that of oxygen. [20] The significance of this difference, if any, in

determining the solubility of the gases is not known.

Appendix

Non-ideal gas formulation

If the solute in the vapor phase is not an ideal gas, then eq. 2 must be modified to include

the nonideal contribution to the chemical potential. In general, corrections to ideal gas

behavior become important at higher densities. The presure where this occurs depends

on the specific gas and on the temperature. If the pressure can be represented by a virial
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series, [28]

p = kBT[nv + B2 (T)nl + B3 (T)n
3
v + . .

.]
(A 1

)

then it follows that the chemical potential can be represented by

A*
= kgT [ln(n„A 3

) + £(^T^) B*+i(T )nJ (A2)

k> 1

Now equating the chemical potentials given by eqs. 1 and Al yields the modified form of

eq. 2,

Mn./n*)
=

f

o

(dU(\)/dX) xdX +YX^)Bk+1 (T)n
k
v .

(A3)

This equation would be used when the pressure of oxygen is greater than 0.1 MPa.

Cutoff length

As noted in section 2, the cutoff length, a was arbitrarily assigned a value of 0.158 nm
which is about 1/2 the value of the zero of the Lennard-Jones potentials. Two further tests

were made for the values of the e’s that yielded agreement with the experimental value of

the solubility. In these tests, a was given the values 0.079 nm and 0.237 nm. The resulting

integrands are shown in the Fig. Al.

No attempt was made to fully resolve the two test cases, instead the intent is show how

the derivatives vary with the length a. Note that the peak of the case with a = 0.237 nm
has not been fully resolved. When a is small, the curve should be more fully resolved than

was done here since the area under that curve, as shown, is significantly larger than the

area under the other two curves.

From these examples, it appears that putting a in the range between 1/2 and 3/4 of the

position of the zero of the interaction potentials is a satisfactory choice. Smaller values

of a do not appear to provide adequate screening the singularities as indicated by the

relatively large positive region for A < 0.6 in Fig. Al.

Sampling and convergence issues

The estimates for (dU(X)/dX)\ were made for well stabilized systems for each value of the

charging parameter A. In practice this meant that once a value of A had been assigned, the

system was evolved for at least 10 ps before a production run of 100 ps was made. During
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Fig. Al. The expectations of (dU (X) /d\) \/ksT for three values of the cutoff length, a

are shown here. The solid line is for a =0.158 nm (also shown in Fig. 4), the dashed line is

for a = 0.079 nm, and the long-short dashed line with solid symbols is for a = 0.237 nm.

the run, block averages of 1 ps duration were made of the derivative. [24] A typical case

is shown in the Fig. A2 for the sequence of time averages over a 100 ps run. Also shown

in the figure is the running average, that is the average at time t of the block averages

up to that time. The convergence of this running average to the overall time average is

an indication that adequate sampling has been performed. The type A standard error for

independent observations is used to estimate the uncertainty in the average value of the

derivative. [29] This illustrates the need for runs of 100 ps duration as the convergence

in this example is at best marginal at 100 ps. The convergence of the running average to

the overall time average, indicated by a nearly horizontal segment of the curve for longer

times, should be checked for each value of A generated.
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Fig. A2. The time series for (dU(\)/dX)\ (solid line and filled circles •) and the cumulative

average (dashed line) for the case with a = 0.79 nm and A = 0.7. The overall average in

the derivative for this case is -15.Oil. 2. This is a marginally converged case as the running

average curve is slightly tilted downward.
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